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A LOCAL RELAXATION METHOD FOR SOLVING ELLIPTIC
PDEs ON MESH-CONNECTED ARRAYS*

C.-C. JAY KUO’, BERNARD C. LEVY" AND BRUCE R. MUSICUS:

Abstract. A local relaxation method for solving linear elliptic PDEs with O(N) processors and O(x/)
computation time is proposed. We first examine the implementation of traditional relaxation algorithms for

solving elliptic PDEs on mesh-connected processor arrays, which require O(N) processors and O(N)
computation time. The disadvantage of these implementations is that the determination of the acceleration
factors requires some global communication at each iteration. The high communication cost increases the

computation time per iteration significantly. Therefore, a local relaxation scheme is proposed to achieve

the acceleration effect with very little global communication in the loading stage. We use a Fourier analysis
approach to analyze the local relaxation method and also show its convergence. The convergence rate of
the local relaxation method is studied by computer simulation.

Key words, mesh-connected processor arrays, elliptic partial differential equations, successive over-

relaxation, local relaxation, Fourier analysis, parallel computation
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1. Introduction. Consider a 2-D linear elliptic PDE on a unit square discretized
by a finite-difference method with a uniform grid. There is a finite difference equation
associated with each grid point, so that a system of linear equations is obtained by
this discretization procedure. We may assign one processor to each grid point and
connect every processor to its four nearest neighbors. This kind of computer architec-
ture, known as a mesh-connected processor array,, suggests a natural parallel computa-
tion scheme to solve the above system of equations, i.e., parallel computation in the
space domain. Jacobi and Gauss-Seidel relaxation methods seem particularly suitable
for mesh-connected processors, since each processor uses only the most recent values
computed by its neighbors to update its own value. Unfortunately, the convergence
rate of these algorithms is slow. The convergence rate can be improved by various
acceleration schemes such as successive over-relaxation (SOR) and Chebyshev semi-
iterative relaxation (CSI) 17]. However, to obtain the acceleration effect requires that
the acceleration factors should be estimated adaptively [8]. This procedure requires
global communication on a mesh-connected processor array and increases the computa-
tion time per iteration enormously. Any time savings due to acceleration may be
cancelled out by the increased communication time. In order to improve the conver-
gence rate as well as to avoid global communication, a recently developed approach
known as the ad hoc SOR [5], [6], or local relaxation [3] method seems to be useful.

The local relaxation scheme was found empirically by Ehrlich [5], [6] and Botta
and Veldman [3]. They applied this method to a very broad class of problems and
found its efficiency by studying many numerical examples. In this paper, we approach
the same problem from an analytical point of view, clearly prove the convergence of
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A LOCAL RELAXATION METHOD 551

this method for the case of symmetric positive-definite matrices and provide an
analytical explanation for the good performance of the method.

The conventional way to analyze the SOR method is to use matrix analysis [17].
This approach depends heavily on the ordering of the grid points and on the properties
of the resulting sparse matrix. An alternative technique, which was employed in [12],
[14] and [15] to analyze relaxation algorithms, is to use Fourier analysis. Strictly
speaking, Fourier analysis applies only to linear constant coefficient PDEs on an infinite
domain, or with periodic boundary conditions. Nevertheless, at a heuristic level this
approach provides a useful tool for the analysis of more general PDE problems, and
it has been used by Brandt [4] to study the error smoothing effect of relaxation
algorithms and to develop multigrid methods. Since then, the Fourier analysis approach
has received a large amount of attention in the study of multigrid methods [16].
Following the same idea, we shall apply the Fourier analysis approach to the SOR
method. For the Poisson Problem defined on the unit square with Dirichlet boundary
conditions, we obtain the same result as Young’s SOR method. However, our derivation
is simpler. For space-varying PDEs, the local relaxation scheme uses space adaptive
relaxation parameters. This is different from Young’s SOR method which uses time
adaptive relaxation parameters [8].

The paper is organized as follows. Section 2 discusses the implementation of the
Jacobi, Gauss-Seidel, adaptive SOR and local relaxation methods on mesh-connected
processor arrays. Section 3 proves the convergence of the local relaxation method. The
Fourier analysis approach is used to analyze the local relaxation method for 5-point
and 9-point stencils, respectively, in 4 and 5. It turns out that the 9-point stencil
analysis requires a slight modification of the basic convergence result of 3. Section
6 shows the results of a computer simulation on a test problem which indicates that
the convergence rate of the local relaxation method is superior to that of the adaptive
SOR method. Some further extensions and conclusions are mentioned in 7.

2. Implementing numerical PDE algorithms on mesh-connected processor
arrays. The computation time for an iterative algorithm equals the product of the
number of iterations and time per iteration. In a sequential machine, time per iteration
is determined by operation counts, especially by the number of floating point operatibns
required. In a multiprocessor machine, however, time per iteration depends heavily
on the algorithm chosen and on the communication scheme. Consider mesh-connected
processor arrays in which processors are organized in a geometrically regular two-
dimensional square "tiling" pattern and connected only to their nearest neighbors.
Algorithms using only local communication will take O(1) communication time, while
those using global communication require O(x/-) communication time per iteration
since for an array with N processors, communications between processors located on
opposite sides of the array will take O(v/--) time. We thus seek algorithms with fast
convergence rate, short computation time, and primarily local communication.

Let us use an example to illustrate how the above considerations affect the
implementation of various iterative algorithms. Consider a self-adjoint second-order
linear PDE defined on a closed unit square 1)= [0, 1] x [0, 1],

OXl
P(Xl, X2) --OX’-2 q(x,, x2) + o’(xl, x2)t/--f(xl, x2)

(2.1a)
(Xl, X2) e ’,

with the following boundary condition on F, the boundary of

Ou
(2.1b) a(xl, x2)u -4r- (Xl, x2) n (Xl x2) (Xl, x2)
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552 C.-C. J. KUO, B. C. LEVY AND B. R. MUSICUS

where Ou/On denotes the outward derivative normal to F. The coefficient functions are
assumed to be smooth and to satisfy

p(Xl, X2)>O, q(Xl, X2)>O, O’(Xl, X2)> O, (Xl, X2) E ",

O(X1, X2) 0 (X1, X2) 0 O "" > 0, (Xl, X2) E F.

If we discretize (2.1) on a x/xx/ uniform grid [17], we get a 5-point stencil; and
the finite difference equation at an interior point (i,j) can be written as

(2.2) di,jui,j ri,jU+l, l,U_l, t,ui,j+l- b,u,_l s,,

with

(2.3a) l, --Pi-w2,j, ri,j =Pi+l/2,j, b,j qi,j-1/2, ti, qi,j+l/2,

(2.3b) d, =p_l/E, +p+l/E, + q,j_l/E+ q,+l/E+ tri,jh 2, s, f,h2

where h is the grid spacing and p, is defined as p(ih, jh). Similar discretized equations
can be obtained for the boundary points where u,j is unknown. Let us choose a
particular order for those equations, and construct vectors u and s from the variables

ui, and s, arranged in the selected order; then the interior and boundary equations
can be arranged in matrix form

(2.4) Au s,

where A contains the coefficients d,, l,, r,j, ti, and b,. The matrix A is symmetric,
since 1+1, r, and b,+l t,j. In addition, A is positive definite, since it is irreducibly
diagonal dominant 17, p. 23].

