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ABSTRACT 

A twocolor Fourier analytical approach is proposed to analyze the multigrid 
method which employs the red-black Gauss-Seidel smoothing iteration for solving the 
Poisson equation. In this approach, Fourier components in the high-frequency region 
are folded into the low-frequency region so that the coupling between the low and 
high Fourier components is transformed into a coupling between components of red 
and black computational waves ii& the low-frequency region. We show that the 
twocolor two-grid method asymptotically reduces to a one-color twogrid method 
whose physical mechanism is more transparent than for its original two-color form. 
The twocolor Fourier analysis is also used to design variants of the standard multigrid 
algorithm. 

I. INTRODUCTION 

It is well known that the multigrid method which employs the red-black 
Gauss-Seidel smoothing iteration provides a very effective way of solving 
elliptic PDEs [3, 91. The red-black relaxation scheme is also attractive for 
parallel computation [l, 2,7]. However, the mechanism of this method is not 
as transparent as for methods which use other types of smoothers such as the 
damped Jacobi iteration 16, 91. Through the red-black Gauss-Seidel iteration, 
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low- and high-frequency components of the solution are coupled together, so 
that some high-frequency components are in fact primarily computed by the 
~e-gric~ correction procedure. Therefore, it is more difficult to give a 
physical explanation of this phenomenon. A twogrid analysis of this method 
for a model problem consisting of the Poisson equation on the unit square 
with Dir&let boundary conditions has been performed by Stiiben and 
Trottenberg [9]. The objective of this paper is to use a variant of Fourier 
analysis called the t~~o-co?ur Fourier analysis to provide more insight into the 
mechanism of this method. 

The red-black relaxation operator and the restriction and interpolation 
operators are linear periudic operators. A straightforward Fourier analysis 
does not apply, since they are spatially dependent. Nevertheless, the periodic 
property can be exploited to reformulate the conventional Fourier analysis as 
a two-color Fourier analysis [I. From this new viewpoint, components in the 
highfrequency region are folded into the low-frequency region so that there 
exist two, i.e. red and black, computational waves in the low-frequency 
region. The coupling between the low and high conventional Fourier compo- 
nents is therefore transformed into a coupling between red and black 
computational waves with the same frequency in the low-frequency region. 
With this new Fourier tool, the spectral representation of every operator in 
the two-grid analysis can be easily derived and interpreted. Then, we show 
that the twocolor twogrid method asymptotically reduces to a one-color 
two-grid method which is easier to analyze than in its original two-color form. 
Although our analysis is different from that of Stiiben and Trottenberg [9], it 
turns out, without surprise, that they are mathematically equivalent and lead 
to the same results. 

The two-color Fourier analysis not only serves as an analytical tool but is 
also a useful design tool. This is particularly evident for the 1D problem, for 
which the twcxolor twogrid Fourier analysis can be used to design a fast 
direct method. For the 2D problem, some variants are also derived to 
improve the performance of the standard multigrid method with red-black 
Gauss-Seidel smoothing. 

This paper is organized as follows. The 1D problem is studied in Section 2. 
The am.l@s and design of the 2D two-grid method is presented in Section 3. 
Concluding remarks are given in Section 4. 

2. ANALYSIS AND DESIGN OF THE 1D MULTIGKID ALGORITMM 

Consider a (h,2h) tvogrid method for solving the discretized 1D Poisson 
equation on Q = [0, 1] with boundary values u(O) and u(l), i.e. 

1 
3 %-1 ( - 2% + U,+l) = xl? n=1,2 ,..., N-l, (2 1) . 
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where ti, is the estimate of u(nh), h is the grid spacing, and N = I/h is 
even. The difference between the exact solution il, and the estimate tc, is 
the error en = 24, - i&. For a twc@d method, the error equation can be 
written as 

e new = MitheOld 3 

where e = (e,, . . . , eN_ #’ and Mfh is the twogrid iteration operator [9], 

where Sh iS the Smoking OpfmtOr (smoother) for the h-grid ah, vr and v2 
are the numbers of presmoothing and postsmoothing iterations, and Kth is 
the coarse-grid correction operator (coarse-grid corrector) 

and where I,, I&, Lsh, Iih, Lh are the identity, interpolation, coarse-grid 
Laplacian, restriction, and fine-grid Laplacian operators respectively. 

