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We study the performance of several widely used preconditioners for 2D elliptic partial differential equations (SSOR, ILU,
MILU and polynomial preconditioners) with the natural and red-black orderings implemented on the Connection Machine
(CM). Their performance is primarily influenced by two factors: the rate of convergence and the ease of parallelization. The
convergence rate is analyzed by Fourier analysis and confirmed with experimental results. Although the naturally ordered
SSOR and MILU preconditioners have convergence rates one order faster than the other preconditioners, the experiments
show that the red-black ordered SSOR, ILU, MILU, polynomial preconditioners takes less execution time than their
naturally ordered counterparts. This is partially due to the fact that the red—black ordering provides more parallelism than the

natural ordering.

1. Introduction

This paper concerns the analysis and imple-
mentation of paralle] iterative methods for solving
elliptic partial differential equations (PDEs).
Specifically, we are interested in the precondi-
tioned conjugate gradient method (PCG), which
has been successfully used in many areas of scien-
tific computing. We demonstrate that parallel
machines can change the relative cost of al-
gorithms, and study the tradeoffs one must make
when implementing them on a massively parallel
computer such as the Connection Machine.

The fundamental tradeoff is one between the
rate of convergence and the ease of parallelization,
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Science Foundation under contracts NSF-DMS$87-14612 and
BBS 87 14206, the Army Research Office under contract
DAALO03-88-K-0085 and by the Research Institute for Ad-
vanced Computer Science, NASA Ames.

particularly concerning the implementation of pre-
conditioning, which is an important component of
the PCG algorithm. Many preconditioners that
have been derived before the advent of parallel
computing are unfortunately very much sequential
in nature and hence cannot be implemented effi-
ciently on a massively parallel computer. A prin-
cipal obstacle to parallelization is the sequential
manner in which many preconditioners use in
traversing the computational grid [21,22]. The data
dependence implicitly prescribed by the method
fundamentally limits the amount of parallelism
available. For the pa$t several years, there has
been a lot of research in search of efficient parallel
preconditioners [2,4]. One method is to reorder the
sequence of operationfs in the construction of a
sequential preconditioner in order to reduce the
data dependency and‘ maximize the number of
operations that can be performed in parallel. An
example of such a parallel ordering is the classical
red-black ordering for five point discretizations,
which requires only two iterations to cover the
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whole grid. Another method is to invent new
preconditioners that are by design parallel in na-
ture. An example is the class of polynomial pre-
conditioners that we shall discuss later. However,
both of the above methods generate precondi-
tioners whose convergence behaviors are in gen-
eral different from those of their sequential coun-
terparts. In many cases, these new methods in fact
converge considerably slower. Therefore, a funda-
mental issue is whether the gain in the amount of
parallelism can overcome the loss in the conver-
gence rate.

One important factor in this tradeoff is the
convergence rate of iterative algorithms. The con-
vergence rates for sequential preconditioners have
been studied extensively and are well understood
[6,8]. However, the convergence rates for the same
preconditioners with the parallel orderings have
only recently been studied [18]. While they have
been observed empirically to converge much slower
than their sequential counterparts [2,4], there are
few proofs of their convergence rates. One goal of
this paper is therefore to present a framework for
analyzing the convergence behavior of elliptic pre-
conditioners using Fourier analysis, which has been
very successful in providing insights into their
performance [8,18]. For the sequential natural
ordering, a von Neumann type Fourier analysis is
used and most of the classical convergence results
can be recovered. For the parallel red-black
ordering, a two-color fourier analysis is used which
provides rigorous convergence rates for the model
Poisson problem.

Obviously, the tradeoff will also depend on the
particular computer used in the implementation
and the number of processors available. In gen-
eral, the more processors there are, the more im-
portant it is to have an inherently parallel al-
gorithm. The computer used in our numerical
experiments, a Connection Machine with 16 K
processors, is a massively parallel computer and
therefore favors algorithms with massive paralle-
lism built in. As we shall see, this is essentially
confirmed by our numerical experiments.

The outline of the paper is as follows. In sec-
tion 2, we give a brief survey of preconditioners
for elliptic PDEs, and show how to construct the
SSOR, ILU, MILU and polynomial precondi-

tioners for the model Poisson problem for both
the natural and red-black orderings. Section 3
introduces two Fourier analytical tools which are
then used to analyze the spectra of the precondi-
tioned Laplacian operators with naturally and
red—black ordered preconditioners, respectively.
In particular, the SSOR preconditioned Laplacian
is used as example to demonstrate the analysis.
Finally, the details of implementing the PCG al-
gorithm on the Connection Machine and the re-
sults of our experiments are presented in section 4.

2. Brief survey of elliptic preconditioners

Consider the numerical solution of the follow-
ing self-adjoint elliptic PDEs

%(p(x, y)%) + %(q(x, y)%)
+o(x, y)u=£(x, y), (2.1)

where p(x, y)>0 and ¢g(x, y)>0 and o(x, y)
<0 on a closed domain £ with Dirichlet, Neu-
mann or mixed boundary conditions. A special
example of (2.1) is the Poisson equation, where
p(x, y)=4q(x, y)=1 and o(x, y)=0, which
arises in many engineering and physical applica-
tions. We can discretize egs. (2.1) with a finite-dif-
ferent or finite-element scheme and obtain a sys-
tem of N linear difference equations

Aug=fy, (2.2)

where A4 is a sparse N X N matrix, and #4 and f;
are discrete approximations of u and f, respec-
tively. Due to the self-adjoint property of the
differential operator in (2.1), the discretized coeffi-
cient matrix A4 is symmetric and positive definite
(SPD).

