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A TWO-LEVEL FOUR-COLOR SOR METHOD*

C.-C. JAY KUO AND BERNARD C. LEVY$

Abstract. A two-level four-color SOR method is proposed for the nine-point discretization of the Poisson
equation on a square. Instead of examining the Jacobi iteration matrix in the space domain, we consider
an equivalent but much simpler four-color iteration matrix in the frequency domain. A two-level SOR
method is introduced to increase the convergence rate for the frequency-domain iteration matrix. At the
first level, the red and orange points, and then the black and green points are treated as groups, and a block
SOR iteration is performed on these two groups. At the second level, another SOR iteration is used to
decouple values at the red and orange points, and then at the black and green points. The conventional

red/black SOR iteration for a five-point stencil is shown to be a degenerate case of the general two-level
four-color SOR method. For the case of the nine-point stencil, a closed-form expression for the optimal
relaxation parameters o)* and w at the two iteration levels is. given, and the efficiency of the resulting
method is shown both analytically and numerically.

Key words, successive overrelaxation, nine-point discretization, multicolor SOR, two-level iteration
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1. Introduction. The successive overrelaxation (SOR) method introduced in the
late 1940s is an effective scheme for accelerating the Gauss-Seidel iteration [7], [12].
The acceleration effect relies on the properties of a special class of matrices known as
consistently ordered matrices [13] (or p-cyclic matrices [11]). By discretizing elliptic
PDEs with finite difference schemes, we often obtain sparse matrix equations where
the matrix is consistently ordered. Consequently, the SOR method has a wide range
of applications.

Two aspects need to be considered in the study of the SOR iteration: its definition
and its analysis. The SOR scheme is usually defined in the space domain. In this paper,
we demonstrate a new way to define an SOR scheme in the Fourier, or frequency,
domain. As far as the analysis of the SOR method is concerned, several situations can
occur. In some cases, there exists a relation between the eigenvalues of the Jacobi
matrix and the eigenvalues of the SOR matrix, and in this situation, the analysis of
the SOR method does not require the knowledge of the eigenvectors of the Jacobi and
SOR matrices. Therefore this type of SOR analysis relies entirely on matrix eigenvalue
analysis. In other cases, it is possible to compute the eigenvectors of the Jacobi matrix
and/or the SOR matrix. Since the eigenvectors are usually obtained by Fourier analysis,
this form of SOR analysis is performed in the frequency domain. In this paper, to
emphasize the important role played by Fourier analysis in the design and analysis of
the SOR iteration, studies of the SOR method are divided into three categories,
according to whether they rely on Fourier/Fourier, space/Fourier, or space/eigenvalue
analysis approaches. In the Fourier/Fourier approach, both the definition and analysis
of the SOR scheme are performed in the Fourier domain. In the space/Fourier
approach, the SOR scheme is defined in the space domain but analyzed with Fourier
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130 c.-c. J. KUO AND B. C. LEVY

techniques. Finally, for the space/eigenvalue analysis approach, the SOR scheme is
defined in the space domain and analyzed by relating the eigenvalues of the Jacobi
and SOR matrices.

Young’s work is a typical example of the space/eigenvalue analysis approach (see
[13, Chaps. 5, 6]). This approach starts from an expression for the SOR iteration in
the space domain. Then, under some conditions such as consistent ordering and
property A, an argument based on matrix algebra is used to find the relationship
between the optimal relaxation parameter for the SOR method and the spectral radii
of the Jacobi and SOR iteration matrices.

The approach used in [2], [7]-[10] can be viewed as a space/Fourier approach,
which adopts the space domain formulation but uses a frequency domain, or Fourier,
analysis technique. This approach still starts from a fixed expression for the SOR
iteration in the space domain. Then, under the assumption that the PDEs have constant
coefficients and are defined on a rectangular domain with Dirichlet or periodic boundary
conditions, sinusoidal functions turn out to be eigenfunctions of the discretized system
of equations [7], 10]. Hence, the system of equations can be decoupled by using these
functions as a basis and, as a consequence, each frequency can be considered separately.
This approach, although only rigorous for a restricted class of problems, provides a
simple explanation of how the SOR method works.

A common feature of the above two approaches is that an SOR iteration form in
the space domain has to be specified a priori. For simple cases such as for a five-point
discretization of the Poisson equation, most reasonable SOR iteration forms lead to
an analysis in which the optimal relaxation parameter can be determined in closed
form. However, for more complicated cases, such as the nine-point stencil case, it is
not easy to specify in advance an iteration form whose analysis will be easy [1], [3].
A class of nine-point stencil SOR iteration forms in the space domain was analyzed
by Adams, LeVeque, and Young [2]. Since the iteration matrices obtained from these
forms are not consistently ordered, the traditional SOR theory cannot be applied for
determining the optimal relaxation parameter. Hence, Adams et al. used a separation
of variables technique to study the eigenvalues and eigenfunctions of the system of
equations, and showed that the optimal relaxation parameter can be determined by
solving a quartic equation [2].

In this paper, we study the same problem, i.e., we develop an SOR method for
the nine-point discretization of the Poisson equation. However, we use a Fourier/Four-
ier approach. This approach makes use of the traditional SOR theory for consistently
ordered matrices in the frequency domain. We first divide grid points into four colors"
red, orange, black, and green. By assuming that the PDE has constant coefficients and
is defined on a square, we can apply Fourier analysis to each color so that a four-color
matrix equation can be obtained in the frequency domain. The four-color matrix is
block diagonal with 4 x 4 matrix blocks along the diagonal. Each of these blocks relates
Fourier components of the four colors at a single frequency. If we partition the 4 x 4
matrix associated to a fixed frequency into four 2 x 2 blocks, it is consistently ordered
with respect to blocks. At the first level, we can use a standard block SOR iteration
to accelerate the block Jacobi relaxation. Then, to decouple values of two different
colors within the same block, we have to invert a 2 x 2 matrix. This can be easily
accomplished by using a point SOR iteration at the second level. Once the appropriate
two-level SOR iteration form is determined in the frequency domain, it is straightfor-
ward to transform it back to the space domain.

This procedure yields a new two-level four-color SOR method that is completely
different from the single-level SOR method studied in [2]. Suppose that all grid points
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A TWO-LEVEL FOUR-COLOR SOR METHOD 131

are partitioned into two groups G1 and G2 that contain, respectively, the red and
orange points, and the black and green points. One iteration of the two-level four-color
SOR method consists of the following four steps.