2.1. Two-Color F&&r Analysis 
The analysis of Mth is often performed in the frequency domain, so that 

we consider the coefficients &, 1~ k \< N - 1, of the Fourier expansion 

N-l 

en = C t!$sin(klrnh). 
k-1 

(2 2) . 

The decomposition (2.2) is particularly convenient for understanding multi- 
grid methods which employ the damped Jacobi smoothing iteration [9]. 
However, when we use the red-black Gauss-Seidel smoothing iteration, the 
Fourier components 8k and &_k are coupled together. In this papers a 
modified Fourier analysis is introduced to analyze this type of smoother. As 
usu& we call grid points with even and odd inaces the red and black points. 
.~~rs at red and black points form red and black sequences, which can be 47 

expanded in Fourier series as 

N/2-1 

en = c & sin( kmh), n even, 
k=l 

N/2 
e,= c &ksin(knnh), 

k=l 

n odd. (Wb) 

(23a) 
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It is straightforward to see that the Fourier components of the red and black 
wences are related to the Fourier components of the complete sequence e, 
via 

The decomposition (2.3), called the two-color FoluIier analysis, is particularly 
convenient for operators operating on grid points on a periodic basis. 

For ex pie, consider a Jacobi relaxation operation operating at the red 
points only, 

er*= i(eiYl + e$!,), n even, er* = Qd, n odd. 

In the spectral do,main, the matrix representation of this iteration describing 
its action on ($, bk)‘, 16 k < N/2 - 1, is given by 

, 8 = krrrh. 

For k = N/2, $ Xw/2) is a mappiug from hNfl onto itself and equals 1. 
Similarly, a Jacobi relaxrson operation operating at the black points only 
gives 

and - . (2 4 

Hence, the spectral representation of the red-black Gauss-Seidel iteration can 
be easily obtained as 
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2.2. A Two-Color Multigrid Direct Solver 
N’w, let us study the coarsegrid corrector 

(F’, bk)=. Let the restriction operator ZtA and the 
be 

73 

Kih by using the basis 
interpolation operator Zih 

I,zh:~&:,:l,” and I$ IC,l,C&, (2 5) . 

where c is an arbitrary constant. Since points of the coarse grid coincide 
exactly with red points of the fine grid for the 1D case, Zt”(e>, which is a 
mapping from (& bk)= to &, and &8), a mapping from & to (& bk)‘, 
assume the following simple forms: 

1 case 
Q"(e)= 2,2 1 1 

In the red-black spectral domain, the 2h_grid, the h-grid discretized Lapla- 
cian operators, and the identity matrix are represented respectively by 

e2h(e) = 
2(cos28 - 1) 

w 
2 ' 

r’,@) = [A ;]* 
IIence, we obtain 

liih(8) =i,(@) - ~~h(e)t,-,‘(e)~~h(6)t,(e) = [ _ 2~cos0 y 1. (2.6) 

Equation (2.6) shows that all red computational waves are eliminated by 
the coarse-grid corrector KEh. Suppose that we are able to eliminate the 
I-ffect of all black computational u ves by some cmoothing operation. Then, 
one coarse-grid correction followed by such a smoothing operation is suffi- 
cient for solving the two-grid problem ex&y. From (2.9, we know that a 
siz;lc Jacobi iteration at the black points, i.e. Sh,,, serves this purpose. 
Consequently, on choosing 

gth( 6) are 2 x 2 zero matrices for all 0 < 8 < 75’2. Besides, fith( 1T/2) is also 
zero. Thus, the twogrid method (2.7) is exact. 
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2.3. Modification and Genemlizatim 
_Although the above analysis is independent of the value c, the choice 

c = 0 saves computational v xk and therefore is preferable in practice. It is 
possible to reduce the computational work of (2.7) favther by using S,,, or 
S,,, as presmoother. Depending on whether we use S,,, or Sh,6, the residues 
at the red or black points are zero, and in this case the restriction operator 
Zi” in (2.5) can be replaced either by 

In particular, if we use S,,, as presmoother and let c = 0, a modified 
two-color two-grid direct soiver can be described as follows: 

(1) Perform a Jacobi iteration at the black points. 
(2) Calculate residues at the red points and multiply them by i. 
(3) Solve the system of residue equations on the 2hgrid and add the 

coarse-grid solution back to the original values at the red points. 
(4) Perform a Jacobi iteration at the black points. 

