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MODE-DEPENDENT FINITE-DIFFERENCE DISCRETIZATION OF LINEAR
HOMOGENEOUS DIFFERENTIAL EQUATIONS*

C.-C. JAY KUO AND BERNARD C. LEVY$

Abstract. A new methodology utilizing the spectral analysis of local differential operators is proposed
to design and analyze mode-dependent finite-difference schemes for linear homogeneous ordinary and partial
differential equations. We interpret the finite-difference method as a procedure for approximating exactly
a local differential operator over a finite-dimensional space of test functions called the coincident space,
and show that the coincident space is basically determined by the nullspace of the local differential operator.
Since local operators are linear and approximately with constant coefficients, we introduce a transform
domain approach to perform the spectral analysis. For the case of boundary-value ordinary differential
equations (ODEs), a mode-dependent finite-difference scheme can be systematically obtained. For boundary-
value partial differential equations (PDEs), mode-dependent 5-point, rotated 5-point, and 9-point stencil
discretizations for the Laplace, Helmholtz, and convection-diffusion equations are developed. The effective-
ness of the resulting schemes is shown analytically, as well as by considering several numerical examples.

Key words, convection-diffusion equation, finite-difference method, Helmholtz equation, high-order
schemes, Laplace equation, mode-dependent discretization, spectral analysis, transform domain
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1. Introduction. In order to derive a finite-difference approximation for the deriva-
tive of a smooth function, a common procedure is to use a Taylor series to expand
the function locally and to select the coefficients such that the order of the discretization
error is as high as possible. This procedure is based on the assumption that smooth
functions can be well approximated by polynomials locally, and in fact it can be shown
that the resulting finite-difference approximation is exact for low-order polynomials.
However, when the function is exponentially increasing (decreasing) or highly oscilla-
tory, the polynomial representation becomes poor and better finite-difference schemes
can be derived by requiring that the derivative of exponential or trigonometric functions
should be approximated exactly. In this paper, polynomials and exponential and
trigonometric functions are all viewed as modes, and finite-difference schemes obtained
by an exact approximation of the derivative of a certain number of modes are called
mode-dependent finite-difference schemes. These modes are the coincident modes and
the space spanned by them is the coincident space.

Historically, the idea of selecting exponential functions as coincident modes was
first suggested by Allen and Southwell [1] for discretizing the convection-diffusion
equation. An important feature of this problem is that there are large first-order terms
in the governing second-order partial differential equation (PDE). Due to these large
first-order terms, there exists a boundary layer that cannot be well approximated by
polynomials. The use of trigonometric functions as coincident modes was first discussed
by Gautschi [20] for the numerical integration ofordinary differential equations (ODEs)
that have periodic or oscillatory solutions whose periods can be estimated in advance.
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MODE-DEPENDENT DISCRETIZATION 993

In addition, high-order finite-difference schemes for the Laplace equation were derived
by choosing some particular polynomials as coincident modes [33].

Although the concept of a mode-dependent finite-difference discretization pro-
cedure has been known for years and mentioned repeatedly in the literature (see for
example the references appearing in 6), few theoretical results about this method
have been obtained until now. Important problems, such as whether the mode-depen-
dent finite-difference discretization procedure can always be efficiently applied and
how to design such a scheme, remain open. This paper provides a methodology utilizing
the spectral analysis of local differential operators to answer these questions. To avoid
unnecessary distractions, we will concentrate on one-dimensional and two-dimensional
homogeneous boundary-value problems. However, the general methodology described
here also applies to initial value problems as well as to nonhomogeneous equations.
We will demonstrate this point by referring to some related work.

Since a differential operator is well approximated locally by a linear constant-
coefficient operator, the spectral analysis of this local operator becomes relatively easy
and a transform domain analysis can be conveniently applied. In the transform domain,
the differential and difference operators are algebraic expressions in terms of the
complex frequencies s and z. We interpret the mode-dependent finite-difference dis-
cretization procedure as a way to specify how these two expressions match each other
at a certain number of frequencies in the transform domain. This transform domain
viewpoint helps us to gain a better understanding of existing mode-dependent finite-
difference schemes and serves as a basis for designing new schemes.

We apply the same methodology to both ODEs and PDEs, and develop several
mode-dependent finite-difference schemes. The main results include an (R + 1)-point
mode-dependent central difference scheme for an Rth-order boundary-value ODE,
and 5-point, rotated 5-point, and 9-point stencil discretizations for the two-dimensional
Laplace, Helmholtz, and convection-diffusion equations. The mode-dependent finite-
difference schemes for the Laplace equation are the same as the conventional ones.
However, we present a new derivation. The mode-dependent 5-point and 9-point stencil
discretizations of the Helmholtz and convection-diffusion equations are new and have
an accuracy proportional to O(h2) and O(h6), respectively.

This paper is organized as follows. In 2, we describe the mode-dependent
finite-difference approximation concept in both the space and transform domains. In

3, we study the discretization of boundary-value ODEs. The problem of determining
the coincident space for homogeneous ODEs is discussed and a mode-dependent
finite-difference scheme is presented. This scheme is shown to be exact for constant-
coefficient ODEs and has a high degree of accuracy for ODEs with smoothly varying
coefficients. The extension to the problem of discretizing nonhomogeneous ODEs is
briefly addressed. In 4, we generalize the methodology from one to two dimensions.
In particular, we use the Laplace, Helmholtz, and convection-diffusion equations as
examples to demonstrate the mode-dependent finite-difference discretization procedure
for PDEs. Numerical examples are presented in 5. In 6 we discuss several previous
related contributions. The main purpose of 6 is to organize the literature concerning
the mode-dependent finite-difference approximation so that more examples will be
accessible to interested readers. Some generalizations and concluding remarks are
given in 7.

