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A digital signal processing (DSP) approach is used to study
numerical methods for discretizing and solving linear elliptic par-
tial differential equations (PDEs). Whereas conventional PDE anal-
ysis techniques rely on matrix analysis and on a space-domain point
of view to study the performance of solution methods, the DSP
approach described here relies on frequency domain analysis and
on multidimensional DSP techniques. This tutorial paper dis-
cusses both discretization schemes and solution methods. In the
area of discretization, mode-dependent finite-difference schemes
for general second-order elliptic PDEs are examined, and are illus-
trated by considering the Poisson, Helmholtz, and convection-dif-
fusion equations as examples. In the area of solution methods, we
focus on methods applicable to self-adjoint positive definite ellip-
tic PDEs. Both direct and iterative methods are discussed, which
include fast Poisson solvers, elementary and accelerated relaxation
methods, multigrid methods, preconditioned conjugate gradient
methods and domain decomposition techniques. In addition to
describing these methods in a DSP setting, an up-to-date survey of
recent developments is also provided.

I. INTRODUCTION

Many physical and engineering systems are described by
partial differential equations (PDEs). It is generally impos-
sible to obtain closed-form analytical solutions for these
equations due to the irregularity of problem domains, and
because coefficients are usually spatially varying. Conse-
quently, the numerical solution of PDEs plays an important
role in understanding and simulating a wide variety of phys-
ical phenomena. Since the late 1940s, the gradual emer-
gence of high-speed computers, culminating with the intro-
duction of supercomputers, has made it possible for
researchers to test and develop new PDE solution tech-
niques. The amount of research activity concerned with the
numerical analysis of PDEs has therefore been growing very
rapidly. Many discretization schemes, computational algo-
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rithms, and novel computer architectures have been pro-
posed to solve PDEs efficiently. In spite of these develop-
ments, the numerical solution of PDEs is still one of the most
challenging areas of numerical analysis due to the versatile
and often complicated structure of PDEs, and because of
the large amount of variables that need to be computed for
two or higher dimensional probiems.

In this survey, we focus our attention on the discreti-
zation and solution of 2-D second-order linear elliptic PDEs
of the form

8u du du ou

aﬁ+ba—y2+ca+d3);+eu=f (1.1)
with ab > 0, where the coefficients are in general functions
of x and y. Elliptic PDEs are often used to characterize the
steady-state behavior of physical systems defined over a
bounded domain. In this context, boundary conditions rep-
resenting experimental conditions are usually imposed on
the domain boundary, thus yielding a boundary-value
problem. The familiar Laplace, Poisson, Helmholtz and con-
vection-diffusion equations are all special cases of (1.1). The
solution of (1.1) has therefore a wide range of applications
[13], (88].

Elliptic PDEs can be divided into self-adjoint positive def-
inite, indefinite and nonself-adjoint equations, depending
on the eigenvalues of the associated differential operator.
If an operator is self-adjoint, it has a real spectrum (eigen-
values). Furthermore, if it is positive definite, all its eigen-
values are positive. The discretization of self-adjoint pos-
itive definite differential operators leads to symmetric
positive definite (SPD) matrices. In contrast, the discreti-
zation of nonself-adjoint elliptic operators gives rise to non-
symmetric matrices whose eigenvalues are in general com-
plex. It is customary to use the Poisson, Helmholtz, and
convection-diffusion equations on the unit square = [0,
11* with appropriate boundary conditions as model prob-
lems for self-adjoint positive definite, indefinite and
nonself-adjoint elliptic PDEs, respectively. They can be
expressed as follows.

Poisson equation:

—§+—2=f (1.2)
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Helmholtz equation:

2 2
%+‘;—y‘;+w2u=f (1.3)

Convection-diffusion equation:

2 2
§%+a—%+ca—u+d§g=f. (1.4)
ax dy ax dy

Generally speaking, the numerical solution of PDEs
involves two tasks: (a) choosing a discretization scheme to
transform the PDE of interest into a discrete problem that
approximates it, and (b) selecting a solution method for the
discretized problem. These two tasks are usually per-
formed separately for single grid solution techniques, but
they are combined for multigrid methods. For expository
purposes, since the goals of the discretization and solution
steps are different, they will be examined independently.
In this paper, we study the discretization of all three model
problems (1.2)-(1.4). As to solution methods, the design and
analysis of iterative algorithms for solving self-adjoint pos-
itive definite elliptic PDEs has reached an advanced state
of development, whereas a complete theory is not yet avail-
able for indefinite and nonself-adjoint PDEs. Thus, we focus
on the solution of self-adjoint positive definite PDEs mod-
eled by the Poisson equation (1.2).

Our exposition relies on a Digital Signal Processing (DSP)
approach [31], [34], [78], [85]. From the DSP viewpoint, 2-D
differential and finite-difference operators correspond to
2-D analog and digital filters, respectively. The discretiza-
tion of PDEs specifies an approximation problem, i.e., how
to match the spectra of analog and digital filters. The solu-
tion of PDEs requires the implementation of a deconvo-
lution filter which recovers the input u from the output f
given by (1.1). Thus, the discretization and solution of PDEs
can be formulated as multidimensional filter specification
and filter design problems, respectively.

Akey step in deriving discretization schemes is the selec-
tion of a set of test functions for which the discretized oper-
ator must behave in the same way as the original differential
operator. [t turns out that a good set of test functions can
be chosen by using concepts of linear systems theory.
Roughly speaking, they are obtained by examining the zeros
of the system function corresponding to the differential
operator. This approach leads to the mode-dependent dis-
cretization scheme described in Section I1.