This algorithm corresponds to the following two-grid operator: 

L,-,‘iLh r)sh la, , , (2 8) . 

where Lh,. is the restriction of the discretied Laplacian operator to the red 
points of the h-grid, and Zh,: is the identity operator for the red points. For 
0 < 6 ( Ir/2, the SpeCi~d representation Of Lh,, and Zh,, is given by 

Note that the calculation of the residue takes the same amount of work as the 
smoothing operation at every grid point. We compute the residues at ah grid 
points in (2.7), while ‘we perform the smoothing operation at one half of the 
grid points and compute the residue at the other half of the grid points in 
(2.8). The saving comes from the fact that a three-point averaging operation 
is needed by (2.7) and that only a multiplication by i is required by (2.8). 
The saving in the restriction and interpolation proced&s will be generalized 
to the 2D case in Section 3.2. 

A twwo1or Lgrid direct solver (L > 2) can be defined by using the above 
two-color twogrid method recursively, i.e. 

x2h;Lh r)sh b, , I (2.9a) 
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with 

1 
X,,=Mih, h=S, 2<1,< I,- 1, and X,=&l, h =;. (2%) 

It can be proved by induction that (2.9) is a direct method for the system of 
equations (2.1). 

There exists no analog of Equation (2.6) for &.e 2D problem, so that there 
is no 2D direct solver corresponding to the one described above. However, a 
relation similar to (2.6) holds in the low-frequency region, which means that 
the 2D coarse-grid corrector can reduce errors of low-frequency components 
effectively. 

3. ANALYSIS AND DESIGN OF THE 2D MULTIGRID ALGORITHM 

consider the solution of the fivepoint discretized Poisson equation, 

1 
2 Y ( n -W+ %+Ln,+ 14nx,ny-l + Unx,n,+l- 4unx,ny) = f,,,,,, 

l<n,,n,<N-1, (3.1) 

where u, n is given for nZ, nny = 0 or N, and N= l/h is even, by a (h,2h) 
two-grid m&hod with the red-black Gauss-Seidel smoother. Similarly to the 
1D case, we can interpret the physical, mechanism of this algorithm as the 
evolution of two computational waves. Since the same algorithm has been 
analyzed by Stiiben and Trottenberg [9], our discussion emphasizes the 
physical interpretation associated with the twocolor Fourier analysis, rather 
than the specific mathematical result derived. 

3.1. 20 Two-Color Fourier Analysis 
The errors t?nX,n, associated with (3.1) can be expanded as 

N-l N-l 

e 
nx*ny =c c t?k k sin(k,m,h)sin(kpn,h). 

k,=l k,=l =’ ’ 

We divide grid points with indices n = ( nx, ntJ) into red and black points, 
depending on whether n, + ny is even or odd. Then, errors at red and black 
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pints define red and black sequences: which can be expanded as 

e = 
****y c r3( k sin( kgrn$) sin( k#n$), L’ Y 

n, + ny even, 
ksK, 

A 

e = 
*x* *y Cb w, sin(k,lm,h)sin(+,h), n, + ny odd, 

keKb 

where K, = K and K, = K u ((N/2, N/2)), and where 

K= (k,,k,)~X2:k,+k,<N-1, k,,k,>lor 
i 

N 
k,=N-k,,l,<k,g-4 , 

2 1 

For k E ,K, we denote (N - k,, N - k,,) by k’. It is straightforward to check 
that ?k, b,, 6,, & are related via 

(;)=[; _;I(:,), kEK, and fk=Zk, k=(;,;). 

The original ad the folded two-color Fourier domains are depicted in Figure 
1. IVote that K, and K, differs only by a single element (N/2, N/2), and 

(a) (b> 

FIG. 1. (a) Conventional and (b) folded two-color Fourier domains. 
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therefore at the frequency (N/2, N/2) we have ody a scab j$,,,2, N/z- kis 
before, we define 8 =(S,, S,, = (k#, $,A), and 0 denotes the set of 0 
whose corresponding k belongs to K. 