Starting from equation (2.2), we can discuss the details of implementing different
iterative algorithms with a mesh-connected processor array. Assume that we build a
x/ xx/ grid of processors, and assign the processor at coordinate (i, j) the responsi-
bility of calculating the value of ui,. Direct communication is allowed only between
neighboring processors. At iteration n + 1, each processor may combine the estimated

(") in ordervalue of u (’) in neighboring processors, together with its own estimate of u,,
(.+1) A particularly simple iteration, for example, is theto develop a new estimate ,

Jacobi method, in which we iteratively calculate"

(n+l) -1[1 (n) ..[.. ,(n) h (n) (n)
Ui,j di,j\i,ji_l, i,j--i+l,j -[- ’i,ji,j--1 + i,jUi,j+l " Si,j).

According to the above iterative equation, each processor uses the values of u
obtained by its nearest neighbors to update its value at the current iteration. Time per
iteration is constant, because both the communication time and computation time are
constant.

If the grid point (i,j) is called a red point when +j is even, and a black point
when i+j is odd, the Jacobi method can be viewed in space and time as consisting
of two interleaved, and totally independent, computational waves alternating between
red and black points. This phenomenon is illustrated in Fig. 1, where the one-
dimensional grid with red/black partitioning is shown in the horizontal direction while
the evolution from one iteration to the next is indicated in the vertical direction. The
solid and dotted lines represent two value-updating processes evolving with time, or
two computational waves. In fact, these two waves result in unnecessary redundancy.
We need only one wave to get the answer, since both waves converge to the same final
values. If we delete one computational wave, the rate of utilization of the processors
becomes one half, i.e., every processor works only half of the time. Therefore, we may
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A LOCAL RELAXATION METHOD 553

x-coordinate

time1
@ @ initial values

...."" ::.... ...:" ":.....

st iteration

2 nd iteration

FIG. 1. 1-D Jacobi relaxation with red/black partitioning.

group one red and one black point together and assign them to a single processor.
This saves half of the hardware cost without loss of computational efficiency (see
Fig. 2).

To derive a Gauss-Seidel algorithm for this problem, let us consider the same
red/black point partitioning and write the local equation as follows:

red points (i +j is even):

l(n+l) -1 ,(n) (n) h (n) (n)
i,j d i,j + r u + + + s,);i,j" i--l,j i-t-l,j "-’i,jLI i,j--1 i,ju i,j+l

black points (i+j is odd):

/(n+l) d-[l (n+l) (n+l) 1 (n+l) (n+l)
i,j i,j \i,j"ti--l,j + ri,jUi+l,j "Jl- ui,jcti,j_ "Jl- ,i,ji,j+l + Si,j).

’ crdiiIce-odoe!’i iii’iii’il
FIG. 2. 2-D red/black partitioning and grouping.
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554 C.-C. J. KUO, B. C. LEVY AND B. R. MUSICUS

Other partitionings will lead to different Gauss-Seidel Schemes; however, the red/black
partitioning approach is preferred for parallel implementation on mesh-connected
arrays, because of its efficiency and simplicity. Note that the difference between the
Jacobi and the Gauss-Seidel relaxation methods is that the Jacobi method updates
the values of all nodes at one iteration while the Gauss-Seidel method updates the
values of half of these nodes during a first step and updates the values of the other
half during a second step based on the previously updated information, and these two
steps form a complete iteration. For the case of a one-dimensional grid, we find that
the Gauss-Seidel iteration is equivalent to the computational wave of the Jacobi
iteration shown by the dotted line in Fig. 1. Therefore, we can save one half of the
computational work by using Gauss-Seidel iteration on either a single processor or a
mesh-connected array.

The chief shortcoming of the Jacobi or Gauss-Seidel iterative methods lies in
their slow convergence rate. It usually happens that the spectral radius of the relaxation
matrix is very close to 1, which causes the convergence rate to be extremely slow. The
number of iterations needed is proportional to O(N) [17]. Since time per iteration is
constant, the total running time is also proportional to O(N).

By applying different acceleration schemes to the Jacobi and Gauss-Seidel tech-
niques, we can derive a variety of accelerated relaxation algorithms. Two typical
examples are the Chebyshev semi-iterative (CSI) method and the successive over-
relaxation (SOR) method. These acceleration schemes use carefully chosen relaxation
parameters to reduce the spectral radii of the iterative matrices so that the iterative
algorithms converge faster. To determine the relaxation parameters, CSI acceleration
uses knowledge of the largest and smallest eigenvalues of the basic relaxation matrix
and SOR acceleration uses knowledge of the spectral radius of the basic relaxation
matrix 17]. For a given mesh-connected processor array, if we know these quantities
a priori and broadcast them to all processors in the loading stage, each processor can
compute the acceleration parameters on its own without additional communication
cost. In this case, although the accelerated schemes require a little more computation
and memory than the basic Jacobi and Gauss-Seidel relaxation schemes, they present
some significant advantages. The reason is that the number of iterations needed is
reduced tremendously, becoming O(x/) for both acceleration schemes [8]. However,
in general we do not know the eigenvalues of the basic relaxation matrix in advance
and have to estimate them by some adaptive procedure. To our knowledge, all the
estimation procedures developed require the computation of the norms of some global
vectors. Therefore, global communication cannot be avoided. This means that the
communication cost for a single iteration in a mesh-connected array becomes O(x/).
As a consequence, time per iteration is O(x/) and the total running time becomes
O(N) again.

Comparing this result with the result obtained for the basic relaxation methods,
it seems that we do not benefit from acceleration schemes when we seek to implement
iterative algorithms in parallel on mesh-connected arrays. This can be easily explained
by noting that for a single processor, there is no distinction between local and global
communications, since all data are fetched from the same memory, while for a
mesh-connected processor array, long range communication costs much more than
short range communication.

In addition to the above relaxation algorithms, another important class of
algorithms for solving systems of linear equations can be derived from an optimization
principle. The conjugate gradient (CG) algorithm is an example [8]. Without consider-
ing rounding errors, a theoretical analysis indicates that the CG algorithm is able to
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A LOCAL RELAXATION METHOD 555

solve the discretized PDE exactly in O(N) steps, using only O(N2) computation and
O(N) storage on a single processor. In practice, experience shows that the CG method,
when applied to the PDE problem, usually converges in O(v/-) steps even with
rounding errors. Unfortunately, on a mesh-connected array, this algorithm is slowed
by the need to compute several inner products of O(N) length vector. Computing the
inner product of two vectors whose entries are distributed over a mesh-connected array
requires global communication. We therefore encounter the same difficulties as for the
accelerated relaxation methods.

The local relaxation method proposed by Ehrlich [5], [6] and Botta and Veldman
[3] is a computational algorithm suitable for parallel implementation on mesh-
connected processor arrays, because it has the same acceleration effect as SOR and
uses only local communication. A local relaxation procedure for equation (2.2) can
be written as follows"

red points +j is even)"

(2.5a) ""+) u.")+w,jd(1 " " + h " +,ui,j (1 O’)i,j) ,,J "i,ji--l,j + "i,j"i+l,j "i,jUi,j--1 "i,j"i,j+l + Si,j)"

black points (i +j is odd)"

(2.5b) .(,,+1) (,,) --1 (n+l). (n+l) h (n+l) (n+l)
ui,j --(1--tOi,j)Ui, +toi,di,(,,-_, ,,-+, -,i,j-i,j-1 ’,i,j-i,j+l t-si,j),

where to, is called the local relaxation parameter.
Assuming Dirichlet boundary conditions and M x M2 N unknowns within the

unit square, it was suggested in [5], [6] that a good choice of local relaxation parameters
toi. is given by

2
(2.6) toi, 1+/1- p2,./’
where

(2.7) P’, , v//,,r,.csM+I+cos
M2+ 1

Since we consider only the case of symmetric discretized matrices, the parameter pi,
is always real. This gives us the ad hoc SOR method or the local relaxation method for
a symmetric matrix. However, the local relaxation method can also be applied to more
general matrices such that pi.j is purely imaginary or complex. The formula to determine
the relaxation parameters for these cases can be found in [3], [5] and [6]. In this
paper, we will focus on the local relaxation method for a system of equations Au s
where A is symmetric positive definite. The more general case will be considered in a
subsequent paper.