There are numerous iterative algorithms used to
solve the discretized linear system (2.2). Basic
iterative methods [14], such as the Jacobi and
Gauss—Seidel methods, can be obtained by perfor-
ming relaxation on each grid value. The conver-
gence rates of basic iterative methods are slow and
take at least @( V) iterations to converge. Thus, in
practice, basic iterative methods are usually com-
bined with efficient accelerating procedures to im-
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prove their convergence rates. One kind of acceler-
ation is the SOR (Successive OverRelaxation)
method which accelerates the basic Gauss—Seidel
relaxation and improves the convergence rate to
O(/N) iterations to converge. In addition to the
SOR acceleration, there are two other kinds of
acceleration procedures which have been com-
monly used, namely, the Chebyshev Semi-Iterative
(CSI) and the Conjugate Gradient (CG) proce-
dures [13,14]. Since accelerating parameters are
determined in the process of the CG procedure
but have to be estimated in advance for the CSI
procedure, the CG acceleration is often preferred.

Roughly speaking, by applying the CSI or CG
procedures to a basic iterative method whose cor-
responding coefficient matrix is SPD and has a
condition number k, the resulting method requires
O(Vx) iterations to converge [6]. For example,
since the basic Jacobi iteration has a condition
number O(N), the number of iteration required
for the CSI- or CG-accelerated Jacobi is 0(»/1_\7 ),
which is the same order as the SOR method. The
advantage of the CSI or CG procedure over the
SOR procedure is that they are widely applicable
while the SOR acceleration is primarily used to
accelerate the consistently ordered matrix
[14,25,26] and, consequently, faster convergence
rates may be achieved by using the CSI or CG
acceleration. To see this, let us consider the SSOR
(Symmetric SOR) iteration with the natural order-
ing, which has a condition number O(/N) (see
section 3.1), to be accelerated by the CSI or CG
procedure. The resulting method requires only
O(N'/*) iterations to converge.

Since the convergence rate is controlled essen-
tially by the condition number of the coefficient
matrix A, it is desirable (and an active research
topic) to seek a system which is closely related to
(2.2) and whose coefficient matrix has a smaller
condition number. One such technique is called
preconditioning [6,13] and the resulting system is
the preconditioned system. In mathematical terms,
we transform (2.2) into

Br=g, (2.3)

where the solution » can be easily converted to the
desired solution uy of the original system (2.2)

and the condition number of B is smaller than
that of 4. Once common way to construct (2.3) is
to determine a preconditioning matrix M, or pre-
conditioner, so that M can be inverted efficiently
and M = A so that the condition number k(M ~'4)
is small. Thus, by multiplying (2.2) with M~! and
relating the result with (2.3), we have

B=M4, g=M,. (2.4)

The SSOR [5], ILU (Incomplete LU) [20], MILU
(Modified ILU) [11] and polynomial precondi-
tioners all belong to this type [6]. Recently, another
preconditioning technique known as the hierarchi-
cal basis or the multilevel preconditioning [2,27] is
under study. Performarice and analysis of precon-
ditioners with hierarchical basis will be reported
elsewhere. In this paper, we concentrate on the
SSOR, ILU, MILU and polynomial precondi-
tioners and describe their forms for the rest of this
section.

v=uy,

2.1. Model Poisson problem and orderings

In the following disqussion, a simple example is
chosen to illustrate the construction of various
preconditioners. The example is the discrete Pois-
son equation on the square 2 =[0,1]> with ap-
propriate boundary conditions,

1
;’E(ujﬂ,k tu et et U — 4“j.k)

=fix (2.5)

where h is the grid spacing and u;, is used to
approximate the value of u( jh, kh). Note that the
total number N of variables is related to h by
N = h~2 It is convenieént to rewrite the difference
equation (2.5) in terms of shift operators

hZ
Af~kujvk == Tfj-k’ (2 6)
A =1-%(E,+E'+E,+E").

where E, and E, are shift operators along the x-
and y-directions,

_ -1 _
Ex“j,k_“jﬂ,k’ E, Uik =Uj1 ks

— -1 _
Eyuj,k_uj,k+1’ Ey Uje=Uj g—1-
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In (2.6) A, , is the local operator at the grid point
(Jh, kh) and the collection of local operators 4 ,
at all grid points gives the global operator denoted
by A4,,. The major difference between the global
operator A, and the coefficient matrix A is that a
1D ordering has to be specified for describing 4
but not for 4.

The ordering of grid points in general plays an
important role in determining the form of the
coefficient matrix and hence that of precondi-
tioners. Two commonly used orderings, i.e. the
natural and red-black orderings, will be discussed
and compared in this paper. In the natural order-
ing, grid points are ordered in the rowwise (or
columnwise) fashion. By the red-black ordering,
grid points are partitioned into red and black
groups, where a grid point (j, k) isred if j+ k is
even and black if j+k is odd, and then red
points are ordered before black points and the
natural ordering is used within each group. In the
context of parallel computation, we are interested
in maximizing the number of operations at grid
points among which there is no data dependence.
Consequently, these operations can be performed
in parallel and the ordering for these grid points
does not affect the final result. For example, in
the solution if (2.5), it is appropriate to consider
the following natural and red-black orderings:

natural ordering (parallel version)
(j,k)y<(j, k') if j+k<j +k',
red-black ordering (parallel version)