The discretization procedure leads to a system of finite-
difference equations, which are often solved iteratively. The
convergence rate of iterative methods is traditionally stud-
ied within the framework of matrix iterative analysis [14],
[96], (102]. This form of analysis uses tools from numerical
linear algebra, where special concepts such as those of
L-, M-, and consistently ordered matrices and related in-
equalities are introduced to facilitate the characterization
of the convergence property. The advantage of matrix anal-
ysisisits general applicability. It can be applied to PDEs with
irregular geometries and spatially varying coefficients, or
which are discretized with nonuniform grids, as long as the
corresponding iteration matrices satisfy the desired prop-
erties.

An approach complementing the matrix formulation
relies on model problem analysis, whereby the conver-
gence rate of a given iterative method is analyzed for a sim-
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ple model problem. This form of analysis has several advan-
tages. First, it is much simpler and therefore provides some
insight into the behavior of the algorithms that we study.
Secondly, the estimates that are provided by this approach
for parameters such as the optimum relaxation parameter
for the Successive Over-Relaxation (SOR) method, or the
smoothing rate of multigrid methods, are usually much
sharper than comparable estimates provided by matrix
analysis. Finally, the actual convergence behavior of an iter-
ative method for a general class of problems can be well
predicted by the model problem approach, as long as the
model problem is chosen appropriately.

The model problem approach relies heavily on Fourier
analysis. In this survey, we show that it is in fact closely
related to the digital filtering concept appearing in multi-
dimensional DSP. Note that this relation was also pointed
out in the earlier work of [15] and [90], but only briefly. Sev-
eral examples are given below. Accelerated relaxation
methods such as the SOR and Chebyshev iterative methods
can be viewed as parametrized lowpass filters for the error
between the initial guess and the true solution, where the
parameters are chosen to optimize the filtering character-
istics. The incomplete LU preconditioning technique for
the conjugate gradient method can be interpreted as cor-
responding to the approximation of a 2-D noncausal FIR
filter by the product of two causal and anticausal 2-D FIR
filters. The difficulty in that respect lies in the fact that since
2-D polynomials are generally not factorable, the 2-D causal
and anticausal filters obtained by spectral factorization have
infinite support, and need therefore to be approximated.
Finally, if we consider multigrid solution methods, the
interpolation and restriction operators appearing in the
description of these algorithms are special cases of sam-
pling-rate conversion operations occurring in multirate sig-
nal processing. The details of all the above examples will
be discussed below. The main purpose of these examples
is to illustrate the fact that many tools and concepts arising
in the solution of elliptic PDEs are amenable to interpre-
tation and analysis from the point of view of multidimen-
sional DSP.

This survey contains two parts: the first part (Section 1)
considers discretization schemes, whereas the second part
(Sections I11-1X) examines solution methods. Readers seek-
ing to locate quickly topics of interest may want to consult
the following table of contents.

1. Mode-Dependent Discretization
A. The Mode-Dependent Finite-Difference Discretiza-
tion Approach
B. Discretization of Homogeneous Boundary-Value
ODEs
C. Discretization of Homogeneous Boundary-Value
PDEs
D. Historical Notes
1I. Solution of Self-Adjoint Positive Definite Elliptic PDEs:
Problem Formulation
A. The Model Poisson Problem
B. Orderings
C. Fourier Analysis
D. Summary
IV. Direct Methods
A. FFT Solvers
B. Other Direct Methods
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V. Relaxation Methods and Their Acceleration
A. Elementary Relaxation Methods
B. SOR Acceleration
C. Polynomial Acceleration
D. Historical Notes

VI. Multigrid Methods
A. Two-grid Iteration
B. Solution of the 1-D Poisson Problem
C. Solution of the 2-D Poisson Problem
D. Historical Notes

VII. Preconditioned Conjugate Gradient Methods
A. The Preconditioned Conjugate Gradient (PCG) Algo-

rithm

B. Preconditioners Based on Incomplete Factorization
C. Multilevel Preconditioners Based on Filtering
D. Historical Notes

VIII. Domain Decomposition Methods
A. Capacitance Matrix Formulation
B. Fourier Analysis of the Capacitance System
C. Preconditioners for the Capacitance Matrix
D. Historical Notes

IX. Parallel Computation

Finally, we discuss future extensions and present some con-
cluding remarks in Section X.

I, MoODE-DePENDENT DISCRETIZATION

Three types of discretization techniques, the finite-dif-
ference, finite-element, and spectral methods, are com-
monly used to discretize spatial partial differential opera-
tors. In this section, we focus our attention on mode-
dependent finite-difference discretization schemes (which
constitute an extension of standard finite-difference meth-
ods), since they are particularly interesting from a digital
filtering point of view. The reader is referred to [72] and the
references therein for a discussion of the relation existing
between spectral and mode-dependent discretization
methods, and for a brief overview of mode-dependent
finite-element methods.

The analysis and design of mode-dependent finite-dif-
ference discretization schemes can be formulated in a sim-
ple way in the frequency domain. The Laplace and Z-trans-
forms are used to represent the constant-coefficient
differential operator and its discrete approximation by
polynomial expressions of the transform variables s and z.
Then, the selection of a mode-dependent discretization
scheme becomes equivalent to requiring that the spectra
of the continuous and discretized operators, and their
derivatives, should match each other at a number of fre-
quencies in the transform domain. In DSP terms, since we
require that the spectra of the continuous and discretized
operators should be as close as possible, the PDE discre-
tization problem can therefore be viewed as a filter spec-
ification and design problem.