For the moment we consider the two-grid iteration matrix with one 
red-black Gauss-Seidel iteration 

where Lh and Lsh are the five-point discretizations of the Laplacian on the h 
and 2h grids, and Ilh and I& are the full-weighting restriction and linear 
interpolation operators, given by 

;r$ 
“h 

and 

2h 

(3.33) 

(3.3b) 

The problem is to determine the spectral radius p( Mfh) of the two-grid 
iteration matrix. 

Each of the 4 x 4 frequency-domain matrices appearing below corresponds 
to a mapping from a vector space formed by the vector 

( $9 - ‘jk, b,, - b$ 

onto itself, where 

Ik = (k,, kg), 
N 

hgk,,k,<y3 ii= 
(N-k,,k,)) if k,ak,, 

(k,,N-k,) if k,<k,. 
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We also *use the abbreviations 

toss, +cose, _ case; +cose;, 
a= 

2 ’ 
a= 

2 ’ 

p= cos~~cos~~. 

(1) !%x&aing. For ox, t$ < 7r/2, the frequency-domain matrix corre- 
sponding to the red-black Gauss-Seidel iteration is 

where 0 is the 2 x 2 zero matrix, Z is the 2 X 2 identity matrix, and 

When ex or eY is equal to 1r/2, Sh+ is 3 2 x 2 matrix 

which is a mapping from (il, &)r to (&, &J. Finally, for 6% = eg = v/2, 

%. r/b = 0, which is a mapping from pL to itself. 
Note that when the first partial step of the red-black Gauss-Seidel itera- 

t~on; i.e. the Jacobi iteration at red points, is performed, the original values of 
the red points are discarded and hence the computational process that follows 
is only determined by the initial values of the bkxk points. This observation is 
the basis for reducing the twocolor analysis to a one-color analysis. 

(2) Course-g&Z ~orpect&m. Let us first consider tihe case t?%, tlv < g/2. 
The frequency-domain matrices for operators I,, L,, and L,$ in (3.2) can be 
written as 

h2 
&!(e) = 28 s 8=2a2-p-1. (3 5) . 
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(b) 

FIG. 2. Decomposith of the (a) restriction and (b) interpolation operators. 

In (3.4) and (3.5), there is no coupling between vectors (rZ,, gk)r and 
(4, be)? The coupling between them comes from the full-weighting restric- 
tion and linear interpolation operations, which are more complicated than in 
the 1D case, since the coarsegrid points do not coincide any longer with the 
red points oi the h-grid. 

The deoomposition, shown in Figure 2 and commonly used in the multi- 
rate signal-processing context [4], is very useful for understanding the physi- 
cal mechanism of interpolation and restriction operators, and for deriving 
their frequencydomain matrices. Conceptually, we decompose the restriction 
piocedure into two steps: 

Stq I: Lowpass filtering (or averaging) at every point of Qh, where the 
weighting coefficients are specified by the stencil (3.3a). 

S@J 2; Down-sampling (or injecting) values from 0, to S&. 

The interpolation operator Z& is also decomposed into two steps: 

Step 1: Up-sampling values from ash to St,, by which we assign 0 to 
points w’hich belong to 52, - S&,. 

Step 2: Lowpass filtering at every point of ah, where the weighting 
coefficients are specified by the stencil (3.3b). 
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It is relatively easy to find a frequencydomain matrix representation for each 
of the above steps. Combining them together, we obtain 

=$[I+/3 l+p 2al 24 (3.6a) 

and 

i&(e) = 

* 1+/S 0 2a 0 

0 1+/T 0 26 
2a 0 l+/? 0 

0 25 0 1+p 1 I 

xz [I 0 6 1 1 =- 2 1 1 . (3.6b) 

Thus, in the frequency domain, the down-sampling operation adds the 
high-frequency component - SK to the low-frequency component tk. This 
phenomenon is known as &r&g [4]. Qn the other hand, the up-sampling 
operation duplicates the low-frequency component & in the high-frequency 
region in the form of - 4, which is called inzlzging [4. The lowpass filters 
cascaded with the down-samp’hng and the up-sampling operators are basically 
used to reduce the ahasing and imaging effects. For example, when OX and 3 
are close to 0, (Y = 1, /3 = 1, 6 = 0, and, p = - 1. IIeFce, the aliasing and 
imaging effects occurring between (&, b$’ and (4, bh)r are substantially 
eliminated by the associated lowpass filters. 