The implementation of the local relaxation method is straightforward. It is easy
to see that as long as we know the size of the grid, i,e., Ma and M2, we can broadcast
this information to all processors in the loading stage. Each processor has to compute
its own relaxation parameters once according to equations (2.6) and (2.7); then the
local iterations specified by (2.5) can be performed in parallel for all processors with
only local communication. Since the local relaxation method uses local communication,
the computation time per iteration is O(1). We will show that the number of iterations
for typical test problems is proportional to O(x/) in 6. Therefore, the total running
time becomes O(-). For a x/-x processor array, the constraint that each
processor should contain a minimum amount of global information implies that the
lower bound for the computation time for any algorithm is O(x/-), since it takes
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556 C.-C. J. KUO, B. C. LEVY AND B. R. MUSICUS

O(x/) time for the data at one edge of the array to move to the opposite edge. It
turns out that the local relaxation method achieves this lower bound.

Although the local relaxation method was empirically shown to be powerful, there
are several questions which were left unanswered by the papers of Ehrlich, Botta and
Veldman. First, they did not prove that the local relaxation method converges. Further-
more, there was no explanation of why the local relaxation method converges very
fast. In the following sections, we will explore these two issues.

3. Convergence of the local relaxation method. In this section, we give a sufficient
condition for the convergence of a local relaxation procedure. Then, we show that the
local relaxation.method given by equations (2.5)-(2.7) indeed converges.

In order to obtain a convergence result which covers the most general type of
local relaxation procedure, we use a matrix formulation, since such a formulation
includes not only the 5-point stencil corresponding to the discretized equation (2.2),
but also other kinds of stencils. Given a linear system of equations, Au s, where A
is an N x N real symmetric positive definite matrix with positive diagonal elements,
we may rewrite A as

A=D-E-F=D(!-L-U) and ET"=F
where I, D, E and F represent identity, diagonal, lower and upper triangular matrices,
and L= D-1E and U D-1F. Let W be the diagonal matrix formed by the local
relaxation parameters, i.e., W diag (to1, to2,""", tON). Then, a local relaxation pro-
cedure can be written in matrix iterative form as

(3.1) un+l) (I WL)-I[(I W)+ WU]un)+(I WL)-WD-ls.

Let t be the solution of the above iterative equation, so that

t7 (I- WL)-I[(I W)+ WU]a+(I- Wt)-lwo-ls.

Define the error vector at nth iteration as e")= u")- t. Then the matrix iterative
equation in the error space becomes

(3.2) e"+’) (I- WL)-I[(I W)+ WU]e").

The iteration matrix of the local relaxation procedure (3.1) is therefore given by
G(W) =(I-WL)-I[(I W)+ WU]. The iteration procedure will converge for all
initial estimates t) if and only if all eigenvalues of G(W) are less than one in
magnitude, i.e., if the spectral radius p[ (3( W)] of the iteration matrix G(W) is less
than 1. A simple sufficient condition for convergence is given by the following theorem.

THEOREr 1 (Sufficient condition for the convergence of a local relaxation pro-
cedure). Suppose A is an N x N real symmetric positive definite matrix. For the local
relaxation procedure given by (3.1), if 0 < tOi < 2 for 1 <- <-_ N, then p[ G( W)] < 1 and
the iterative algorithm converges.

Proof. Let A and p be an arbitrary eigenvalue, eigenvector pair of G(W). Then
G( W)p Ap, or equivalently,

(3.3) [(I- W)+ WU]p= h(I- WL)p.

Premultiplying by pHOW-1 on both sides, we obtain

pnDW-1p pl-IDp +pHDUp hpI4DW-lp hpl-lDLp.

Since E 7-= F, E DL, and F- DU, it is easy to check that

p I-IDUp Lp nDp pnDLp.
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A LOCAL RELAXATION METHOD 557

Defining z =pI’IDLp/pnDp and 1/to =pI’IDW-lp/pI-IDp, (3.3) can be simplified as

1 A
---l+=---hz,

or equivalently,

Let z r ej, then

1 -oz

to(2- to)(1-2r cos 0)
(3.4) 1-

(l-for cos O)2+to2r2 sin 0"

We know that [h 12 is always positive. If we can show that the second term in the above
expression is also positive, then we can conclude that Izlis less than 1. The denominator
of the second term of equation (3.4) is positive, so that we only have to consider the
numerator. We have

pnDLp pnDUp pnAp
2rcos0=2Re(z)=+z= pnDp pnDp -1-<pnDp 1,

where the inequality is due to the fact that A and D are both positive definite. Note
that since A is positive definite, the matrix D formed with the diagonal elements of
A is also positive definite. Therefore, we know that 1-2r cos 0 > 0. Now, consider
the range of the parameter . Since W=diag(,

--1diag ( ; ,. ., ). Assuming that all relaxation factors are positive, we have
N --1

N
Wax pnDp =, lp]2d Wmin

where Wmax and Wm are the largest and smallest eigenvalues of the matrix W and
is the ith element of the vector p. If we set 0 < Wmin max < 2, then

0 min max 2.

Under this condition, the second term in equation (3.4) is always positive, so that the
eigenvalues of the matrix G(W) are all less than 1 and the local relaxation procedure
(3.1) converges. Q.E.D.

The above theorem gives the range of the local relaxation parameters which
guarantees that a local relaxation procedure converges; however, it does not tell us
how to choose the relaxation parameters to make a local relaxation procedure converge
faster. The local relaxation method mentioned in the last section is a special case of
a local relaxation procedure, where the local relaxation parameters are specified for
a 5-point stencil discretization. To show its convergence, we only have to show that
all relaxation parameters chosen by the rule (2.6), (2.7) are between 0 and 2.

COROLLARY (Convergence of the local relaxation method for a 5-point stencil
discretization). e local relaxation method for a 5-point stencil given by (2.5)-(2.7)
converges.

Proo From the discussion in the previous section, we know that the matrix A
obtained by discretizing (2.1) is symmetric positive definite.

Since p(x, x2) and q(x, x2) are positive functions and (x, x2) is a nonnegative
function, we know from (2.3) that ld, r,,, b,, h, and d, are all positive. In addition,
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558 C.-C. J. KUO, B. C. LEVY AND B. R. MUSICUS

0< cos r/(M+ 1) < 1 for 1 < M < oo. Therefore pi,j given by (2.7) is also positive. Using
the inequalities

2/li,jr, <- 1, + r,, 2/t,bi,j
<- t, + b,,

we have

(2 "rr
+ /tb cospi,j =-, v’l,r, cos

M1 + 1 M2+ 1

1 + r, t, + b 1 + r, + t, + b
1=< COS+ COS

d, M+ 1 d, M2+ 1 d,
where the last inequality is obtained by noting that g, 0 in (2.3b). It is easy to see that

2
0<, <2

for 0 < p, < 1. e local relaxation parameters chosen by the local relaxation method
satisfy the sucient condition given in Theorem 1, so that the relaxation method
converges. Q.E.D.