A. The Mode-Dependent Finite-Difference Discretization
Approach

Consider a function of the form

% XZ x %
u(x) = Cho + CaX + Ca = + =0+ Cpp, —— €5
)= & kot Cu k2 5y ke (ol
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where each term xPe*™*, 0 < p < n,, is called a mode of
order p at the frequency s,. We are interested in approx-
imating a linear Rth-order constant-coefficient differential
operator operating on u(x),
R
LD) = ZO a,D’ @.1)
o

where D = d/dx, by a (r, — r, + 1)-point finite-difference
operator

r
Ly(E) = 2 b,E’ (2.2)

r=n
where E is the shift operator defined on an infinite uniform
grid Q, with spacing h, i.e. for nh, {n + nh € @, E'ulnh) =
u((n + nh). Ly corresponds to a forward, backward or cen-
tral difference operator depending on whetherr, =0, r, =

0 or —r, = r,, respectively. We denote by

P (s) = {u(x): u(x) = e™ ’Eo ckx"} 2.3)

the space spanned by polynomials of degree at most n mul-
tiplied by the factor e*. A mode-dependent finite-differ-
ence discretization scheme is obtained by selecting the
coefficients b, of L, such that

[Ly(E) — LD)]u(x) = 0,
foruix) e C and xe @, (2.4)

where C, which is called the coincident space of L, is the
direct sum of subspaces of the form (2.3), i.e.

K
C= ® P,s). 2.5)
k=1

A mode in the coincident space C is called a coincident
mode, and its frequency is called a coincident frequency.

The above mode-dependent finite-difference scheme
specification can be converted easily to the transform
domain. Let L(s) be the spectrum obtained by replacing D
with s in (2.1) through the use of the Laplace transform, i.e.,

R
Ls) = 2 a,s".
=0
Let also Ly(2) be the discrete spectrum obtained by using
the Z-transform to replace £ by z in (2.2), so that

L@ = 2 bz"= X be™

=n

where the last equality is due to the fact that since Eis related
to D via E = e"?[32], we have z = e*. Then, the difference
Abetween L and Ly can be expressed in terms of the variable
s as

Afs) = Ly(e®h) ~ L(s) 2.6)

and the mode-dependent finite-difference scheme speci-
fication (2.4)-(2.5) takes the form (see [72] for a proof)

APy =0;0=<psngl=<ks<K (2.7a)
where

dPA(s)
dsP

AP(sy) = (2.7b)

$ =Sk
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Itis usually easier to determine the coefficients b, of a mode-
dependent finite-difference discretization scheme by using
(2.7) rather than (2.4)-(2.5).

The key element in the specification of a mode-depen-
dent difference scheme is the choice of coincident space
C. In the following two subsections, we discuss the selec-
tion of C for several types of problems.

B. Discretization of Homogeneous Boundary-Value ODEs

Consider an Rth-order (R = 2m) homogeneous differ-
ential equation

2m
Lu=0, withl = Zo a,D" and a,, =1 (2.8)
re
on the interval [0, 1], with given boundary conditions. We
seek to discretize it with a (2m + 1)-point central difference
scheme on a uniform grid with spacing h. The characteristic
equation of (2.8) is
L(s) = s + @y 8" T+ -+ +as + a

f_s —sp™ =0 (2.9)

I

with £§_; n, = 2m, where s, is a natural frequency of L of
order ny. Then, the operator L has the 2m-dimensional
nullspace

K
NL = k?l Pm(—l(sk)'

To determine uniquely a 2m + 1)-point finite difference
scheme, we need to specify a 2m + 1)-dimensional coin-
cident space C. However, since a homogeneous finite-dif-
ference equation can be scaled by an arbitrary constant, a
2m-dimensional coincident space C is sufficient. An exact
discretization for (2.8) is obtained by selecting

C=N, (2.10)

For this choice, the relations (2.7) yield

K
Ly(z) = Az™™ kf_11 (z —z)™,  withz, =e*" (211
where A is a scaling factor and the multiplication factor z=™
is due to the fact thatwe want L 4(z) to be a central difference
scheme. The choice of scaling factor A does not affect the
solution of the discretized equation

Ly(F)ug = 0.

However, in order to analyze the discretization error A(s),
it is convenient to choose A such that Ly(e®") and L(s) are
consistent over fine grids. This constraint implies that A
must be proportional to h~>", as h goes to zero.

1D Laplace equation: For L(D) = D?, we know that N, =
{1, x}. The coincident modes have the same frequency s,
= 0. According to (2.11), we have

LyE) = AEME - 12 = AE -2+ FE™Y. (212

If we choose C = N, + {x?}, the constant A is uniquely
determined. We obtain A = h~?, and in this case (2.12)
reduces to the standard 3-point central difference scheme
for D2

1D convection-diffusion equation: Let L(D) = D* — aD,
witha # 0. Then, N, = {1,e*} and s, = 0, a, so thatin (2.11)
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we have
Ly(E) = AE"YE — 1)(E - &™)
=A[E — (1 4+ e?) + e®E"). 2.13)

if we select C = N, + {x}, we find that A = alhe® — 117",
and (2.13) becomes identical to a scheme considered by
Allen and Southwell [3].