The product &e>~~“( fl ) can be expressed as 

l 41 F,, f&(e)ip(e) = z F 

[ 1 
F , 

21 22 
(3 7) . 
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where 

F11= 
[ 

(l+P)” (1+8)(l+B) 
(l+P)(l+P) 1 

(1+/q2 ’ 

F F$= 
[ 

241+/I) 26(1+/3) 
12 = 

2Ly(l+& 1 2&(1+/I) ’ 

Therefore, from (3.5) and (3.7), we obtain the coarse-grid corrector, 

ztf”(e)= ;r El2 , [ 1 22 

where 

42 = &J-- F,,), 

which holds for Ox, 3 < v/2. For the remaining cases, we can show that 
REh(B) is either the 2 x 2 identity matrix or 1, depending on whether only 
one of Ox, By is ?z/2 or both t?% and By are z/2. 

(3) Two-G&I Zteration. Combining results in the previous discussion, we 
find that in the frequency-domain Mlh = KEh, Sh,r/b is represented as 

AQh(B) = 0 K,,J -I- K1212 
0 1 K2J+ &J2 ’ 

(3.8a) 

ro a fi,““@)= o a2 > L 1 
(3.8b) 

@h(e) = 0, m. . ww 
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Therefore, the spectral radius of $t”<e> is 

p(K,,Jf K,12), ex,e, < I9 
p( Agh(e)) = 4x2, B,orB,=$ . (3 9) 

and finally the spectral radius of the twogrid iteration matrix is 

The twotoone color reduction is mathematically clear from Equations (3.8) 
and (3.9). Note that the twogrid iteration process Mih(0) is the combination 
of two processes 

M*(e) = K,,l+ K12J2, M,( 0) = K,,J + K,J”, 

which describe the evolution from (bk, - be)r to (Q, - r# and (bk, - bt)r 
respectively. Since the m-fold repetition of Mfh gives 

[(~~“(e))“],,=M,,(e)M~-l(e), [(E;Ih2h(e))m]22= M;(O), 

the convergence of the twogrid method depends entirely on the process 

The above derivation can be easily generalized to the case with more than 
one red-black Gauss-Seidel smoothing operation. Suppose that vr and v2 such 
smoothing operations are used respectively for the presmoother and 
postsmoother; then 

where the last equality comes from the fact p(AB) = p(BA), and 

I p(K2112v-1+K22J2v), B,,B,<;, 
p( L@;h(vl, v2, e)) = (Y~v, B,0rB,=~, 

0, 9, = ey = ;, 

where v = vr + v2. 
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Let us examine the matrix 

Mwl = K,,J2’-’ + K, p, 

which represents a one-color twogrid iteration process and can be expressed 
as 

Me, = JK,, J2u-l, 

where 

K =I eq --&‘F,,(J2-I) 

I 
l (l+P)b2--l) (l+p)(&-1) 

- 
28 28 = 

(1+PNa2-I) - 
I (1+&(&l) 

- 
28 26 I 

is the equivalent one-color coarse-grid corrector. Since p(JKe,J2’- ‘) = 
p( Ke,J2”), we see that J2 can be viewed as the equivalent one-color smoother 
Ses, which corresponds to two Jacobi relaxation steps for the black compo- 
nent b,. 

Although our analysis is different from that of Stiiben and Trottenberg [9], 
it turns out, without surprise, that they are mathematically equivalent and 
lead to the same results. In [9], Stiben and Trottenberg reduced their 
analysis to the determination of the largest value among all the spectral radii 
of matrices J2’K eq3 o < e*ll By < 1T/29 and a closed form of this quantity was 
derived (pp. 104408). Since the same result holds here, we summarize it as 
follows: 

1 
v= I, 

P[Mh2hb=v1+v2)l = i 4 1 

( 

:, 

1 

v+l 

v v+l 
vk 2. 