(j, k)< (j', k') if
(Jj, k) red and (', k") black,

where the order between grid points is denoted by
the inequality sign. These two orderings for the
grid points on a uniform 6 X 6 square grid are
iltustrated in fig. 1. Note that the same ordering
number is assigned to grid points (j, k) with the
same j + k in the natural ordering and grid points
of the same color in the red-black ordering. This
implies that operations at these grid points can be
performed in parallel. The red-black ordering is
more attractive than the natural ordering in paral-
lel computation, as far as the computation time

6 7 8 9 10 1i 2 1 2 1 2 1

56 7 8 9 10 1 2 1 2 1 2

4 5 6 7 8 9 2 1 2 1 2 1

3 4 5 6 7 8 1 2 1 2 1 2

2 3 4 5 6 7 2 1 2 1 2 1

1 2 3 4 5 6 12 1 2 1 2
(@) (®)

Fig. 1. Parallel (a) natural and (b) red /black orderings.

per iteration is concerned, since it takes two steps
to sweep all grid points while the natural ordering
takes O(VN ) steps. Nevertheless, the convergence
rate of some iterative algorithms may be slowed
down by changing from the natural ordering to
the red-black ordering as analyzed in section 3.

2.2. SSOR, ILU, MILU and polynomial precondi-
tioners

2.2.1. SSOR preconditioner

Generally speaking, given an ordering and its
corresponding coefficient matrix 4, we can parti-
tion A into

A=D-L-U, (2.7)

where D, L and U are, respectively, the diagonal
and strictly upper and lower triangular matrices.
The SSOR preconditioner is then defined to be [5]

Mg=(D—-wL)D (D - wU), (2.8)

where w is the relaxation parameter.

For the model Poisson problem with the naru-
ral ordering, the partitioning (2.7) leads to the
following local operators

D =1, L, =3%(E;'+E"),

U}-kz %(Ex + Ey)'

Hence, by using operator algebra, the local oper-
ator for the naturally ordered SSOR precondi-
tioner can be computed as

(Ms)ji=(1—wL;,)(1~wU,)

=1-7(E+E+E'+E")
+ ‘1"—;(2 +E;E, + EE; ), (2.9)
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which corresponds to a 7-point stencil. The local
operator for the Laplacian preconditioned by the
SSOR preconditioner (2.9) can also be computed
as

(MS“A)j’k=[1—%(EX+Ey+E;1+E;1)
2 1 _ -1
+ﬁ(2+E E,+EE; )]
x[1-3(E.+E,+E;'+E;')|.
(2.10)
For the model Poisson problem with the

red—black ordering, the partition (2.7) gives the
local operators D, , =1 and

0, (j, k) red,
L., =
ik 3B+ EVHE, 4+ ESY), (U, k) black,
- _[HEAEDHEFES), (U, k) red,
o, (j, k) black.

Therefore, from (2.8), we obtain the red-black
ordered SSOR preconditioner as

©w -1 -1
1_Z(E"+E" +E,+E),
(7, k) red,
w - -1
(Mg) i = 1_Z(Ex+Exl+Ey+Ey )
2

+ 16
(J, k) black.

E.+E'+E,+E )

(2.11)

The stencil representations of local operators D; ,
—wL;y, D;y— U, and M, with the natural
and red-black orderings are depicted in fig. 2.
Note that local operators L;,, U, and (Ms);
are homogeneous at all grid points when the natu-
ral ordering is used, but take different forms at
red and black points when the red—black ordering
is used. In section 3, we will show how to analyze
the spectra of these operators with two different
Fourier analytical tools.

2.2.2. Incomplete factorization

The ILU and MILU factorizations, originally
defined in refs. (20,11] respectively, are to con-
struct M = LU such that L and U have the same
sparsity pattern as A and M = A. Specifically, it is
required for both the ILU and MILU factori-
zations that the off-diagonal nonzero elements of
A should have the same values as the correspond-
ing elements of M. The major difference between
them is that the ILU factorization requires that
the diagonal elements of 4 and M be also the
same while the MILU factorization requires that
the row sum of M differ from the row sum of A4
by a small quantity ch?, where ¢ is a constant
independent of A.

The factorizing local operators L,;, and U,
generally have different coefficients associated
with different grid points due to the boundary
effects. However, these coefficients usually reach
their asymptotic constant values for the region
sufficiently far away from boundaries. In the fol-
lowing, we ignore the boundary effect and in-
vestigate the asymptotic preconditioners.

2.2.2.1. ILU preconditioner. For the model Poisson
problem with the natural ordering, consider the
local operators L;, and U, , [8]

L =i(a—E7-E),
1p 1p
a a

Yy

(2.12)
Uj,k =1-

where a is a constant to be determined. Since the
operator L, , (or U, ;) has nonzero coefficients for
the terms 1, E;' and E;' (1, E, and E,), the
sparse pattern of L (or U) is the same as that of
the original matrix A for the lower (or upper)
triangular part. The ILU preconditioner (M), , is
defined as the product of L;, and U, ,

2
(Ml)j,k=%;[a+;—(Ex+Ey+E;1+E;1)

