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We studytheperformanceof severalwidely usedpreconditionersfor 2D effiptic partial differential equations(SSOR,ILU,
MILU andpolynomialpreconditioners)with thenaturaland red—blackorderingsimplementedon the ConnectionMachine
(CM). Theirperformanceis primarily influencedby two factors:therateof convergenceandthe easeof parallelization.The
convergencerate is analyzedby Fourier analysisand confirmedwith experimentalresults.Although the naturally ordered
SSOR andMILU preconditionershave convergenceratesone order fasterthan theother preconditioners,the experiments
show that the red—blackordered SSOR, ILU, MILU, polynomial preconditionerstaket less execution time than their
naturallyorderedcounterparts.This is partially dueto thefact that thered—blackorderingprovidesmoreparallelismthanthe
naturalordering.

1. Introduclion particularlyconcerningtheimplementationof pre-
conditioning,which is an importantcomponentof

This paper concernsthe analysis and imple- the PCG algorithm. Many preconditionersthat
mentationof paralleliterativemethodsfor solving havebeenderived before the adventof parallel
elliptic partial differential equations (PDE5). computingare unfortuElatelyverymuch sequential
Specifically, we are interestedin the precondi- in natureand hencecannotbe implementedeffi-
tioned conjugategradientmethod (PCG), which ciently on a massivelyparallel computer.A prin-
hasbeensuccessfullyusedin many areasof scien- cipal obstacleto parallelizationis the sequential
tific computing. We demonstratethat parallel manner in which many preconditionersuse in
machinescan change the relative cost of al- traversingthecomputationalgrid [21,22].The data
gorithms, and study the tradeoffsonemustmake dependenceimplicitly prescribedby the method
when implementingthem on a massivelyparallel fundamentallylimits the amount of parallelism
computersuchas the ConnectionMachine, available.For the pa~tseveral years, there has

The fundamentaltradeoff is one betweenthe beena lot of research141 searchof efficient parallel
rateof convergenceandthe easeof parallelization, preconditioners[2,41.Onemethodis to reorderthe

sequenceof operation~sin the constructionof a
sequentialpreconditionerin order to reducethe

* This work was supportedin part by the Departmentof data dependencyand~maximize the number of
Energyunder contractDE-F003-87ER25037,theNational operationsthat canbó performedin parallel. An
ScienceFoundationundercontractsNSF-DMS87-14612and I
BBS 87 14206, the Army ResearchOffice under contract exampleof sucha par4llel ordermgis theclassical
DAALO3-88-K-0085 andby theResearchInstitute for Ad- red—black ordering fo~five point discretizations,
vancedComputerScience,NASA Ames. which requires only t~woiterations to cover the
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whole grid. Another method is to invent new tioners for the model Poissonproblem for both
preconditionersthat are by design parallelin na- the natural and red—black orderings. Section 3
ture. An exampleis the classof polynomial pre- introducestwo Fourier analytical tools which are
conditionersthat we shall discusslater. However, thenused to analyzethe spectraof the precondi-
both of the above methodsgenerateprecondi- tioned Laplacian operators with naturally and
tioners whose convergencebehaviorsare in gen- red—black ordered preconditioners,respectively.
eraldifferent from those of their sequentialcoun- In particular, the SSORpreconditionedLaplacian
terparts.In manycases,thesenew methodsin fact is used as exampleto demonstratethe analysis.
convergeconsiderablyslower.Therefore,a funda- Finally, the details of implementingthe PCG al-
mentalissueis whether the gain in the amountof gorithm on the ConnectionMachineand the re-
parallelism can overcomethe loss in the conver- sults of our experimentsarepresentedin section4.
gencerate.

One important factor in this tradeoff is the
convergencerateof iterative algorithms.The con- 2. Brief surveyof elliptic preconditioners
vergenceratesfor sequentialpreconditionershave
beenstudiedextensivelyand are well understood Considerthe numericalsolution of the follow-
[6,8]. However,the convergenceratesfor the same ing self-adjointelliptic PDEs
preconditionerswith the parallel orderingshave
only recently beenstudied [18]. While they have ~~p(x y)~~_~±’~+ —~--(q(xy)~
beenobservedempiricallyto convergemuchslower a~v 3x / 3y ay
than their sequentialcounterparts[2,4], thereare + r(x, y)u =f(x, y), (2.1)
few proofsof their convergencerates.Onegoal of
this paperis thereforeto presenta frameworkfor where p(x, y)> 0 and q(x, y)> 0 and a(x, y)
analyzingthe convergencebehaviorof elliptic pre- � 0 on a closed domain Q with Dinchlet, Neu-
conditionersusingFourieranalysis,whichhasbeen mann or mixed boundaryconditions. A special
very successful in providing insights into their exampleof (2.1) is the Poissonequation,where
performance[8,18]. For the sequential natural p(x, y) = q(x, y) = 1 and a(x, y) = 0, which
ordering,avon Neumanntype Fourieranalysisis arisesin many engineeringand physical applica-
usedandmostof the classicalconvergenceresults tions.Wecandiscretizeeqs.(2.1) with a finite-dif-
can be recovered. For the parallel red—black ferent or finite-elementschemeand obtain a sys-
ordering,a two-color fourier analysisis usedwhich tern of N linear differenceequations
providesrigorousconvergenceratesfor the model Au = f (2 2)
Poissonproblem. d d’

