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TWO-COLOR FOURIER ANALYSIS OF ITERATIVE ALGORITHMS
FOR ELLIPTIC PROBLEMS WITH RED/BLACK ORDERING*

C.-C. JAY KUO AND TONY F. CHAN$

Abstract. The red/black ordering scheme is often used to increase the parallelism of iterative
methods for solving elliptic partial differential equations (PDEs). However, the convergence rates
are also affected, often adversely. This paper provides a unified approach, called the two-color
Fourier analysis, to study the convergence rates of iterative algorithms for elliptic problems with
the red/black ordering. This Fourier tool is used to analyze different types of iterative algorithms,
including the successive over-relaxation (SOR) method, symmetric successive over-relaxation (SSOR)
method, preconditioned iterative methods with SSOR, ILU, and MILU preconditioners, and multigrid
(MG) methods. By comparing the convergence rates of algorithms with the natural and red/black
orderings, it is shown that although the red/black ordering does not affect the rate of convergence
in the context of SOR and MG methods, it slows down the convergence significantly in the context
of SSOR and preconditioned iterative methods.

Key words. Fourier analysis, incomplete fatorization, multigrid method, parallel computation,
preconditioned conjugate gradient, preconditioners, red/black ordering, successive over-relaxation,
symmetric successive over-relaxation
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1. Introduction. An important task of the research on parallel computation
is to seek algorithms that can be conveniently implemented on vector or parallel
computers. One common approach to obtain parallel iterative algorithms for the
solution of partial differential equations (PDEs) is reordering. By reordering, we
rearrange the computational sequences to increase the percentage of computations
that can be done independently [27]. A crucial issue associated with reordering is
how the convergence rate of an iterative algorithm is affected by a reordering scheme.

The multicolor ordering scheme for grid points provides more parallelism than the
natural rowwise or columnwise ordering scheme. It is well known that by using red
and black, two colors to order the grid points in a checkerboard fashion for the 5-
point Laplacian, we are able to separate the coupling between any two red (or black)
points so that the values at all red (or black) points can be updated simultaneously.
Similarly, four colors are needed to separate the coupling between grid points of the
same color for the 9-point Laplacian [1]-[4],[20],[22],[23]. On either vector or parallel
computers, an algorithm with the multicolor ordering is always easier to vectorize or
parallelize than its naturally ordered counterpart so that such a reordering is attractive
for parallel implementation. There are numerous discussions on the implementation
of iterative algorithms with the red/black ordering on vector and parallel computers
in the literature, for example, in [1],[5],[8],[11],[23],[27],[28], and [33].

In this paper, we examine how the convergence rate of an iterative algorithm is
affected by the red/black ordering. Our study includes the successive over-relaxation
(SOR), symmetric successive over-relaxation (SSOR), ILU, and MILU preconditioners
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768 C.-C. J. KUO AND T. F. CHAN

for preconditioned iterative methods, and multigrid (MG) methods. The convergence
rates of these algorithms are analyzed by a unified approach called the two-color
Fourier analysis. Although the two-color Fourier analysis has been used in analyzing
the SOR and MG methods by Kuo, Levy, and Musicus [20],[21],[23], we believe that
results for the SSOR iteration and the SSOR, ILU, MILU preconditioners are new.

Fourier or modified Fourier analysis has been used successfully to analyze numer-
ical methods for elliptic PDE problems for years. We can conveniently study the
effects of operators on Fourier modes if the numerical method of interest is applied
to a simple model problem that consists of a constant-coefficient PDE on a regular
domain with appropriate boundary conditions. The model problem for second-order
self-adjoint elliptic PDEs is the Poisson equation on a square with Dirichlet boundary
conditions. For the model Poisson problem, the SOR iteration was analyzed with
Fourier-like basis functions by Frankel [18] and Young [30]. Brandt used Fourier anal-
ysis to study the error smoothing property for multigrid methods [10]. Stiiben and
Trottenberg performed a two-grid analysis to analyze both the error smoothing and
the coarse-grid correction with Fourier basis functions [29]. Fourier analysis has also
been applied to the analysis of the 5-point or 9-point SOR iteration with the natural
or multicolor ordering [3],[20],[22]-[24], preconditioners for elliptic problems with the
natural ordering [13], and problems arising from the domain decomposition context

Due to the multicolor ordering scheme, the resulting system of iteration equations
is not spatially homogeneous but is periodic with respect to grid points. Consequently,
the Fourier modes are not eigenfunctions for the multicolor system, and therefore a
straightforward Fourier analysis does not apply. When these Fourier modes are op-
erated by periodic operators, there exists a coupling between high and low frequency
components. By exploiting the periodic property, we reformulate the conventional
Fourier analysis as a two-color Fourier analysis. From this new viewpoint, compo-
nents in the high frequency region are folded into the low frequency region so that
there exist two, i.e., red and black, computational waves in the low frequency region.
The coupling between the low and high conventional Fourier components is therefore
transformed into a coupling between the red and black computational waves with the
same frequency in the low frequency region. With this new Fourier tool, the spec-
tral representation of operators with the red/black ordering can be easily derived and
interpreted. For the model Poisson problem, the two-color Fourier analysis is exact
for Dirichlet boundary conditions and, with some modifications, is also applicable to
periodic boundary conditions. The two-color Fourier analysis can be generalized to
the multicolor Fourier analysis, which applies to ordering schemes with more than two
colors [22].

The determination of the optimal relaxation parameters of the SOR method with
the multicolor ordering and their corresponding convergence rates for both 5-point
and 9-point Laplacian operators have been intensively investigated [3],[22]-[24]. It has
been found that if the relaxation parameters are appropriately selected, the numbers
of iterations required for the red/black and natural orderings should be of the same
order. In the context of MG methods, the red/black Gauss-Seidel smoother provides
a better smoothing rate than the lexicographical Gauss-Seidel smoother [29]. Hence,
the red/black reordering does not deteriorate the performance for these two types of
algorithms.