4. Fourier analysis of the local relaxation methofl5-point stencil. e convergence
rate of a local relaxation procedure depends on how we choose the local relaxation
parameters. The conventional SOR method chooses a spatially invariant relaxation
parameter , to minimize the asymptotic convergence rate, or, equivalently,
minimize the spectral radius of G(W). Young [18] showed that the optimal choice
for in the accelerated Gauss-Seidel iteration is

2

1 +1 _p2
where p is the spectral radius of D-(E +F). For this relaxation parameter, all
eigenvalues of G(I) can be shown to have magnitude - 1. In practice, it is quite
dicult to calculate p exactly, and thus adaptive procedures are required to estimate
p as the computation proceeds. In this section, we will use a Fourier analysis approach
to derive a simple formula for a spatially varying relaxation parameter. Our formula
is identical to that suggested by Ehrlich [5]. Our approach demonstrates that this
formula will indeed achieve an excellent convergence rate. This study also gives some
new insight into Young’s SOR method.

For a linear constant coecient PDE with Dirichlet or periodic boundaw condi-
tions, the eigenfunctions ofD-(E + F) are sinusoidal functions. Therefore, the spectral
radius of this iterative matrix can be obtained by using Fourier analysis. However, for
a space-vawing coecient PDE with general boundary conditions, the sinusoidal
functions are not eigenfunctions. As a consequence, Fourier analysis cannot be applied
rigorously. Notwithstanding this disadvantage, Fourier analysis is still a convenient
tool for understanding the convergence propeies of relaxation methods 16]. A more
rigorous treatment to make Fourier analysis applicable to space-varying coecient
PDEs with general boundaw conditions is needed and is currently under study. Roughly
speaking, the reason why Fourier analysis often works in spatially vaing PDE
problems is that the eigenfunctions can be regarded as sinusoidal functions plus some
peurbations. As long as the peurbation is comparatively small, the sinusoidal
function is a good approximation of the original eigenfunction. erefore, Fourier
analysis is still a good analytical tool. A detailed formulation of Fourier analysis in
this general context will be presented elsewhere.
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A LOCAL RELAXATION METHOD 559

In 4.1, we will show how to find the lowest Fourier component for given boundary
conditions. Then, we use Fourier analysis to analyze the Jacobi relaxation method in
4.2. This approach is sometimes called the local Fourier analysis [16]. Finally, we

justify the efficiency of the local relaxation method. The derivation can be viewed as
a generalization of Brandt’s local Fourier analysis to the Successive Over-Relaxation
case.

4.1. Admissible error function space and its lowest Fourier component. Let
1 -<_ <- 4 denote the four boundaries ofthe unit square. Consider a set oflinear first-order
boundary conditions such as (2.1b) on the boundaries of the unit square,

(4.1) Biu gi on F, 1 _-< <_- 4

where Bi represents the boundary condition operator on the ith boundary. It is more
convenient to analyze the relaxation in the error space rather than in the solution
space, because the error equations are homogeneous. The error formulation for the
boundary conditions can be obtained as follows. Let t be the actual solution so that

(4.2) Bt g on Fi, 1 _-< i-<_ 4.

Subtracting (4.2) from (4.1), we obtain the homogeneous PDE in the error,

(4.3) Be=O onFi, 1-<_i=<4.

The functions defined on the unit square and satisfying the homogeneous boundary
conditions (4.3) are called the admissible error functions, since any error function
allowed in the relaxation process should always satisfy the given boundary conditions.
All admissible error functions form the admissible errorfunction space. The sinusoidal
functions in the admissible error function space can be chosen as a basis of this space
because of their completeness. As far as the convergence rate is concerned, we will
see that only the lowest frequency component is relevant. Thus, we will find that only
the lowest frequency of this basis needs to be determined.

We assume that all B’s are constant-coefficient operators. Under this assumption,
B1 and B are independent of the x2-direction, B2 and B4 are independent of the
xl-direction, and since the problem domain is square, the admissible Fourier com-
ponents can be written in separable form as sl(xl)s2(x2), where Sl(" and s2(" are
two 1-D sinusoidal functions. The boundary condition on F1 becomes

nlSl(Xl)S2(X2) s2(x2)nlSl(Xl) 0,

Bl,l (Xl) --0.

Similarly, we simplify the boundary conditions on 1-’2, 1-" and F4, and decompose the
2-D problem into two independent 1-D problems.

(4.4a) (I) BlSl(X1) 0 when X 0, B3$1(x1) 0 when xl 1,

(4.4b) (II) B2s.(x2) 0 when x2 0, B4sz(x2) 0 when x 1.

From (4.4a) and (4.4b), we can determine the lowest frequencies/ and/: separately.
We only show how to get/ from (I); then/2 can be obtained from (II) in the same
way.
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560 c.-c. J. KUO, B. C. LEVY AND B. R. MUSICUS

Consider the mixed type boundary operators,

d
(4.5a) B1 bl + b2 -7- for Xl 0,

axl

d
(4.5b) B3 b3 + b4 dx for xl 1.

The Fourier component s (kl, X1) of S(Xl) at the frequency kl can be written as a linear
combination of two complex sinusoids e ik,x, and e-ik’x, i.e.,

(4.6) s(kl, Xl) c(kl) e’k’ + c(-kl) e-’k’.

Substituting (4.6) into (4.5), we obtain

(bl + ib2kl)C(kl)+(bl-ib2kl)c(-k,)=0,

b3 + ib4kl) e’k’"c( kl) + b3 ib4kl) e-’k’X’c(--kl) O.

In order to get nonzero values for c(kl) and c(-kl), the determinant of the 2x2
coefficient matrix should equal zero, or equivalently,

(4.7) e,2k, bl + ib2k,)(b3- ib4k,)
bl ib2kl)( b3 + ib4kl)

Therefore, we conclude that the frequency kl of any admissible 1-D sinusoidal function
with respect to the boundary conditions (4.5) must satisfy equation (4.7).

Let us look at two examples. If the boundary conditions on both F1 and 1-" are
Dirichlet type boundary conditions, which means b2 and b4 are zeros, then (4.7) becomes

e i2k’ 1 or cos 2kl + sin 2kl 1.

The solutions are kl nTr, n 0, +1, +2,. .. However, it is easy to see that the zero
frequency cannot be allowed. Thus, the lowest Fourier frequency kl in the admissible
error space is 7r. If we change the boundary condition on I3 to be of Neumann type,
i.e., b 0 but b4 0, then (4.7) becomes

e2k,=-I or cos2kl+isin2kl=-l.
The solutions are kl =1/2rim where n is odd and the lowest frequency/1 is 7r/2.

The same procedure applies to other boundary conditions. Notice that the determi-
nation of the lowest Fourier components of a given PDE requires only the knowledge
of the boundary conditions and of the geometry of the problem domain. The above
procedure does not require any information about the PDE operator.

4.2. Local Jacobi relaxation operator and its properties. In this section, we use a
Fourier analysis approach to analyze the local Jacobi operator and to determine its
largest eigenvalue, or spectral radius, for given boundary conditions as previously
discussed. The spectral radius of a local Jacobi operator will be used to determine the
optimal local relaxation parameter of the local relaxation scheme in 4.3.

Define the Xl-direction (x2-direction) forward-shift and backward-shift operators,
E1 and E-1 (E and EI), as

ElUi, Ui+l,j, E-lui, Ui_l,j

E2ui,j Ui,j+I Elui,j gli,j_

Then, the 5-point discretization formula for an interior grid point can be written as

Li,jui,j si,j
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A LOCAL RELAXATION METHOD 561

where Li,j =- di,j- (ri,jE + li,jE- + ti,jE2 + b,jE1) is the local discretized differential
operator at node (i,j). The Jacobi relaxation at a local node can be written as

,(n+l)
i,j i,ju i,j f" Si, O

where i,j + ti,jE2 + b,jE is the local Jacobi relaxation operator.
From the error point of view, we get

jr
i,j i,j; i,j n O.