Step 1. The first half part of a block SOR iteration between G1 and G2 gives an
intermediate function defined at points of G1.

Step 2. With this intermediate function as driving function, several (usually two)
point SOR iterations are performed between red and orange points within
G to obtain an updated PDE solution at points of G.

Step 3. The second half part of a block SOR iteration between G and G2 yields
an intermediate function defined at points of G.

Step 4. With this intermediate function as driving function, several point SOR
iterations are performed between black and green points within G: to
obtain an updated solution at points of G:.

In the above algorithm, Steps 1 and 3 constitute a complete block SOR iteration
between groups G and G: and define a first level of iteration. Steps 2’and 4 individually
consist of several point SOR iteration operations and correspond to the second level
of iteration. The values obtained in Steps and 3 are used as driving functions in
Steps 2 and 4, respectively. This computational algorithm will be detailed in 3. The

* at the two iteration levels can be expressedoptimal relaxation parameters w b* and w
in closed form. The two-level SOR method is easy to implement, and its spectral radius
is of the form 1- Ch, where C is a constant comparable to the one obtained in [2].

The paper is organized as follows. In 2, we use a simple one-dimensional
two-color SOR method to demonstrate the Fourier/Fourier approach. Section 3
describes the main result of this paper, i.e., the two-dimensional two-level four-color
SOR algorithm for a nine-point discretization of the Poisson equation. Then, in 4,
we show that the conventional two-dimensional single-level two-color SOR method
for the five-point stencil case is a degenerate case of the general two-level four-color
scheme. Closed-form formulas for the optimal relaxation parameters w b* and we
corresponding to the two iteration levels are obtained 5, where the convergence rate
of the two-level SOR method is also analyzed. Finally, some numerical results are
presented in 6.

2. One-dimensional two-color SOR method. In this section, we consider a simple
one-dimensional model problem and show how the two-color SOR method can be
derived from the Jacobi iteration method by first transforming the problem to the
frequency domain and then introducing the relaxation parameter w inside the
frequency-domain iteration matrix. Although the final result is well known, the
approach we are taking is new and provides some new insight. The same approach
will be used to develop a two-level iteration method in the next section.

2.1. Problem formulation. Consider the discrete one-dimensional Poisson
equation on [0, 1] with grid spacing h

1
(UJ--2uj+ UJ+,) =f/, j= 1, 2,..., N- 1,

where Uo, UN are given, and N 1/h. Suppose we divide the problem domain into
red and black points corresponding, respectively, to points with even and odd indices.
With this partitioning, the Jacobi iteration method takes the form

n+l
u.j =(u.j_+u.+l-2h2) j even,
n+ (u.-i +U+l-2hf) j odd.U
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132 c.-c. J. KUO AND B. C. LEVY

Denote the exact solution by ./ and define the error as e.1 u-.1 OJ- Then, the error
equations can be written as

e.+’ 1/2( + jeven,ej Cj+

n+le =1/2( + j oddej ej+

with eo eN 0.
Since (2.1) is a system of linear constant-coefficient equations with homogeneous

boundary conditions, the eigenfunctions of this system are given by sin (rjh), where
: 1, 2, , (N- 1). These functions form a basis, so that

(2.2)

N-I

r.- 2 re sin (rjh), _-< j < N- 1,

N-1

b / sin rjh ), 1 <-j <-_ N 1,
=1

where the coefficients r e and /ne are chosen such that

(2.3)
r.=e j even,

b.] e./1 j odd.

In other words, r] and b. are two sequences which coincide with the errors at red and
black points, respectively. They can be viewed as interpolations of the errors at the
red and black points to all grid points. Note that there are 2(N-1) undetermined
coefficients in (2.2) and only N-1 constraints in (2.3). Since (2.2) and (2.3) form an
undetermined system of equations, there are many ways to choose ? and b/1. However,
the actual values of these coefficients are not important. We are primarily concerned
with how they evolve as the iteration proceeds.

Consider the error dynamics relating r./ and bj,
n+l

(2.4)
r.j 5(b.j_, + bj+l), 1 =<j _--< N- 1,

b. +t= 1/2(ri-, + ri+,), 1 <-j <_- N- 1.

Note that (2.4) has twice as many equations and variables as (2.1) has. However, as
shown in the following analysis, all the information contained in (2.1) is simply
duplicated by (2.4), and consequently the dynamic behavior of (2.1) can be obtained
by studying the dynamic behavior of (2.4). Conceptually, (2.4) is easier to analyze
than (2.1) since it is a spatially invariant system for both red and black colors.

By substituting (2.2) inside (2.4), for (= 1, 2,..., N-1, we have

(2.5) e r
, b

where

0 COS (’h) 1(2.6) B(sc)
cos (:h) 0

is called the Jacobian iteration matrix for the frequency :r, which has two eigenvalues

+cos (h).

Observe that /X=--XN-e SO we only have to consider /xe=cos(rh), =
1, 2,. ., N- 1. Intuitively speaking, we use the fact that the sinusoidal functions are
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A TWO-LEVEL FOUR-COLOR SOR METHOD 133

eigenfunctions of the linear system (2.4) so that, by changing the coordinate from the
space domain to the frequency domain, we are able to decompose the loosely coupled
system (2.4) into a decoupled system that is a block diagonal matrix containing many
2 x 2 matrices along the diagonal.

Since the spectral radius of B(sc) is less than one for any s, the iteration (2.5)
converges. Consequently, the asymptotic values o and /o obtained by this iteration
procedure are ?=/{= 0, and (2.5) can be viewed as obtained by solving the linear
system

A() / with A(s:)
-cos (se:rrh)

by the Jacobi iteration in the frequency domain. In order to increase the convergence
rate of (2.5), we have to reduce the spectral radius of B(s:).

2.2. Point SOR iteration. The key idea of this paper is that instead of considering
the SOR method for the large matrix corresponding to (2.1), we can study the SOR
scheme for each small 2 x 2 matrix given by (2.6) separately and, then, seek the best
SOR scheme for all of them. Once the SOR scheme is obtained in the frequency
domain, we transform the problem back to the space domain so that the corresponding
spatial SOR iteration can be determined.

It is important to observe in this context that A(:) and B(:) are consistently
ordered. Since the SOR theory was originally developed to accelerate the convergence
rate of consistently ordered matrices, the SOR method can be applied directly to the
iteration (2.5). The definitions of consistent ordering, and the details of the SOR theory
are all presented in [11] and [13].