However, the same conclusion does not apply to the SSOR iteration and precon-
ditioned iterative methods. The optimal relaxation parameter and its corresponding
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RED/BLACK FOURIER ANALYSIS 769

convergence rate of the SSOR iteration depends highly on the ordering [7],[19],[32].
The naturally ordered SSOR method has the same order of convergence rate as the
SOR method and can be accelerated to give an even faster convergence rate by the
Chebyshev semi-iterative or conjugate gradient procedure [9],[19],[32]. In contrast,
for the red/black ordering, it has been observed that the optimal relaxation parame-
ter for the SSOR method is 1 so that the resulting scheme reduces to a forward and
backward Gauss-Seidel relaxation which converges much slower [19]. Here, we use the
two-color Fourier analysis to analyze the red/black SSOR method and determine its
optimal relaxation parameter 1 analytically. We also perform a quantitative study
of the eigenstructure of the preconditioned Laplacian operator with the SSOR, ILU,
and MILU preconditioners. The results indicate that the condition number of the
preconditioned operator with the red/black ordering is, in general, one order higher
than that of its naturally ordered counterpart. Hence, for SSOR and preconditioned
iterative methods, the convergence rate is greatly sacrificed in order to obtain more
parallelism.

This paper is organized as follows. The two-color Fourier analytical approach is
described and the model problem is formulated accordingly in 2. Section 3 analyzes
the convergence rates of the SOR and SSOR iterations. Section 4 studies the eigen-
structure of the preconditioned Laplacian operator with the SSOR, ILU, and MILU
preconditioners. Then, we perform a two-grid analysis to understand the convergence
behavior of the multigrid method in 5. Section 6 compares the convergence rates of
iterative algorithms with natural and red/black orderings. Related research work and
extensions are given in 7 and 8.

2. Preliminaries.
2.1. Two-color Fourier analysis. Consider a two-dimensional sequence uj,k

defined on a grid

(2.1) h {(jh, kh) 0 < j,k < M, M h-i even}

with zero boundary values, i.e., uj,k 0 if j, k 0 or M. We can expand it with
Fourier series as

(2.2) uj,k Z Z fi,’ sin(rjh)sin(rprkh).
=I =i

As usual we call the grid point with index (j, k) the red or black point, depending on
whether j / k is even or odd. The function u,k at the red and black points defines
two sequences: the red sequence Ur,j,k and the black sequence Ub,j,k. They can be
expanded in Fourier series, respectively, as

(2.3a) ur,j,k Z fir,,n sin(rjh)sin(/rkh), j + k even,

(2.3b) Ub,j,k Z fib,,n sin(rjh)sin(rprkh), j + k odd,

where

Kb K-- {( rl) I2 +y < M- l, ,rl > l or7-- M-, 1< < M--l},
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770 C.-C. J. KUO AND T. F. CHAN

and

It is straightforward to check that the Fourier coefficients t,, tM_,M_rt in (2.2)
and tr,,, tb,,n in (2.3) are related via

2b,, 1 --i fM-,M-

(2.4b) fi,.,,, 2,n, (, 7) --,-
We can interpret (2.4) as follows. Through the red/black decomposition (2.3), the
component (M- , M- /) in the high frequency region is folded into the component
(, y) in the low frequency region so that there exist two computational waves in the
low frequency region. The original and the folded two-color Fourier domains are de-
picted in Fig. 1. Note also that Kr and Kb differ only by a single element (M/2, M/2)
and, therefore, at the frequency (M/2, M/2) we have only a scalar tr,M/2,M/2, which
is considered as the degenerate case.

2.2. Model problem: A two-wave formulation. Consider the discretized
two-dimensional Poisson equation on the square [0, 1] 2 with grid spacing h,

1
(2.5) -(uj-l,k + uj+,k + uj,k- + uy,k+ 4uj,k) fj,k, 1 < j, k <_ M 1,

where M h- is even and Uj,k is given for j, k 0 or M. Without loss of generality,
we only consider the case where u,k is zero on boundaries, since a nonzero Uj,k on
the boundary can always be moved to the right-hand side and treated as part of the
driving function. In addition, since the driving term fj,k with j, k 0 or M does
not appear in (2.5), it can be viewed as zero. Consequently, the red/black Fourier
series expansion (2.3) for both uj,k and fj,k is well defined. By substituting (2.3) into
(2.5) and relating the Fourier coefficients of red and black waves, we can transform
(2.5) from the space domain into the red/black Fourier domain. It is a block diagonal
matrix equation, in which the equation for a nondegenerate frequency (, r/) can be
written as

[ 1 --c,n(2.6a) L -c, 1

where

(2.6b) c,,
cos(rh) + cos(rprh)

Since (, r/) E K, 0 < c, < 1. Only the nondegenerate case will be considered in
this paper, since the degenerate case can be analyzed similarly and, in general, it does
not change the conclusion for each case.

We can use the familiar matrix approach to derive the same result. Consider a
general coefficient matrix with the red/black ordering expressed in block form:

Dr -C ]-CT Db
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RED/BLACK FOURIER ANALYSIS 771

(O,,c)

e
(0,0) (,0)

(a)

(o,)

(o,o) (,o) e

(b)

FIG. 1. (a) Conventional and (b) folded two-color Fourier domains, where Th and yrh.
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772 C.-C. J. KUO AND T. F. CHAN

Let the singular value decomposition for Dr, Db, and C be

Dr VJrUT, Db YJbVT, C UOVT,

where matrices U and V (with scaling constants) are defined by the two-color Fourier
series expansion (2.3). Then,

is orthogonal and

w w=-CT Db Db

Since r,/b, and ( are diagonal, (2.7) can be permuted to block diagonal form with
2 2 diagonal blocks. For the system (2.5) scaled by -h2/4, Dr and Db are identity
matrices and the 2 2 diagonal blocks are of the form

where a,u is defined in (2.6b).
We will use the shift operator notation to represent various operators discussed in

this paper, since the conventional matrix notation hides useful geometrical information
of variables defined on two-dimensional grids. For example, we express the local
Laplacian operator Aj,k at grid point (jh, kh) as

Ez + E + Ey + E(2.8) Aj,k 1
4

where Ez and Ey are shift operators along the x- and y- directions. The system (2.5)
can therefore be written as

h2

(2.9) Aj,kUy,k 71 fy,k.