Obviously, the tradeoffwill also dependon the whereA is a sparseN X N matrix, and Ud and fd

particular computerused in the implementation are discreteapproximationsof u and f, respec-
and the number of processorsavailable.In gen- tively. Due to the self-adjoint property of the
eral, the moreprocessorsthereare, the more im- differential operatorin (2.1), thediscretizedcoeffi-
portant it is to have an inherently parallel al- cient matrix A is symmetricandpositive definite
gorithm. The computer used in our numerical (SPD).
experiments,a Connection Machine with 16 K Thereare numerousiterativealgorithmsusedto
processors,is a massivelyparallel computerand solve the discretized linear system (2.2). Basic
thereforefavors algorithms with massiveparalle- iterative methods [14], such as the Jacobi and
lism built in. As we shall see, this is essentially Gauss—Seidelmethods,canbeobtainedby perfor-
confirmedby our numericalexperiments. ming relaxation on each grid value. The conver-

The outline of the paperis as follows. In sec- genceratesof basiciterativemethodsare slow and
tion 2, we give a brief survey of preconditioners takeat least ~P(N) iterationsto converge.Thus, in
for elliptic PDEs, and show how to constructthe practice, basiciterative methodsare usuallycorn-
SSOR, ILU, MILU and polynomial precondi- bined with efficient acceleratingproceduresto im-



T.F. C/ianet aL / Parallel ellipticpreconditioners 239

provetheir convergencerates.Onekind of acceler- and the condition nun~berof B is smaller than
ation is the SOR (SuccessiveOverRelaxation) thatof A. Oncecommonway to construct(2.3) is
methodwhich acceleratesthe basicGauss—Seidel to determinea preconditioningmatrix M, or pre-
relaxation and improves the convergencerate to conditioner,so that M canbe invertedefficiently
tI? (V~)iterations to converge.In additionto the andM A so that theconditionnumbersc(M 1A)
SOR acceleration,there are two other kinds of is small. Thus,by multiplying (2.2) with M1 and
accelerationprocedureswhich have been corn- relating the result with (2.3), we have
monlyused,namely,theChebyshevSemi-Iterative B = M~1A, ~ = U~, g = M1fd. (2.4)
(CSI) and the ConjugateGradient (CG) proce-
dures [13,14]. Since acceleratingparametersare The SSOR[5], ILU (IncompleteLU) [20], MILU
determinedin the processof the CG procedure (Modified ILU) [11] and polynomial precondi-
but haveto be estimatedin advancefor the CS! tionersall belongto this type[6]. Recently,another
procedure,the CG accelerationis often preferred. preconditiomngtechniqueknown as the hierarchi-

Roughlyspeaking,by applyingthe CSI or CG cal basisor the multilevel preconditiomng[2,27] is
proceduresto a basiciterative methodwhosecor- understudy.Performaitceandanalysisof precon-
respondingcoefficient matrix is SPD and has a ditioners with hierarchicalbasis will be reported
conditionnumberK, the resultingmethod requires elsewhere.In this paper,we concentrateon the
tV(V’~) iterations to converge [6]. For example, SSOR, ILU, MILU and polynomial precondi-
since the basic Jacobi iteration has a condition tionersanddescribetheir forms for the restof this
number ~?(N), the numberof iteration required section.
for the CSI- or CG-acceleratedJacobi is ~9(%/~),
which is the sameorder as the SORmethod.The 2.1. ModelPoissonproblemandorderings
advantageof the CSI or CG procedureover the
SORprocedureis that they are widely applicable In the following discussion,a simpleexampleis
while the SOR accelerationis primarily used to chosento illustrate the constructionof various
accelerate the consistently ordered matrix preconditioners.The exampleis the discretePois-
[14,25,26] and, consequently,faster convergence son equation on the squareQ = [0,112 with ap-
ratesmay be achievedby using the CSI or CG propriateboundarycoEiditions,
acceleration.To seethis, let us considerthe SSOR

1(SymmetricSOR)iteration with the naturalorder- —~-(uJ+lk + UJ_l,k + U

1 k±1 + uJ,k_1 — 4uJk)
ing, which has a condition number !2(%/7~)(see
section3.1), to be acceleratedby the CSI or CG =fj•k’ (2.5)
procedure.The resulting method requires only
~D(N1/4) iterationsto converge, where h is the grid spacing and u~k is usedto

Sincethe convergencerateis controlled essen- approximatethe valueof u(jh, kh). Notethat the
tially by the condition numberof the coefficient total numberN of v~triablesis related to h by

N h
2 It is convenientto rewrite the differencematrix A, it is desirable(and an active research

topic) to seeka systemwhich is closely relatedto equation(2.5) in termsof shift operators
(2.2) and whose coefficient matrix has a smaller h2
condition number. One such techniqueis called Afkufk = —

4
1j,k’ (2.6)

preconditioning[6,13] and the resulting systemis
the preconditionedsystem.In mathematicalterms, A

1, k = 1 — ~ (E~+ + + E~1).

wetransform(2.2) into
whereE~and E~are shift operatorsalong the x-
and y-directions,

Bv=g, (2.3)
EXUJk = UJ±lk, E~ufk = uJ_lk,

wherethe solution v canbeeasilyconvertedto the
desired solution Ud of the original system(2.2) EVuJ,k= ulk+1, E~

1~UJk= U] k~I
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In (2.6) AJk is thelocal operatorat the grid point 6 7 8 9 10 II 2 1 2 1 2 1

(jh, kh)and the collection of localoperatorsA~k 5 6 7 8 9 10 1 2 1 2 I 2

at all grid pointsgives the global operatordenoted ‘1 5 6 7 8 9 2 1 2 1 2 1

3456 7 8 1 2 I 2 I 2by A0~.The major differencebetweenthe global
2345 6 7 2 12 1 2 I

operatorA0~andthe coefficientmatrix A is thata 1 2 3 4 5 6 1 2 1 2 1 2

1D orderinghas to be specifiedfor describingA
but not for A0~. (a) (b)