Since this is a standard procedure, we only summarize the result here. Let

A()=I-L(()-U()
where L(:) and U(() are lower and upper triangular matrices, respectively. Then, for
a fixed frequency :rr, the Jacobi iteration matrix is

B(() L()+ U()
and the SOR iteration matrix associated with the frequency (r is

(2.7) Go,(s:) (I-coL(s:))-’{(1 -co)I + co U(s:)}.

In addition, the eigenvalues Ae of Go,(s:) and the eigenvalues / of B(s:) are related
by [11, p. 106]

(A + co 1 )2 Agco 2
/.

Hence,

and the spectral radius of (2.7) is

2where A co e/, 4(coe 1 ),

p= 2

co-I

if A>0,

ifA__<O.

The above quantity can be minimized for all : by choosing

2
(2.8) co* /2 where flLma max

+ 1 -/-/’max] IN-1
I1- cos (-rrh),
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134 c.-c. d. KUO AND B. C. LEVY

and the resulting spectral radius is

p* co*- 1-2 sin (vrh) 2vrh.

In particular, since the SOR method is applied to A() partitioned with 1 x diagonal
submatrices, we call it the point SOR method.

The remaining problem is to transform the SOR iteration matrix (2.7) back to the
space domain. By using the correspondence,

cos ((vrlh) 1/2(e i*lh + e-i*lh)--1/2(E + E-’) l= 1, 2,. .,
where E and E- are the lth order forward and backward shift operators defined as

Eu. Ui+ and E-u. Ui-, we find that the SOR iteration for r;" and b. becomes

*r; +’ (1- o*)r; + (bC, + b,),
(2.9)

b+’ * bg+ "+ "+r_ + r+l=(- ).,

It is straightforward to reconstruct the SOR iteration from (2.9), i.e.,

n+l , U.n q_ q- h2fj) j even,u =(-,o ), - u._ u+,

n+l ) n_4 n+l n+l
u.j =(1-to u.j - uj_, +uj+,-hfj) j odd,

which is consistent with the conventional SOR method with red/black partitioning.

3. Two-dimensional two-level four-color SOR method.

3.1. Problem formulation. The one-dimensional two-color SOR scheme discussed
in the previous section can be naturally generalized to the two-dimensional case by
using four colors.

Consider the following discretized system with uniform grid spacing h,

1

h2 {q,(u,j+,, + uj_,,,) + q=(u.j,,+, + u,,_,)
(3.1)

where

q- q3(Uj+l,k+l q- Uj+l,k-I nt- Uj-l,k+l q- Uj-l,k-l)- qUj,k} --,k
j,k=l,2,...,N-l,

q 2q + 2q2 + 4q3,

and N l/h, and where q, q2, and q3 are nonnegative and not all zeros. It is also
assumed that values at all boundary points are given. The system (3.1) can be viewed
as obtained from a five-point or nine-point stencil discretization [5] of the equation

O2U(X,y) O2U(X,y)
(3.2) q’ --+ q’2 f(x, y) where q q> 0,

OX2 Oy2

on the unit square [0, ]]2 with Dirichlet boundary conditions. In particular, when
q’l q, (3.2) becomes the Poisson equation. This section presents a Fourier approach
for the design of a two-level four-color SOR method to solve (3.1). Several concrete
examples will then be examined in 4-6.
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A TWO-LEVEL FOUR-COLOR SOR METHOD 135

We can divide the grid points into four groups, say, red, black, green, and orange.
A grid point is red if both j and k are even, black if j is odd and k is even, green if
j is even and k is odd, and orange if both j and k are odd, as shown in Fig. 1. Following
the procedure described in the previous section, to understand the error dynamics of
the error associated with the Jacobi iteration for the system (3.1), we examine the
dynamics of the four two-dimensional sequences

N-1 N-1

rjn, k 2 E -,, sin (rjh) sin (rkh), l<=j,k<=N-1,

N-I N-1

b,, sin (rjh) sin (rlrkh),
=] ,=

l<-j,k<-N-1,

N-1 N-1

gj, 2 E v.,g sin ((rjh) sin (r/rkh)
=1

l<=j,k<=N-1,

N-1 N-I

o.i.k ,, sin (rjh) sin (rrkh),
=1 =

l<=j,k<=N-1,

where the coefficients ,,, b.....,,, ge,,, o,, are chosen such that

rj, k elk j even k even, bj,k-- elk j odd k even,

gj,= e,i,k j even kodd, oj,= e,, j odd k odd,

where ej,k U.i,- ffi, k is the nth iteration error at grid point (jh, kh).
As shown before, we can transform the Jacobi iteration for ?’.j,k, bj, k, gj,,, and o.i,k,

or equivalently for the errors in the space domain at the red, black, green, and orange
"npoints, into an equivalent set of iterations for the Fourier coefficients r,, b,,

and t3, in the frequency domain. With respect to the frequency domain vector
n "nr,, 0 . , , ge, )r, these iterations can be viewed as solving the system

(3.3a) A(, r/

where A(sC, r/) is the frequency domain coefficient matrix for the frequency ((, r/Tr)

6 0 6 0 6 0

R B R B R B

G 0 G 0 G 0
\1/

R B-R-B R B
/1\

G 0 G 0 G 0

R B R B R B
FIG. 1. Four-color partitioning for the nine-point stencil discretization.
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136 C.-C. J. KUO AND B. C. LEVY

and has the form

(3.3b) A((, rt)

where

J0/3 --0/1 --0/2

0/3 1 --0/2 --0/1

0/2 --0/1 3

2q cos ((Trh) 2q2 cos (r/Trh)
(3.4) 0/= 0/2--- 0/3--

4q3 cos ((’h) cos (’h)
q q q

Notice that the coefficient matrix A(sc, r/) in (3.3) is symmetric and diagonally dominant
with positive diagonal elements. The application of the Jacobi, block Jacobi, SOR,
and block SOR iterations with 0<w <2 to the system of equations (3.3) is expected
to converge 11 ], 13].

3.2. Block SOR iteration. The matrix A(c, r/) partitioned such that its diagonal
submatrices are all matrices is not a consistently ordered matrix. However, if
A(:, r) is partitioned with 2 2 block diagonal submatrices, it is consistently ordered
with respect to blocks. Hence, a block SOR iteration can be applied to A((, r/) with
this kind of partitioning.