We use A to denote the global operator, which consists of local operators A,k, 1 <_
j, k < M- 1 associated with zero boundary values. Besides, .(, r/) is used to denote

(2.10) (, 1) -c,nl -c,nl ] (’ /) K,

which is the coefficient matrix in the frequency domain as given by (2.6). An equiva-
lent point of view for the global operator A is to treat it as a homogeneous operator
defined on an infinite two-dimensional grid and to impose the zero boundary condi-
tions by requiring that input sequences be synthesized with Fourier components given
by (2.3) only. By adopting such a viewpoint, the operator algebra [16] can be conve-
niently applied to manipulate A while its frequency domain expression remains the
same.

3. Analysis of SOR and SSOR methods.
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RED/BLACK FOUl:tIER ANALYSIS 773

3.1. SOR iteration. For the model problem (2.5), the red/black SOR iteration
can be written as

(3.1)

where

-+1/2

n+l
Uj,k

(E + ES,.,:i,k (w)
1 -w + Z + Eu + EI),
1,

(j, k) red,
(j, k) black,

Sb,j,k (W) { 1, (j, k) red,
1 -w + (Ez + El-1 + Eu + E-), (j, k) black,

are the local SOR iteration operators at red and black points, and

{w, (j,k) red, pb,j,k(W)={O, (j,k) red,Pr,j,k(w) O, (j, k) black, w, (j, k) black,

can be viewed as the local injection operators at red and black points scaled by the
parameter w. As before, we denote their corresponding global operators by St, Sb,
Pr, and Pb respectively.

By using the red/black Fourier series expansion (2.3), we can transform (3.1)
from the space domain to the frequency domain and obtain a block diagonal matrix
equation. For each nondegenerate frequency (, y), the iteration equation can be
written as

(3.2)
Ub,

[&(.,.olg(...o + P(.,.I] A..,
1 0 1 w w ,7

wa,7 1 w 0

4 w2,n w fb,,n
where a,, is given by (2.6b).

For the error, equation (3.2) is a homogeneous equation, and the error dynamic
can be completely understood by studying the SOR iteration matrices

[ l-w w,, ].(a’a) (’") &(’")(’") (1 -),,, -+,,,
The objective is to find the optimal relaxation parameter w* that minimizes the spec-
tral radius p of the matrix Srb with respect to all possible and y and its corresponding
spectral radius.

To do so, let us first consider fixed and . The spectral radius p,,(w) of
rb(, , w) can be found by solving the quadratic equation

,,() (,,,) ,, ( + ,,),, + (1 ) 0,
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774 C.-C. J. KUO AND T. F. CHAN

so that

(3.4) p,u(w) max IA,v(w)l a.,+[:a -4(-1)]1/2 2

2

w* < w < 2,,rt

O<w<_

where

1 + (1 a,,)1/2
It is easy to see from (3.4) that when 0 < w,n < 2, p,n < 1. In addition, the
relaxation parameter w w*,n minimizes pC,n, which takes the value w,n 1.

Next, let us vary the values of and r/, and determine the optimal relaxation
parameter for (, r/) E K. Since the procedure is standard, only the results are
summarized [23],[31]. The optimal relaxation parameter is

2
(3.5) w*

1 +(1 2 1/2, a,n,max
(,r,max)

max a,n cos(rh),

where a,,max occurs at the lowest frequency (, 7) (1, 1). Its corresponding spec-
tral radius is

PoR(red/black ordering Dirichlet b.c.) -w* 1 .. 1- 2rh.

With this optimal relaxation parameter w*, the eigenvalues of rb are distributed
along a circle of radius w* 1 in the complex plane. The results in (3.5) and (3.6)
are in fact special cases of the general SOR theory by Young [30],[31].

3.2. $SOR iteration. One SSOR iteration with the red/black ordering consists
of one red/black SOR iteration followed by one black/red SOR iteration. Hence, the
corresponding iteration matrix can be written as

(3.7)

where r and b are given in (3.2). Note that we can rewrite the frequency domain
red/black SOR iteration matrix as

(3.8) b(, r/, w)r(, },w) I w(I wL(, rl))-I fl(,

where I is the 2-by-2 identity matrix, .(, /) is the frequency domain Laplacian
defined by (2.10), and

Similarly, the frequency domain black/red SOR iteration matrix can be written as

(3.9) r(, r/,W)b(, r/,w) I w(I wl)(, y))-tA(, r/),

where 0(, r/)- T(, r/). Combining (3.7)-(3.9), we have

(3.10) ssoR(, },w) I co(2 co)(I cog](, r}))-(I wL(, r/))- ft(, r/).
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RED/BLACK FOURIER ANALYSIS 775

The optimal relaxation parameter is selected to minimize the spectral radius of SssoR,
or equivalently, to maximize the smaller eigenvalue of the second term in the right-
hand side of (3.10). It is easy to see that w(2- w) takes the maximum value when
w 1. In addition, it will be shown in 4.1 that w 1 maximizes the smaller
eigenvalue A,,_ of the matrix

(I w(, r/))-I (I w,(, r/))-l.(, r/),

for (, r/) E K. Thus, the optimal relaxation parameter is 1, with which the spectral
radius of the SSOR iteration becomes

(3.11) PsoR(red/black ordering; Dirichlet b.c.) cos2 rh 1- r2h2.

4. Analysis of preconditioners. An important class of iterative methods for
solving elliptic PDEs is obtained by first preconditioning the system of equations and
then solving the preconditioned system with effective iterative methods [9]. One such
example is the preconditioned conjugate gradient (PCG) method. It is well known
that the rate of convergence of a preconditioned iterative method depends on the
condition number as well as the distribution of the eigenvalues of the preconditioned
system [7],[9].

For the model Poisson problem with the natural ordering, Chan and Elman [13]
used Fourier analysis with basis functions ei2’rjhei2r’lkh to obtain all eigenvalues
of the preconditioned Laplacian with the ILU, MILU, and SSOR preconditioners.
Here, we analyze the eigenstructure of the model problem (2.5) with the red/black
ordering. The two-color Fourier analysis with basis functions sin(rjh)sin(prkh) is
used to determine all eigenvalues of the preconditioned system. Note that different
basis functions are chosen for these two orderings. For the red/black ordering, since
the stencils of iterative operators are symmetric, either sine or complex sinusoidal
functions can be conveniently used as basis functions, and the resulting analysis is
exact for Dirichlet and periodic boundary conditions, respectively. For the natural
ordering, since the stencils of iterative operators are usually not symmetric, only
the complex sinusoidal functions can be conveniently used as basis functions. Such
an analysis is exact for periodic boundary conditions but, in general, is not exact
for Dirichlet boundary conditions. However, experimental results indicate that the
eigenvalue distribution of the preconditioned system is not sensitive to the change of
boundary conditions [13].