Theorderingof grid points rn generalplays an Fig. 1. Parallel(a)naturaland(b) red/blackorderings.

important role in determining the form of the
coefficient matrix and hence that of precondi- per iterationis concerned,since it takestwo steps
tioners. Two commonly used orderings, i.e. the to sweepall grid pointswhile the naturalordering
naturalandred—blackorderings,will be discussed takes~O(~/,V)steps.Nevertheless,the convergence
andcomparedin this paper.In the naturalorder- rate of some iterative algorithmsmay be slowed
ing, grid points are ordered in the rowwise (or down by changing from the naturalordering to
columnwise)fashion.By the red—black ordering, the red—blackorderingas analyzedin section 3.
grid points are partitioned into red and black
groups,wherea grid point (j, k) is red if j + k is 2.2. SSOR,ILU, MILU andpolynomialprecondi-
even and black if j + k is odd, and then red tioners
points are ordered before black points and the
naturalorderingis usedwithin eachgroup. In the 2.2.1. SSORpreconditioner
contextof parallelcomputation,we are interested Generally speaking,given an ordering and its
in maximizing the number of operationsat grid correspondingcoefficientmatrix A, we canparti-
pointsamongwhich thereis no datadependence. tion A into
Consequently,theseoperationscan be performed
in parallel andthe orderingfor these grid points A = D — L — U, (2.7)
does not affect the final result. For example, in where D, L and U are,respectively,the diagonal
the solution if (2.5), it is appropriateto consider and strictly upper and lower triangularmatrices.
the following naturaland red—blackorderings: TheSSORpreconditioneris thendefinedto be [5]

naturalordering(parallel version) M5 (D — ~oL)D’(D — wU), (2.8)

(j, k) < (j’, k’) if J+ k </ + k’, where co is the relaxationparameter.
For the model Poissonproblemwith the natu-

red—blackordering(parallel version) ral ordering, the partitioning (2.7) leads to the

following localoperators(j, k) <(j’, k’) if

(j, k)redand(j’, k’)black, D~,k=l. LJk=~(E1+E~),

where theorder betweengrid points is denotedby ~}.k = ~(E, +

the inequality sign. Thesetwo orderingsfor the Hence,by usingoperatoralgebra,the local oper-
grid points on a uniform 6 X 6 squaregrid are ator for the naturally ordered SSOR precondi-
illustrated in fig. 1. Note that the sameordering

tioner canbe computedasnumberis assignedto grid points(j, k) with the
samej + k in the naturalorderingandgrid points (Ms).k = (i — coLfk)(1—

of the samecolor in the red—blackordering.This
implies that operationsat thesegrid pointscanbe = 1 — ~ (E~+ E~,+ + E~1)

performedin parallel. The red—black ordering is
moreattractivethan the naturalorderingin paral- + ~?~-(2+ + EXE~), (2.9)
lel computation,as far as the computation time
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which correspondsto a 7-point stencil. The local 2.2.2. Incompletefactorization
operatorfor the Laplacianpreconditionedby the The ILU and MILU factorizations,originally
SSORpreconditioner(2.9) can also be computed defined in refs. [20,11] respectively,are to con-
as struct M = LU suchthat L and U havethe same

sparsitypatternas A and M A. Specifically,it is

(M~1A ) j,k = [i — ~- (~+ + E;1 + ~ I) required for both the ILU and MILU factori-

zations that the off-diagonalnonzeroelementsof
-1 A shouldhavethe samevaluesas the correspond-

+ ~ (2 + E + E~E~)} ing elementsof M. The major differencebetween
them is that the ILU factorization requiresthat

x [i — ~( E~+ + E;~+ E~I)]. the diagonal elementsof A and M be also the

(2 10) samewhile the MILU factorizationrequiresthat
the row sumof M differ from the row sum of A

For the model Poisson problem with the by a small quantity ch2, where c is a constant
red—black ordering, the partition (2.7) gives the independentof h.The factorizing local operators Uk and
local operators1~,k= 1 and generally have different coefficients associated

(0, (j, k) red, with different grid points due to the boundary
Uk = effects. However, thesecoefficientsusually reach~( E~+ E’ + + E~), (j, k) black, their asymptotic constantvalues for the region

sufficiently far away from boundaries.In the fol-
(E~+ E1 + E~+ Er), (j, k) red, lowing, we ignore the boundaryeffect and in-

= { 0, (j, k) black. vestigatethe asymptoticpreconditioners.

Therefore, from (2.8), we obtain the red—black 2.2.2.1. IL Upreconditioner.For the model Poisson
orderedSSORpreconditioneras problem with the natural ordering, considerthe

localoperatorsUk and U~k[8]

(1— ~(E~+E;1+E~+E;1), LJk=~(a—E~—E~),

(j, k)red, ~.k=1—~EX—~EY, (2.12)

(MS)J,k=) 1— ~(E~ + E~1+ E~+ E~)

where a is a constantto be determined.Sincethe
+ -~-~(~+ E;1 + E~+ E;1 )2, operatorUk (or U~k)hasnonzerocoefficientsforthe terms 1, E’ and E~1(1, E~and Er), the
(j, k) black. sparsepatternof L (or U) is the sameas that of

(2.11) the original matrix A for the lower (or upper)
triangularpart. The ILU preconditioner(M

1)~.kis

The stencil representationsof local operators
1~j,k definedas the productof Uk and ~i,k:

— wUJk, ~,k — (OL~kand M~,kwith the natural
and red-black orderings are depictedin fig. 2. (Mi)j,k=~[a+~_(Ex+Ey+E1+E1)