The matrix A can be written as

where

A((, r/)= D(:, r/)- E(:, r/)- F(:,

D(sC, r/)=

-a 0 0 0 0 0/1

.1 0 0
E(s:,)__.

0 0 a

0 1 -[e3 0 0 0

0 -a3 0 0 0

and F(:, r/)= Er( r/). In addition, we can define L(, 7)= D-(, n)E(, q) and
U(, r/)-= D-’(:, r/)F(s, /), so that

0 0 0 3

0 0 0 0
U(:, n)L(,r/)=

fi, fi2 0 0

/3: /3 0 0

0 0 1 ]’2
0 0 /2
0 0 0 0

00 0 0

where

1 q- 0/20/3
/2

1--0/3

Then, the block Jacobi iteration matrix is

B((, r/)= L(:, r/)+ U(:, r/),

and the corresponding block SOR iteration matrix is

(3.6) G,o(, r/) (I- wL(, r/))-’{(1 o9)I+ wU(ff,

It is easy to find that the eigenvalues of B(sc, r) are double roots at

(3.7) /d,,rt / q-/2
0/1 + 0/2 0/1 0/2

1--0/3 1+0/3
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A TWO-LEVEL FOUR-COLOR SOR METHOD 137

Note that the eigenvalue (l-k-2)/(l--3) at the frequency (r, r) has the same
value as the eigenvalue (cl- c2)/(1 + c3) at the frequency (r, (N- 7)r) and, hence,
we only have to consider the eigenvalues ( + 2)/(1- 3), , 1, 2,..., N-1.

The eigenvalues e, of the Jacobi iteration matrix B(, ) and the eigenvalues
Ae, of the SOR iteration matrix G(, ) are related by

,,n"

Hence, if we proceed as in the one-dimensional case, except for a change of subscript
from the one-dimensional index to the two-dimensional index (, ), we find that

A,,
2

where w -4( 1)

and the spectral radius of G((, ) is

if>O,
P,n

w,n- if0.

The above quantity is minimized for all and by choosing the following optimal
relaxation parameter

2
(3.8) w* /2 where max= max ,,

l+[1--mx] l,nu-

and the spectral radius of the corresponding SOR matrix is

p*=w*-l.

3.3. Two-level SOR iteration. Suppose that one of the coefficients q, qz, or q3 is
zero, or equivalently, that one of , 2, or 3 is zero for all (, ). Then, the four-color
block SOR method described above reduces to an equivalent two-color SOR method,
which corresponds to a degenerate case that will be discussed in 4.

For the moment, consider the nondegenerate case where q, q, and q3 are all
strictly positive. In this case, the frequency-domain block SOR method given by (3.6)
cannot be successfully transformed back to the space domain. We now describe a
scheme, which we refer to as the two-level four-color SOR iteration for which a
transformation back to the space domain is possible. To derive this method, we first
rewrite (3.6) as

(, n) (D(, n)-(, n))-’{(1- )D(, n) +(, n)},
and the corresponding space domain equation associated with the optimal block
relaxation parameter w* becomes

n+l n+l S S S
ri, k --O.i, =(1-- )(ri,-3og,)+w (bi,k+zg.i,k),

n+l S S-;+o. =(1- (-,+o,)+*(,+,g,),
(3.9)

b.i+ s + s , s n+ s +-g., =(-*)(-g,)+ (lr, +o., ),
__n+l n+l S ,( S n+l S n+l

.i,k +g.i,k =(1--W*)(--3b,k+gi,k)+W r, +o.i, ),
where s s s, , and 3 are space domain operators corresponding respectively to ,
2, and respectively, i.e., - s q2

(E2+Es q’(E+E
q q

s q3 -1 -1
CI -----(E -1

t- E )(J2 hI" E ).
q
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138 c.-c. J. KUO AND B. C. LEVY

At the (n + 1)th iteration, the values of the solution at the red and orange points and
at the black and green points are coupled together as indicated by the left-hand side
of (3.9).

n+lThe procedure defined by (3.9) is implicit in the sense that r2,-1 and o,k are to
be determined from the first pair of equations and b2",[ and g,- are to be determined
from the second pair. We consider the following procedure.

n+lStage I. Solve the first pair of equations of (3.9) for rn,[ and o.j,k by using M
steps of the SOR method using to top.

Stage II. Solve the the second pair of equations of (3.9) for b,j,- and g.i,l by
using M steps of the SOR method using to top.

For convenience, we further decompose each stage into two steps. The formulas
for Stage I are as follows.

ffn+l S S SStep Compute,j.i,k (1-tob)(u.i,k-c3 uj,k)+ to,(c U.i, + o2Uj,k-- h fj, k) at red
and orange points.

n+l n+lStep 2. Perform iterations at red and orange points to compute r.i, and
n+l 0with ffi, as driving function. Specifically, let vj, u.i,, and for m 0, 1, 2,. , M- 1

perform the following iterations:
m+l S -1-- fn+lat red points: v.j, (1 --top)V.j,k -- top(t V.j,k--jj j,k

m+l m+l -1- cn+lat orange points: v.i, (l top)V.j,k _Jr_ top(Ogl)j,k --JJ j,k
n+l MFinally, set Uj.k

The formulas for Stage II are as follows.
S S n+l S n+lStep 3. Compute ggjn,’=(1--tot)(ULk--O3Uj,k)+tot(O, Uj,k + O2Uj,k -h f.i,) at

black and green points.
Step 4. Perform iterations at black and green points to compute b,- and g.,-

with gg, as driving function. Thus, let v.
.1, U,k, and for rn=0,1,2,...,M-1

perform the following iterations"
rn/!at black points: v., (1 --top)V,k + top(aV,k + gg,-)
m+l S m+l n+lat green points" Vj, k (1 top) V.i,k + top (a3 Vj, k + gg.i,g ).

n+l MFinally, set u2, v2,k.

Each time we use (3.9), we are carrying out a first level block (or outer) SOR iteration.
Each iteration within either Stage I or II is a second level point (or inner) SOR iteration.
Usually the number M of inner iterations in Steps 2 and 4 is two (see 5). For the
outer iteration defined by the right-hand side of (3.9), we use the block relaxation
parameter to* to, and we use the point relaxation parameter top for the inner iterations.

A data-flow diagram that illustrates how grid points exchange values with their
neighboring points at each step of one two-level iteration is shown in Fig. 2. For
simplicity, only one inner iteration is illustrated in this data-flow diagram.