C. Discretization of Homogeneous Boundary-Value PDEs

Consider a general 2D homogeneous boundary-value
PDE on the square [0, 11

LD, D)u =0, with L(D,, D) = p) a, DD} (2.14)
rs
where
i a*
ro = s — —
DX ax!' DY ays

with appropriate boundary conditions. We discretize (2.14)
with the finite-difference scheme

Ly(E, EJug =0,  where L(E,, E) = 2 b, ELE;  (2.15)

and where E, and £, denote respectively the shift operators
in the x-and y-directions on the uniform grid Q,, , obtained
by discretizing the unit square with horizontal and vertical
meshes h, and h,. Relying upon a natural generalization of
the 1D case, we have the following correspondences
between 2D space domain operators and transform domain
variables

D, © s,, D, o s, E ez, E, ©z, (2.16)

where s, = o, + iw, and s, = ¢, + iw,, and where the iden-
i hxDx — oD hxsx hys,
tities £, = e™, E, = ™™, z, = e™™ and z, = ™" are sat-
isfied. For simplicity, we now restrict our attention to the
case where h, = h, = h.

Substituting u = e****" inside (2.14), we obtain the char-
acteristic equation

% a,.s5sy = 0. (2.17)
ns

Since the complex equation (2.17) imposes only two real
constraints on the real and imaginary parts of the complex
variabless, and s, there are infinitely many solutions to this
equation and therefore infinitely many modes in N,. It is
not possible to approximate all modes in N, exactly. Thus,
we have to select a finite-dimensional subspace D, C N,
called the dominant-mode space, as the coincident space
C for Lg. The determination of D, depends on a rough esti-
mate of the local behavior of the solution. This information
is usually provided by the structure of the PDE operator and
of the boundary conditions. In this section, we restrict our
attention to the case where the dominant modes are either
oscillating or exponentially growing (decaying). In other
words, coincident frequencies are selected among the sets

{55, 5):(5x, 5,) = (0, 6} OF {(5, 5)):(50 5)) = (iwy, i)},
(2.18)
Laplace equation: Let L(D,, D)) = D2 + Dﬁ. Sinceonlyone
frequency (s,, s,) = (0, 0) satisfies the characteristic equation
and belongs to the sets (2.18), (0, 0) is selected as the unique

coincident frequency. In this case, the mode-dependent
and conventional discretization schemes are identical.
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The following 5-point, rotated 5-point and 9-point stencil
discretization schemes have been derived by several
approaches [32], (65], [80],

1

Ly (E, E) = e (Ec+ E+ E, + E' — 4) (2.19)

1

Lo x(Eq E) = 575 (E(E, + EE, + EE + EJ'ESY - 4)

(2.20)
1
LoolEy ) = g [HE, + B + E, + E)

+ (EE, + E'E, + EE + E'EY) — 20)
(2.21)

Itis well known that the accuracy of the above schemes for
discretizing the Laplace equation is O(h?, O(h? and O(h®),
respectively.

We present now another derivation of these schemes by
matching L(s,, s,) and L4(z,, z,) at the coincident frequency
(0, 0) in the transform domain. As before, we consider the
expansion of A = [; — L around (0, 0),

AGs,, s,) = A%%0, 0) + AV, 0)s, + %70, 0)s,
1
+ 5 [A%00, 05 + AV, 0125,5,
+ A%, 0)s]]

+ %

p+q=3,p,q=0

(2.22)

1
(P.q) . sPgY
A9, 0 st

where

aP*IA(s,, s,)

alr9, 0) =
©, 0y 9Ps,9%,

(sx,59) = (0,0)

isafunction ofthe grid size h. Hence, (2.22) is in fact a power
series of h. Our derivation attempts to make the order of
the residual terms in (2.22) as high as possible.

Thediscretization schemes (2.19) and (2.20) can be derived
by requiring respectively that

4%, 0) = A™%0, 0) = A°™0, 0) = A>(0, 0)
= A%%0,0) =0
and
A%, 0) = A™%0, 0) = A*™(0, 0) = A™"(0, 0)
= A%%0, 0) = A%, 0) = 0.

Note the similarity between these requirements and (2.7).
The above choice of constraints A® (0, 0) = O hastaken into
account the specific structure of operators L4 ., Ly « and L.
For example, in the case of Ly », the symmetry properties
of Ly » imply that A%9(0, 0) = A%2(0, 0), so that among the
six constraints which are used to specify Ly «(E,, £,),onlyfive
are independent.

By setting the coefficients of low order terms in (2.22)
equal to zero, it is possible to obtain various high-order
finite-difference discretization schemes. For example, to
obtain the 9-point scheme (2.21), we need only to impose
the requirement that this scheme should have an accuracy

1812

of O(h® for modes satisfying the characteristic equation
s2 + s2 = 0. Then, substituting this equation inside (2.22)
and setting coefficients up to order h® equal to zero, we
obtain nine independent constraints which specify (2.21)
uniquely.

Helmholtz equation: Let

L(D,, D, = D} + D2 + M.

If s,and s, are purely imaginary, the characteristic equation
becomes

ot + Wl =N, (2.23)
which is a circle in the w,-w, plane, centered at the origin
and with radius |A|. There are infinitely many natural fre-
quencies and, hence, there are many different ways to select
coincident frequencies. Our choice is based on the follow-
ing two considerations. First, if there is no further infor-
mation about the dominant modes, a reasonable strategy
consists in distributing the coincident frequencies uni-
formly along the contour (2.23). Second, we want to pre-
serve the symmetry properties of L, so that the resulting
discretization scheme will have a simple form and will be
easy to implement.
Let us select

n 1 . n 1
(we wy) = (|\] cos 77 + Z7r>, IA} sin <2 T+ 41)),
0=sn=<3

as coincident frequencies as shown in Fig. 1(a). With this
choice, the discretization can be performed independently

wy
’ - Wy

(a)

wy

B

(b)

wy

&
(©

Fig. 1. Coincident frequencies of the mode-dependent (a)
5-point, (b) rotated 5-point, and (c) 9-point stencil discreti-
zation of the Helmholtz equation.
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in the x- and y-directions. The resulting scheme is

Ly(E,, E) = A[E;‘ — 2 cos <%| h>

+ E + x(Ey'1 — 2 cos <% h) + Ey)].