Three different types of preconditioners, i.e., the SSOR, ILU, and MILU precon-
ditioners, are studied below.

4.1. SSOR preconditioner. Suppose that we define the following local opera-
tors:

(4 la) Lj,k ( O, (j, k) red,
1/4(E. + E; + E + E), (j,k) black,

+ E + E + E-), (j, k) red,(4.1b) Uj,k O, (j, k) black.

It is easy to see that their corresponding global operators L and U are related to
A by A I (L + U). Then, the global SSOR preconditioner with the red/black
ordering is of the form [6]

(4.2) Qs (I wL)(I wU),
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776 C.-C. J. KUO AND T. F. CHAN

where w is the relaxation parameter. By using the two-color Fourier analysis, we can
transform it to the frequency domain

-wa,, 1 0 1 -wa,n 1 + w2a,n

where ae,, is defined as in (2.6b). From (2.10) and (4.3), we find that the SSOR
preconditioned operator Q-A has the spectral representation

(4.4) (i(,7)(,7)= I 1 -wa,, +w2a,n -a, +wa,n -w2a, ],-a, + wa,, I

which has two eigenvalues

1 1 2 21 + +

When 0 < w < 2, the eigenvalues , are not only real but also positive and, there-
fore, QiA corresponds to a symmetric positive definite (SPD) matrix suitable for
the conjugate gradient method. The condition number a of the operator QiA is
determined by

a(QA max,.

which is o be minimized by choosing an appropriate relaxation parameter 0 < < 2.
To deermine he condition number, i is convenien o rew_rie (4.5) as

x2y x
A+(x, y) 1 -- 4- (x2y2 4y + 4)1/2,

where 0 _< x a,u < 1 and 0 < y w(2- w) <_ 1. By taking the partial derivative
with respect to y for A+, we find that A+ and A_ are monotonically decreasing and
increasing, respectively, for given x. So, y 1 gives the smallest condition number
and the optimal relaxation parameter is 1. The corresponding eigenvalues in (4.5)
become

1 1 2(4.6) A,n,+ 1--a,n 4- -a,n.

The maxima of Ae,n,+ are 1, and the minimum of Ae,n,_ is 1- cos2(rh) r2h2, which
occurs at (, r/) (1, 1). Therefore, the condition number of the SSOR preconditioned
Laplacian is

1 1
(4.7) ,(Q-A)

1 cos2(rh) r2h2 O(h-2)"

The distribution of the eigenvalues A,n,+ given by (4.6) is plotted as a function of
a,n in Fig. 2(a). The surface plot of the eigenvalue A,n,_ as a function of (0, )
(,-rh, rprh) is presented in Fig. 2(b). Note that the condition number of the Laplacian
is

1 + cos(rh) 4
1 cos(rh) r2h2"

Hence, for small h, the red/black SSOR preconditioner only reduces the condition
number of the original matrix by a factor of 4.
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10

I0-!

10-:
0.2 0.4 0.6 0.8

(a)

(o,x)

(o,o1 -/
O (x,o)

(b)

FIG. 2. (a) The eigenvalues A+ o] the SSOR-preconditioned system as functions of a,n and
(b) the surface plot of A+ as a unction o (0, qb) with h 0.05.
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4.2. ILU preconditioner. An incomplete factorization for a matrix can be de-
termined by imposing specific sparse patterns and constraints for elements on the
factorizing matrices as well as their product. Since the construction of a matrix spec-
ifies not only a system of equations but also an ordering scheme for the variables,
the incomplete factorization depends highly on the ordering. In this and the follow-
ing sections, we study the spectra of two well-known preconditioners, i.e., the ILU
and MILU preconditioners, which are constructed based on incomplete lower/upper
triangular factorization.

The ILU and MILU factorizations were originally defined in [25] and [17], respec-
tively. We summarize their definitions as follows. It is required for both the ILU and
MILU factorizations that the factorizing lower and upper triangular matrices have the
same sparse patterns as the lower and upper triangular parts of the original matrix.
Besides, the off-diagonal nonzero elements of the original matrix should have the same
values as the corresponding elements of the product matrix. The major difference be-
tween them is that the ILU factorization requires that the diagonal elements of the
original and product matrices be also the same whereas the MILU factorization re-
quires that the row sum of the product matrix differ from the row sum of the original
matrix by a small quantity ch2, where c is a constant independent of h.

The factorizing operators generally have different coefficients associated with dif-
ferent grid points due to the boundary effects. However, these coefficients usually
reach their asymptotic constant values for the region sufficiently far away from bound-
aries. In the following analysis, we ignore the boundary effect and analyze the pre-
conditioned system with the asymptotic preconditioners.

For the ILU factorization, consider the following local operators:

1, (j,k) red,
Lj,k 1 1/4 (E + E + E/ + E), (j, k) black,

Uj, { I- 1/4 (E +E + Eu + (j, k) red,
(j, k) black.

With the red/black ordering, the global operators L and U correspond to lower and
upper triangular matrices. Since the operator Lj,k (or Uj,k) has nonzero coefficients
for the terms 1, Ez, E-, Ey, and E-, the sparse pattern of L (or U) is the same as
that of the original matrix A for the lower (or upper) triangular part. We define the
global operator QI to be the product of the lower and upper global operators

QI LU.