Note that local operators Uk, UJ,k and (Ms)J,k 1
are homogeneousat all grid pointswhenthe natu- + — (EXE~1+ E 1E~)}. (2.13)
ral orderingis used,but take different forms at a
redandblackpointswhenthe red—blackordering By comparing(2.6) ailid (2.13), we see that the
is used.In section3, we will show how to analyze operator(M

1)j,k hasthe samecoefficientsas A~k

the spectraof theseoperatorswith two different for termscorrespondin~to E~,E ~, E~and E~~,

Fourieranalyticaltools. which constitutethe itonzero off-diagonal terms
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Fig. 2. Stencil representationsof localoperatorsfor theSSORpreconditioner.

for the sparsematrix A. The ILU factorization similarly show that the ILU factorizationleadsto
requires that (M1)jk and AJk have the same the local operatorsUk and ~ [18],
coefficient for the diagonal term as well. This 1 (j k) red
conditionimposesthat (seefig. 3). ‘

UJk= ~
a+~=4. (I, k) black,

The choice of a is 2 + %/~,since this valuecorre- 1 — ~( E~+ E
1 + +

spondsto the asymptoticvaluesobservedin ILU ~ k = (j, k) red,
factorizationof the model PoissOnproblemwith ~ ~ k ~bl k
Dirichiet boundaryconditions. ~ ~ ~ ac

In the red—black ordering context, one can
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Fig. 3. Stencil representationsof local operatorsfor theILU preconditioner.

The asymptoticalred—blackILU preconditioneris Their differenceprimarily relieson how the con-
thendefinedto be their product(seefig. 3). stanta is determined.According to the definition

of theMILU factorization,the row sumof (MM)Jk
2.2.2.2. MiLUpreconditioner.The MILU precon- and that of Alk, which equals to zero, should
ditioner hasthe samesparsitypatternas the ILU differ by a small quantity 8. This leads to the
preconditionerso that (2.12) and(2.13) alsoapply. following conditionon a,
That is, for the model Poissonproblem with the
naturalordering,we canalso representthe MILU 1 1 4 \
preconditionerin form ~,,a + — 4) = (2.14)

(MM) j,k = ~ [a + — (E~+ + E
1 + E~1) where 8 = 4 1ch2 and c> 0, which gives

+ 1(E~E~+ E~E1)]. a = 2 + ~ch2+ ~V8ch2 + c2h4.
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Fig. 4. Stencil representationsof localoperatorsfor theMILU preconditioner

Similarly, for the red—black ordering, onecan 1 — 1
1E + E1 + E + E1

find that the MILU factorizationleadsto the local 4(1 + 6)~ X X ~V ~V

operatorsUk and 1-~.k= (j, k) red,

1 + 8, (1’ k) red, 1, (j, k) black,

Uk = 1 + 8 — — ~( E~+ E’ + E~+ E1), where 6 = ~h2. Thus, their product defines the

asymptoticalred—blackMILU preconditioner.The
(j, k) black, stencil forms of local operators Uk, ~ and

(MM)Jk are depictedin fig. 4.
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1 3. Analysisof convergencerates
3 4 3

3 $ 25 $ 3 To understandthe convergencerateof an itera-
I 4 25 80 25 4 I tive algorithm,oneapproachknown as thematrix

3 $ 25 8 3 iterative analysis[14,26] is to use tools of numeri-

~ cal linear algebra.Another approachis to apply
I the algorithm to a simple model problem which

consistsof a constant-coefficientPDEon a regu-
640 MPI lar domainwith appropriateboundaryconditions

Fig. 5. Stencil representationof the local operator for the so that we are able to understandits behavior
polynomialpreconditioner. preciselyby studyingits effect on Fourier modes.

The convergencebehavior of this iterative al-
gorithm for a moregeneralclassof problems,for

2.2.3. Polynomialpreconditioner which the model problemis typical, canbe there-
The polynomial preconditioneris basedon the fore estimated.The advantageof the matrix ap-

idea that the inverseof the Laplacian A = I — B proach is its generalapplicability. It can be ap-
can be approximatedby truncating its Taylor plied to PDEs of irregular geometriesand spa-
seriesexpansion, tially varying coefficientsand discretizedby non-
A 1 = (I — B) uniform grids, as long as the correspondingitera-

tion matrices satisfy some desiredproperties.In
I + B + B2 + +Bm= M~,

1, (2.15) contrast,the Fourier approachcan be rigorously
applied to a small class of problemsonly. How-

where B = (E~+ E
1 + E~+ Ej~)/4. Therefore, ever,the Fourierapproachhascertainadvantages.

we can use M~ as the polynomial precondi- First, the matrix approachis in general much
tioner.The stencil form of a typical case,M~,is morecomplicatedthanthe Fourierapproach.Sec-
shown in fig. 5. More generally,we may consider ond, for simple problems,resultsobtainedfrom
the polynomial preconditioner with weighting the matrix approachare not as informative or as
coefficients, sharp as those obtained from the Fourier ap-

in proach.For example,such results include the ei-
M~I= ~ a,B’, (2.16) genvaluedistribution of the preconditionedoper-