If the input error function e!.) is the complex sinusoid e"kxl+k2x2) we have

Ji,j ei(klX’+k2x2) Izi,j( kl, k2) e i(k’x’+k2x2)

where i,j(kl k2)=d -1 (ri, eiklh -iklh e ik2h -ik2h).i,j -- li,j e + ti,j + bi,j e Therefore, we may
view ei(kx‘/k) as an eigenfunction of Ji, with eigenvalue/z,j(kl, k2). The magnitude
of/x,(kl, k2) provides some information on how the errors of different frequency
components are smoothed out by the Jacobi relaxation process. This quantity can be
computed as

([(ri,j + li,j) COS klh + ti, + bi,j) cos k2h]2

(4.8) [/z,.(kl k2)[ +[(r,.-/.) sin klh+(t,.j-b,,) sin k2h]2) 1/2

di,
By assuming that the coefficient functions are smooth so that

r, l, l+l, l,j O(h) and ti, b, b+l, bi, O(h),
then the two cosine terms in I .1 are the dominant terms.

The eigenvalue function /z,j(kl, k2) is usually called the frequency response in
signal processing 11 and the Jacobi relaxation operator can be viewed as a filtering
process in the frequency domain. The frequency response function with the magnitude
shown in (4.8), in fact, represents a 2-D notch filter instead of a lowpass filter. However,
if the discretization space h is small enough and the waveforms are band-limited, this
is not a significant problem. The reason is best explained from the Taylor’s series
approximation of a function f(x), i.e.,

(X-Xo)
f(x) =f(xo) + (x xo)f’(xo) +f"(Xo)+’’’.

Supposing f(x)= e and x Xo+ h, the high order terms are negligible only if the
product kh is reasonably small, say, less than 1. That means that as long as the
magnitude of wavevector k is bounded, we can always find a discretization spacing h
which is fine enough so that the dimensionless frequencies 01- klh and 0_- k2h are
always inside the unit circle in the (01, 02) plane. In this region, the notch filter behaves
like a lowpass filter. The lowpass filtering property makes the error at higher frequencies
converge to zero faster than that at lower frequencies.

The eigenvalue with the largest magnitude is the dominant factor in the asymptotic
convergence rate analysis, so that we will focus our attention on this quantity. Following
the above discussion, we define the spectral radius Pi,i of Ji,i as the largest magnitude
of tzi,j(kx, k2), i.e.,

p,,--max I/z,.(kl, k2)[.
kl,k2

For the symmetric positive definite matrix case, the magnitude of/z,j(kl, k2) is the
largest at the lowest frequency (kl, k2), since such a choice makes the dominant cosine
terms of (4.8) as large as possible. Therefore, we obtain
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562 C.-C. J. KUO, B. C. LEVY AND B. R. MUSICUS

The above procedure, known as local Fourier analysis of J/,j, has two implicit
assumptions. First, Ji,j is space-invariant. Secondly, the problem domain should be
either extended to infinity or be rectangular but with periodic boundary conditions.
In general, these two assumptions do not hold. As a consequence, pi, is a spatially
varying function and is not equal to the spectral radius p of the original Jacobi
relaxation matrix J D-I(E + F). An important question to be answered is whether
the knowledge of p, can provide us some information about p. Two observations may
be of help. First, the same lowest frequency gives the spectral radii of all local Jacobi
relaxation operators, so this frequency should play a role in determining the eigenfunc-
tion giving the spectral radius of the Jacobi relaxation matrix J. Furthermore, for a
given low frequency (/1,/2), P, is a very smooth function in space. It is neither
sensitive to variations of the coefficient functions nor sensitive to changes in the
boundary conditions. For example, the values of p, given by equations (2.7) and (4.8),
computed for Dirichlet and periodic boundary conditions separately, are only slightly
different under the assumption that the coefficient functions are smooth. Let t5
max,j pi,j and p min,,j p,j. Then, p should be a quantity somewhere between p and
ft. Usually, the difference between and _p is so small that any p, can give us an
estimate of p.

Notice that in order to determine the spectral radius of a local relaxation operator,
we only have to know the lowest admissible Fourier component corresponding to the
given boundary conditions, discussed in 4.1, and then to compute p, according to
(4.8).

4.3. Applying Fourier analysis to the local relaxation method. Let us reconsider
the local relaxation method, i.e., equation (2.5). We divide the problem domain into
red and black points and update one color at each time step. Suppose we start with
the relaxation of the red points, then with the black points. The local equations for
the error can be written as

(4.9) ..<.+i) (I to..e.") +- " "">
Ui,j t,j/ t,j tOi,jJi,jUi,j for +j even,
,,(,+1) (1 to..e(’.) + toi J je(4.10) _, ,,j, ,j ,j for i+j odd.

If all J,’s are approximately the same within that small region, then we can combine
(4.9) with (4.10) and rewrite (4.10) as

.2 r2(4.11) e-("+l)=(1-toi,)e!".)+to,(1-toi.)J,je,)+,ojaj,i,,, for i+j odd.

Let eR and es represent respectively the errors at the red and black points around
node (i,j). Notice that equations (4.9) and (4.11) describe, in fact, the relation of two
waves--the red and black waves in the local region around node (i, j). Rearranging
and simplifying (4.9) and (4.11), we obtain the following relation between two succes-
sive iterations,

2 2e"+’ o)i,j(1-o)i,j)Ji,j 1-toi,j+toijJijJ eB"] n O,

where the 2 x 2 matrix operator Gj(toi,, Jij) appearing in the above equation is called
the local relaxation operator with relaxation factor to, at node i, j).

By assuming that an eigenfunction of the local relaxation operator Gi, has the
form (c ei(k’x,+k2x2), c2 ei(k’x’+k2x2)) T and that the corresponding eigenvalue is A,j, we
may write

(4.12) Gi j(toi,j, Ji j)(l ei(k’x’+k2x2) ( cl ei(k’x’+kzx2)
C2 ei(k,x,+k2x2)/ hi j ei(k,x,+k2x2)].2
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A LOCAL RELAXATION METHOD 563

Equation (4.12) can be further simplified because of the assumption that the local
operator Ji,j is approximately constant in the region around the node (i, j) and has the
eigenvalue/zi,j for this complex sinusoid e(k,x,+k2x2). We obtain

Note that the eigenvalues of the operator matrix G,(,, J,) are the same as those
of the matrix G,(,, ,).

Fuhermore, from (4.13), we know that ,(k, k:) and h,(k, k:) are related via

or, equivalently,

Therefore, we get

[Gi,(oi,, tz,,) hi,I[ O,

o)
2a = -(2-2o,,j+ 2 2 )a +(1- ,,) =0.i,j O) i,j/./, i,j i,j

2 2 X/(.0 l i,j "-’k-(4.14a) A, 1 co, +
2 2

where

(4.14b) A 4(1 2 2 4 4
--(.Oi,j)Oi,jl.i,j+)i,j].i,j.

Let us consider the special case, coi,- 1, which corresponds to the Gauss-Seidel
relaxation method. The eigenvectors of the 2x2 matrix G,j(o,,/z,) are (1, 0) 7- and
(1, tzo) r and the corresponding eigenvalues are 0 and 2

/z i,. This means that if we start
with two sinusoidal waveforms at the same frequency but with different amplitudes,
one of them, the red wave represented by the vector (1, 0), disappears in one step. The
other wave remains and alternates between the red and black points thereafter, as
mentioned in 2. The ratio between the updated wave and the old wave is equal to
the constant/x,j, so that the amplitude is reduced by a factor of/z 2

o per cycle.
The purpose of introducing the relaxation parameter o, is to make the eigenvalue

hi,(kl, k:, coi,) of the new operator G,j smaller than the eigenvalue/zi,(kl, k:) of the
old operator J,. For a fixed real/zo(k, k:), the relationship between h, and o,j can
be described by the root locus technique depicted in Fig. 3.