2. Mode-dependent finite-difference discretization. Consider the class of functions
of the form

K [ X
2 xn ]U (X)

k=l CkO + Ck x + Ck2 _t_... + Cknk (nk)’.
e,,,x,
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994 c.-c. J. KUO AND B. C. LEVY

where each term xPeskx, O<=p <- rtk, is called a mode of order p at the frequency Sk. We
are interested in approximating a linear Rth-order constant-coefficient differential
operator operating on u(x),

R

L(D)= E arDr,
r-----0

where D ddx, by an (r2-rl + 1)-point finite-difference operator

La(E)= brEr,

where E is the shift operator defined on a uniform grid Gh with spacing h, i.e., for
nh, (n+ r)hc Gh, Eru(nh)=u((n+ r)h). Ld corresponds to a forward, backward, or
central difference operator depending on whether rl 0, r2 0 or -rl r2, respectively.
We use

(2.1) P"(s)={ u(x)" u(x)=esx

to represent the space spanned by polynomials of degree at most n multiplied by the
factor e sx. A mode-dependent finite-difference discretization scheme is obtained by
selecting the coefficients b of Ld such that

(2.2) [Ld(E)-L(D)]u(x)=O foru(x)cC and XGh,

where C, called the coincident space of the operator Ld, is the direct sum of subspaces
of the form (2.1), i.e.,

K

(2.3) C P,,k (Sk).
k=l

A mode in the coincident space C is called a coincident mode, and its frequency is
called a coincident frequency.

The mode-dependent finite-difference scheme can be conveniently formulated in
the transform domain. L(s) is obtained by replacing D with s through the use of the
Laplace transform in the s-domain,

R

L(s)= Y’, arSt,
r=0

while Ld(Z) is obtained by replacing E with z through the use of the Z-transform in
the z-domain,

Ld(Z)= _, bz= , brersh,

where the last equality is due to the fact that since E is related to D via E ehD [12],
we have z esh. Then, we can express the difference A between L and Ld in terms of
a single variable s in the transform domain

A(s)=Ld(eh)-L(s),
and the characterization (2.2)-(2.3) of the mode-dependent finite-difference scheme
can be equivalently stated in the transform domain as

(2.4) AP)(Sk) =0, O<--p <-- rig, 1 <-- k<--_ K,
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MODE-DEPENDENT DISCRETIZATION 995

TABLE
The approximation of the first-order derivative D L(s) s) by a central mode-dependent finite-difference

scheme.

Modes 1, e sin (tox), e cos (tox) 1, ex, xe (0- O)

b_

bo

eh 0- sin (toh) to cos (toh) + to

2 sin (toh)[cos (toh) cosh (o-h)

to cos (toh) sinh (o’h) 0- sin (toh) cosh (0-h)
sin (toh)[cos (toh) cosh (o-h)

e-h[0- sin (toh)+ to cos (toh)] to

2 sin (toh)[cos (toh) cosh (o-h)

o-h)eh
2h[cosh (o-h)- 1]

0-h cosh (0-h) sinh (0-h)
h [cosh (0-h)

-(1 +0-h)e-’h +
2h[cosh (o-h) 1]

Modes 1, e,, e2X(0-1 # 0"2) 1, X X

b_
0"2( e’,h 0"1 e2h

2 sinh [(0"-2- 0-1)h] + sinh (0"1h)-sinh (o2h) 2h

bo
0"2 sinh (0"1 h 0"1 sinh (o-2h)

0
sinh [(0"2- 0-1)h] + sinh (0"1h)- sinh (0"2h)

trl(1 e-h) 0"2(1 e-lh)
/71

2 sinh [(0-2- 0-1)h] + sinh (0-1h)- sinh (0"2 h) 2h

where A(n)(Sk)=d"A(s)/ds"lL=,k. Let Q(x) be an arbitrary polynomial. Then, the
characterization (2.4) is in fact a direct consequence of equalities

L(x) Q(x)eS’]= L(x)[ Q(0-)eS] Q(o@)[L(0-)eX] Q()[L(s)e]’

and

=Q [Ld(E)e [Ld(e ].

It is usually easier to determine the coefficients b of the mode-dependent finite-
difference discretization scheme by applying (2.4) rather than (2.2) and (2.3).

Example 1. To illustrate the mode-dependent discretization procedure described
above, the coincident modes and coefficients of several 3-point central difference
schemes for the first-order derivative D are listed in Table 1.

3. Discretization of boundary-value ODEs.
3.1. Homogeneous ODEs. Consider an Rth-order homogeneous 2opoint boun-

dary-value problem on [0, 1]. For convenience, we consider the case R 2m. The case
R 2m + 1 gives rise to a similar analysis. The equation is written as

2m

(3.1) Lu=O, where L= ar(x)D and a2m(X)--1,
r=O

with given boundary conditions. We discretize (3.1) on a uniform grid with spacing h
by a (2m + 1)-point central difference scheme,

(3.2) LaU=O, where Ld= Y, b(nh)E r,
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996 c.-c. J. KUO AND B. C. LEVY

and U is the estimate of u on grid points. Suppose that 4 is an arbitrary function in
the nullspace N/ of operator L, and that NL is contained in the coincident space C
of Ld. Then, since

L4=O and [Ld-L]b=O,

we obtain

(3.3) Ldch =0.

Since the discretization for an arbitrary function in the nullspace N/ is exact, we
conclude that (3.1) is exactly discretized by (3.2).

The nullspace N is easy to find if the coefficients ar(X) of L are constant. Even
if these coefficients are not constant but smoothly varying, L still can be well approxi-
mated by a constant-coefficient operator in a local region. This simplification is always
assumed for finite-difference schemes since the finite-difference method is a local
approximation method. For convenience, we drop the spatial dependency of
coefficients ar(X and br(x), and use the notation ar ar(Xo) and br br(xo) inside
operators L and Ld for the rest of this paper. If at(x) and br(x) are spatially varying,
the discussion is understood to be a local analysis in the neighborhood of Xo.

The spectral analysis of a linear constant-coefficient operator L y2m
=0 arD can

be easily performed in the transform domain. We choose the coincident frequencies
to be roots of the characteristic equation,

L(s) s2m -Jr- a2m_l S2m-1 "" -t- als q- ao =0.

In general, L(s) can be factored as

K

(s) II (s--
k=l

K

where nk=2m,
k=l

and SkiS known as a naturalfrequency of L of order nk. As a consequence, the operator
L has the 2m-dimensional nullspace

K

NL-- 0 Pn-l(Sk)"
k=l

A (2rn + 1)-point finite-difference scheme can be uniquely determined by a (2m +
1)-dimensional coincident space C. However, since a homogeneous finite-difference
equation such as (3.2) can be scaled arbitrarily, a 2m-dimensional coincident space C
is sufficient to specify Ld in (3.2). So, letting

C=N,

we have an exact discretization scheme for (3.1). For this choice, Ld can be determined
easily as

K

(3.4) Ld(z) Az I-[ (z- Zk) "k, where Zk e skh,
k=l

where A is a scaling factor and the multiplication factor z-" is due to the fact that
we want La(z) to be a central difference scheme. This can be verified by substituting
L(s) and Ld(esh) back into (2.4).