1o ator, the estimatedof the relaxationparameterfor

so that coefficientsa
1, 0 � 1 � m, canbechosento the SORmethodandthe smoothingratefor mul-

minimize the conditionnumberof the polynomial tigrid methods.Third, for complicatedproblems,
preconditionedsystem M~,Afor fixed m. The the predicted convergencebehavior of iterative
simplestcase(2.15),where a1 = 1 for 0 � I � m, is algorithmsby usingFourier analysisis often con-
testedin thispaper.Note that since the (n + 1)th sistent to what we observe in numericalexperi-
iteration u” + only dependson the n th iteration ments. Thus, the simplicity of the Fourier ap-
u ‘~ for the polynomial preconditionedsystem,the proachdoesnot restrictits practical applicability.
computedvalue u” + will remain the samefor Fourier or modified Fourier analysishasbeen
any ordering.Therefore,with the polynomialpre- used successfullyto analyze numericalmethods
conditioner,preconditiomngoperationsat all grid for elliptic PDEsfor years.Themodel problemfor
points can be performed in parallel. In actual 2nd-orderself-adjointelliptic PDEsis the Poisson
implementation,the productM~v can be corn- equation on a square with Dirichlet boundary
putedby repeatedapplicationof B to~.Notealso conditions. For the mødel Poissonproblem, the
that in addition to the simple sitting A = I — B SOR iteration wasanalyzedwith Fourier-likeha-
consideredabove,onemay usea generalsplitting sis functions by Frankel [12] and Young [25].
schemeA = E — F, whereE is easily invertible,so BrandtusedFourier analysis(or local modeanal-
that B canbe replacedby E~

1F in (2.16). ysis) to study the errOr smoothing property for
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multigrid methods [7]. StUben and Trottenberg in the frequencydomain. From the matrix view
performeda two-grid analysisto analyzeboth the point, to changefrom the space domain to the
error smoothing and the coarse-gridcorrection frequency domain is equivalent to a similarity
with Fourierbasisfunctions[23]. Fourieranalysis transformationby which a sparsematrix is trans-
hasalsobeenappliedto the analysisof the5-point formedinto a diagonalmatrix [8].
or 9-point SORiterationwith the naturalor multi- It is worthwhile to point out that to apply the
color ordering [3,16—19],preconditionersfor el- aboveframework to the model Poissonproblem,
liptic problems with the natural or red—black we haveto adopt some simplifications.First, Di-
ordering [8,18], and problems arising from the richlet boundaryconditionsof the model Poisson
domaindecompositioncontext[9]. It is worthwhile problemhas to be replacedby periodic boundary
to mention that Brandt used Fourier analysisto conditions. Second,preconditionerswith spatially
analyzethe behaviorof high frequencyFourier varying coefficients are replacedby asymptotical
componentswhich are not sensitiveto the change constant-coefficientpreconditioners.For morede-
of boundaryconditions. However, by comparing tailed discussionon thesetwo issues,we refer to
our analysisand experiments,we observeaninter- ref. [8].
esting fact, namely, Fourier analysisalso gives a
good estimateof the behaviorof low frequency 3.1.2. Condition number of the SSORprecondi-
Fourier componentswhich are supposed to be tioned Uaplacian
sensitive to different types of boundarycondi- According to the aboveframework, the eigen-
tions. values of the SSOR preconditionerM~ for the

eigenmodee2’~~ canbe determinedas
3.1. Natural ordering

(M’S)Jk e’2~’”~ = ~ ~)e2~’4~,

3.1.1.Fourier analysis ~ 1) = 1— —[cos(~21Th)+ cos~2rrh)
Consider a 2D periodic sequenceUjk defined 2

on a uniform squaregrid of spacingh with period
MXM, where M=h~’. That is, UJk=Uj+Mk +-~--{1+cos[(E—ij)2rrh]}. (3.3)
and UJk = UJk+M for arbitrary integer j and k.
ThesequenceUjk canbe expandedas Following (3.2) and (3.3), we find that the spec-

M 1 M-3 trumof the SSORpreconditionedLaplacianM~‘A
= ‘ç’ \‘ i2i~j±,

1k)h (3 i’~ can besimply computedas
ulk ~ ~ ~ e , . /

E=0 ~° A = -1(~ ~)A(~, ~)

where the Fourier coefficient ~ gives the
‘I = {1 — ~cos(~2~rrh)+ cos(~2rrh)

frequencydomainrepresentationof sequenceu1 k~

It is easy to check that the complex sinusoid /11 — ~ [cos(~2~rrh)+ cos(~
2~h)

e’2’~~’~”is the eigenvectorfor operatorsformed / 2
by the linear combinationof shift operatorswith
constantcoefficients,and its eigenvaluecan also + -~— {i + cos[(~— ‘z~)2rrh])
be found easily. For example,from (2.6),we have
A i2~r(Ej+flk)h— A’ ~ i2~(EJ+flk)h The condition number of the SSOR precondi-

e — ~ i~Je tioned Laplacianis defined to be the ratio of its

A(~,s~)= 1— ~[cos(~2~rrh)+ cos(tj2~rrh)J. largestandsmallestpositiveeigenvalues.Although
(3.2) the relaxation parameterco might be chosento

minimize it, a direct calculation of its optimal

Similarly, thespectraof theSSOR,ILU andMILU valueis difficult. On the otherhand, the optimal
preconditionedLaplacianderived in the previous parameterwhich minimizesthe conditionnumber
sectioncanbe easily obtainedby examining them with respect to a particular set of wavenumbers,
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i.e. ~ + j = M and1 � ~� M — 1 is moretractable It is straightforwardto checkthat the Fourier
and canbe found to be 2/[i + 2 sin(’~rh)].It can coefficients 1~fl’ ~ in (3.4) and â

1.~,,,
be arguedthat this valueis truly the optimal one Ub~fl in (3.5) are relatedvia
with respectto all wavenumbersas well and,with
this optimal value the condition number of the ~‘ Ur.~, \ Ii 1 11 l~fl

SSORpreconditionedLaplacianis ~(h~
1) [8]. ~ubEfl) = Li _1j~UM_E,M_fl)

(~,~)E Kb, (3.6a)
3.2. Red—blackordering

Ur~fl = U~fl, (~,~)= (M/2, M/2). (3.6b)