1 -1 -1
+—=(E.E; ' + E; Ey)]. (2.13)
By comparing (2.6) and (2.13), we see that the
operator (M), , has the same coefficients as 4; Jk
for terms corresponding to E,, E; ', E, and E;
which constitute the nonzero off- dlagonal terms
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_0 o _o
4 16 4
) () o w? o)
1 1 -2 -z ]
4 4 s g 4
o ® ®?
4 4 16
Djy-olLj, Dy —oU;, M)«
(a) natural ordering
(&) red: e e
4 4
1 ) 1 -8 o )
4 4 4 ! 4
G _o
4 4
(j &) black: T_;
o
3 ? -5 ¢
® [O) 2 I o @ ’
A s 1 IR S
o ® w?
_e T T 0w
4 .
[0}
6
Djp~oLjy Djx—w Uiy Ms)jx
(b) red/black ordering
Fig. 2. Stencil representations of local operators for the SSOR preconditioner.
for the sparse matrix 4. The ILU factorization similarly show that the ILU factorization leads to
requires that (M;);, and 4, have the same the local operators L, ; and U, [18],
coefficient for the diagonal term as well. This 1, (j, k) red
condition imposes that (see fig. 3). C o .
R Li,={1-YE+E'+E,+E"'),
a+;=4. (J’ k) black,
The choice of a is 2 + V2, since this value corre- 1- %(Ex +E; '+ E, + Eyvl),
sponds to the asymptotic values observed in ILU U, = (j, k) red,
factorization of the model Poisson problem with 3 .
3, (J, k) black.

Dirichlet boundary conditions.
In the red-black ordering context, one can
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_1 L -1
a 4a 4
1 a 1 a, 1 1
- = 1 — - - L S
4 4 a 4 4+2a 4
_1 _1 L
4 4 4a
Ly j k (Ml)j,k
(a) natural ordering
i k) red:
Gk 1 1
4 T4
1 1 1 1
1 -= 1 ——= -= -——
4 4 4 ! 4
_1 1
4 T4
(ji &) black:
1
_% 3
1 -1 1
__1 1 _l 2 8 4 8
4 4 4 L 1 I S
16 4 4 16
-1 1 1 1
4 8 T3
1
16
Ljx U; M) x

(b) red/black ordering
Fig. 3. Stencil representations of local operators for the ILU preconditioner.

The asymptotical red—black ILU preconditioner is
then defined to be their product (see fig. 3).

2.2.2.2. MILU preconditioner. The MILU precon-
ditioner has the same sparsity pattern as the ILU
preconditioner so that (2.12) and (2.13) also apply.
That is, for the model Poisson problem with the
natural ordering, we can also represent the MILU
preconditioner in form

1 2 - _
(Mm)f,k=;{[a+;—(Ex+Ey+Ex1+Eyl)

| -
+—(E.E; ' + E, E, 1)].

Their difference primarily relies on how the con-
stant a is determined. According to the definition
of the MILU factorization, the row sum of (M), ,
and that of A4;,, which equals to zero, should
differ by a small quantity 8. This leads to the
following condition on a,

l(a+%—4)=8, (2.14)

4

where 8 =47 !ch? and ¢ > 0, which gives

a=2+ 3ch*+ 1vV8ch? + c2h*.
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_1 1 _1
a 4a 4
1 -1 1l e 1 _1
a 4 4 2a 4
_1 €
4 4a
Ujx M) x
(a) natural ordering
= _1
4(1+3) 4
-1 -1 1 1
= 1 -— 1+3 -
4(13-) 4(13) 4 2
-1 _ l
4(1+9) 4
3
1&1+8)
1 _1 1
8(148) 4 8(1+8)
_1 1 1 _1 Baks 1
4 16(1+8) 4 1+8 4 16(1+8)
1 _1 1
8(143) 4 8(148)
1
16(143)
Ujk M) 4

(b) red/black ordering

Fig. 4. Stencil representations of local operators for the MILU preconditioner.

Similarly, for the red-black ordering, one can

(E,+E'+E,+E "),

find that the MILU factorization leads to the local 4(1 + 8)
operators L; , and U, ; ik = (j, k) red,
1+8, (J,k)red, 1, (J, k) black,
L,={1+8- 1178 ~3(E,+E;"+E,+E;'),  where 8§=2h? Thus, their product defines the
. asymptotical red—black MILU preconditioner. The
(Jj, k) black,

stencil forms of local operators L, ,,
(My), . are depicted in fig. 4.

U, and
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64 X Mply

Fig. 5. Stencil representation of the local operator for the
polynomial preconditioner.

2.2.3. Polynomial preconditioner

The polynomial preconditioner is based on the
idea that the inverse of the Laplacian A=1—B
can be approximated by truncating its Taylor
series expansion,

A '=(1-B)""

~I+B+B*+--- +B"=M;!,, (2.15)

where B=(E,+ E;'+ E, + E;')/4. Therefore,
we can use My, as the polynomial precondi-
tioner. The stencil form of a typical case, Mp3, is
shown in fig. 5. More generally, we may consider
the polynomial preconditioner with weighting
coefficients,

m
M; .= Y a,B, (2.16)
=0

so that coefficients a,, 0 <! < m, can be chosen to
minimize the condition number of the polynomial
preconditioned system Mg, A for fixed m. The
simplest case (2.15), where a;=1for0</<m, is
tested in this paper. Note that since the (n + 1)th
iteration #"*! only depends on the nth iteration
u" for the polynomial preconditioned system, the
computed value u"*! will remain the same for
any ordering. Therefore, with the polynomial pre-
conditioner, preconditioning operations at all grid
points can be performed in parallel. In actual
implementation, the product M5, » can be com-
puted by repeated application of B to ». Note also
that in addition to the simple sitting A =1 — B
considered above, one may use a general splitting
scheme A = E — F, where E is easily invertible, so
that B can be replaced by E~'F in (2.16).