Let R QI A. Then R consists of the local operators

0,
R:i,k (EEy / EIEy + E.E / E;1E)

2 -2 2 -2+ E +E +E +E

(j, k) red,

(j, k) black,

for points not close to the boundaries. Note that the operator (QI)j,k has the same
coefficients as Aj,k (i.e., Rj,k 0) for terms corresponding to 1, Ex, E, Ey, and

E-, which constitute the nonzero terms for the sparse matrix A. Note that the
sparse patterns of L, U, and QI described above are consistent with the sparsity
conditions required by the ILU factorization. We conclude that QI is the desired ILU
preconditioner for the Laplacian with the red/black ordering.
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RED/BLACK FOURIER ANALYSIS 779

In the Fourier domain, we have

Therefore, the ILU preconditioned operator Q-/1A has the spectral representation

107x(’)(’) 0 43]4 2

which has two real and positive eigenvalues

1, g ,,.
The condition number of the ILU preconditioned Laplacian can be determined by

(4.9) a(QTIA) max’n IA’nl max,,n -(1 a,n) 1 2),. =O(h-
min,v IA,ul min,u 34-(1 ,u) r2h2

where the maximum value occurs when a,n 0 and the minimum value [1-
cos2(rh)] occurs at (, y) (1, 1). By the ILU preconditioning, we reduce the con-
dition number of A approximately by a factor of 4. The distribution of the two
eigenvalues , (4.8) as a function of a,n and the surface plot of the eigenvalue
4(1 a2
5 ,) as a function of (, ) (rh, rh) are shown in Figs. 3(a) and 3(b).
The corresponding plot of the natural ordering case can be found in [13], where the
condition number of A is reduced approximately by a factor 2(2 +

4.3. MILU preconditioner. For the MILU factorization, consider the follow-
ing local operators:

(j, k) red,
(j, k) black,

(j, k) red,
(j, k) black,

where ch2. The sparse patterns of L and U given above are the same as those
for the ILU factorization, but they have different weighting coefficients. The global
operator QM is defined to be the product of the lower and upper global operators

QM LU.

Let R QM A. Then R consists of the local operators

+ y- [-1/4 + (ExEy + EEy + ExE; + E’E)
+6(E2 + E-2 + Ey2 + E-2)],

(j, k) red,

(j, k) black,

for points not close to the boundaries. Note that (QM)j,k has the same coefficients
as Aj,k (R.i,k 0) for terms Ex, E-, Ey and E-, which are nonzero off-diagonal
entries of the matrix A. However, unlike the ILU case, the matrices A and QM do
not have the same diagonal entries. Instead, we find that the sum of coefficients of
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I0

I0-I

0 0.2 0.4 0.6 0.8

(a)

(o,o)

(,,o)

(b)

(O,u)

FIG. 3. (a) The eigenvalues of the ILU-preconditioned system as functions of c,n and (b) the
surface plot of the nonconstant eigenvalue as a function of (0, ok) with h 0.05.
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RED/BLACK FOURIER ANALYSIS 781

the local error operator R.i,k equals 6. This implies that the row sums of matrices A
and QM differ by a quantity of 5. By definition, QM is the MILU preconditioner for
the Laplacian with the red/black ordering.

The Fourier transform of QM gives

Hence, the MILU preconditioned operator has the spectral representation

1 [ i(l+l-a’") -a,,(i+ ’’-1 ]1+6 i+6

which has the eigenvalues

(4.10) 25(1 q- 5) q- (1 a,v)(1 -b 2i) +/- [(1 a,, 26a,u)2 q- 463a,v(2 q- 6)]1/2
+ +

Note that if 5 0 (i.e., c 0 ), (M(, 7) is a singular matrix that cannot be used as
a preconditioner. For c > 0, since

(4.11) 463a,n(2 q- 6) << (1 a,, 26a,,)2,

as h goes to zero, we can simplify (4.10) as follows:

26(1 + 6) -b (1 a,n)(1 / 2i) :k (1 a,v
26(1 + i)(2 / 6)

For small h and positive c, 1- a,n 26a,, is positive. So, A,n,+ and A,n,_ are
the larger and smaller eigenvalues, respectively. Then, the condition number of the
MILU preconditioned Laplacian is found to be

max,, [A,n,+,(QIA)
min,n IA,v,_
max:,u 5(1 a,, + ) + (1 a:,,)(1+2 6) 1

(4.12) 6(2 + 6) 2ch O(h-2)’

where the maximum value (1 + 5)2 occurs when a,, 0.
For fixed h, the optimal parameter c and the corresponding condition number

,(QIA) can be determined by solving (4.10) numerically. The condition number
,(QIA) is plotted as a function of the parameter c with different h in Fig. 4.

For small c c <_ 5 ), the condition number behaves very close to (2ch2)-1 as
predicted by (4.12). For c >> 5, condition (4.11) is no more valid, and we see that
,(QwlA) remains approximately the same for a wide range of c. Thus, the condition
number is not sensitive to the selection of the relaxation parameter, as long as it is
in the appropriate range. For these values of h used in Fig. 4, the optimal condition
number is achieved when c ,, 5. Thus, we know from the above analysis that the
condition number of the original Laplacian is improved approximately by a factor of

D
ow

nl
oa

de
d 

01
/2

6/
14

 to
 1

32
.1

74
.2

55
.3

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



782 C.-C. J. KUO AND T. F. CHAN

103

102

(c)

(b)

f101)0 10 102 10

FIG. 4. The condition number of the MILU-preconditioned system as a function of the param-
eter with (a) h 1/5, (b) h 1/10, (c) h 1/15, and (d) h 1/20.

8c/2 4. This improvement is about the same as that for the red/black ordered
SSOR and ILU preconditioners.

The distribution of the eigenvalues A,v,+ given by (4.10) with 5 5h2 (i.e., c 5
is plotted as a function of a,v in Fig. 5(a). Note that the eigenvalue A,v,_ is nearly a
constant. The surface plot of the eigenvalue ),u,+ as a function of (, ) (rh, rprh)
is shown in Fig. 5(b).

5. Analysis of the multigrid (MG) method. Multigrid (MG) methods pro-
vide one of the most effective ways for solving elliptic PDEs. The multigrid iteration
is often modeled by a (h, 2h) two-grid iteration process so that its mechanism can
be easily understood. The efficiency of the two-grid (or multigrid) iteration is based
on a simple idea- to treat error components of low and high frequencies differently.
Suppose that we partition the Fourier domain into two regions of which the low
frequency region contains 1 _< , r] < M/2 and the high frequency region contains
M/2 <_ <_ M-1 or M/2 _< y g M-1. The mechanism of the two-grid itera-
tion with the damped Jacobi or the lexicographical (naturally ordered) Gauss-Seidel
smoother can be easily explained. That is, the high frequency error is smoothed at
the fine grid, whereas the low frequency error is corrected at the coarse grid. Thus,
the study of the error smoothing over the high frequency region provides a rough
estimate of the convergence behavior of the multigrid iteration. This is known as the
smoothing rate analysis [10].