Hence, after inverse transformation, we obtain the following mode-dependent
finite-difference scheme for (3.1) in the space domain

K

(3.5) LU=O, where L(E)=AE-" H (E--eh)",
k=l
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MODE-DEPENDENT DISCRETIZATION 997

and Sk is a natural frequency of L of order r/k. The scaling factor A does not affect
the solution of the system of equations (3.5). However, in order to analyze the
discretization error A(s) appropriately, it is important to choose A such that Ld(esh)
and L(s) are consistent over fine grids. This consideration requires that the scaling
factor A of (3.5) should be proportional to 1/h2m, as h goes to zero.

Example 2. (One-dimensional Laplace equation.) For L(D)= D2, we know that
N/ { 1, x}. The coincident modes have the same frequency Sk 0. According to (3.5),
we have

(3.6) Ld(E) AE-I(E 1)2= A(E -2+ E-l).

If we choose C N/+{x2}, the constant A can be uniquely determined. Solving
Lx2= LdX2, where x Gh, we find that A 1/h2. Then, (3.6) reduces to the standard
3-point central difference scheme.

Example 3. (One-dimensional convection-diffusion equation.) The differential
operator is L(D)=D2-aD, where a0. In this case, NL--{1, ea’x} and Sk=O, a.
Therefore, by (3.5), we have

(3.7) Ld(E)=AE-(E-1)(E-e"lh)=A[E-(I+e"h)+e"lhE-].
In particular, if C NL +{x}, we find that A a/h(e"lh- 1). Then, (3.7) is identical
to the scheme considered by Allen and Southwell [1].

For comparison., consider the conventional finite-difference scheme for (3.1),
2m

(3.8) Ld,cU--O, where Ld,c(E)-- arh-rDra,2m+(E),
r=0

where h-"Dra,2,,/(E) denotes the (2m+ 1)-point central difference operator for the
rth-order derivative Dr, which is obtained by selecting C P2m(0) as coincident space,
and by requiring consistency over fine grids. Then, by comparing (3.5) and (3.8), we
see that the mode-dependent scheme (3.5) is obtained by discretizing term by term the
product form of the differential operator L(D), whereas the conventional scheme (3.8)
is found by discretizing term by term the summation form of L(D).

According to the above discussion, the approximation of the differential operator
L(D) in (3.1) by Ld(E) given by (3.5) does not give rise to any discretization error
when the coefficients ar are constant. This fact is also supported by numerical results.

Of course, the mode-dependent scheme (3.5) gives rise to a discretization error
when the coefficients ar are spatially varying. This discretization error depends on the
smoothness of the ODE coefficients and the grid size h. However, the exact form of
this dependency is still unknown, and we have yet to develop a general procedure for
estimating the size of the error in this case. In 5, we use a one-dimensional convection-
diffusion equation as test problem and find that the error of the mode-dependent
scheme is proportional to O(eh2), while that ofthe conventional scheme is proportional
to O(h2), where e is the first-order derivative of the coefficient function. The mode-
dependent scheme is always better than the conventional central difference scheme in
this test problem and the improvement in accuracy offered by the mode-dependent
scheme becomes larger as the coefficient of the convection-diffusion equation becomes
smoother.

3.2. Extensions to nonhomogeneous ODEs. Suppose that (3.1) includes a driving
function f(x), so that

(3.9) Lu -f=0.
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998 c.-c. J. KUO AND B. c. LEVY

By performing a Taylor series expansion off(x) in the vicinity of a discretization point
Xo, we can assume that f is approximated locally by a polynomial of low degree, i.e.,

f(x) Co + clx + c2x2 -47.

A general discretization scheme for (3.9), which has been proposed in the context of
the OCI and HODIE methods [4], [7], [32], is

(3.10) LaU Iaf LdU IaLu O,

where Id is an averaging operator.
The set of functions whose images through L are polynomials of degree less or

equal to defines the space

P,,= u(x)" Lu Y’, p,.x"
r=O

Note that since the coefficients Pr above can all be selected equal to zero, NL is also
included in P/,. The space PI,I will be used here to approximate the solution space
of (3.9). Suppose that is an arbitrary function of the space Pc,I. Ideally, we want

(3.11) LdO ldLO O,

in order to guarantee that the discretization (3.10) of the nonhomogeneous equation
(3.9) is exact in the approximated solution space P,l.

In particular, if Id is chosen to be the identity operator I, (3.11) becomes

(3.12) (Ld L)Cd=O.

Therefore, the coincident space C of the finite-difference operator Ld for the non-
homogeneous equation (3.9) has to be

The major disadvantage of this choice is that the dimension of C is larger than that
of NL. Hence, a finite-difference method with more than (2m+l) points will be
necessary and more computations will be required.
The purpose of introducing Id is to reduce the dimension of the coincident space.

For a (2m + 1)-point finite-difference scheme, we can decompose the discretization
scheme (3.10) into two steps. First, by choosing C PL,O, we can uniquely determine

Ld. Then, by using an arbitrary function 0 of the space PL,I@ P,o as test function for
(3.11), we can solve for the coefficients of Id. This procedure is illustrated by the
following example.

Example 4. (One-dimensional Poisson equation.) In this case, we have L(D) O2,
NL {1, x}, and PL, {1, x, x2, x3, x/+2}. By choosing C PL,O, we know from
Example 2 that

1
Ld(E) =- (E -2 + E-1).

Assuming that Id(E) d_lE-I q- do+ dE with respect to the same grid Gh and solving
(3.11) with Ld given above and x3, x4, we obtain

Id(E)=2E-I ++-E.
Then, for this case, the discretization (3.10) corresponds to the classical Stormer-
Numerov approximation, and it is exact for any function in the space P,:. More
generally, we call PL, the generalized coincident space Cg(Ld, Id for the approximation
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MODE-DEPENDENT DISCRETIZATION 999

(3.10) of (3.9). Note that the dimension of Cg for the above example is 5, and that
there are five independent parameters in (Ld, Id) since (3.11) can be scaled by an
arbitrary constant.