3. Analysis of convergence rates

To understand the convergence rate of an itera-
tive algorithm, one approach known as the matrix
iterative analysis [14,26] is to use tools of numeri-
cal linear algebra. Another approach is to apply
the algorithm to a simple model problem which
consists of a constant-coefficient PDE on a regu-
lar domain with appropriate boundary conditions
so that we are able to understand its behavior
precisely by studying its effect on Fourier modes.
The convergence behavior of this iterative al-
gorithm for a more general class of problems, for
which the model problem is typical, can be there-
fore estimated. The advantage of the matrix ap-
proach is its general applicability. It can be ap-
plied to PDEs of irregular geometries and spa-
tially varying coefficients and discretized by non-
uniform grids, as long as the corresponding itera-
tion matrices satisfy some desired properties. In
contrast, the Fourier approach can be rigorously
applied to a small class of problems only. How-
ever, the Fourier approach has certain advantages.
First, the matrix approach is in general much
more complicated than the Fourier approach. Sec-
ond, for simple problems, results obtained from
the matrix approach are not as informative or as
sharp as those obtained from the Fourier ap-
proach. For example, such results include the ei-
genvalue distribution of the preconditioned oper-
ator, the estimated of the relaxation parameter for
the SOR method and the smoothing rate for mul-
tigrid methods. Third, for complicated problems,
the predicted convergence behavior of iterative
algorithms by using Fourier analysis is often con-
sistent to what we observe in numerical experi-
ments. Thus, the simplicity of the Fourier ap-
proach does not restrict its practical applicability.

Fourier or modified Fourier analysis has been
used successfully to analyze numerical methods
for elliptic PDEs for years. The model problem for
2nd-order self-adjoint elliptic PDEs is the Poisson
equation on a square with Dirichlet boundary
conditions. For the model Poisson problem, the
SOR iteration was analyzed with Fourier-like ba-
sis functions by Frankel [12] and Young [25].
Brandt used Fourier analysis (or local mode anal-
ysis) to study the error smoothing property for
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multigrid methods [7]. Stitben and Trottenberg
performed a two-grid analysis to analyze both the
error smoothing and the coarse-grid correction
with Fourier basis functions [23]. Fourier analysis
has also been applied to the analysis of the 5-point
or 9-point SOR iteration with the natural or multi-
color ordering [3,16-19], preconditioners for el-
liptic problems with the natural or red-black
ordering [8,18], and problems arising from the
domain decomposition context [9]. It is worthwhile
to mention that Brandt used Fourier analysis to
analyze the behavior of high frequency Fourier
components which are not sensitive to the change
of boundary conditions. However, by comparing
our analysis and experiments, we observe an inter-
esting fact, namely, Fourier analysis also gives a
good estimate of the behavior of low frequency
Fourier components which are supposed to be
sensitive to different types of boundary condi-
tions.

3.1. Natural ordering

3.1.1. Fourier analysis

Consider a 2D periodic sequence u,, defined
on a uniform square grid of spacing s with period
M X M, where M=h""'. That is, Ui e =Ujpk

and u;, =u;,, for arbitrary integer j and k.

The sequence 4, , can be expanded as
M-1M-1

= XL g, @O (3.1)
E=0 =0

where the Fourier coefficient #,, gives the
frequency domain representation of sequence u; ;.
It is easy to check that the complex sinusoid
e2m(&+ 1k iq the eigenvector for operators formed
by the linear combination of shift operators with
constant coefficients; and its eigenvalue can also
be found easily. For example, from (2.6), we have

Ajgk ei2ﬂ($j+nk)h=A(£’ T’) el2'rr(£j+nk)h’

A(&, 1) =1-}[cos(£2nh) + cos(n2wh)].
(3.2)

Similarly, the spectra of the SSOR, ILU and MILU
preconditioned Laplacian derived in the previous
section can be easily obtained by examining them

in the frequency domain. From the matrix view
point, to change from the space domain to the
frequency domain is equivalent to a similarity
transformation by which a sparse matrix is trans-
formed into a diagonal matrix [8].

It is worthwhile to point out that to apply the
above framework to the model Poisson problem,
we have to adopt some simplifications. First, Di-
richlet boundary conditions of the model Poisson
problem has to be replaced by periodic boundary
conditions. Second, preconditioners with spatially
varying coefficients are replaced by asymptotical
constant-coefficient preconditioners. For more de-
tailed discussion on these two issues, we refer to
ref. [8].

3.1.2. Condition number of the SSOR precondi-
tioned Laplacian

According to the above framework, the eigen-
values of the SSOR preconditioner My for the
eigenmode e'2™¢/* 7% can be determined as

(MS)jk eizn(§j+nk)h=MS(£’ Tl) ei2n($j+nk)h’

My(¢&,m)=1- %[cos(&%rh) + cos(n2mh)]

+ %2 {1+cos[(£—m)2mh]}. (3.3)

Following (3.2) and (3.3), we find that the spec-
trum of the SSOR preconditioned Laplacian Mg '4
can be simply computed as

Ao, =Ms (& n)A(& )
= {1 — 3[cos(&2mh) + COS(WZ'"'h)]}

/{1 - %[cos(&'rrh) + cos(nmh )|

+ %2{1 +cos[(£—n)2'"h]}}'

The condition number of the SSOR precondi-
tioned Laplacian is defined to be the ratio of its
largest and smallest positive eigenvalues. Although
the relaxation parameter « might be chosen to
minimize it, a direct calculation of its optimal
value is difficult. On the other hand, the optimal
parameter which minimizes the condition number
with respect to a particular set of wavenumbers,
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ie. £+n=Mand1<§<M-—1is more tractable
and can be found to be 2/[1 + 2 sin(wh)]. It can
be argued that this value is truly the optimal one
with respect to all wavenumbers as well and, with
this optimal value the condition number of the
SSOR preconditioned Laplacian is O(h~ ") [8].