It is a well-known result that both the block and point SOR iterations applied to
a symmetric positive definite matrix converge if and only if their relaxation parameters
are between zero and two I11]. Hence, the convergence of the two-level SOR scheme
can be achieved by first selecting

(3.10a) 0 < top < 2 M sufficiently large,

where M denotes the total number of point SOR iterations performed at the second
level, so that the point SOR iteration converges inside each block SOR iteration. Under
condition (3.10a), a two-level SOR iteration is not different from a single-level block
SOR iteration. Therefore, by imposing the additional constraint,

(3.lOb) O<tob <2,
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A TWO-LEVEL FOUR-COLOR SOR METHOD 139

G 0 G 0

R B--,,R--- B

G--O-- G O

R B R B

G 0 G 0

R.--B--- R B

G ---G-- O

R B R B

step step

G 0 G 0 G 0 G 0

R B"’WR"’B R’WB""R B
/’,,, /\

G 0 G 0 G 0 G 0

R B R B R B R B

step 2(0) step 4(0)

G 0 G 0 G 0 G 0

R B R B R B R B
’,,, / ",,G/OG/ONG o G O/ \

R B R B R B R B

step 2(b) step 4(b)

FIG. 2. Data-flow diagramfor a two-levelfour-color SOR method with computational order {red orange
black-+ green}. Step 1: first half of a block SOR iteration. Step 2(a) and (b): one-point SOR iteration for red
and orange points. Step 3: second half of a block SOR iteration. Step 4(a) and (b): one-point SOR iteration

for black and green points.

the two-level SOR method is guaranteed to converge. In 5, we will discuss how to
* and to* to maximize theselect the number M and optimal relaxation parameters top

convergence rate of the two-level SOR method.

3.4. Rederivation of Adams et al.’s nine-point SOR results. It is possible to derive
the SOR results of Adams, LeVeque, and Young [2] directly from the frequency domain
matrix equation (3.3). To do so, rewrite the coefficient matrix A(:, 7) as

a(, 7) =/(sc, ) -/ (s, n) (sc,
where

1 0 0 0 0 a3 a]

/(sc,7) =I: 0 1 0 0 /(s:,7): 0 0 a2 a,

0 0 1 0

0 0 0 1 0 0
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140 c.-c. J. KUO AND B. C. LEVY

and /(:, rt)=/r(:, r). In the frequency domain, we can then consider an SOR
iteration of the form

(3.11)

In the space domain, (3.11) corresponds to Adams et al.’s SOR method with RO/B/G
ordering, which can be written as

S S Sr:[’ (1 -w)r, + w a bj, + a z g, + 0j, k

n+l (S S n+l

(3.12)
oj, =(1-w)o2,+w gi,+abj,+a3ri, ),

bj;, _o)b, + o(s n+l

n+l S n+l S n+l S n+l).g,k =(1--w)g,k+W(lO,k +2rJ, +3bj,k

If , is an eigenvalue of (, ) we have

(3.13)

which is a quartic equation of the variable e,. In [2], Adams et al. derived a quartic
equation in terms of the variable Y ([e,n)/2 and showed that if

(3.14a) 4
where c, 1 N N 4 are functions of w, (, and is the quartic equation for the frequency
(, ), then

(3.14b) T4- C1T + C2T2- C3T + C4 0

is the quartic equation for the frequency (, (N-)). It turns out that the equation
(3.13) obtained by our approach is equal to

(T4+ C T + CT + C3T + C4)(T4- CT + C2T2- C3T2- C3T + C4) 0.

In other words, (3.13) and (3.14) contain the same amount of information. From (3.13)
or (3.14), the optimal relaxation parameter w* has to be selected so that the maximum
value of p[O(, )] is minimized over all and . For the details of this procedure,
we refer to [2].

The major advantage of deriving SOR methods directly from the frequency domain
coefficient matrix A(, ) is that this procedure does not require the knowledge of the
eigenvectors of the SOR iteration matrices such as G((, ) in (3.6) and G(, ) in
(3.11) for the determination ofthe optimal relaxation parameters and the corresponding
spectral radii. We only have to know the eigenvectors associated with the scalar
operators , , and that describe the coupling between grid points of different
colors. Consequently, the derivation is usually simpler. In addition, if the frequency
domain coefficient matrix is block consistently ordered, the standard SOR theory can
be applied separately at the block and point levels as shown above, and the determina-
tion of the optimal block and point relaxation parameters becomes straightforward.

However, our Fourier/Fourier approach has several limitations. Sometimes, eigen-
vectors provide valuable information for understanding the convergence property of
an SOR iteration scheme. For example, for the SOR method (3.12), it was found that
the eigenvector associated with the spectral radius is highly oscillatory. Therefore, the
observed convergence rate for a test problem with a smooth initial error is faster than
the predicted convergence rate [2]. Since the eigenvectors for the SOR iteration matrix
cannot be found by our approach, this phenomenon cannot be appropriately explained.
In addition, our approach does not apply to the SOR method with natural ordering.
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A TWO-LEVEL FOUR-COLOR SOR METHOD 141

G 0 R B G 0

R B G 0 R B

G 0 R B G 0

R B G 0 R B

G 0 R B G 0

R B G 0 R B

FIG. 3. Another four-color partitioning scheme.

Even for different coloring schemes such as the one shown in Figure 3, for which we
have

s= _E2_+_ E_( s= q2 -01 -[qlE+q3(E E)], a --(E2+E2 ),
q q

s 1
_

E2+ EE-0l =-[q,E, + q3(E, )],
q

and where (3.1) can be rewritten in terms of this choice of 01s, 012,s and 013,S it.is not
clear whether a frequency domain equation exists corresponding to (3.3). The difficulty
arises because sin ((rjh)sin (rt’kh) is no longer an eigenvector of the operators 01Sl

s s s andand 013. In fact, the results of our paper rely exclusively on the fact that 011, 012,
s

013 admit sin (rjh) sin (rtrkh) as a common set of eigenvectors, and this requirement
is probably the most serious limitation of our approach. Note, however, that the
coloring scheme of Fig. 3 is asymmetric and is therefore less natural than the one
considered in this paper.

4. Degenerate case: Five-point stencils. In this section, we show that the traditional
single-level two-color SOR method for a five-point stencil is in fact a degenerate case
of the general two-level four-color $OR method. The following discussion also gives
us more insight into the two-level SOR algorithm.