It is known that MG with the red/black Gauss-Seidel smoother performs better
than MG with the damped Jacobi or the lexicographical Gauss-Seidel smoother for
the model Poisson problem [29]. However, the efficiency of the red/black Gauss-
Seidel smoother cannot be appropriately explained by the smoothing rate analysis.
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I0

I0-1
0 0.2 0.4 0.6 0.8

(a)

(o,)

(o,o)

(,o)

(b)

FIG. 5. (a) The eigenvalues of the MILU-preconditioned system as functions of a,n and (b)
the surface plot of the nonconstant eigenvalue as a function of (0, ) with h 0.05.
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To see this, let us examine the red/black Gauss-Seidel iteration matrix in the two-color
Fourier domain

0 cz,v ]0

which is obtained from (3.3) with w 1. The smoothing rate # is usually defined as

# max P[RBGS(, W)] cos2(rh) " 1 r2h2,

where

{ M M }Khigh (, r/)" , r/ ( I,-- _< _< M- 1 or -- _< r/_< M- 1

and the maximum value occurs at y M- 1. This shows that the red/black
Gauss-Seidel smoother has a very poor smoothing rate as compared to the natural
ordering case for which the smoothing rate is 1/2 [10].

Since the smoothing rate analysis does not explain how the MG method with the
red/black Gauss-Seidel smoothing works, it is essential to perform a complete two-
grid analysis, which includes both smoothing and coarse-grid correction. A two-grid
analysis was performed by Stiiben and Trottenberg by using modified Fourier analysis
[29]. Here, we use the framework of two-color Fourier analysis to analyze this method.
Our objective is to give a clearer explanation of the physical mechanism behind this
method rather than to rederive the specific result obtained in [29]. We will show that
the two-color two-grid iteration process asymptotically reduces to a one-color two-grid
iteration process that is much easier to understand.

5.1. Framework of the two-color two-grid analysis. We summarize the
two-grid iteration model, which is discussed in detail in [29], as follows. Let Lh and
L2h be the 5-point discretizations of the Laplacian on grids flh and t2h. Consider
the full-weighting restriction operator Ih from th to fl2h and the linear interpolation
operator Ih2h from fl2h to gth, which are usually represented in stencil form as

(5.1) I"
16 8 16

8 4 8

16 8 16

2h hI
4 2 4

4 2 4 2h

Then, a (h, 2h) two-grid iteration matrix with the red/black Gauss-Seidel smoothing
can be written as

Th (SlBOS)2Kh(SpBGS)I, Kh Ih i2hL2hh ih2hLh,

where Ih is the identity matrix, Pl and v2 are the numbers of presmoothing and
postsmoothing iterations. We want to determine the spectral radius 2hp(Th )and,
more importantly, to explain how the two-grid iteration (5.2) works.

In the current context, (, /) is nondegenerate if 1 < , r/< M/2 and degenerate if
M/2 or l M/2. We consider only the nondegenerate case, and the degenerate

case can be treated similarly [21]. Let , be the Fourier coefficient of the error,
and let #, and , be the Fourier coefficients of the error defined at the red and
black points, respectively. Through the iteration (5.2), four Fourier components
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RED/BLACK FOURIER ANALYSIS 785

,M-?, M-,, and M-,M- with 1 _< , y < M/2, are coupled together. Hence,
the spectrum of Th can be analyzed by focusing on a subspace spanned by these
four components. Stiiben and Trottenberg used the unit vector of these four Fourier
components as a basis. Here, we use a different basis obtained by

where

(M , r/)(I, r]l) (, M y)

Note that the new basis is basically obtained by folding the conventional Fourier
domain into two-color Fourier domain as shown in (2.4), and therefore the above
transformation maps the coupled four Fourier components ,, ,M-n, M-,n, and
M-,M- into red and black waves with indices (, ) and (I, I) (Fig. 6).

We choose the convention that each 4 x 4 frequency domain matrix describes a
mapping from a vector space spanned by

onto itself for the rest of this section. To simplify the notation, the abbreviations

+ +
cos rh cos rprh, / cosrh cosh,

are used. We also omit the subscripts , r], t and yt for a, 6, and / and the
arguments , y for frequency domain matrices.

5.2. Analysis of elements for two-grid iteration. The building blocks for
the two-grid iteration process (5.2) are analyzed in this section. In the two-color
Fourier domain, the red/black Gauss-Seidel iteration can be represented by

(5.3) tB(S= J 0 0 I 0 2

where 0 is the 2 x 2 zero matrix, I is the 2 x 2 identity matrix, and

In addition, the frequency domain matrices for operators Ih, Lh, and Lh in (5.2) are

and

h2

(5.4b) L -, 5 2a2
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(a)

(0,)

(0,0) (x,O)

(b)

FIG. 6. Four coupled Fourier components in (a) conventional and (b) two-color Fourier domains.
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RED/BLACK FOURIER ANALYSIS 787

In (5.3) and (5.4), there is no coupling between vectors (?,v, D,r/)T and (’,v’, D’,v’) "T
The coupling between them comes from the full-weighting restriction and linear in-
terpolation operations. The decomposition, commonly used in the multirate signal
processing context [15], is very useful for understanding the physical mechanism of
interpolation and restriction operators, and for deriving their frequency domain ma-
trices. Conceptually, we decompose the restriction procedure Ih2h into two steps.
Step 1. Lowpass filtering or averaging at every point of fh, where the

weighting coefficients are specified by stencil Ih of (5.1).
Step 2. Down-sampling or injecting values from h to "2h.
The interpolation operator Ih2h is also decomposed into two steps.
Step 1. Up-sampling values from -2h to "h, by which we assign 0 to points

that belong to ’h ’2h
Step 2. Lowpass filtering at every point of fh, where the weighting coeffi-

cients are specified by stencil Ih2h of (5.1).
It is relatively easy to find a frequency domain matrix representation for each of the
above steps. Combining them together, we obtain