Re[hij()]

FIG. 3. Root loci of h,j(o) with fixed
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564 C.-. J. KUO, B. C. LEVY AND B. R. MUSICUS

When 0 < wi, < 2, the magnitude of Ai,j is less than one. By Theorem 1, we know
that if 0<oi,<2 for all i,j then p[G(W)]<I and the local relaxation algorithm
converges. When A 0, the two eigenvalues Ai,,l and Ai,,2 coincide, and the largest
possible magnitude of these two eigenvalues, hi,j, max (IA,,,ll, IA,,,=[), is minimized.
The value of oi,j which sets A 0 is called the optimal relaxation factor with respect to
a specific/z,j and is denoted by wi,j,opt(/x,). By solving

A=4(1-0i,j) 2 9 4 4
(.0 i,j[d i,j "- O) i,j[ i,j 0

and requiring

we find that

0 < OOi, < 2,

(4.15) O)i,j,opt(l.gi,j)
1 +/1 -/x

2
i,j

The general relation between h,,m and w, can be derived in a straightforward way
from equation (4.14) and is given by

(4.16a) hi,,,. to,j 1, (Di,j, opt(l.Li,j) (.Oi,j < 2,

(4.16b) 0 < O)i, O.)i,j,opt (]Ubi, ).

The minimum value of all possible h,,.’s is, therefore, toi, j,op,(lz,)-1.
Since /z, is a function of frequency, (4.15) implies that different frequencies

require different optimal relaxation factors. However, we are allowed to choose only
one to,, so we have to consider the overall performance, i.e., to, has to be selected
so that the spectral radius of the local relaxation operator Gi,j(to,, J,j) is minimized
over all frequencies. Let p, be the spectral radius of the local operator J, and/zi,j be
an arbitrary eigenvalue of J,j. By definition, I/z, -<_ p,, so we know that (.Oi,j, opt(lJbi,j)
w,,opt(Pi,j) from (4.15). Using the relation in (4.16), we reason as follows. If we choose
w,j wi,,opt(/z,j), A,,,, (/z,j) achieves its minimum value of wi,,opt(/x,) 1 but Ai,,,, (p,)
is greater than Oi,j,opt(Pi, 1. On the other hand, if OOi,j,opt(Pi, is chosen as the relaxation
factor, both A,j,,,(/z,) and A,,m(p,) are equal to wi,,opt(p,j)- 1. Comparing these two
cases, the latter choice is the best scheme to minimize the spectral radius of Gi,(wi,, Ji,).
This optimal value of o, is denoted as wj, and is given by

2
(.O i,j O)i,j,opt(Pi,j)

1 +/1 p2,"
This is exactly the same formula as suggested by Ehrlich. The reason that this is a
good choice is due to the fact that the eigenfunction with the largest eigenvalue of the
Jacobi relaxation operator is the one corresponding to the lowest frequency component,
and to the observation that the space varying relaxation parameter w.*. optimizes the
convergence of this lowest frequency mode.

5. The local relaxation method for a 9-point stencil. The above derivation applies
to a 5-point stencil, which appears when we discretize a linear second-order elliptic
PDE without the crossover term 02/0Xl Ox2. Ifthere is a crossover term, a finite difference
discretization gives a 9-point stencil. In this section, we will propose a local relaxation
scheme for a 9-point stencil, give a sufficient condition for its convergence, and use a
Fourier analysis approach to explain the rule for selecting good local relaxation
parameters. The approach is similar to that used in 3 and 4.
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A LOCAL RELAXATION METHOD 565

In order to make the presentation clear, we use a simple problem mentioned in
1] as an illustrative example. Consider the linear partial differential operator defined
on D, [0, 1] x [0, 1],

02 02 032
(5.1) L

Ox+ Ox Ox2 0x
where la(x, x2)[ < 2, with appropriate boundary conditions. The condition [a(x, x2)[ <
2 is required to guarantee that L is an elliptic operator. We also assume that a(xl, x2)
is sufficiently smooth so that it can be viewed as being approximately constant locally.
The following discretization scheme is used

02 E 2 +E-1 02 E2 2 +E-1

Ox
<->

h 2 Ox2
<->

h 2

02 E1E2 / E-IE E-IE E1E
OXl Ox2 4h

The local Jacobi relaxation operator Ji,j can be decomposed into two parts Ji.j,1 and
Ji,j,, i.e.,

where

Jijl,, =(Ell + E-1 + E2+E1),

J,j,2 6(a+1/2,j+1/.E1E2 + ai-1/2,j-1/2E-1E ai-1/2,j+1/2E]-1 E2 a+1/2,j_l/2E1E- ),

and where

ai, a ih, jh ).

Suppose we use the red/black partitioning; then the J,j,1 operator couples nodes
of different colors while the J,j,2 operator couples nodes of the same color. A four-color
scheme which leads to a four-color SOR method has been proposed for this problem
[1]. Here, we propose a different local relaxation scheme which uses only red/black
partitioning, so that the iteration equations for the error in the local region can be
written as

(5.2a)

(5.2b)

or, equivalently,

where

e(Rn+l)-- (1 w,,j e(" + toi,j[Ji, j, e(Bn / Ji,j,2e(" )],
e(Bn+l)= (1 toi,j)e(") + toi,j[Ji,Lle(Rn+l) + Ji,j,2e")],

e(en+l G,,j(to,,j, J,j,1, Ji,j,2)

Gi,j(o)i,j, Ji,j,1, Ji,j,2)
(5.3)

-[ 1 to’,J + to’,JJ’,J2- o)i,jJi,j,1 ]toi,j(1 2 2 2
toi,j)Ji,j,1 + to jJi,j, lJi,j,2 1 toi,j + toi,jJi,j,2 + to jJi,j,1

In general, the linear system of equations, Au s for a 9-point stencil which is
obtained by discretizing an elliptic PDE with a crossover term can be decomposed as

(5.4) Au (D- E F- C)u D(I- L- U- V)u s,
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566 .-C. J. KUO, B. C. LEVY AND B. R. MUSICUS

where A is an N x N real symmetric positive definite matrix and D, E, F and C are
diagonal, lower and upper triangular, and block diagonal matrices respectively. In
(5.4), we view the 9-point stencil as the superposition of a standard 5-point stencil
and of a 4-point stencil formed by the nodes at the four corners. The standard 5-point
stencil is accounted for by D- E- F, while the remaining 4-point stencil due to the
crossover term is represented by the matrix C DV. It is not hard to see that

Er=F and cT=c.
According to the local relaxation method specified by (5.2), the matrix iterative equation
in the error space becomes

(5.5) e"+ (I WL)-I[(I W)+ WU+ WV]e",
where W is a diagonal matrix formed by local relaxation parameters. The iteration
matrix is therefore given by

G(W) (I WL)-I[(I W) + WU+ WV].