Two parameters A and « remain undetermined. The param-
eter « is selected such that the discretization error A(s,, s,)
corresponding to natural frequencies is proportional to
O(h?, and A is used to normalize the above scheme so that
Ly is consistent with L. This yields xk = 1and A = h~% We
obtain the symmetric 5-point stencil discretization operator

1
Ly i (E, E) = B (' + E + E' + E, — 4 cos <% h)]

(2.29)

Rotating the above four coincident frequenciesin the trans-
form domain and the associated 5-point stencil in the space
domain by an angle #/4, we obtain another mode-depen-
dent 5-point stencil discretization. In this scheme, the coin-
cident frequencies become

(0 @) = (|)\| cos (g 1r>, I\ sin <g 1r>>, 0<n=3

as shown in Fig. 1(b), and the resulting discretization oper-
ator is

1
Lo x(Ex E)) = 505 [E¢ E;T + ECE, + EE

+ E.E, — 4 cos (]\|m]. 2.25)

Note that this rotated 5-point stencil can be viewed as cor-
responding to a discretization on a grid with spacing v2h.
By appropriately combining (2.24), (2.25) and adding a con-
stantterm, we obtain the 9-point stencil discretization oper-
ator,

¥x Y+
L Ex, E)=—""—1L E. + — x\Ex,
a,9Ex Ey) o d,+(Ex E) et Ly x(Ey E))
- __’YX'Y_*'_ (2.26)
TYx + v+
Then, if
vy = Ld,x(e”)\lh/ﬁ/ e,mh/ﬁ)
1
= 13 l[cos (VZ\h) +1 - 2cos (NR]  (2.27a)
+ = Ld,+(ei|)\|h, 1)
= —1—[2 cos (|A[h) + 2 — 4 cos l)ll-h ] (2.27b)
h? V2 ’

we are able to match Ly(z,, z,) and L(s,, s,) at 8 frequencies

(wy ) = ([)\| cos <% 1r>, [\ sin <% 1r>>, 0<n

as shown in Fig. 1(c). Thus, (2.26) is a mode-dependent
9-point stencil discretization operator for the Helmoltz
equation. It can be shown that both L, , and L,  have an
accuracy of O(h? and the L, o has an accuracy of O(h®).

A

7
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Convection-diffusion equation: In this case,
LD,, D,) = D} + D} - 2aD, — 28D,.
Then, if we consider only real frequencies (s,, s,) = (g, 9,),
the characteristic equation reduces to
o2 + a§ - 2a0, — 280, = 0, (2.28)

which is a circle in the o,_,, plane centered at (o, B) with
radius d = (&® + B)"2

The conventional approach for discretizing the above
equation uses central differences to approximate the first
and second order derivatives separately. This gives

Ly Ey, E) = #((1 + ah)E;' + (1 — ah)E, — 4

+ (1 + BhE" + (1 — BhE) 2.29)

which corresponds to selecting a single coincident fre-
quency at the origin. Allen and Southwell [3] combined two
1-D mode-dependent schemes, i.e., (2.13), along the x- and
y-directions. This yields

1] 2
LunsEw E) = [-9-2;;"‘_—1 ©ETT — (1 + e + E)

2
+ ;2% €*E" — (1 + ¥ + fy)}

(2.30)

which corresponds to selecting (0, 0), (2, 0), (0, 28), (2«, 28)
as coincident frequencies. Motivated by the discussion of
the previous section, we can also select the coincident fre-
quencies

2 4

1
B+dsin<g1r+z1r>>, 0=n=<3

uniformly along the contour (2.28), which gives the discre-
tization operator

1
(0, 0,) = (@ + d cos <21r + —1r>,

1
Lo +(En E) = 7 [e"’"E;1 + e ", + &)

~ d
+e ﬁhEy — 4 cosh <$ h>] 2.31)

The multiplication of £, and , by the factors e ™*" and e #"
in the space domain corresponds to a shift of the s, and s,
variables in the transform domain, where s, and s, become
s, — aand s, — B, respectively. The above scheme shifts
therefore the center (, B) of the circle (2.28) to the origin
and interprets the resulting circle as corresponding to a
Helmoltz equation with radius d. The coincident frequen-
cies for the three schemes (2.29)-(2.31) are shown in Fig. 2.
Following a procedure similar to the one used for the
Helmoltz equation, we can also design mode-dependent
rotated 5-point and 9-point stencil discretization schemes
for the convection-diffusion equation. These schemes have
an accuracy of O(h?) and O(h®), respectively.

D. Historical Notes

Historically, the idea of selecting exponential functions
as coincident modes was first suggested by Allen and
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Fig. 2. Coincident frequencies of the (a) central difference,
(b) Allen-Southwell, and (c) uniformly distributed mode-
dependent 5-point discretizations of the convection-dif-
fusion equation.

Southwell [3] for discretizing the convection-diffusion
equation. An important feature of this problem is that there
are large first-order terms in the governing second-order
PDE. Due to these large first-order terms, there exists a
boundary layer which cannot be well approximated by
polynomials. The use of trigonometric functions as coin-
cident modes was first discussed by Gautschi [45] for the
numerical integration of ODEs which have periodic or oscil-
latory solutions whose periods can be estimated in advance.
The advantage of selecting nonpolynomial functions as
coincident modes has been recognized for years and
applied to PDE problems repeatedly in the literature (see
forexample the references appearingin[72]). However, until
recently, all mode-dependent discretization results were
derived by considering one specific equation at a time, and
itis only in [72] that a general framework was provided for
the study of mode-dependent discretization methods.