Due to the red—black ordering, the resulting
systemof iteration equationsis not spatially ho- We can interpret (3.6) as follows. Through the
mogeneousbut is periodic with respect to grid red—blackdecomposition(3.5), thecomponent(M
points. Consequently,the Fourier modes are not — C, M — ~) in the high frequencyregion is folded
eigenfunctions for the multicolor system, and into the component(C. j) in the low frequency
therefore a straightforwardFourier analysisdoes regionsothat thereexist two computationalwaves
not apply. By exploitingthe periodicproperty,we in the low frequencyregion. Note also that K~
reformulatethe conventionalFourieranalysisas a and Kb differs only by a single element
two-colorFourier analysis. (M/2, M/2) and, therefore, at the frequency

(M/2, M/2) we have only a scalar ~r.M/2,M/2’

which is consideredas the degeneratecase.
3.2.1. Two-colorFourier analysis Now, let us apply the two-colorFourieranaly-

Considera 2D sequenceUJ,k definedon a uni- sis to the model Poisson problem with the
form squaregrid of spacingh with zero boundary red—blackordering.Without lossof generality,we
values,i.e. ~ = 0 if I’ k = 0 or M whereM = h~’ concentrateon the case where U~k is zero on
is even.We canexpandit with Fourier seriesas boundaries,sincea nonzeroUjk on the boundary

M- 1 M— 1 can alwaysbe moved to the right-handside and
U/k = u~sin(~i~jh)sin(~kh). (3.4) treated as part of the forcing function. In ad-

~=i ~i dition, since the forcing term fj•k with j, k = 0 or
M does not appear, it can be viewed as zero.

The function U

3k at the red and black points Consequently,the red—blackFourier seriesexpan-
definestwo sequences:the redsequenceUrjk and sion (3.5) for both UJk and f~.kare well defined.
theblack sequenceUbJk. Theycanbeexpandedin By substituting(3.5) into (2.6) andrelating the
Fourier series,respectively,as Fourier coefficients of red and black waves, we

UrJk = ~ sin(Crrjh) sin(~rkh), can transform(2.6) frOm the spacedomain into
the red—black Fourierdomain.It is a block diago-

(~,fl)~Kr nal matrix equation,in which the equationfor a

1+k even, (3.5a) nondegeneratefrequency(C~~i) canbe written as

(~j)EK6 . =UbJk = ~ ~ sin(Cmjh)sin(’qiikh), A(C )( r 2) h
2

j + k odd, (3.5b) 11b.f,2)) — ~

(3.7)

where F iA(C,~= [ ‘1 1

Kb= {(C, ~q)EI2: C+n�M—1, C, )J�1 or

= M— C~1 � C � M/2 — whereas,,= (cos(Crrh)+ cos(~ith))/2is the Four-
ier transformof the sp~icedomainoperator(E~+

and Kr = Kb U ((M/2, M/2)). E3 + + E~)/4.Since(C~i~) E Kb, 0 � <
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1. With minor modification,we canalso treatthe Table 1
degeneratefrequency(M/2, M/2). Comparisonof condition numbers

Preconditioner Natural R/B

3.2.2. Condition number of the SSORprecondi- non~Laplacian) O(h_2)

tionedLaplacian SSOR ~(/i~)
By usingthe two-colorFourieranalysis,wecan ILU ~(/i_2) ~?(/i_2)

transform(2.11) to the frequencydomain MILU ~(h~) ~(/i_2)

polynomial cV(/i
2)

ft~î~(C,i) = [b(C, ~) — ~L(E, i)] h’(C, ~i)

x[h(C, i)—wU(C, 31)]
red—blackorderingsis usedas exampleto demon-{ 1 0111 — wa~

7)1 strate the fact that Fourier analysis provides a
— 1 0 1 J simple andeffective tool to obtain the eigenvalue

information as well as the condition numberof
1 1 — coa~7)] (3 8) the preconditionedLaplacian.Similarly, Fourier

= — 1 + w
2a~

7)‘ analysiscan also be applied to ILU, MILU and
polynomial preconditioners[8,10,18].We list the

where b(C, ~) is a 2 X 2 identity matrix. From condition number of the preconditionedsystem
(3.7) and(3.8), we find that the SSOR precondi- with variouspreconditionersin table1, whereh is
tioned operatorM~

1A hasthe spectralrepresenta- the grid spacing.Note that the total numberN of
tion grid pointsis relatedto h via N h2.

For details of deriving condition numbersand
‘~~‘(C,

31)A(C, ~1) their correspondingconstantsfor the SSOR,ILU

= [1 — wa~7)+ co
2a~

7) — + — co
2a~~I and MILU preconditionerswith the natural and

red—black orderings, readersare referredto refs.
— + 1 — [8,18],respectively.Thepolynomialpreconditioner

has been studied in ref. [10]. Although the
which hastwo eigenvalues red—blackorderedpreconditionersdo notimprove

= 1 — ~4
7)w(2 — co) ±~a~7) the orderof the conditionnumberwith respectto

the original Laplacian,they do improve the con-
1 1/2

x [a~~co2(2— co)
2 — 4w(2 — co) + 4] . stantby a certainfactor [18].