3.2. Red-black ordering

Due to the red-black ordering, the resulting
system of iteration equations is not spatially ho-
mogeneous but is periodic with respect to grid
points. Consequently, the Fourier modes are not
eigenfunctions for the multicolor system, and
therefore a straightforward Fourier analysis does
not apply. By exploiting the periodic property, we
reformulate the conventional Fourier analysis as a
two-color Fourier analysis.

3.2.1. Two-color Fourier analysis

Consider a 2D sequence u; ; defined on a uni-
form square grid of spacing 4 with zero boundary
values, i.e. u; , = 0if j, k=0o0r M where M=h""'
is even. We can expand it with Fourier series as

M-1M-1

u, = 2 Y f,sin(§mjh) sin(nmkh). (3.4)

£=1 n=1

The function u;, at the red and black points
defines two sequences: the red sequence u,; , and
the black sequence u,,; ;. They can be expanded in
Fourier series, respectively, as

U= Y, B, sin(émjh) sin(nmkh),

(§.MEK,
J+ k even, (3.5a)
Up; = 2, Hyg, sin(&mjh) sin(nwkh),
¢.mEK,
J+k odd, (3.5b)
where

Ko={(&,nm)el*: ¢+n<M-1,£721 or
n=M-§¢1<é<M/2-1},
and K, =K, U {(M/2, M/2)}.

It is straightforward to check that the Fourier
coefficients @, ., @y _¢p—, in (3.4) and 4@, .,
fly ¢, in (3.5) are related via

¢y 1 1 e,

P S L) P
(£, m) €Ky,

B¢ =10, (& 1)=(M/2, M/2).

We can interpret (3.6) as follows. Through the
red-black decomposition (3.5), the component (M
— £, M — 1) in the high frequency region is folded
into the component (£, n) in the low frequency
region so that there exist two computational waves
in the low frequency region. Note also that K,
and K, differs only by a single element
(M/2, M/2) and, therefore, at the frequency
(M/2, M/2) we have only a scalar @, /5 /25
which is considered as the degenerate case.

Now, let us apply the two-color Fourier analy-
sis to the model Poisson problem with the
red—black ordering. Without loss of generality, we
concentrate on the case where u,, is zero on
boundaries, since a nonzero u;, on the boundary
can always be moved to the right-hand side and
treated as part of the forcing function. In ad-
dition, since the forcing term f;, with j, k=0 or
M does not appear, it can be viewed as zero.
Consequently, the red—black Fourier series expan-
sion (3.5) for both u;, and f;, are well defined.

By substituting (3.5) into (2.6) and relating the
Fourier coefficients of red and black waves, we
can transform (2.6) from the space domain into
the red-black Fourier domain. It is a block diago-
nal matrix equation, in which the equation for a
nondegenerate frequency (§, 1) can be written as

A 2t 2 frt
A(s,n)(lf‘ )=—f’;( f )

(3.6a)
(3.6b)

u n f‘ .M
>t >t (3.7)
A 1 0y
A(¢, ) = [_a ) ]
£

where a; , = (cos({nh) + cos(nmh))/2 is the Four-
ier transform of the space domain operator (E, +
E;'+E,+E;")/4 Since (§, )€Ky, 0<a,, <
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1. With minor modification, we can also treat the
degenerate frequency (M /2, M/2).

3.2.2. Condition number of the SSOR precondi-
tioned Laplacian

By using the two-color Fourier analysis, we can
transform (2.11) to the frequency domain

Mg(£, n) = [D(¢, 1) — wL (& 0)] D7'(E, n)
x[D(¢, n) — wU(&, )]

_ 1 0111 -—wag,
_waf’n 1 0 1

[ 1 —wag , }, (3.8)

2.2
—wag , 1+w ag .,

where D(&, ) is a 2% 2 identity matrix. From
(3.7) and (3.8), we find that the SSOR precondi-
tioned operator Mg '4 has the spectral representa-
tion

Mg'(&, m)A(¢, m)

B 1- wagvn + wzag,,’

1- wa?v,,

2.3
gt wa @ “e,n}

-, + wa .

which has two eigenvalues

2
Afy'ﬂ,i =1- %’ae_.qw(z - w) + %‘afyn

X [ag,nw2(2 ~w) —40(2-w)+ 4]1/2.

The condition number k(Mg '4) is determined by
the ratio of max|A;,, | and min|A,  _ |, which
can be minimized by choosing an appropriate
relaxation parameter w. It turns out that the opti-
mal relaxation parameter is 1, and with this
parameter the condition number of the SSOR
preconditioned Laplacian is [18]

k(Mg 'd) = [1 — cos?(wh)] !
= a h 2= 0 (1),

3.3. Summary of convergence rates

In the previous section, the analysis of the
SSOR preconditioner with the natural and

Table 1

Comparison of condition numbers

Preconditioner Natural R/B
none(Laplacian) O(h™?) O(h™?)
SSOR oh™hH oh™?)
ILU O(h™%) oh™Y
MILU Oh™ N Oh™?)
polynomial Oh™%) Oh™?)

red-black orderings is used as example to demon-
strate the fact that Fourier analysis provides a
simple and effective tool to obtain the eigenvalue
information as well as the condition number of
the preconditioned Laplacian. Similarly, Fourier
analysis can also be applied to ILU, MILU and
polynomial preconditioners [8,10,18]. We list the
condition number of the preconditioned system
with various preconditioners in table 1, where # is
the grid spacing. Note that the total number N of
grid points is related to # via N = h™2.