A simple sufficient condition for the convergence of (5.5), or (5.2), can be obtained
by generalizing Theorem 1. Following the same steps as in the proof of Theorem 1,
we find that

l-w(1- a)+o
1-wz

where A, p is an arbitrary eigenvalue/eigenvector pair of G(W), z =pnDLp/pI-IDp,
I/to =pHDW-lp/pnDp and a =pnCp/pnDp. Since C is symmetric, cr is a real number.
Let z r ej; then

(5.6) IAI=-- 1- to[2-to(1-a)](1-a-2r cos O)
(1 tor cos 0)2

__
0)2r2 sin 0

which is similar to (3.4). Now, consider

cos 0 a +2 Re (z) a++z

pHDVp pHDLp pHDUp pnAp
pt-lDp

+
pl-IDp

+
p Dp -1-<plDp 1,

where the inequality is due to the fact that A and D are both positive definite.
Furthermore, let us assume that a < 1. In order to guarantee that Ih[< 1 for all possible
eigenvalues, the sufficient condition becomes

0 < tOmi < tOi,j < tOma <
1 Omi

where

(5.7) amin min
pi4Cp
pZDp’

and where the minimization is over all eigenvectors p of the matrix G(W). Therefore,
we have the following theorem.

THEOREM 2 (Sufficient condition for the convergence of a local relaxation pro-
cedure for a 9-point stencil discretization). Suppose that A is an N x N real symmetric
positive definite matrix. For the local relaxation procedure given by (5.4) and the constant

Omi defined by (5.7), if O<toi<2/(1--amin) fOr l<--i<=N, then p[G(W)]<I and the
iterative algorithm converges.
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A LOCAL RELAXATION METHOD 567

Note that if there is no crossover term, the matrix C is zero and a is also zero.
In this case, the 9-point stencil reduces to a 5-point stencil and Theorem 2 reduces to
Theorem 1. Therefore, our proposed local relaxation scheme for a 9-point stencil, (5.5),
is a natural generalization of the conventional SOR method for a 5-point stencil,
specified by (3.2).

In the above derivation, we have used the assumption that a =pCp/pnDp is
less than 1 for any eigenvector p of the matrix G(W). Now, let us estimate the value
of a by examining the example given by (5.1). For simplicity, we consider the special
case where a(x, x2)= a is constant and assume that the boundary conditions are
periodic, i.e., u(0, x2) u(1, x2) for 0-< x2 <- 1, U(Xl, O) u(x, 1) for 0 =< Xl =< 1. In this
case, the eigenvectors p of G(W) can be found in closed form and are given by one
of the following two-dimensional arrays, sin (k ih + k.jh ), cos (k ih + k2jh ), sin (kl ih
k2jh) and cos (klih k2jh), where and j range from 1 to x/, h 1/x/, and kl, k2
are multiples of 2r. Then, after some computations, we find that

a
(p)_ pCp_ +- sin kh sin kh and I(p)l < for all p.

pHDp 4

Therefore, if we choose toi between 0 and 8/(4+]a1), the local relaxation algorithm
for this particular problem will converge. However, this choice is too conservative to
give a good convergence rate when lal is close to 2.

Generally speaking, two types of errors arise in the numerical solution of elliptic
PDEs by iterative methods. The first of these is caused by the error between the initial
guess and the true solution. The other is the numerical rounding error due to the finite
precision arithmetic. The first error is usually concentrated in the low frequency region,
whereas the second can exist at all possible frequencies. The numerical rounding error
is usually so small that it can be ignored, provided it does not grow with the number
of iterations. Thus, the error smoothing primarily aims at reducing errors in the low
frequency region where the initial guess errors are substantial.

Let us temporarily ignore the numerical rounding error and focus on the initial
guess error only. In order to guarantee the convergence of all components in the low
frequency region, we need only to select

Omi := Omi sin (/, h) sin (/2h)
4

where/ and k’2 are the largest frequencies of interest. Usually the mesh is so fine that
L

Omi is of order O(h2). Although this conclusion is obtained from a simple example,
it seems reasonable to believe that tmi is also of order O(h2) for more general
second-order elliptic PDEs with space-varying coefficients and other boundary condi-
tions.

The remaining problem is to select a set of local relaxation parameters such that
the iterative algorithm converges as quickly as possible in the low frequency region.
We can use the Fourier analysis approach introduced in 4 to analyze the local 2 x 2
matrix operator Gi,j(toi,j, J,,, Ji,j,2) given by (5.3). Let /z,j,(k, k2) i.t,i,j,2(kl, k2) and
tzi,j(k, k2) be eigenvalues of J,,l, J,,2 and J,j respectively. Following the procedure
used before, we find that the optimal local relaxation factor for (5.1) is

(5.8) o.*.lJ
1 e,, + /(1 e,d)2 p,2.d

where ei,j =/z,,j,2(/,, k2), p,,g =/zi,g,,(/,,/2), and (/,,/2) is the mode which maximizes
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568 C.-C. J. KUO, B. C. LEVY AND B. R. MUSICUS

/xi,j =/xi,j, +/x,,2. The spectral radius of the local relaxation operator Gi, is

(5.9) ’’i,j(Gi,j(tO.*.,,j, Ji,j,1, Ji,j,2)) (.oi,j( 1 + Ei,j) 1.

Typical values for *.,, and A,j can be obtained by considering example (5.1) with
Dirichlet boundary conditions, which is of more interest compared to the periodic
boundary conditions in practice. Since a(x, x2) is smooth, we can approximate J,j,2 by

ai, 1Ji,j,2(E,Ea+E E1-E E-EE).

The values of ,,(k, k), ,),a(k, ka) and ,)(k, ka) are

1
m,,(k, k)= (cos k +cos k),

ai j-
/zi,j,2(k, k2) 4--[cos (kl q- k2)h -cos (k- k2)h] + sin klh sin k2h

and

1 ai,j
/zi,j(k, k2)=7(cos klh +cos k2h)+sin kh sin k2h.

2- 4

In the low frequency region, Ji,), is a lowpass filter, while Jw,2 is a highpass filter. Jw
is similar to J,),l in this region, because/zw,2 is almost zero for very low frequencies.
Therefore, we can view J,j,2 as a perturbation. Thus, Jw is a perturbed lowpass filter.
Its spectral radius p,)(J,)) is determined by the lowest admissible frequency. For this
particular problem, the lowest admissible frequency mode turns out to be (kl, k2)=
(Tr, 7r). Therefore,

]ai, g____J sin2 ,a-h, pi,g cos ,rrh.e,-
4

Substituting these values back into (5.8) and (5.9), we find

(5.10a) to 2 2(1---1 + (x/2 +

(5.10b) A,,) 1-44+
L is of O(h2) SO that for sufficiently small values of h, the above optimalIn general, amin

relaxation parameters satisfy the sufficient condition of Theorem 2. Hence, the conver-
gence of the local relaxation method in the low frequency region is guaranteed and
the convergence rate can be estimated by examining the spectral radius of the local
relaxation operator given by (5.10b).

Now let us go back to the effect of numerical rounding errors. The optimal
relaxation parameters to.*. given by (5.10a) may be outside the convergence rangel,J

defined by 0 and 2/(1 a (p)) for some eigenvectors p corresponding to high frequency
error components. Therefore, we expect that the error in the high frequency region
will grow. The error growth rate is problem dependent and can be analyzed by Fourier
analysis. If the error growth rate is so slow that it does not effect the answer much,
we can stick to a single set of optimal local relaxation parameters. On the other hand,
if the error growth rate is relatively large, we may use two sets of local relaxation
parameters. One set aims at reducing the low frequency error quickly and the other
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A LOCAL RELAXATION METHOD 569

set, formed by smaller values of toi.j, is used to smooth the high frequency error once
in a while so that the rounding errors do not accumulate. This mixed scheme should
perform much better than a scheme using a single set of conservative local relaxation
parameters. However, the optimal scheduling of these two sets of local relaxation
parameters is still unknown. We believe that it depends on the problem to be solved.
Some numerical experiments will be needed to gain a better understanding of the issue.