The convergenceratesof stationaryand pre-
The conditionnumberic( M~1A) is determinedby conditionediterative algorithms are comparedin
the ratio of max AEfl+ I and mm I, which table 2, whereconvergenceratesare expressedin
can be minimized by choosing an appropriate terms of numbers of iteration required for the
relaxationparameterco. It turns out that the opti- reductionof initial residualby aconstantfactor.
mal relaxation parameter is 1, and with this The first threeentries aboveindicate the con-
parameterthe condition number of the SSOR vergencerates of stationary iterative algorithms
preconditionedLaplacianis [18]

ic(M~’A)= [i — cos2(iih)J Table2
Comparisonof convergencerates

I~~2h~2e2(h2).
Iterativealgorithm Convergencerate

basic(Jacobi,GS) d~(/i—2)

3.3. Summaryof convergencerates SOR(natural) ~?(/i 1)

SOR(R/B) ~(/i_1)

In the previous section, the analysis of the CG(basic)
PCG(MILU; natural) O(/i_I/2)SSOR preconditioner with the natural and _________________________________________
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with or without acceleration.Note that the SOR types of statements— thoseoperatingon single
acceleration speeds up the basic Jacobi and dataitemsandthoseoperatingon a wholedataset
Gauss—Seideliterationsand gives the sameorder at once. The single-data-iteminstruction is ex-
of convergencerate for both the natural and ecutedin the front end,whereasthe large-data-set
red—blackorderings[1,16]. In the last two entries, instruction is executedin the CM hypercubeto
we considerthe CG acceleration.The basic CG increaseparallelism.
refers to the applicationof CG to the Laplacian The CM hypercubeconsistsof 4096 (212) chips,
without preconditiomng.It is well known that the eachwith 16 processorsanda router,to form a 12
convergencerate of a preconditioned iterative dimensionalhypercube.Therouter is a communi-
method dependson the conditionnumberas well cationprocessorthat allows any on-chipprocessor
as the distribution of the eigenvaluesof the pre- to communicatewith otherprocessorsin the sys-
conditionedsystem[6]. In our context,theconver- tem. In addition to the router network, thereis a
gencerateis in the order of the squareroot of the separatecommunicationfacility calledthe NEWS
condition numberso that the quantitieslisted in grid. That is, eachprocessoris wired to its four
table 1 canbe convertedinto quantitiesof conver- nearestneighborsin a 2D regular grid. Machine
genceratesstraightforwardly.In table 2, only two instructionsallow messageto be sent, a bit at a
of them (the basic CG and the PCG with that time, to the processorto the north, south, eastor
naturallyorderedMILU preconditioner)arelisted weston this grid. Communicationon this NEWS
for comparison. grid is very fast comparedto the routercommuni-

cation andis encouragedfor short distancecom-
municationbetweenprtcessors.Moreover,on the
CM-2, thereare 8 Kbytesof randomaccessmem-

4. Implementationand performanceon the Con- ory associatedwith eachphysicalprocessor;and
nectionMachine also the Weitek floating point processorsare in-

corporatedinto the system,with oneWeitek chip
sharedbetweentwo 16-processorCM chips.

In the previoussection,we analyzedthe rateof .An important featureof the CM systemis its
convergence of different iterative algonthms. .supportfor virtual processors.A run-timeconfig-
However, unlike the caseof sequentialmachines, urationcommandcold-bootmaybeusedto specify
this analysisaloneis not sufficient to predictthe

how each physical processorsimulatesa small
exact performanceof each algonthmon parallel rectangulararrayof virtual processors— except of
machine,sincethe easeof parallelizationhasto be

course,for the casethat sucha processorappears
taken into account as well. The performanceof

to be correspondinglyslowerandhasonly a frac-
parallel preconditionerson the ConnectionMac-

tion of the memoryof a physical processor.
hrnewill becomparedbelow.

The CM supportstwo softwareenvironments:
Common LISP and C. A standardextensionfor
eachlanguageis provided so that it suppliesthe

4.1. The ConnectionMachine complete interfaceto the hypercube.The exten-
sions are *LISP and C~,respectively.The basic

The Connection Machine (CM) [15,24] is a idea for the extensionis that scalarvariablesre-

massivelyparallel architectureconsistingof 65536 side on the front end, while vector of parallel
singlebit processors.The CM systemconsistsof variablesare distributedover the cube.
two parts— a front endmachineandahypercube The CM used in oui~experimentis a 16 K-node
of 64 K processors.The front endcomputer,cur- CM-2 without the Wehekfloating point accelera-
rently supportedby the Symbolics 3600 or the tor running at a clock frequencyof about 6.47
VAX 8800 machines, provides instruction Se- MHz. The front end computerused is the Sym-
quencing, programdevelopment,networking and bolics 3600 and the Ringuage used for program
low speed I/O. The CM programcontains two developmentis * LISR
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4.2. Implementationandresults sequentiallyion a diagonalfashion,starting from
lower-left corner(which correspondsto unknown

On iterationof the PCG(PreconditionedCon- #1) andproceedingdiagonallyto the upper-right
jugateGradient)methodcanbewritten as follows corner(unknown * N). Thus, the forward solver
[13]: canbe at best solvedin ~?(N”2) time with maxi-

mum parallelism t!2(N~2).The backwardsolver
SolveMzk = rk for Zk . . . .
/7 — ( \ /1 behavessimilarly exceptin an oppositedirection,
Pk+1 ~ rk,, ~Zk_i, rk_l,, i.e. starting from the unknown *N at the upper-
Pk+1 — Zk PklPk’ right corner to the unknown #1 at the lower-left
ak+1 = (Zk, rk)/(pk+1, Apk+l), corner.
Xk+1 — Xk + ak+lpk÷1, The limited parallelismoffered by the natural
rk + I = rk — ak + P~Pk+1. ordering results in low utilization of massively