1ll.  SoLuTioN Of SELF-ADJOINT Posimive DeriNtTE ELLIPTIC
PDEs: PROBLEM FORMULATION

Once (1.1) has been discretized with a finite-difference
or finite-element scheme, the remaining task is to solve a
system of linear difference equations of the form

Aug = fy 3.1

where A is asparse matrix, and uyand f, are discrete approx-
imations of u and f, respectively. Suppose that ugand f, are
vectors of length N. The solution of (3.1) by Gaussian-elim-
ination requires O(N>) operations, which is prohibitive for
most practical applications. However, if the matrix A is sym-
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metric positive definite (SPD), several direct and iterative
methods [14], [57], [96], which require between O(N) and
O(N?) operations, can be used to solve (3.1) efficiently.

Inthe following, we shall restrict our attention to the case
where the coefficient matrix A in (3.1) is SPD. In terms of
the differential operator (1.1), this amounts to second-order
self-adjoint positive definite elliptic PDEs which can be
expressed in the form

i} u a ou
=z — — = Du=F 3.2
ax (B ax> + dy <C {')y) +u 3.2

where B and C are positive functions and D =< 0. This sub-
class of equations includes the Poisson equation, which will
be used below as the prototype for equations of the form
(3.2).

To study the convergence rate of iterative solution tech-
niques for (3.2), the traditional approach consists in using
matrix iterative analysis [14], [57], [96], which relies on a
detailed characterization of the structure of iteration matri-
ces. Another approach, which has become popular recently,
uses Fourier analysis to study the convergence behavior for
a simple model problem. If the model problem is repre-
sentative of the general class of problems that we want to
solve, the convergence behavior for general problems can
be inferred from the results obtained for the model prob-
lem. Since this second approach analyzes the effect of iter-
ations on each Fourier mode through the use of digital sig-
nal processing methods, itis called here the DSP approach.

The advantage of the matrix approach is its general appli-
cability. It can be applied to PDEs with irregular domain
geometries, spatially varying coefficients, and when the dis-
cretization is performed on nonuniform grids. The only
requirement is that the iteration matrices should possess
certain properties, such as property A or consistent order-
ing [57], [101], [102]. In contrast, the DSP approach can only
be rigorously applied to a small class of problems. It pre-
sents, however, several advantages. First, the matrix
approach is in general much more complicated than the
DSP approach. Second, for simple problems, the DSP
approach yields more accurate estimates of important
quantities such as the optimal relaxation parameter for the
SOR method, the smoothing rate of multigrid methods, or
the eigenvalue distribution of the preconditioned operator
obtained by applying a preconditioner to the discretized
form of (3.2). Finally, the convergence behavior of iterative
algorithms predicted by the DSP analysis of simple model
problems is usually consistent with results obtained by per-
forming numerical experiments on complicated problems.
Thus, in spite of its simplicity, the DSP approach provides
results which are applicable to very general problems.

A. The Model Poisson Problem

The standard model problem for (3.2) is the Poisson equa-
tion on the unit square @ = [0, 1)

dulx, y) + dulx, y)

e o = (33)

with appropriate boundary conditions. It can be discretized
on a uniform grid

Q, = {(nyh, n,h):0 < n, n, < M} (3.49)
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with grid spacing h = M~". Approximating the Laplacian
with the 5-point finite-difference scheme (2.19), and denot-
ing by u,, . the discrete approximation of the solution
u(n.h, n,h), we obtain the discretized system

1
h? WUn,v1,n, + Un,~1,n, T Unen,+1

+ Unyny—1 — MWpn) = fon, (3.5)

at points (n,h, n,h) which are located in the interior of @,
ie, for1 < n,, n, <M — 1. This system can be rewritten
in terms of shift operators as

2
A(E,, E)Up, p, = By

4 ofy

3.6)
with
A E) =1 —3E + E"+ E + ED. 3.7

Boundary Conditions: For self-adjoint positive definite
elliptic PDEs, it has been observed empirically [24] that the
convergence behavior of a given iterative algorithm is not
significantly affected by the choice of boundary conditions.
This implies that we can, without loss of rigor, restrict our
attention to Dirichlet or periodic boundary conditions,
since these boundary conditions have the advantage that
they lend themselves easily to Fourier analysis. For Dirichlet
boundary conditions, the solution u(x, y) is specified along
the boundary of the domain . In terms of the discretized
system (3.5), this means that up, o, Up, M/ Ug,n, and Uy, are
given. Thus, the system (3.5) consists of (M — 1)? equations
in (M — 1) unknowns. Since nonzero boundary values can
be moved to the right hand side and treated as part of the
driving function, the system (3.5) with Dirichlet boundary
conditions can be replaced by an equivalent system with
amodified driving function and zero boundary conditions.
Without loss of generality, the system (3.5) with zero bound-
ary conditions

Up,0 = Up,m = Ugpn, = Upyn, =0 (3.8)

where 1 < n,, n, < M — 1, is therefore called the mode/
Dirichlet problem. Similarly, the system (3.5) with periodic
boundary conditions

Up,o0 = Un,m and Ug p, = Up,p, (3.9)

where 0 < n,, n, = M — 1, is called the model periodic prob-
lem. It is easy to check that the model periodic problem
involves M? equations in M? variables.