The above approach is different from the HODIE method. For an Rth-order
nonhomogeneous ODE, the HODIE method uses polynomials of degree less than or
equal to n, i.e., P,(0) with n > R as the generalized coincident space Cg for (3.10). It
does not exploit any special structure of the differential operator L. In contrast, our
mode-dependent method uses the approximated solution space PL,,,-R as the general-
ized coincident space Cg. Hence, a spectral analysis of the operator L is necessary. In
particular, when L= DR, PL,n-R is the same as Pn(0). Then, there is no difference
between the HODIE and mode-dependent methods.

The determination of the averaging operator Id for the HODIE method has been
discussed in detail [7], [32]. For example, the operator Id may be defined on an
auxiliary grid different from the discretization grid Gh. A similar approach can also
be used to design Id for the mode-dependent method. Note that the selection of the
averaging operator Id has no effect on functions in the nullspace NL. Therefore, the
coincident space C of Ld has to contain N so that the discretization error for functions
in N/ can be eliminated by choosing an appropriate Ld.

In this paper, we focus primarily on the determination of the coincident space C
and of the finite-difference operator Ld. In the next section, we will therefore restrict
our attention to homogeneous boundary-value PDEs and we will attempt to extend
the methodology developed in this section to the discretization of this specific class
of PDE problems.

4. Discretization of boundary-value PDEs. Consider a general two-dimensional
boundary-value PDE on the square [0, 1]e

(4.1) L(Dx, Dy)u =0, where L(Dx, Dy)= Z ar,sDDy,
r,s

with Dr "--or/ox and Dy=OS/Oy, and with appropriate boundary conditions. We
discretize (4.1) with the finite-difference scheme

(4.2) Ld(E, Ey)U=O, where L(E, Ey)= Y br,sErxEy,
r,s

and where E and Ey are, respectively, the shift operators in the x- and y-directions
on the grid Ghx.hy. Relying on a natural generalization of the one-dimensional case,
we have the following associations between the two-dimensional space domain
operators and transform domain variables:

where Sx =tr + itOx and Sy =try + iOOy. They are related via Ex e hxD,, Ey--ehyDy, Zx--
ehsx, and Zy ehySyo TO simplify the following discussion, we will only consider the case
hx=hy=h.

Substituting esxx+syy inside (4.1), we obtain the characteristic equation

(4.3) 2 ar,,sSy O.
r,s

There are two complex variables in (4.3), but since we have only one (complex)
equation, there are infinitely many solutions to this equation and therefore infinitely
many modes in N. It is not possible to approximate all modes in N/ exactly. Thus,
we have to select a finite-dimensional subspace D/ c N, called the dominant-mode
space, as the coincident space C for Ld. The determination of D depends on a rough
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1000 c.-c. J. KUO AND B. C. LEVY

estimation of the local behavior of the solution. This information is usually provided
by the structure of the PDE operator and the corresponding boundary conditions. In
this section, we restrict our attention to the case where the dominant modes are either
oscillating or exponentially growing (decaying). In other words, coincident frequencies
are selected among the sets

(4.4) {(Sx, Sy): (Sx, Sy) (Ox, O-y)} or {(sx, Sy): (Sx, Sy) iOOx, iOJy)}.

We do not consider complex coincident frequencies, since they generally lead to
discretization schemes with complex coefficients which complicate the solution pro-
cedure. However, even under (4.4), the mode-dependent concept still does not lead
to a unique discretization scheme. By taking into account the symmetrical property of
the spectra of the differential and difference operators and the solubility of the resulting
finite-difference schemes, we can further constrain ourselves within a much smaller
design space. In the following, the 5-point, rotated 5-point, and 9-point stencil discretiz-
ations for the Laplace, Helmholtz, and convection-diffusion equations will be used as
examples to demonstrate the mode-dependent discretization concept.

24.1. Laplace equation. For the Laplace equation, we have L(D, Dy) D+ Dy.
Since only one frequency (s,, Sy) (0, O) satisfies the characteristic equation and belongs
to the sets (4.4) of interest, (0, 0) is selected as the unique coincident frequency. In
this case, the mode-dependent scheme is the same as the conventional scheme.

The following 5-point, rotated 5-point, and 9-point stencil discretization schemes
have been derived by several approaches [12], [26], [33]:

(4.5) Ld,+(E,, Ey) =- (Ex + E + Ey + E;’-4),

1
+E-IE-f 4),(4.6) La,(E, Ey) (ExEy + E-Ey + ExE-

1
(4.7) Ld,9:-[4(Ex + E-I+ Ey + E-I)+(ExEy + ElEy + ExE-l+ E-IE-I) 20].

It is well known that they have, respectively, an accuracy of O(h2), O(h2), and O(h6)
when used to discretize the Laplace equation [26].

Here, we present another derivation of these schemes by matching L(s,, Sy) and
Ld(Zx, Zy) at the coincident frequency (0, 0) in the transform domain. As before, we
consider the expansion of A Ld -L around (0, 0),

A(Sx, Sy) A(’)(0, 0)-1t- A(I’)(0, O)s -t- A(’I)(0, O)Sy

1

(4.8) +-2 [A(2’)(0’ 0)s + A(’")(0, O)2sxSy + A(’2(0, 0)Sy]

1
+ E

p+q>=3 p,.q,.

where

m(P,q)(0, 0)
OPsxOqSy ($x,Sy)

(0,0),

which is a function of the grid size h. Hence, (4.8) is in fact a power series of h. Our
derivation attempts to make the order of the residual terms in (4.8) as high as possible.
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MODE-DEPENDENT DISCRETIZATION 1001

that

and

The discretization schemes (4.5) and (4.6) can be derived by requiring, respectively,

A(’)(0, 0)-- A(l’)(0, 0)-- A(’l)(0, 0)-- A(2’)(0, 0)-- A(’2)(0, 0)--0,

A(’)(0, 0)= A(l’)(0, 0)= A(’l)(0, 0)= A(I’I)(0, 0)= A(2’)(0, 0)-- A(’2)(0, 0)= 0.

Note the similarity between the above requirements and (2.4). The above choice of
constraints A(P’q)(0, 0)=0 has taken into account the specific structure of operators
Ld,+, Ld,, and L. For example, in the case of La,, the symmetry properties of Ld,
imply that A(2’)(0, 0)= A(’2)(0, 0), so that among the six constraints that are used to
specify La,(Ex, Ey), only five are independent.