In the above expression, the maximum of p[ a:“( e)] occurs at 0 = (lr/Z,O) or 
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(d[( -&y],cos-l[( -&),.I) 
when v > 2. 

3.2. Rearrangement of the Smoothing O&r 

Suppose that we rearrange the smoothing order from (red + black} to 
(black + red) for the twogrid iteration discussed before. In the frequency 
domain, the black-red Gauss-Seidel iteration matrix becomes 

This indicates that the computational process that follows is determined by 
the initial values of the red points only. Several facts can be obtained by 
modifying the derivation in the previous section slightly. The twogrid 
method with black-red Gauss-Seidel relaxation consists of two processes 

Asymptotically, its rate of convergence is determined by that of the process 
A&(8). In mathematical terms, we have 

Since Fi2 = F&, we obtain the equality 

P(K1212v-1 + K,,j2’) = p( K,,J2’-’ -I- K22J2v), 
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which implies that the spectral radii of the twogrid methods with the 
red-black and with the black-red Gauss-Seidel relaxation are the same. 

Motivated by the 1D algorithm (2.8), we consider an improved multigrid 
method whose twwgrid iteration operator A$!$ is of the fonn 

where Z,,, is the identity operator at red points, L,, b is the restriction of the 
five-point diSLrti z -*ati ed Laplacian operator to the black points of &, and Zzh 
and Z&, arc the black-twoarse restriction and coarse-to-red interpolation 
operators defined by 

0 ; 02h 
Zih* . + 0 i and Z;h: 0 1 0 . (:s JO) 

0 ; 0 
b 

Comparing (3.3) and (3.10), we see that the simplified restriction opt rator 
Zt” and interpolation operator Z&, are in fact obtained respectively by sty ,tig 
the coefficients of the red points of the full weighting operator ZiR and cf the 
black points of the linear interpolation operator Z& equal to 0. This char ge is 
motivated by the observation that 

s K2hS h.b h h.r =s K2hS h,b h,i h,+) 

since the residues at the red points are zero before the restriction operation 
and the values at the black points are not used after the interpolation. The 
corresponding computational algorithm is stated below: 

(1) Perform a Jacobi iteration at the red points. 
(2) Calculate residues at the black points and average them with the 

coefficients specified by Zth to obtain residue values at the coarse-grid points. 
(3) Solve the system of residue equations on the 2h-grid, and interpolate 

the coarse-grid solution to the red points according to Z&, which is then 
added back to the original values at the red points. 

(4) Perform a Jacobi iteration at the black points. 

One important feature of the improved method is that it splits one complete 
iteration Sh, & 6 into two separate operations and uses Sh,, and Sh,b as 
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presmoother and postsmoother respectively. It is this particular arrangement 
that makes possible the reduction of computational work associated to the use 
of the simplified restriction and interpolation operators (3.10). The improved 
method has the same convergence rate as the conventional method using 
either r+black or black-red Gauss&de1 relaxation, since 

P(‘h s bK?ish,r) =P(Sh,bK~hSh,r) =P(KEhSh,b/r) =p(~~hshs~,jb)- 

The generalization of the improved method to v >, 2 is straightforward. 
The key is to position S h,r just bef0l.e the residue restficfion St6?p and S,, b 
just after the solution interpolation step. For example, when 3’ = 2, the 
improved two-grid methods can be 

S h.b/rKf:iSh,b/r* s K2hS s h.b h.i h,+ h,r/bs or S h, r/bSh, bK?iSh, t l 

4. CONCLUSIONS 

A two-color Fourier analysis has been proposed to analyze the multigrid 
method with red-black Gau&eidel smoothing for the model Poisson prob- 
lem. By this analysis, we can clearly explain the coupling phenomenon 
existing between the low- and high-wavenumber components of the solution, 
give a more intuitive derivation of the two-grid analysis, and derive some 
variants of this algorithm. The same analytical approach can also be conveni- 
ently applied to the MGIKH (multigrid reduction with checkered Gauss- 
Seidel re&zations) method [5,8]. 

27~ authors would like to thank Dr. Shbmo Ta’bsan for several helpfil 
discussions. 
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