1+ 0 2a 0
1 0 1 +/) 0 2& 111 + 3 1 + 2a 2],/h [1 1 0 0] x

2a 0 1 + fl 0
0 25 0 1+

and

1 + 0 2a 0 1 1 +2hh__ 0 1+ 0 25 1 1 1 1+
2a 0 1 +/3 0

x
0 2a

0 25 0 1 +/) 0 25

Note that in the frequency domain the down-sampling operation adds the high fre-
quency component -,,,, to the low frequency component ,,. This phenomenon
is known as aliasing [15]. On the other hand, the up-sampling operation duplicates
the low frequency component e,, in the high frequency region in the form of-,,,,
which is called imaging [15]. The lowpass filters cascaded with the down-sampling
and the up-sampling operators are basically used to reduce the aliasing and imaging
effects. For example, for low frequency components with rh and rprh close to 0, we
have a 1, /3 . 1, & . 0, and/ -1. Hence, the aliasing and imaging effects
occurring between (,, D(,r/)T and (e,,n,, D(t,r,)T are substantially eliminated by the
associated lowpass filters.."rouc+ fh f2hThe 2hh

where

can be expressed as

]] 1[ -11

(1 + )= (1 + 3)(1 + )/
(1 + )(1 + ) (1 + )=

4a2 4a5 ]4a5 452

2a(1 + )/2-/ 2a(1 + )
25(1 +) ]25(1 + )
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788 C.-C. J. KUO AND T. F. CHAN

Therefore, from (5.2), (5.4), and (5.5), we obtain the frequency domain matrix for the
coarse-grid correction operator

where

k -[-], k x-[-1,
k12 --[113- 121, 21 --[223- 21].

The remaining task is to combine results of (5.3) and (5.6) so that the spectral radius
p(h) can be determined.

5.3. Two-to-one wave reduction. The analytical determination of the eigen-
values of the two-grid iteration matrix h is, in general, a difficult task since it is
a 4 x 4 matrix. However, if the red/black Gauss-Seidel smoother is used, the whole
process is greatly simplified. When the first partial step of the red/black Gauss-Seidel
iteration, i.e., the Jacobi iteration at red points, is performed, the values of the red
points are updated by the values of their neighboring black points and their original
values are totally discarded. As a consequence, the computational process that follows
is only determined by the initial values of the black points. This is clearly indicated
by the first two zero columns in (5.3).

For the two-grid iteration process (5.2), let us temporarily consider the special
case (, 2) (1, 0). For such a simple case, we find that

(5.7) ,= [ 0 + ]o R:2+R2

and the spectral radius ofh is

(22) (k2 +

The two-to-one color reduction is mathematically clear from equations (5.7) and (5.8),
namely, that (5.8) involves the evolution of black waves only. We can interpret its
corresponding physical mechanism as follows. The two-grid iteration process ,h
consists of two processes

12 kllJ -"/12]2, 22 k2J + k22j2,

which describe the evolution from (b,u,-b,,,y)T to (r,u,-r,,,,)T and (b,u,-b,,,,)T,
respectively. Since the m-fold repetition of Th gives

^2h m . rm-1(Th) ]12 1222 [(22.)]22 "-T2

the convergence of the two-grid method depends entirely on the process 22. Hence,
the two-color two-grid iteration process (5.2) can be equivalently characterized by the
black-wave two-grid iteration process.

For general (vl, v2), since

2h v2 ,2h vo[T[ (ux, u2)] O(IBGS h SRBGS) O(khRBGsVl+v ),
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RED/BLACK FOURIER ANALYSIS 789

where the last equality comes from the fact p(AB) p(BA), we can derive that

+
where u u + u2. Let us examine the matrix

+
which represents a one-color two-grid iteration process and, due to (5.6), can be
expressed as

where

26 26

26 26

is the equivalent one-color coarse-grid correction operator in the frequency domain.
Since p(a/q-i) p(/qa), we see that can be viewed as the equivalent one-

color smoother eq, which corresponds to two Jacobi relaxation steps for the blck
component b,v.

5.4. The spectral radius result. The equivalent one-color two-grid iteration
matrix can also be determined for the degenerate cse M/2 or W M/2 [21].
Then, the spectral radius of the two-grid iteration matrix can be found by solving

p(Th)= max P(eq).

In [29], Stfiben and ottenberg reduced their analysis to the determination of the
largest value among all the spectral radii of the frequency domain matrices 2eq.
Since we have p(eq2u-) p(2eq), these two different derivations lead to the
same final result. A closed form of this quantity has been derived in [29, pp. 104-108],
which is summarized as follows:

(5.9) p[Th(u u + u2)] ’ u 1,
u+l() u2.

In the above expression, the maximum of p(Th) occurs at (rh, wrh) (r/2, 0)
or (0, r/2) when u 1 and at (cos-[(u/u + 1)]],cos-[(u/u + 1)]]) when u 2.

By using the two-color Fourier analysis, we can clearly see why MG with the
red/black Gauss-Seidel smoother has a good convergence behavior in spite of its
poor smoothing property for the high frequency components. Through the red/black
Gauss-Seidel iteration, the low and high frequency components are coupled and can
be equivalently formulated as the coupling between red and black waves with the same
low frequency component. It turns out that only the black wave plays n role and that
the low frequency component of the black wave is solved by coarse-grid correction.
Thus, we conclude that the very high frequency components, namely, those with (0, )
close to (r, r), are in fact corrected at the coarse grid rather than smoothed at the
fine grid. Such an explanation is difficult to obtain using the analysis given by [29].
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6. Convergence rate comparison for natural and red/black orderings.
6.1. SOR and SSOR methods. Fourier analysis has been used to analyze the

naturally ordered SOR and SSOR iteration methods for the Poisson problem on a
square with the periodic boundary conditions by Chan and Elman [13]. It is shown
that the optimal relaxation parameters for both cases are the same,

(6.1) w* (natural ordering; periodic b.c.)

and the corresponding spectral radii are

1 + 2 sin(0.5rh)’

(6.2) PsoR(natural ordering; periodic b.c.) 1 -0.5rh,

(6.3) pssoR(natural ordering; periodic b.c.) 1 rh.

For the model Dirichlet problem, Frankel derived a classical Fourier result for the SOR
iteration with the natural ordering [18]. That is, the optimal relaxation parameter is

2
(6.4) w* (natural ordering; Dirichlet b.c.)

1 + sin

and the corresponding spectral radius is

(6.5) PsoR(natural ordering; Dirichlet b.c.) . 1 2rh.