4.1. Standard five-point stencil. The standard five-point stencil discretization of
the Poisson equation is

h
(U.j+l,k + U.j-l,k + U.j,k+l + U.i,k-1- 4Ui,k) =,,

which is a special case of (3.1) with

q=l, q2 1,

Hence, we have

q3 =0, q =4.

cos (rh) cos (ncrh)
011 012--’-

2 2
013 0,

and

S E2 + E-12
012

4
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142 c.-c. J. KUO AND B. C. LEVY

* --0 from (2.8). It is easy to check that the second-levelFor this case, we know that w,
point SOR iteration becomes trivial and that only the first-level block SOR iteration
is necessary, which is identical to the traditional red/black SOR method with the
following optimal relaxation parameter

2
(4.1) co* cob*

1 +[1 --COS
2 (7rh)]1/2

2- 27rh.

4.2. Rotated five-point stencil. Another five-point stencil discretization of the
Poisson equation is [5]

1

2h
Uj+ l,k+ -1

t"
U.j+ l,k_

I- Uj_ l,k+ -41-Uj_l,k_ -4 Uj,k f.j,k

which is also a special case of (3.1) with

ql=0, q2=0, q3=, q=2.

Consequently, we find that

0/1--0, 0/2---0 0/3 COS (:rh) cos (rtrh),

and

S Sc,=0, c2s=0, c3=
(El + E-I)(E2+E)

It turns out that Ob* 1, and in this case the first-level block SOR iteration becomes
trivial. Only the second-level point SOR iteration is necessary, which can be written as

n+l
uj,, =(1-w*)u.,+oo*(0/uj,,-h ,,) (j, k) redorblack,

u.j,k =(1-w uj,,+oo 0/3u.i,, -h ,) (j,k) orangeorgreen,

where

2
(4.2) w*=w l+[l_cos4(vrh)]l/2-2-2x/Trh.

By comparing (4.1) and (4.2), we find that the only difference between the standard
and rotated five-point stencil discretizations is that the mesh size is h in the first case
and x/h in the second case. Therefore, the optimal relaxation parameter w* and
spectral radius p*= w*-1 have to be adjusted accordingly. Note, however, that the
above observation depends on the isotropy of the Poisson equation, since the standard
and rotated five-point stencils give rise to different discretizations in the anisotropic case.

5. Convergence rate analysis. In this section, we show how to select the optimal
* for the two-level four-color SOR method describedrelaxation parameters w* and w,

in 3, and we analyze the convergence rate of the resulting method when it is applied
to (3.1) with nondegenerate coefficients, i.e., for

q ;> O, q2 > O, q3 > O.

5.1. Determination of optimal two-level relaxation parameters. First, let us concen-
trate on the second-level point iteration. In order to determine the optimal relaxation
parameter, we need to find the spectral radius of the point Jacobi iteration, given by

/xp.... max 10/31 =4q3
cOS2 (7rh)4q--23(1-vr2h2),

1_-<_:,,_-< N-1 q q
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A TWO-LEVEL FOUR-COLOR SOR METHOD 143

where the maximum value of Icl occurs for (:, r/) (1, 1). and (N 1, N 1). Since
the spectral radius of the point Jacobi iteration is bounded by the constant 4q3/q,
which is less than one, even a simple point Jacobi relaxation converges reasonably
fast. Nevertheless, this can be further improved by a point SOR iteration using the
following optimal relaxation parameter:

*=2/1+[1 (4q3)2COS4q (h)] 1/2 1(2)4

with spectral radius

(5.2)

* 0.01. Since theFor a typical example, we have q3 1 and q 20 (see 6) so that pp
error can be damped approximately at the rate 10-2M, where M is the number of
second-level iterations, only two- or three-point SOR iterations inside each block SOR
iteration are necessary. The fact that the second-level point SOR iteration requires
only a constant number M of steps to converge, where M is usually two or three,
plays a crucial role in our analysis of the convergence rate of the two-level SOR method.

,By using this observation, it will be shown below that the convergence rate of the
two-level SOR scheme is similar to that of the standard SOR method for a five-point
stencil, or of the nine-point SOR scheme discussed in [2].

Next, we examine the first-level block iteration. The spectral radius of the block
Jacobi iteration matrix (3.5) is given by

].g b, max
1<,/ N-1

2(ql + q2) cos (h)
q 4q3 cos2 (rh)

which occurs at (, r/) (1, 1), (1, N 1), (N 1, 1), and (N 1, N 1). By using the
fact that q 2ql + 2q2 + 4q3, we can simplify/x b, as

/.L b,
(1__ 4q3 2(q 4q3) cos(’nh)

1- + -n h
q-4q3cos2(Trh) \2 q-4q3/

Hence, the optimal relaxation parameter for the block SOR iteration is

2

7, ( 8q3 ) 1/2

(5.3) C0*=
1 +(1 --/X’,max) 1/22-2

1 +
q --4q3

rh,

and the spectral radius is

8q ’ 1/2

(5.4) Oh* rob*- 1 -2 1 + rrh.
q --4q3/

Therefore, if q3 1 and q 20, then Pb* 1- v/-rh.
Since for a fixed point, the two-level SOR method divides neighboring points into

two groups and operates on one group at the block iteration level and on the other
group at the point iteration level, and since each block SOR iteration at the first level
requires M point SOR iterations at the second level, it is convenient to define the
effective number of iterations for one two-level SOR iteration as

(5.5) netr=
wpM -t- Wb
w, + wp

D
ow

nl
oa

de
d 

01
/2

6/
14

 to
 1

32
.1

74
.2

55
.3

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



144 c.-c. J. KUO AND B. C. LEVY

where wb and wp represent the amount of work required per block and per point
iteration respectively. The number he, measures approximately the computational
burden of one full two-level SOR iteration in terms of equivalent nine-point Jacobi
iterations.

If the point SOR iteration converges in M iterations, the convergence rate of the
two-level SOR method is then only determined by that of the block SOR iteration.
Therefore, we can define the effective spectral radius of the two-level SOR iteration as

(5.6)

which is used to measure the average smoothing rate per effective iteration of the
two-level SOR scheme.

For the above example, since the amount of computational work for each block
and point SOR iteration is the same, we have wp wb, so that

M+I 2
near- p 1 x/-zrh.

2 M+I

When M 2, we find therefore that

3
(5.7) net Peg 1-1.63h.