B. Orderings

To specify an algorithm for processing a multidimen-
sional sequence, it is important to indicate the order in
which the sequence should be computed. For example, a
certain ordering of grid points is needed to implement 2D
IIR filters. Similarly, for PDE algorithms, it is necessary to
indicate clearly the ordering scheme which is employed,
since the numerical performance of a given algorithm
depends in general on the ordering [1], [70], [87]. We will
focus our attention here on the natural and red-black
orderings, since they are the most commonly employed,
and are both amenable to Fourier analysis. The natural
ordering corresponds to a standard rowwise (or column-
wise) lexicographic ordering of the grid points. In the red-
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black ordering, the grid points are partitioned into two
groups, which a grid point (n,, n,) is red if n, + n, is even,
and black if n, + n, is odd. Then, as a group, the red points
precede the black points, but within each group, points are
ordered according to the natural ordering.

Many PDE algorithms have the feature that numerical
operations at a given point require only local information.
In this case, it is usually possible to divide the grid points
into subsets such that operations performed at points within
a subset are independent of each other. In this case, the
ordering of points within a subset is not important, since
operations at such points can be implemented in parallel
on a multiprocessor machine. When solving equation (3.5),
this leads us to consider the following parallel versions of
the natural and red-black orderings.

Parallel natural ordering:

(ny, ny) < (my, my) ifn,+n, < m+my. (3.10)

Parallel red-black ordering:

(ny n) < (m, my) if (n, n)red and (m,, m)) black.

(3.11

In (3.10) and (3.11), the order between grid points is denoted
by an inequality sign. Note that the above parallel natural
ordering does not specify an order for points (n,, n,) such
that n, + n, is constant. Similarly, for the parallel red-black
ordering, no order is imposed for points of the same color.
This is due to the fact that when the Gauss-Seidel or SOR
methods described in Section V below are used to solve
(3.5), for the natural ordering, points along constant n, +
n, lines can be updated in parallel. On the other hand, for
the red-black version of the same relaxation methods, all
points of identical color can be updated in parallel. From
the point of view of parallelism, the red-black ordering is
therefore preferable, since only two steps are required to
scan all the grid points, instead of O(N"?) steps for the nat-
ural ordering. However, the convergence rate of a given
iterative algorithm can also be affected by the choice of
ordering. For example, it has been shown recently [70] that
the rate of convergence of the symmetric successive over-
relaxation (SSOR) and of several preconditioned conjugate
gradient methods can be slowed significantly if we use a
red-black ordering instead of the natural ordering. Thus,
when selecting a given ordering, one has to be careful to
examine both the numerical complexity of the resulting
algorithm as well as its parallelism.

C. Fourier Analysis

Several different Fourier basis functions will be intro-
duced to expand 2D sequences. A sequence u,, , defined
on Q, with zero boundary values can be expanded in a
sinusoidal Fourier series of the form

M-1M-1
Upony = k§1 ky2=31 Gy k, Sin (kywnch) sin (kT h).  (3.12)
[t is easy to see that when A(,, E,) is given by (3.7), we have
A(E,, E) sin (kywn,h) sin (k,xn,h)
= Atk k) sin (kyan h) sin (k,anh)  (3.13)
with
Ak, k) = 1 — Jlcos (kymh) + cos (k,xh)l.  (3.14)
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Therefore, sin (k,wn,h) sin (kyvrnyh) is an eigenfunction of
operator A(E,, E,) corresponding to the eigenvalue Alk,, k,).
It is worth noting at this point that by imposing the con-
dition that the solution u,,, ,, is synthesized by a finite num-
ber of Fourier sine functions asin(3.12), we are abletoignore
the zero boundary conditions (3.8) for the model Dirichlet
problem and treat A(E,, E,) as a shift-invariant operator
defined on an infinite grid.

Next, consider a sequence u,,, ,, defined on @, which sat-
isfies the periodic boundary conditions (3.9). The sequence
Up,n, can be expanded in complex exponential Fourier
series as

M-1M-1
Unyn, = 2, kyZ=0 Qi gy 2ty (3.15)
Since
Aln,, nye kmrhnih — Ak, ke 2knsrhnih (3. 16)

where

Ak, k) = 1 — 3[cos (k,2mh) + cos (k,2xh)]  (3.17)

we see that e2%="* " js an eigenfunction of A(E,, E,) with

eigenvalue (3.17). Consequently, by expressing an arbitrary
solution as a finite sum of such eigenfunctions, where k,
and k, are integers between 0 and M — 1, we can ignore the
periodic boundary conditions (3.9) for the model periodic
problem and view A(E,, E) as a shift-invariant operator
defined on an infinite grid.

To analyze algorithms with a red-black ordering, we can
employ a variant of the above Fourier decompositions,
which is known as the two-color Fourier analysis [69], [70].
Consider the model Dirichlet problem, and let up, ,, be a
sequence defined on @, with zero boundary values. The
restriction of this sequence to the red and black points
defines two subsequences: the red sequence u,,, ., and
the black sequence uy, ,, - They can be expanded respec-
tively in Fourier series as

Urngn, = E(kx,ky)EKr l‘j,,khky sin (kanxh) sin (kyﬂ'kh),
n, + n, even
Up,ne,ny = Zike kpeks b ke ky SIN (kywn, h) sin (k, wkh),

n, + n, odd (3.18)

where for M even,

A

K, = {(k,‘, k)e N>k, + k, =M—-1,k,k, =1 or

1Skx5M—1,k=M—k,‘} (3.19a)

2 y
and
K, = Ky U {(M/2, M/2)}. (3.19b)