For details of deriving condition numbers and
their corresponding constants for the SSOR, ILU
and MILU preconditioners with the natural and
red-black orderings, readers are referred to refs.
[8,18], respectively. The polynomial preconditioner
has been studied in ref. [10]. Although the
red—black ordered preconditioners do not improve
the order of the condition number with respect to
the original Laplacian, they do improve the con-
stant by a certain factor [18].

The convergence rates of stationary and pre-
conditioned iterative algorithms are compared in
table 2, where convergence rates are expressed in
terms of numbers of iteration required for the
reduction of initial residual by a constant factor.

The first three entries above indicate the con-
vergence rates of stationary iterative algorithms

Table 2
Comparison of convergence rates

Iterative algorithm Convergence rate
basic(Jacobi, GS) o(h~%)
SOR(natural) oh Y
SOR(R/B) oY
CG(basic) oY
PCG(MILU; natural) Oh™1?)
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with or without acceleration. Note that the SOR
acceleration speeds up the basic Jacobi and
Gauss—Seidel iterations and gives the same order
of convergence rate for both the natural and
red—black orderings [1,16]. In the last two entries,
we consider the CG acceleration. The basic CG
refers to the application of CG to the Laplacian
without preconditioning. It is well known that the
convergence rate of a preconditioned iterative
method depends on the condition number as well
as the distribution of the eigenvalues of the pre-
conditioned system [6]. In our context, the conver-
gence rate is in the order of the square root of the
condition number so that the quantities listed in
table 1 can be converted into quantities of conver-
gence rates straightforwardly. In table 2, only two
of them (the basic CG and the PCG with that
naturally ordered MILU preconditioner) are listed
for comparison.

4. Implementation and performance on the Con-
nection Machine

In the previous section, we analyzed the rate of
convergence of different iterative algorithms.
However, unlike the case of sequential machines,
this analysis alone is not sufficient to predict the
exact performance of each algorithm on parallel
machine, since the ease of parallelization has to be
taken into account as well. The performance of
parallel preconditioners on the Connection Mac-
hine will be compared below.

4.1. The Connection Machine

The Connection Machine (CM) [15,24] is a
massively parallel architecture consisting of 65536
single bit processors. The CM system consists of
two parts — a front end machine and a hypercube
of 64 K processors. The front end computer, cur-
rently supported by the Symbolics 3600 or the
VAX 8800 machines, provides instruction se-
quencing, program development, networking and
low speed 1/0. The CM program contains two

types of statements — those operating on single
data items and those operating on a whole data set
at once. The single-data-item instruction is ex-
ecuted in the front end, whereas the large-data-set
instruction is executed in the CM hypercube to
increase parallelism.

The CM hypercube consists of 4096 (2'?) chips,
each with 16 processors and a router, to form a 12
dimensional hypercube. The router is a communi-
cation processor that allows any on-chip processor
to communicate with other processors in the sys-
tem. In addition to the router network, there is a
separate communication facility called the NEWS
grid. That is, each processor is wired to its four
nearest neighbors in a 2D regular grid. Machine
instructions allow message to be sent, a bit at a
time, to the processor to the north, south, east or
west on this grid. Communication on this NEWS
grid is very fast compared to the router communi-
cation and is encouraged for short distance com-
munication between processors. Moreover, on the
CM-2, there are 8 Kbytes of random access mem-
ory associated with each physical processor; and
also the Weitek floating point processors are in-
corporated into the system, with one Weitek chip
shared between two 16-processor CM chips.

An important feature of the CM system is its
support for virtual processors. A run-time config-
uration command cold-boot may be used to specify
how each physical processor simulates a small
rectangular array of virtual processors — except, of
course, for the case that such a processor appears
to be correspondingly slower and has only a frac-
tion of the memory of a physical processor.

The CM supports two software environments:
Common LISP and C. A standard extension for
each language is provided so that it supplies the
complete interface to the hypercube. The exten-
sions are *LISP and C*, respectively. The basic
idea for the extension is that scalar variables re-
side on the front end, while vector of parallel
variables are distributed over the cube.

The CM used in our experiment is a 16 K-node
CM-2 without the Weitek floating point accelera-
tor running at a clock frequency of about 6.47
MHz. The front end computer used is the Sym-
bolics 3600 and the language used for program
development is * LISP.
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4.2. Implementation and results

On iteration of the PCG (Preconditioned Con-
Jjugate Gradient) method can be written as follows
[13]:

Solve Mz, =r, for z,
Bis1=(2xs 1)/ (Zg—1s Tez1)s
Pi+1= 2kt Bio1 P

i1 =2, 1)/ (Prs1s APrs1)s
X1 =X T O 1 Pprns

Tew1 =T = %1 APiin

From above, we see that it requires two inner
products (or three, if the calculation of the residue
to check convergence is included), three multiply-
and-add operations in the form of ax + b where x
ad b are vectors and a is a scalar, one
matrix-vector product calculation, plus the oper-
ations required for preconditioning. The multiply-
and-add operation as well as the matrix—vector
product can be performed in parallel on all the
unknowns (in this case, the unknowns are grid
points on a 2D grid). On the Connection Machine
these unknowns are mapped onto processors in a
one-to-one manner (2D grid mapping onto 2D
grid), so that these two operations can be com-
pleted in constant time (independent of the num-
ber of unknowns). The inner product operation,
however, cannot be done in constant time. The
hypercube configuration of the CM allows multi-
plication of two elements in parallel and accumu-
lation of the partial sums in the form of a binary
tree. The execution time of this operation is thus
O(log N) where N is the total number of grid
points. In summary, without considering the pre-
conditioning, the execution time of each iteration
is O(log N).