2

The above effective spectral radius *pe, should be compared with the spectral radius
pg* 1-1.79zrh obtained for the nine-point SOR method discussed in [2]. In the next
section, we will present a two-level SOR method with a different computationl ordering
for which the effective spectral radius is *pn 2.26zrh.

We see from the above comparison that the two-level SOR method and the
nine-point SOR procedure of [2] have very similar convergence rates. The main
difference is of course that the method of [2] is a single-level method that uses only
one relaxation parameter co*. In addition, its convergence rate analysis requires the
study of the solution of a quartic equation, and does not yield closed-form relations
between p*, w* and the spectral radius /z of the nine-point Jacobi iteration matrix.
By comparison, the approach we used above to study the convergence of the two-level
SOR method relies on the standard SOR theory, and provides closed-form relations

and and between p* w b*, and /J’b,between pp*, wp, /Xp,
Finally, note that the amount of work required by each effective iteration for the

nine-point stencil case is about twice as large as for a standard five-point SOR iteration.
Thus, to compare the convergence rate of the two-level SOR method with that of the
standard five-point SOR scheme, we must compare Pe* with the spectral radius
(p*) 1-47rh corresponding to two five-point SOR iterations. This comparison seems
to indicate that the five-point SOR iteration converges faster than the two-level SOR
method, or the nine-point SOR method discussed in [2]. However, the nine-point
stencil discretization is more accurate than the corresponding five-point stencil discretiz-
ation. Thus, for the same accuracy, we can select h larger for the nine-point stencil
discretization so that in actuality the two-level or single-level nine-point SOR methods
may converge faster than the standard five-point SOR method.

5.2. Computational order. In the above discussion, we have used a particular
computational order, i.e., {red- orange- black- green}. Now, let us consider other
computational orderings. Although there exist 4! 24 different ways to permute the
computational order for these four colors, they only result in three different two-level
SOR iteration schemes. By interchanging the relative positions of c, ce, and c3 in
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A TWO-LEVEL FOUR-COLOR SOR METHOD 145

the matrix A(, r/), we can obtain only six different matrices, each of which corresponds
to four different computational orderings. Furthermore, we can divide these six matrices
into three classes"

It is easy to see that the same two-level SOR method applies to matrices within
the same class. Although the discussion in 5.1 applies only to Class 3 matrices, we
can use a similar approach to obtain optimal block and point relaxation parameters
and spectral radii for a two-level SOR method for matrices of Classes 1 and 2. For
Class 1 matrices, we find

*-1+ *

(5.9) (’Ok* 2__ 2 (q +4q3)1/2 (q 2q]
h, p1-2 q+4q]

q-2q]

1/2

rrh

and for Class 2 matrices, we need only to replace q by q2 in the above expressions.
The data-flow diagram for the computational order {red - black - green - orange},

which corresponds to a two-level SOR method applied to Class matrices, is shown
in Fig. 4. Let us analyze the convergence rate for this two-level SOR iteration. From
Fig. 4, it is easy to see that Wp Wb. Therefore, from (5.5) and (5.6), we have

3+M , 4/(3+M)
llett JOelt (p b

g

4

Consider now the typical example where q q2 =4 and q3--= 1. By using (5.8) and
(5.9), we find that the spectral radius of the point SOR iteration becomes larger, but
the spectral radius of the block SOR iteration becomes smaller, i.e.,

pp* 4 x 10-2,

Therefore, the effective spectral radius can be expressed as

4
* x/-gTrh./gear

M+3

This gives

(5.10) * 1-2.267rhPelf ifM =2, */gett 1.89rrh if M=3.
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146 c.-c. J. KUO AND B. C. LEVY

By comparing (5.7) and (5.10), we observe that the performance of a two-level SOR
iteration applied to Class or Class 2 matrices is in fact better for this specific example.

6. Numerical examples. We consider the system of equations obtained from a
nine-point stencil discretization of the Poisson equation, i.e.,

1

6h 2 {4(u.j+ ,k + U.i-,,k) + 4(U.j,k+l +
(6.1)

j,k=l,2," ", N-l,

with zero boundary conditions and h 1/N 1/20. In this case, q q2 4, and q3 1.
Since in this example the performance of the two-level SOR method for matrices

A(, 7) of Classes 1 and 2 is the same, we compare only the following two computational
orders:

order (a): {red- orange- black- green},
order (b): {red - black- green - orange}.

The computational orders (a) and (b) are obtained by applying the two-level SOR
iteration to matrices A(, rt) belonging, respectively, to Classes 3 and 1. Their spectral
radii and optimal relaxation parameters for the block SOR and point SOR iterations
are summarized in Table 1.

TABLE

order w* p* w p

(a) 1.679931 0.679931 1.009702 0.009702

(b) 1.640105 0.640105 1.042400 0.042400

We use the following two test problems:
Example 1. The driving function is e5x [2x(x 1) + y(y 1)(25x- 5x 8)] and

the true solution is e5x x(x-1)y(y-1). In this case, the solution is a smooth function
with a wideband two-dimensional Fourier spectrum concentrated in the region where
and r/ are small.
Example 2. The driving function is -74n- sin (5 n-x) sin (7ry) and the true solution

is sin (5n-x)sin (7ry). This corresponds to the case when the solution is a rapidly
oscillatory function containing a single Fourier component at (, r/)= (5, 7).

The computed results are shown in Figs. 5 and 6, where we plot the maximum
error at each iteration as a function of the number of block SOR iterations. Each curve
is parametrized by the number M of point SOR iterations we used. It is almost
impossible to distinguish the curves with M 2, 3, 4 for computational order (a) in
both examples. Hence, it is reasonable to choose M =2 in this case. When the
computational order (b) is applied to the first example, where the solution contains
low frequency components, the curve for M 3 is slightly better than for M 2.
Nevertheless, the difference is very small. For the second example, the curves with
M 2, 3, 4 are in fact not distinguishable. Thus, for computational order (b), it is still
preferable to choose M 2, since fewer computations are required.