By setting the coefficients of low-order terms in (4.8) equal to zero, it is possible
to obtain various high-order finite-difference discretization schemes. For example, to
obtain the 9-point scheme (4.7), we need only to impose the requirement that this
scheme should have an accuracy of O(h6) for modes satisfying the characteristic

2 =0 inside (4.8) and settingz 2= 0. Then, substituting the identity sx + syequation s + sy
coefficients up to order k equal to zero, we obtain nine independent constraints that
specify (4.7) uniquely.

4.2. Helmholtz equation. For the Helmholtz equation, we have
2 2L(Dx, Dy)= Dx+ Dy+ A

If s and sy are purely imaginary, the characteristic equation becomes

(49) 2 2=X2fOx"-(.Oy

which is a circle in the w- Wy plane, centered at the origin and with radius IA I. There
are infinitely many natural frequencies and, hence, there are many different ways to
select coincident frequencies. In this section, we design mode-dependent 5-point,
rotated 5-point, and 9-point stencil discretization schemes based on the following two
considerations. First, if there is no further information about the dominant modes, a
reasonable strategy is to distribute coincident frequencies uniformly along the contour
(4.9). Second, we want to preserve the symmetry properties of L so that the resulting
discretization scheme is in a simple form and can easily be implemented.

Let us select

I1 sin rr+ rr 0_-< n-<_3,

as coincident frequencies as shown in Fig. l(a). With this choice, the discretization
along the x- and y-directions can be treated independently. The resulting scheme is

[[h +Ex+K E-;-2cos\/2La(E,, Ey)= a E,,1-2 cos
\x/2

Two parameters A and K remain undetermined in the above expression. The parameter
n is selected such that the discretization error A(s,,,s) at natural frequencies is
proportional to O(h2), and the parameter A is used to normalize the above scheme
so that Ld is consistent with L. A simple choice of and A for the Helmholtz equation
is n 1 and A 1/h. Hence, this gives a symmetrical 5-point stencil discretization
operator

(4.10) Ld,+(E,,, Ey)= E;I+ Ex + Ey
d2
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1002 c.-c. J. KUO AND B. C. LEVY

toy

(o)

toy

FIG. 1. Coincident frequencies of the mode-dependent (a) 5-point, (b) rotated 5-point, and (c) 9-point
stencil discretizations of the Helmholtz equation.

Rotating the above four coincident frequencies in the transform domain and the above
5-point stencil in the space domain by an angle 1/4r, we obtain another mode-dependent
5-point stencil discretization. In this scheme, the coincident frequencies become

as shown in Fig. l(b), and the resulting 5-point stencil operator is

1
(4.11) Ld.x(Ex, Ey)=[EIEfl+EIEy+ExEf+ExEy-4COS(]A]h)].
Notice that this rotated 5-point stencil can be viewed as corresponding to a discretization
scheme on a grid with spacing x/ h. By appropriately combining (4.10), (4.11), and
adding a constant term, we obtain the 9-point stencil discretization operator

(4.12) Ld,9(Ex, Ey)= /--- Ld+(Ex, Ey)+ T___Z___+ Ld(E,, Ey)- 77+
y+y+ y+y+ y+y+

Then, if

1
"Yx Ld,x( e ’(lxl/4)h, e ’(I;l/dS)h) --5[cos (dl.x Ih) + 1-2 cos
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MODE-DEPENDENT DISCRETIZATION 1003

we are able to match Ld(Zx, Zy) and L(sx, Sy) at eight frequencies

(wx, Wy)=(’Alcos(-zr),lAlsin(-er)), O--<n=<7

as shown in Fig. l(c). Thus, (4.12) is the desired mode-dependent 9-point stencil
discretization operator.

When goes to zero, the Helmholtz equation reduces to the Laplace equation
and schemes (4.10)-(4.12) converge to (4.5)-(4.7). So, schemes (4.10)-(4.12) can be
viewed as a natural generalization of (4.5)-(4.7) and apply to both A 0 and A 0.
The error estimate of the above schemes for the test functions esxx+syy, where s and

+ A 2 0, can be obtained straightforwardly.Sy satisfy the characteristic equation s2 + Sy

Since

A(Vx, Dy)eSxX+S.y-- Ld(eD2’, eD) eS.,x+s.vy= Ld(e., efl’) eS,X+syY,

we only have to replace E and Ey with esxh and esyh inside La(Ex, Ey) and use a
Taylor series expansion to simplify the resulting algebraic equation. By using this
approach, we find that

(4.13) La,+(exh eyh) 1 /4___1 2 h2q_ -1 /6_[_1 A SxS h4+ O(h6)
6
ssy

120

(4.14) La,x(e s.h, e) s2xsy2h2-h22SSyn2"4 + 0(h6).
Since 3’+ La,+(ellh, 1) and 3’ La,x(ei(I;1/’/5, ei(I;l/’/7h), we also have

(4.15) T+=-44A4h2-4-A6h4+ O(h6), T=lAsA4h2-1--dA6h2+ O(h6).

Combining (4.13)-(4.15), we have y+ ,/+ O(h2) and

(4.16) (yx+ y+)Ld,9(e "xh, e,h)= yxLd,+(e"h, eSyh)q-T+Ld,x(eSh esyh)--yxy+= O(h8).
We know that both Ld,/ and Ld, have an accuracy of O(h2) from (4.13) and (4.14),
and that La,9 has an accuracy of O(h6) from (4.16). Note also that since the coefficients
in front of h2 in (4.13) and (4.14) are functions of A, s, and Sy for a fixed value of h,
the above discretization schemes are less accurate when IAlis large.

Unlike in the ODE case, the mode-dependent schemes for PDEs cannot catch all
modes in the nullspace of L, so that there exist discretization errors even for constant-
coefficient PDEs. Rigorously speaking, the above error estimate applies only to con-
stant-coefficient PDEs. If the coefficients of the PDE of interest are spatially varying,
the error associated to mode-dependent schemes is still unknown. But, we suspect that
when the coefficients are smoothly varying, the error is approximately the same as for
constant coefficients.

Conventional finite-difference schemes for the Helmholtz equation are derived by
discretizing the Laplacian with operators (4.5)-(4.7) and then combining them with
the remaining term A 2 u. The resulting schemes all have an accuracy of O(h2). Therefore,
the conventional 9-point discretization scheme is much worse than the mode-dependent
9-point scheme. Although the conventional and mode-dependent 5-point schemes have
the same order of accuracy, the mode-dependent schemes (4.10) and (4.11) are more
accurate than conventional schemes along the contour (4.9). To show this, the discretiz-
ation errors for mode-dependent and conventional 5-point discretization schemes are

plotted in Fig. 2 for the case where A 10 and h 0.1.
On the other hand, we can also consider the discretization of the operator

L(D, Dy)= D+ Dy-A
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1004 c.-c. J. KUO AND B. C. LEVY

0.1

Top curve: (a)
Bottom: (b)

FIG. 2. Plot of IA(oo., %)1 as a function of c along the contour (w., O)y) (11 cos (), I1 sin (cTr)), for
(a) conventional and (b) mode-dependent 5-point stencil discretizations of the Helmholtz equation.