From above, we see that it requires two inner parallel machinessuch as the CM. To achieve a
products(or three,if the calculationof the residue higher degreeof parallelism,we needa different
to checkconvergenceis included), threemultiply- orderingschemefor the preconditioning,for ex-
and-addoperationsin the form of ax+ b wherex ample,thered—blackordering.With the red—black
ad b are vectors and a is a scalar, one ordering,unknownsat red pointsdo not depend
matrix—vectorproductcalculation,plus the oper- on unknownson otherredpointsandthe sameis
ationsrequiredfor preconditioning.The multiply- true for black unknowns,so that the precondition-
and-addoperationas well as the matrix—vector ing procedurecanbeperformedsimultaneouslyat
product can be performedin parallel on all the all red pointsand thenall black pointsand takes
unknowns (in this case, the unknowns are grid only constanttime.To increasethe processorutili-
pointson a 2D grid). On the ConnectionMachine zation on the CM, it might be desirableto map
theseunknownsare mappedontoprocessorsin a one red and one black unknown onto one
one-to-onemanner(2D grid mapping onto 2D processor.However, to simplify the programde-
grid), so that thesetwo operationscan be com- velopment,thismappingwasnot yet implemented
pletedin constanttime (independentof the num- in our codes.
ber of unknowns).The inner product operation, In spite of its attractive feature of offering
however,cannot be done in constant time. The higher degreeof parallelismand, thus, lower ex-
hypercubeconfigurationof the CM allows multi- ecution time, the red—black orderinghas a draw-
plication of two elementsin parallel andaccumu- back,namely,it affectsthe ratesof convergencein
lation of the partial sumsin the form of a binary a negativeway as analyzedin the previoussection
tree. The executiontime of this operationis thus andindicatedin table1. To seeka suitablemethod
~(log N) where N is the total number of grid for a particulartype of parallel machine,we have
points.In summary,without consideringthe pre- to considerthe tradeoff between low execution
conditioning,the executiontime of eachiteration time andfastconvergencerate.As for the CM, the
is ~l?(logN). red—black orderingseems to be superior for the

For preconditioning,one needsto solve a sys- problem that we have tested,which will be dem-
tern of the form Mz = r where M is a N X N onstratedby theresultsof our experiments.
matrix and z and r are vectors of length N. We solve the 2D Poissonequationwith Dirich-
Supposethe preconditionercanbe factorizedinto let boundarycondition on the ConnectionMac-
theproductof a low anduppertriangularmatrices hine usingPCGwith various preconditioners:
U and U. The solution to the system Mz= r
consistsof a forward solver(L - i) anda backward 1. no preconditiomng(CG),
solver(U’). Forthe naturalorderingcase,dueto 2. ILU with the naturalordering,
data dependency,the forward solver cannot be 3. MILU with the naturalordering,
performedin parallel on all unknowns,but in- 4. SSORwith the naturalordering,
stead the unknowns can only be operatedon 5. ILU with the red—black ordering,
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Fig. 6. Convergenceratesfor SOR(R/B) andPCGmethods. Fig. 7. CM executiontimefor SOR(R/B)andPCGmethods.

havedifferent proportionalconstants.The experi-
6. MILU with the red—black ordering, ment shows that the red—black ordered SOR
7. SSORwith the red—blackordering, method has the largest:constantwhile the natu-
8. Polynomialpreconditionerusing4 terms(Ma) rally orderedILU hast~iesmallestone.

For comparison, the SOR method with the The CM executiontime for different precondi-
red—black ordering is also tested for the same tionersas function of the numberof grid pointsis
model problem.Theconvergenceratesareplotted plottedin fig. 7. Basedon this figure, we find that
asfunctionof N, the numberof grid points,in fig. although the convergencerates of MILU and
6. Their convergencerates expressedin ~1(N4), SSOR with the natural orderingare much better
can be obtainedby examining the slope of the than thoseof other preconditioners,their execu-
correspondingplot. Theresultsare summarizedin tion time are far inferiOr than thoseof precondi-
table 3. We see from table 3 that the ordersof tionerswith thered—black ordering.Thus,the fast
convergencerate obtainedfrom our experiments convergenceratedoesnotguaranteelow execution
dataconfirm thoseobtainedfrom analysis.As far time. The reasonis thatnaturally-orderedprecon-
as the convergencerate is concerned,it is clear ditionershaveto be performedmore sequentially
that thePCGmethodwith naturallyorderedSSOR so that much more ex~cutiontime is needed.In
andMILU preconditioners(/3 = 0.25)behavesbe- our experiments, a preconditioner with the
tter thanother testedmethods(/3 = 0.5). Although red—black ordering always takes less execution
most solution methodsplotted in fig. 6 havethe time than its counterpartwith the naturalorder-
sameorder of convergencerates(/3 = 0.5), they ing. An interesting observation is that the

red—black SOR method has the slowest conver-
genceratebut the shortestexecutiontime. This is

Table3 partly due to the fact that costly inner-product
Comparisonof convergencerates operationsin the CGalgorithmcanbe avoidedin

the SOR methodfor the model Poissonproblem.
Preconditioner Analysis CM results

This suggeststhat the local relaxationmethod[16]
basicCG e(N°~°) tV(N°49) should be also attractIve for the CM for PDEs
ILU(natural) e1(N°50)
MILU(natural) ~(N°25) e(N°27) with spatially varying coefficients. Note that the
SSOR(natural) d’(N°25) e(N°27) easeof of parallelizatio~alonedoesnot guarantee
ILU(R/B) ~‘(N°50) t!’(N°-49) low executiontime since it is observedthat even
MILU(R/B) (10(N°50) e’(N°50) though the Jacobimet~hodoffers the highestde-
SSOR(R/B) C1(N°S°)
polynomial 19(N°50) ~(N°-50) gree of parallelism,it ~smuch slower than many
_______________________________________________ othermethodsfor its slow convergencerate.
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