To demonstrate the convergence rate of the two-level SOR method, we choose
another test problem with zero driving function and boundary conditions. This is in
fact a homogeneous Laplace equation and its solution is zero. Two initial guesses are
considered: (1) a smooth function, which is chosen to be x(x-1)y(y-1); and (2) a
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G O G O G

G O--G 0 G

R B R B R

0 G 0

B R

B

step step

G 0 G 0 G 0 G 0

R B---R----B R B R B

G O G O G O’--G---O

R B R B R B R B

step 2(0) step 4(0)

G O G O G O G O

R--,.B--R B R B R B

G O G O G---O---G O

R B R B R B R B

step 2(b) step 4(b)
FIG. 4. Data-flow diagramfor a two-levelfour-color SOR method with computational order {red black

green- orange}. Step 1: first half of a block SOR iteration. Step 2(a) and (b): one-point SOR iteration for
red and black points. Step 3: second.halfofa block SOR iteration. Step 4(a) and (b): one-point SOR iteration

for orange and green points.

2.5

2

IVI=I
----M = 2,3,4

10 20 50 40
()

0
0

M=I
2

10 20 50 40
(b)

FIG. 5. Computer simulation results for Example with computational orders (a) {red orange black
green}; and (b) {red black- green orange}. The x-axis is the number offirst-level block iterations and the
y-axis is the maximum error at each iteration.
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.0

0.8

0.

0.4 M :2,5,4

0.2

0
0 iO 20 30 40

1.0

0.8

0.6

0.4

0.2

0

(o)

10 20 30 40
(b)

FIG. 6. Computer simulation results for Example 2 with computational orders (a) {red orange black
green}; and (b) {red black green orange}. The x-axis is the number offirst-level block iterations and the
y-axis is the maximum error at each iteration.

random two-dimensional sequence. In Fig. 7, we plot the two-norm of the error versus
the effective number (neff) of iterations for the above two computational orders and
M 2. The results show that the two-level SOR method with computational order (b)
is better than that with order (a) and that the convergence rate of the two-level SOR
method is not sensitive to the smoothness of the initial errors. Since the problem
with initial guess x(x-1)y(y-1) was also used to demonstrate the convergence rate
of Adams et al.’s SOR method in [2], we are able to compare the convergence rates
of our method with theirs for this test problem. It turns out that these two methods
have very similar convergence rates.

7. Conclusions and generalizations. In this paper, we have transformed the system
of equations for a discretized elliptic PDE from the space domain to the frequency
domain in order to interpret the SOR method from a new viewpoint. This new
formulation has helped us to design a two-level SOR method with optimal block and
point relaxation parameters. The resulting two-level four-color SOR method for the
nine-point stencil discretization of the Poisson equation was shown to be efficient with
spectral radius 1- Crh, and numerical examples confirm our analysis.
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I0

10-
10-2
10-
0-4
10-

o-’r

0 20 4O 6O 80 100

FIG. 7. Convergence history (two-norm of the error versus the number of effective iterations) for computa-
tional orders (a) red orange black green}; and (b) red black green orange} with M 2. The
driving function is zero and the initial values are (1) x(x-1)y(y-1); and (2) a random sequence.

The constant C of Adams et al.’s SOR method with various orderings and the
line SOR method was compared in [2]. The results for the nine-point stencil discretiz-
ation can be summarized as follows. The constant C ranges from 1.6 to 2.45 for Adams
et al.’s method, C 1.63 or 2.26 for the two-level method, and C 2.82 for the line
SOR method. In practice, when the initial error is smooth, the convergence rate of the
two-level SOR method is similar to that of Adams et al.’s method. By comparing the
constant C, we see that the line SOR method is slightly faster than both the two-level
and Adams et al.’s methods. However, it should be emphasized that the line SOR
method is less parallelizable since it needs a sequential direct method to solve tridiagonal
matrix equations that describe the coupling between points of each line. Thus, from
a parallel processing point of view, the two-level and Adams et al.’s SOR methods are
more attractive.

The two-level SOR iteration method presented here can be generalized easily to
higher-dimensional problems. A three-level eight-color SOR scheme can be described
as follows. Consider a nondegenerate 27-point discretization of the three-dimensional
Poisson equation. Suppose that each grid point is indexed by (j, k, l). We can label
these points with eight colors depending on whether j, k, and are even or odd.
Following a procedure similar to the one used in 3, we transform the discretized
system from the space domain to the frequency domain so that in the frequency domain
we obtain a discretization matrix which is block diagonal with 8 8 block matrices
along the diagonal. Each of these blocks describes the coupling of the Fourier com-
ponents of the eight colors at a fixed frequency. Since the discretization scheme is
nondegenerate, each 8 8 matrix block is full. In order to apply the SOR method for
each of these 8 8 matrices, we can block partition them into 4 4 submatrices. This
results in a first-level block SOR iteration. However, the first-level block SOR iteration
requires inverting 4 4 full matrices, which can be accomplished by performing several
second-level block SOR and third-level point SOR iterations. Note that both the
second-level block SOR and third-level point SOR iterations require a constant number
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150 c.-c. J. KUO AND B. C. LEVY

of steps to converge. The total number of iterations required by the above three-level
SOR method, which is O(1/h), is therefore determined primarily by the convergence
rate of the first-level block SOR iteration.

There are many different possible computational orders for the above three-level
SOR procedure. A typical one can be chosen as follows. At the first-level, we can
distinguish two big blocks depending on whether (j+ k+ l) is even or odd. At the
second-level, within each big block, points are further divided into two smaller blocks
according to whether (j + k) is even or odd. Finally, at the third-level, each color can
be separated from each other.

It is straightforward to generalize the above procedure to obtain an n-dimensional
n-level 2n-color SOR method. Here, we have considered the case where n 2.

Another generalization of interest would be to extend the two-level SOR iteration
procedure described in this paper to PDEs with space-varying coefficients. It is natural
in this context to combine the two-level SOR method discussed here with the local
relaxation procedure developed in [4], [6], and [9]. The main idea ofthe local relaxation
method can be roughly stated as follows. Each local finite difference equation is viewed
as if it were homogeneous over the entire problem domain so that at each point a local
relaxation parameter is determined on the basis of the local coefficients of the PDE
and of the boundary conditions for the whole domain. Hence, a two-level local
relaxation method would use the local coefficients and boundary conditions to choose
optimal local block and point relaxation parameters at each grid point, so that different
grid points would therefore have different block and point relaxation parameters.

Note that the Fourier/Fourier approach described in this paper depends heavily
on the specific coloring and partitioning scheme we used. The relation existing between
the single-level rowwise and multicolor SOR methods for the five-point stencil and
the nine-point stencil cases can be explained by introducing a tilted grid [10], [2].
There does not seem to be an easy way to apply the tilted grid concept to obtain a
two-level rowwise SOR method.
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