6. Performance analysis of the local relaxation algorithm.
6.1. Convergence rate analysis---linear constant coefficient PDEs. For a linear con-

stant coefficient PDE defined on a unit square with Dirichlet boundary conditions, the
spectral radii of all local Jacobi operators are the same, and thus all local relaxation
parameters and the spectral radii of all local relaxation operators are the same, i.e.,
for all i, j

(6.1) pi, p, to, to, A, A.

In this case, the local relaxation method is the same as SOR.
The asymptotic convergence rate of an arbitrary global iterative operator P, denoted

by Roo(P), is defined as [17]

Roo(P)=-lnp(P).

Under the conditions (6.1), the asymptotic convergence rate is also given by

R(P)=-ln p(P,)

where P,j is the local relaxation operator of P.
For a Poisson equation on the unit square with Dirichlet boundary conditions,

the local Jacobi operator for this particular problem is

Ji, =1/4(E, + E-I+ E:+ EI).
Applying Fourier analysis to J,, we find that the spectral radius of J. is cos 7rh, where
h is the grid spacing. The global asymptotic convergence rate of the Jacobi method,
the Gauss-Seidel method and the local relaxation method can be computed as

1
Roo(Jacobi) -In p(J/.) -In cos 7rh =r2h2,

R(Gauss-Seidel) -In A[ Gi,(1, J,j)] -In cos2 7rh r2h2,

(1-sin 7r) 27rh.Ro(local relaxation) -In h[(Gi,(to*, J.)] -In
1 +sin

Therefore, the number of iterations is proportional to O(1/h), i.e., O(x/-), for the
local relaxation method.

6.2. Computer simulation. For general space-varying coefficient PDEs, it is difficult
to analyze the convergence rate as shown in 6.1. So, a simple numerical example is
used to illustrate the convergence rate of the local relaxation .method for solving
space-varying coefficient PDEs. The convergence rates of the SOR and CG methods
are also shown for the purpose of comparison. For the SOR and CG methods, the
Ellpack software package [13] was used.
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570 C.-C. J. KUO, B. C. LEVY AND B. R. MUSICUS

The example chosen is

02u 02u Ou 8u
exy + e-Xy + eXyy e-Xyx +

OX2 Oy2 OX Oy l+x+y

(6.2) e:zxy sin ry[(2y2- ’n"2) sin rx + 3 Try cos rx

+ 7r sin "trx(x cos cry-w sin try)+
exy sin rx sin ry

l+x+y

on the unit square, with the boundary conditions

(6.3) u(x,y)=O forx=0, x=l,y=0andy=l,

and its solution is exy sin wx sin wy. Although equation (6.2) does not have the same
form as (2.1), it is easy to verify that the discretized matrix is still symmetric positive
definite so that Theorem 1 applies here. The lowest frequency mode for this problem
is (kl, k2)= (m r) because of the Dirichlet boundary conditions.

For this test problem, three 5-point discretization schemes are used with grid
spacings 1/10, 1/30 and 1/50. Starting from the initial guess u)(x, y)=0 for all grid
points, the maximum errors at each iteration are plotted in Fig. 4. The results indicate
that on a single processor the convergence rate of the local relaxation method is better
than that of the SOR method and worse than that of the CG method. However, as
mentioned in 2, on a mesh-connected array the local relaxation takes constant time
for each iteration while the CG and SOR methods take O(v/-) time per iteration, so
that the local relaxation method is much faster. We also note that the number of
iterations required for the local relaxation method is proportional to x/-. This is
consistent with the analysis of the previous section.

7. Extensions and conclusions. The local relaxation method includes two important
steps. The first is to determine the admissible lowest frequencies using boundary
condition information. The second is to approximate the PDE operator locally by a
linear finite difference operator, divide the nodes into red and black points and form
a locally accelerated successive over-relaxation (local relaxation) operator. In previous
discussions, some ideal assumptions were made so that the analysis and design of the
local relaxation algorithm become very simple. However, we may encounter several
difficulties in applying the local relaxation method directly to real world problems.

Under the assumption that the problem domain is a unit square and that the
boundary condition operator is constant along each edge, the procedure for determining
the lowest admissible frequencies is straightforward. These assumptions make the basis
functions separable and easy to analyze. However, in practice, the above assumptions
may not hold. The problem domain is usually of irregular shape and the boundary
condition operators may have space-varying coefficients. As a consequence, it is
considerably more ditticult to find the lowest frequency error component than for the
case we have considered in this paper.

The second difficulty is related to the construction of the local relaxation operator.
If the coefficients of a PDE operator have some discontinuities in some region, the
Jacobi relaxation operator is not smooth over the region with discontinuous coefficients.
In this case, the determination of the optimal local relaxation factors for such abruptly
changing operators is still an open question.

To map the irregular domain problem into a regular processor domain is important
in practice. In addition, we need some schemes to partition the grid points evenly
between all processors, when the number of grid points is larger than that of processors.
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0"5

OSo
0 5 I0 15

(a)

2O
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(b)

1.5

0.5

O0 20 40 60 80

(c)
FIG. 4. Computer simulation resultsfor problem (6.2)-(6.3) with (a) 11 x 11, (b) 31 x31 and (c) 51 x51 grids.
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572 C.-C. J. KUO, B. C. LEVY AND B. R. MUSICUS

The mapping and partitioning problems have been studied recently [2], [7], but not
too many results are known.

Other open questions include how to terminate the local relaxation method. A
centralized termination scheme can work as follows. The residues ofthe local processors
are pipelined to a certain processor, say, the central one. Then this processor determines
the termination time of the relaxation algorithm and broadcasts a "stop" signal to all
processors. The above procedure can be performed in parallel with the local relaxation
procedures. Note however that because we avoid the use of global communications
in the termination procedure by pipelining the local residues which are sent to the
central processor, this processor uses the error residues of the local processors at
different iterations in determining whether the algorithm should be stopped. A dis-
tributed termination scheme would also be useful.

It also seems interesting and challenging to see whether the local relaxation concept
can be applied to elliptic PDEs which do not satisfy the assumptions made in 2,
such as the Helmholtz equation, or to other types of PDEs such as hyperbolic PDEs
or nonlinear PDEs, and to other discretization schemes such as the finite-element
method.

We may note that distributed computational PDE algorithms (local relaxation)
are different from traditional central computational methods (SOR) in several ways.
First, distributed computation provides a natural way to achieve a high degree of
parallelism. Secondly, distributed algorithms suggest a space-adaptive acceleration
scheme, which is not as convenient in centralized computation. Thirdly, although
global information is required in determining the local optimal acceleration factors,
it seems that only very little global information is relevant, namely the size of the
domain. Finally, we benefit a lot in designing the local acceleration algorithm from
the simple structure of the local operator and from the fact that the global information
required is minimized, while the determination ofthe optimal uniform SOR acceleration
factor is complicated and time-consuming.

These nice properties are closely related to the special structure of PDEs. Partial
differential equations are formulated to describe local interactions in the physical
world, where any interaction between two far space points is the result of a chain of
local interactions between near space points. The locality property is very similar to
the local communication constraint imposed by VLSI computation [10]. Therefore,
although this constraint is a bottleneck in other types of problems, it is not as restrictive
for numerical PDE problems.

Our paper has also demonstrated the use of the Fourier analysis approach, or
frequency domain approach, to analyze the local relaxation algorithm. This
methodology forms a bridge between numerical analysis for solving PDEs and digital
signal processing [9]. This new method seems more informative than traditional matrix
iterative methods, which usually hide information in a huge matrix. In addition, the
local Fourier analysis approach provides a way to analyze distributed numerical
algorithms while matrix iterative methods only can be applied to central numerical
algorithms. A closer relationship between numerical analysis techniques and Fourier
analysis is expected in the future.
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