Considering only the real frequencies (sx, Sy)= (or cry), we have the characteristic
equation

2 2 /2O- 1_ O’y

Thus, for the present case, we examine the cr-Cry plane, instead of the co,- Wy plane.
By using an approach similar to the one described above, we get the following 5-point,
rotated 5-point, and 9-point stencil discretization schemes:

,[ I+E+Ey
\/2

1 -’ -’ -’+ EEy -4 cosh ([A [h)],La,x(Ex, G)=-’[E-’E +E Ey + EEy

where

d9(G, Ey) ’Y d,+(G, G) "}" +dx(G, Ey)-
Yx + T+ Yx + T+ Yx + Y+’

1
[cosh (/] J;lh) + ] -2 cosh (Ix Ih)],

Y+=-S 2csh(l’lh)+2-4csh -h
These schemes have an accuracy of O(h2), O(h2), and O(h6), respectively.

4.3. Convection-diffusion equation. For the convection-diffusion equation, the
differential operator takes the form

2 -2aDx -213Dy.L(D,Dy)=DZ+Dy
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MODE-DEPENDENT DISCRETIZATION 1005

In particular, if we consider only real frequencies (sx, Sy)= (crx, cry), the corresponding
characteristic equation is

2co- 2flO’y =0,(4.17) O’2x "" O’y

which is a circle in the cr-Cry plane centered at (a,/3) with radius d x/a2+/32.
The conventional approach for discretizing the above equation relies on a central

difference scheme to approximate the first- and second-order derivatives separately.
This gives

1
_l+(l_flh)Ey(4.18) Ld,c(Ex, Ey)=--[(l+ceh)E-l+(1-ah)E-4+(l+h)Ey

which corresponds to selecting a single coincident frequency at the origin. Allen and
Southwell [1] combined two one-dimensional mode-dependent schemes along the x-
and y-directions (also see Example 3 in 3). This leads to

1 [ 2a
e2hE_l e2hLd,As(E, Ey - [_ e2h 1

1 + E,,

(4.19)
2/3

e2oh 1
(e2hE - 1 e2h -JI- Ey) ],

which corresponds to selecting (0, 0), (2a, 0), (0, 2/3), (2a, 2/3) as coincident frequen-
cies. Motivated by the discussion in the previous section, we select the coincident
frequencies

(crx, cry)= a+dcos r+r ,fl+dsin r+r 0_-<n_-<3,

uniformly along the contour (4.17) and obtain the following stencil:

(4.20) Le,/(, E) =--; e + e-Ex + ehE- + e-hE --4 cosh
d

h

The multiplication of Ex by the factor e-h in the x-direction of the space domain
corresponds to a shift in the s-coordinate in the transform domain, where s becomes
s-a, and a similar argument applies also to the y-direction. Therefore, the above
scheme in fact shifts the center (a, fl) of the circle (4.17) back to the origin and treats
it as the Helmholtz equation with radius d. The coincident frequencies for these three
schemes are plotted in Fig. 3.

Although all schemes have an accuracy of O(h), schemes (4.19) and (4.20) are
always diagonally dominant while the conventional scheme (4.18) loses this property
for large cell Reynolds numbers h and h. This is one major disadvantage associated
with the conventional central ditterence scheme. To overcome the instability of the
conventional central difference scheme, in the context of multigrid methods Brandt
[9] proposed a double discretization method which uses two different discretization
schemes. The stable but first-order accurate upwind differencing scheme is used for
smoothing while the unstable but second-order accurate central differencing scheme
is used for computing the residues transferred to the coarser grid. As a result, the
combination of these two schemes gives a stable algorithm and a second-order accurate
solution. However, since two conflicting difference schemes are used, there is no
algebraic convergence for such a multigrid process [9]. Note that the mode-dependent
schemes (4.19) and (4.20) are both stable and second-order accurate. We can apply
either one for both relaxation and residue transfer in a multigrid process and the
resulting multigrid method will converge algebraically.
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1006 c.-c. J. KUO AND B. C. LEVY

(a)

FI6. 3. Coincident frequencies of the (a) central difference, (b) Allen-Southwell, and (c) uniformly
distributed mode-dependent 5-point stencil discretizations of the convection-diffusion equation.

Following a procedure similar to the one presented in 4.2, we can also design
mode-dependent rotated 5-point and 9-point stencil discretization schemes for the
convection-diffusion equation. This gives

1 [e(,+)h
_
+ e(._13)hE_Ld, Ex, E, - E-/’E, E

(4.21)
+ e-(’+t)aEEy -4 cosh (dh)J+ e(-+)hExEy-I

(4.22) La,9(E,, E)=
Yx + 2’+ Yx + Y+ Yx + Y+’

with

1
-75 cosh (x/ dh) + 1 2 cosh (dh)],Yx

y+ 2 cosh (dh) + 2 4 cosh h

These schemes have an accuracy of O(h2) and O(h6), respectively. Note that the
constant d x/a2+/32 in the convection-diffusion equation plays a similar role as the
constant IAI in the Helmholtz equation. Therefore, as before, when lal or I/3[ becomes
larger, the discretization schemes (4.20)-(4.22) become less accurate for a fixed h.
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MODE-DEPENDENT DISCRETIZATION 1007

5. Numerical examples. We use the one-dimensional and two-dimensional convec-
tion-diffusion equations as test problems to demonstrate the efficiency of the mode-
dependent finite-difference method.

(1) One-dimensional test problem. Consider the one-dimensional convection-
diffusion equation on [0, 1]

d2u du e
(5.1)

dx2 a(x)-xx=0, where a(x)=lO+ex+lo+ex,
with given u(0) and u(1). Our goal is to study the effect of the linear perturbation
term ex on the accuracy of the mode-dependent discretization scheme described in

3. Note that when e 0, the coefficient a(x) is constant, and according to our analysis
we expect that in this case the mode-dependent discretization will be exact. The term
e/(10+ ex) is added so that (5.1) has the following analytic solution:

u(x) u(0) + [u(1)- u(0)]
exp (10x + 0.5ex2) 1

exp (10+0.5e)- 1
where exp (x) ex.