For preconditioning, one needs to solve a sys-
tem of the form Mz =r where M is a NXN
matrix and z and r are vectors of length N.
Suppose the preconditioner can be factorized into
the product of a low and upper triangular matrices
L and U. The solution to the system Mz=r
consists of a forward solver (L™ !) and a backward
solver (U™ !). For the natural ordering case, due to
data dependency, the forward solver cannot be
performed in parallel on all unknowns, but in-
stead the unknowns can only be operated on

sequentially ion a diagonal fashion, starting from
lower-left corner (which corresponds to unknown
#1) and proceeding diagonally to the upper-right
corner (unknown #N). Thus, the forward solver
can be at best solved in O(N'/?) time with maxi-
mum parallelism @(N'/?). The backward solver
behaves similarly except in an opposite direction,
i.e. starting from the unknown #N at the upper-
right corner to the unknown #1 at the lower-left
corner.

The limited parallelism offered by the natural
ordering results in low utilization of massively
parallel machines such as the CM. To achieve a
higher degree of parallelism, we need a different
ordering scheme for the preconditioning, for ex-
ample, the red—black ordering. With the red-black
ordering, unknowns at red points do not depend
on unknowns on other red points and the same is
true for black unknowns, so that the precondition-
ing procedure can be performed simultaneously at
all red points and then all black points and takes
only constant time. To increase the processor utili-
zation on the CM, it might be desirable to map
one red and one black unknown onto one
processor. However, to simplify the program de-
velopment, this mapping was not yet implemented
in our codes.

In spite of its attractive feature of offering
higher degree of parallelism and, thus, lower ex-
ecution time, the red-black ordering has a draw-
back, namely, it affects the rates of convergence in
a negative way as analyzed in the previous section
and indicated in table 1. To seek a suitable method
for a particular type of parallel machine, we have
to consider the tradeoff between low execution
time and fast convergence rate. As for the CM, the
red-black ordering seems to be superior for the
problem that we have tested, which will be dem-
onstrated by the results of our experiments.

We solve the 2D Poisson equation with Dirich-
let boundary condition on the Connection Mac-
hine using PCG with various preconditioners:

1. no preconditioning (CG),

2. ILU with the natural ordering,

3. MILU with the natural ordering,
. SSOR with the natural ordering,

. ILU with the red—black ordering,

[
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Fig. 6. Convergence rates for SOR (R /B) and PCG methods.

6. MILU with the red-black ordering,
7. SSOR with the red-black ordering,
8. Polynomial preconditioner using 4 terms (M5 3)

For comparison, the SOR method with the
red—black ordering is also tested for the same
model problem. The convergence rates are plotted
as function of N, the number of grid points, in fig.
6. Their convergence rates expressed in O(N¥),
can be obtained by examining the slope of the
corresponding plot. The results are summarized in
table 3. We see from table 3 that the orders of
convergence rate obtained from our experiments
data confirm those obtained from analysis. As far
as the convergence rate is concerned, it is clear
that the PCG method with naturally ordered SSOR
and MILU preconditioners (8 = 0.25) behaves be-
tter than other tested methods (8 = 0.5). Although
most solution methods plotted in fig. 6 have the
same order of convergence rates (8= 0.5), they

Table 3

Comparison of convergence rates

Preconditioner Analysis CM results
basic CG O(N®%) O(N¥y
ILU(natural) O(N°%) O(N®%)
MILU(natural) O(N°2) O(N°?y
SSOR(natural) O(N25) O(N°?)y
ILU(R /B) O(NO30y O(N®¥)
MILU(R/B) O(NO°%) O(N®30)
SSOR(R/B) O(N30) O(N¥)
polynomial O(N®0) O(N®%)
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Fig. 7. CM execution time for SOR(R/B) and PCG methods.

have different proportional constants. The experi-
ment shows that the red-black ordered SOR
method has the largest; constant while the natu-
rally ordered ILU has the smallest one.

The CM execution time for different precondi-
tioners as function of the number of grid points is
plotted in fig. 7. Based on this figure, we find that
although the convergence rates of MILU and
SSOR with the natural ordering are much better
than those of other preconditioners, their execu-
tion time are far inferior than those of precondi-
tioners with the red—bldck ordering. Thus, the fast
convergence rate does not guarantee low execution
time. The reason is that naturally-ordered precon-
ditioners have to be performed more sequentially
so that much more execution time is needed. In
our experiments, a preconditioner with the
red-black ordering always takes less execution
time than its counterpart with the natural order-
ing. An interesting observation is that the
red-black SOR method has the slowest conver-
gence rate but the shortest execution time, This is
partly due to the fact that costly inner-product
operations in the CG algorithm can be avoided in
the SOR method for the model Poisson problem.
This suggests that the local relaxation method [16]
should be also attractive for the CM for PDEs
with spatially varying coefficients. Note that the
ease of of parallelization alone does not guarantee
low execution time since it is observed that even
though the Jacobi metJhod offers the highest de-
gree of parallelism, it {s much slower than many
other methods for its slow convergence rate.
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We conclude from our CM experiments that to
search for a better preconditioner on parallel mac-
hines, tradeoffs have to be carefully considered
between the fast convergence rate and the ease of
parallelization of the preconditioner [22]. A pre-
conditioner showing promises of better perfor-
mance in both the convergence rate and the ease
of parallelization is preconditioning with the
hierarchical basis {2,27]. Its analysis and perfor-
mance in the CM machine is under our current
study.
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