This result was interpreted by LeVeque and Trefethen from a tilted-grid point of view
[24]. Although there is no Fourier result of the naturally ordered SSOR iteration for
the Dirichlet problem, it can be shown by matrix analysis that

(6.6) PssoR(natural ordering; Dirichlet b.c.) <_ 1- rh,

and that the convergence rate is not sensitive to the choice of the relaxation parameter
[19],[32]. Note that (6.1)-(6.3) agrees with (6.4)-(6.6) asymptotically except for the
constant multiplying h in (6.2) and (6.5).

By comparing the above results with those in 3, we can clearly see that for
the SOR iteration the red/black ordering does not effect the choice of the optimal
relaxation parameters (cf. (3.5) and (6.4)) and the rate of convergence (cf. (3.6)
and (6.5)). However, for the SSOR iteration, the situation changes drastically. If the
red/black ordering is used, the acceleration due to the introduction of the relaxation
parameter totally disappears (cf. (3.11), (6.3), and (6.6)).

6.2. Preconditioners. Chan and Elman also applied Fourier analysis to an-
alyze the eigenstructures of the preconditioned system with the periodic boundary
conditions and the natural ordering [13]. Their results are summarized as follows:

(6.7) (QlA)(natural ordering; periodic b.c.) O(h-1),

(6.8) (Q-A)(natural ordering; periodic b.c.) O(h-2),

O(h 2

(6.9) (QA)(natural ordering; periodic b.c.) O(h-) coC0
where Qs, Qx, and (M denote the SSOR, ILU, and MILU preconditioning operators.
Although no Fourier result for the naturally ordered Dirichlet problem is available,
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TABLE 1
Comparison of convergence rates.

ordering SOR SSOR PCG MG
natural O(N1/2) O(N/2) O(N/4) O(1)
red/black O(N/2) O(N) O(N1/2) O(1)

TABLE 2
Comparison of the spectral radii for the MG method.

ordering u=l u=2 u=3
natural 1/2 1/4 1/8
red/black 1/4 2/27 27/512
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these results agree with the known results for the Dirichlet case (see the references
of [13]) and numerical experiments indicate that the eigenstructures for the periodic
and Dirichlet cases behave in a very similar way [13].

By examining (4.7), (4.9), and (4.12), we see that the preconditioned system with
the red/black ordering, in general, does not decrease the order of the condition number
of the original Laplacian. In fact, the condition number is reduced approximately by
a factor 4 for SSOR, ILU, and MILU preconditioners. In contrast, effective naturally
ordered preconditioners such as SSOR and MILU can decrease the condition number
of the Laplacian by an order of magnitude. Thus, as far as the convergence rate
is concerned, a red/black preconditioned iterative method usually converges much
slower than a naturally ordered preconditioned iterative method.

The condition number analysis of the red/black ordered preconditioners is consis-
tent with the experimental results reported by Ashcraft and Grimes [5] and to the
best of our knowledge, no such analysis has been reported before.

6.3. MG methods. So far, there is no exact Fourier result for the two-grid
analysis of the model Dirichlet problem with natural ordering. However, a simplified
local Fourier analysis that assumes ideal interpolation and restriction operators and
ignores the boundary conditions has been performed by Brandt [10]. The smoothing
rate # of one lexicographical Gauss-Seidel relaxation is found to be 1/2 by such an
analysis. When the total number u of the smoothing iteration is small, we can roughly
estimate the spectral radius of two-grid iteration matrix from the smoothing rate by

1
(6.10) pMc(natural ordering) #u ()v.
Therefore, from (5.9) and (6.10), we see that the red/black Gauss-Seidel smoother
has a better smoothing rate than that of the lexicographical Gauss-Seidel smoother.

6.4. Summary of comparison. We summarize the above comparison in Table
1, where each entry denotes the number of iterations required and N is the number of
unknowns. The spectral radii of the MG method, which are calculated by (5.9) and
(6.10), are also compared in Table 2.

7. Related work. Most research work on iterative algorithms with the multi-color ordering has been focused on the SOR method. To achieve the efficiency of
the SOR iteration, the determination of the optimal relaxation parameter is crucial.
However, except for a few simple cases such as the model Poisson problem, this is,
in general, a difficult task. A local two-color Fourier analysis has been proposed by
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Kuo, Levy, and Musicus [23] to design a local relaxation scheme that uses different re-
laxation parameters for different finite-difference equations associated with each grid
point. The four-color SOR iteration applied to the 9-point Laplacian has been inde-
pendently studied by Adams, LeVeque, and Young [3] and Kuo and Levy [22]. The
technique used by Adams, LeVeque, and Young is to change the variable of iteration
number to a new variable known as the "data flow time" defined by Adams and Jor-
dan [2]. By using such a technique, the multicolor ordering scheme can be related
to the natural ordering scheme and then analyzed by a modified Fourier analysis.
In [22], Kuo and Levy used a four-color Fourier analysis to design a two-level SOR
scheme that includes an outer block SOR iteration and an inner point SOR iteration.
The four-color Fourier analysis is a natural generalization of the two-color Fourier
analysis presented in this paper. In addition to the four-color ordering, O’Leary has
considered several other ordering schemes for the 9-point Laplacian and has shown
that the convergence rate of the SOR iteration with these orderings is no worse than
that for the natural ordering [26].

8. Conclusions and extensions. We conclude our study simply as follows.
Although some algorithms such as the SOR and MG methods can be reordered to get
more parallelism without sacrificing their convergence rates, some algorithms such as
the SSOR and preconditioned iterative methods do have a trade-off in achieving more
parallelism and faster convergence.

A natural question that arises from this research work is: what is the "intrinsic
property" of these algorithms that makes them behave so differently with respect to
the reordering? A better understanding of this fundamental issue should help us to
know more about parallel computation and its limitation. The question of the poor
performance of the red/black SSOR, ILU, and MILU preconditioners can be partly
answered by the observation that at each iteration the red/black preconditioners use
only local information, whereas the naturally ordered preconditioners do make use of
some global information.

The preconditioned iterative methods such as the PCG method are among one of
the most effective methods for solving elliptic PDEs in a sequential machine. However,
since effective preconditioners such as the naturally ordered SSOR and MILU schemes
cannot be easily parallelized, they are not as attractive for parallel computers. It is
an interesting and important research topic to find preconditioners that are easily
parallelizable and give satisfactory convergence rates.
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