The boundary conditions u(0)= 1 and u(1)= 10 are selected. We compare the conven-
tional and mode-dependent central difference schemes, i.e.,

(5.2a) 1- U.+I-2U. + + gn_ =0,

(5.2b) exp (--) U,+-2 cosh (-) U, + exp (-) U,_ =O,

where h 1/N, 1 <_- n <_- N- 1, Uo u(0), and Ur u(1).
First, we study the effect of the grid size h when the parameter e 1. Figure 4 shows

that the errors of both schemes are proportional to O(h2). Furthermore, for this choice
of e and independent of the valve of h, the error of the mode-dependent scheme

10-4

’(o)

lO-a i0- i0-

(b)

FIG. 4. Ix-norm of the error versus the grid size h for (5.1) with e 1" (a) central difference scheme and
(b) mode-dependent scheme.
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1008 c.-c. J. KUO AND B. C. LEVY

is approximately 100 times smaller than for the conventional scheme. Next, we study
the impact on the error of variations of the coefficient function a(x). The first derivative
of the coefficient function a(x) is approximately measured by the parameter e, so that
e can be used as a measure of the local variations of a(x). Errors versus e for a fixed
grid size h 1/16 are plotted in Fig. 5. From this figure, we see that the conventional
scheme is insensitive to changes in e’, while the error of the mode-dependent scheme
is proportional to O(e). Note that over the range of values of e that we consider, the
error of the mode-dependent scheme is considerably smaller than for the conventional
scheme. However, by extrapolating the two error curves in Fig. 5, it is clear that as e
becomes very large, i.e., as the coefficient function a(x) deviates drastically from its
nominal value a 10, it will become preferable to use the conventional scheme. This
suggests, as we would expect, that the mode-dependent discretization scheme should
be employed only as long as we have at least an approximate knowledge of the modes
appearing in the solution.

(2) Two-dimensional test problems. We consider two two-dimensional convection-
diffusion equations on [0, 1]2 with Dirichlet boundary conditions for which exact
analytic solutions are already known.

Example 1.

+- 8+e,x+ 6+eyy+ =0,(5.3)
Ox Oy2 8 + exx Ox 6+ eyy -y

with exact solutions

(5.4a) (la) ex=ey-0,

(5.4b) (lb) e, ey 0.002,

u(x, y)=(O.2+6e8")(O.O1)+2e6y),

u(x, y)= [0.2 +6 exp (8x + 10-3x2)][0.01 + 2 exp (6y + 10-3y2)],

(o)

(b)-

10-12
10.9 I0"e 10.7. 10.6 10.5 10-4 t0- 10-2 10-I I0

FIG. 5. l-norm of the error versus the parameter e for (5.1) with h : (a) central difference scheme and
(b) mode-dependent scheme.
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MODE-DEPENDENT DISCRETIZATION 1009

(5.4c) (lc) ex ey 0.02,

u(x, y) [0.2 +6 exp (gx + 10-2x2)][0.01 + 2 exp (6y + 10-2y2)].
Example 2.

02u O2u ( 2e(crl-4) ) Ou Ou
+- 8+ -6=0,(5.5)
OX20y2 (1 + ex)ol + e Ox Oy

with exact solutions

(5.6a) (2a) e=0,

(5.6b) (2b) e=0.01,

(5.6c) (2c) e=0.1,

u(x, y) 10 exp [trlX + ry],

u(x, y) (1 + 0.01x)10 exp [trlx + cr2y],

u(x, y) (1 + 0.1x)10 exp [rx + crzy],

and where crl=4+5cos(15zr/16) and crz=3+5sin(15zr/16). We use the finite-
difference schemes (4.18)-(4.22) discussed in 4.3 to discretize (5.3) and (5.5) with
grid size h- , , 1, and . The resulting systems of equations are solved by the SOR
method for test cases (la) and (2a) and by a local relaxation method described in [8],
[27], and [28] for test cases (lb), (lc), (2b), and (2c). We plot the errors versus the
grid size in Figs. 6-11.

10e

10

t04

103

102

10-

t-

10-

10-2

0-3
|0-’

0.02

(a)

(cl

e)

0.05 0.! 0.2 0.5

FIG. 6. G-norm of the error versus the grid size h for (5.4a): (a) La, (b) Ld,AS (C) Ld,+, (d) La,, and
(e) La, given by (4.18)-(4.22).

For test case (la), the solution contains four modes 1, e8x, e6y, and e8x+6y. In this
case, since the Allen-Southwell scheme catches all these modes, it should be an exact
method. Thus, the error plotted in Fig. 6 represents the numerical rounding error
instead of the discretization error. The other 5-point stencil discretizations give an
error proportional to O(h) for fine grids. The 9-point stencil scheme is considerably
more accurate than the other 5-point stencil schemes. It comes close to the exact
method when the grid size is .

Test case (lb) can be viewed as obtained from test case (la) by introducing small
linear perturbation terms e,x and eyy with e /y 0.002 in the coefficient functions.
The Allen-Southwell scheme is not exact any longer, but still has a high accuracy. The
9-point discretization scheme has almost the same performance as the Allen-
Southwell scheme. However, if we compare Figs. 6 and 7, we see that the coefficient

D
ow

nl
oa

de
d 

01
/2

6/
14

 to
 1

32
.1

74
.2

55
.3

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



1010 c.-c. J. KUO AND B. C. LEVY
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FIG. 7. l-norm of the error versus the grid size h for (5.4b)" (a) Ld, (b) Ld,AS (C) Ld,+, (d) td,, and
(e) Ld, given by (4.18)-(4.22).
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FIG. 8. lo-norm of the error versus the grid size h for (5.4c): (a) Ld, (b) Ld,AS (C) Ld,+, (d) Ld, and
(e) td, given by (4.18)-(4.22).

variations due to ex and ey make the error of the 9-point scheme 10 times as large as
for the unperturbed case depicted in Fig. 6. The accuracy of the other 5-point stencil
schemes remains approximately the same. When the magnitude of the perturbation
terms is increased further as in test case (lc), the 9-point scheme and the Allen-
Southwell scheme become less accurate than for test case (lb), as indicated by Fig. 8.

For test case (2a), the solution contains a single mode. All 5-point stencil discretiz-
ation schemes have an accuracy of O(h2). The 9-point stencil discretization has an
accuracy close to O(h6) for coarse grid sizes. Figure 9 shows also that although all
5-point stencil discretization schemes have a similar accuracy, the rotated 5-point
operator Lcl,x(Ex, Ey) given by (4.21) is slightly more accurate than the Allen-Southwell
scheme. As was noted earlier, this difference can be attributed to a different choice of
coincident frequencies satisfying the characteristic equation (4.17).
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FIG. 9. l-norm of the error versus the grid size h for (5.6a)" (a) Ld, (b) Ld,AS (C) Ld,+, (d) Ld,, and
(e) Ld, given by (4.18)-(4.22).
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FIG. 10. loo-norm of the error versus the grid size h for (5.6b)" (a) Ld,,. (b) L,,AS, (C) L,+, (d) L,., and
(e) L.,9 given by (4.18)-(4.221.

Test case (2b) is obtained by adding a small perturbation term to test case (2a).
It appears that all 5-point stencil discretization schemes have a very similar accuracy
in these two test cases. However, for the high-order 9-point stencil discretization, the
perturbation makes the discretization error larger over fine grids. When h =, the
discretization error for the perturbed case (2b) is approximately 10 times larger than
for the unperturbed case (2a). In test case (2c), we consider a larger perturbation effect.
It turns out that the 9-point scheme behaves like a second-order accurate scheme;
however, it is still more accurate than the 5-point discretization schemes.

From test cases (lb), (lc), (2b), and (2c), we may conclude that the mode-
dependent discretization schemes still have a high accuracy for PDEs with nearly
constant coefficients, but the 9-point stencil discretization is more sensitive to small
variations of the coefficient functions than the 5-point stencil discretization schemes.
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FIG. 11. loo-norm of the error versus the grid size h for (5.6c): (a) Ld, (b) Ld,AS (C) Ld,+, (d) Ld, and
(e) Ld, given by (4.18)-(4.22).

6. Related previous work. Although its properties were not always well understood,
the mode-dependent finite-difference method has been discovered and rediscovered
several times by a number of researchers and has been applied to the discretization
of several types of ODEs and PDEs.

As was mentioned earlier, when the cell Reynolds number is large, the conventional
central difference discretization of the convection-diffusion equation has convergence
difficulties. Hence, the need for a mode-dependent scheme arises naturally when
discretizing this equation, and more generally, when considering singular perturbation
problems. Allen and Southwell [1] presented the first discretization of this type. A
more detailed investigation of this scheme was performed by Dennis [13]. Since then,
there have been a number of rediscoveries and elaborations such as [3], [10], [19],
[29], [30], [36], [37], [40], and [41]. Applications of Allen-Southwell’s scheme to
two-dimensional or three-dimensional fluid flow problems can be found in [2], [14]-
[18], [38], [39], and [42]. The methodology described in this paper can also be applied
to the discretization of initial value ODEs. A mode-dependent finite-difference scheme
for initial-value ODEs was first studied by Gautschi [20]. Some generalizations of
Gautschi’s work can be found in [5], [31], [35], [43], and [44].

As shown in 3 and 4, the transform domain approach is a convenient tool to
derive mode-dependent discretization schemes on a uniform grid. However, the mode-
dependent concept is so general that it also applies to nonuniform grids. Some
researchers have used the mode-dependent idea to design finite-element methods (see,
e.g., [6], [11], [22]-[25], [34]).

Interestingly, the mode-dependent scheme has been introduced under a number
of different names such as the locally exact technique [3], the weighted-mean scheme
[19], the smart upwind method [21], the optimal finite analytic method [33], and the
upstream-weighted difference scheme [36].

7. Conclusions and extensions. In this paper, we have used the spectral structure
of differential operators to obtain more accurate finite-difference schemes. The
transform domain point of view was shown to be simple and useful. For the case of
homogeneous ODEs, we proposed a universal mode-dependent finite-difference scheme
that is exact for constant-coefficient equations, and has a very high accuracy for
equations with smoothly varying coefficients. For homogeneous PDEs, we considered
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MODE-DEPENDENT DISCRETIZATION 1013

mode-dependent 5-point, rotated 5-point, and 9-point stencil discretizations of the
Laplace, Helmholtz, and convection-diffusion equations. The mode-dependent schemes
for the Helmholtz and convection-diffusion equations turn out to be natural extensions
of the schemes derived for the Laplace equation. We expect that the mode-dependent
schemes that we have obtained will be quite useful for problems whose solution contain
exponentially increasing or decreasing, or oscillatory components, provided that some
very approximate information about these modes is available a priori. This information
is usually revealed by the coefficients of the ordinary or partial differential equations
of interest.

There exist similarities and differences between the mode-dependent finite-
difference method and spectral methods. Both discretization techniques are based on
a spectral analysis of the differential and difference operators and try to match their
spectral properties. However, the spectral method analyzes spectra by using Fourier
basis functions, i.e., functions with frequencies along the imaginary axis. In this
approach, a large number of basis functions is usually required to synthesize a given
function. Hence, in order to get a high degree of accuracy, more grid points are
necessary and the resulting scheme is a global one. The mode-dependent finite-
difference method enlarges the set of basis functions so that the spectral analysis can
be performed in the entire transform domain. Since fewer basis functions are required
to synthesize a function due to this enlargement, the resulting scheme is local. This
local nature of the mode-dependent finite-difference method makes it easy to analyze
and is insensitive to boundary conditions. In contrast, spectral methods are relatively
more complicated and sensitive to different types of boundary conditions.

We basically focused on the discretization of a differential operator in the interior
region and assumed the simplest Dirichlet boundary conditions throughout this paper.
Since the finite-difference method is local, the discretization scheme for grid points in
the interior region will not be affected by the specific nature of the boundary conditions.
However, grid points along the boundary need some special treatment. Although the
general mode-dependent concept should still apply in this case, some details need to
be examined in later work. In addition, as mentioned above, it would be of interest
to find a general procedure for estimating the error of mode-dependent finite-difference
schemes when they are applied to varying-coefficient differential equations. Finally, it
would also be interesting to study the application of the mode-dependent concept to
the discretization of time-dependent partial differential equations.

Acknowledgment. The authors thank Professor Lloyd N. Trefethen for his
encouragement and valuable discussions and the referees for their help in improving
the technical presentation of this paper.
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