Itis straightforward to check that the Fourier coefficients
Ok ky OM -1k, M-k, In the sinusoidal expansion (3.12) and
0,k ks Ob,ky &, N the red-black expansion (3.18) are related

via
Or ke ky T 1| Ok
Py = " ’ (kxl ky) € Kb
U,k ky T =1I\am—km-k,

(3.20a)
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Oty = Oeoy (ko k) = (M2, M2 (3.20b)

The expression can be interpreted as follows. When the
sequence u,, ,, is sampled only at the red points, instead
of all points of @, the high frequency component (M — k,,
M — k) is aliased into the low frequency component (ky,
k), so that two Fourier components coexist in the low fre-
quency region. A similar aliasing phenomenon occurs when
Uy, n, is sampled at the black points only (see Fig. 3). Note

0)’
ox) (r.%)
L]
iy, M—k,
LW
L]
6
0.0 =0 X
(a)
0 0 0y

(b)

Fig. 3. (a) Conventional and (b) folded two-color Fourier
domains where 6, = k,wh and 6, = k,xh.

also that K, and K, differ by the single element (M/2, M/2),
so that at the frequency (M/2, M/2) a single Fourier coeffi-
cient O, yn M is used to represent the 2D sequence up, n,.
This frequency can therefore be viewed as being degen-
erate.

With respect to the two-color decomposition (3.18), the
discretized system (3.5) can be rewritten as

Up,ny,n h? { foonn
A(E,, Ey)( " V) = _7< " > (3.21)
Up,ny,ny, fb,n.,ny

with
1 —alE,, E)
AE,, E) = (3.22)
—a(E, E) 1
and
aE, E) = JE + E' + E, + /). (3.23)
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To obtain afrequency domain representation of the above
system, we can substitute the Fourier decomposition (3.18)
inside (3.21) and match Fourier components. For a non-
degenerate frequency (k,, k,), this gives

. Urk, 2 (F
Ak, ky)< “ "’> = _%( '*""> (3.24)
Up, ky, ky ?b,kx,ky

with
- 1 _’é(er ky)
Alk,, k) = (3.25)
—atky, k) 1
and where
a(k,, ky = %[cos (k,mh) + cos (ky1rh)] (3.26)

is the Fourier transform of the space domain operator A(,,
E). For the degenerate frequency (k,, ky) = (M/2, M/2), we
obtain

hZ

Up MM = —7 ?r,MIZ,M/2~

Note that the above results rely in part on the fact that
for the Dirichlet case, the eigenfunctions of the 2 x 2 matrix
operator A(E,, £,) are of the form v(k,, k,) sin (k,wn,h) sin
(kymn,h) where the 2-vector v(k,, k,) is an eigenvector of the
matrix A(k,, k).

In the previous two-color Fourier analysis of the red-black
ordering, we have assumed that the boundary conditions
are of Dirichlet type. For the case of periodic boundary con-
ditions, a similar two-color Fourier analysis can be devel-
oped. One needs only to replace the sinusoidal expansions
(3.18) by complex exponential Fourier series. Since the anal-
ysis is identical to the Dirichlet case, the details are omitted.
We find that identities (3.21)-(3.25) remain valid, provided
that the function a(k,, k,) is replaced by

atk,, k,) = lcos (k,2h) + cos (k,2xh)].  (3.27)

D. Summary

In this section, we have examined the model Poisson
problem with Dirichlet or periodic boundary conditions,
and with a natural or red-black ordering. In each case, a
Fourier basis has been introduced to expand 2D sequences
satisfying the boundary conditions. For such sequences, it
has been shown that the system (3.5) can be viewed as a
linear shift-invariant (LSI) system in the space domain, and
can therefore be analyzed in the frequency domain. The
results of our analysis are summarized in Table 1.

The Fourier analysis that we have developed in this sec-
tion has focused on the operator A(E,, E,) defined in (3.7)

Table 1 Fourier Decomposition for Several Orderings
and Boundary Conditions

Fourier basis

Ordering B.C. A(E, E)) functions Atk,, k)
natural Dirichlet 3.7) (3.12) (3.14)
natural periodic (3.7) (3.15) 3.17)
red-black  Dirichlet (3.22) (3.18) (3.25), (3.26)
red-black  periodic (3.22) r-b complex  (3.25), (3.27)

sinusoids
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or (3.22). Since this operator is an FIR filter, the ordering of
grid points does not play a role in its implementation, so
that as far as A is concerned, the distinction between the
natural and red-black orderings is really unnecessary.
However, when solving (3.5), our actual goal is to imple-
ment the inverse filter A™'(E,, E), which is a 2D IIR filter,
and for which the choice of ordering does matter. To syn-
thesize this filter, we will rely on the iterated application of
deconvolution filters, which will be in general of 2D lIR type,
thus explaining our interest in the choice of ordering.

IV. DIReCT METHODS

Several efficient direct methods have been developed for
solving elliptic PDEs. These methods usually exploit special
features of certain classes of PDEs, and are often restricted
to regular domain geometries. They are therefore not as
widely applicable as the iterative methods to be discussed
in the following sections. Furthermore, except for fast Fou-
rier solvers, direct methods rely mainly on matrix or graph-
theoretic techniques. Thus, they do not fit well the DSP
viewpoint adopted in this paper. Consequently, in this sec-
tion we focus primarily our attention on FFT solvers. How-
ever, for completeness, several other direct methods, such
as cyclic block-reduction and sparse Gaussian elimination
methods, are briefly discussed.

A. FFT Solvers

Fast Fourier solvers are applicable to 2-D separable ellip-
tic PDEs of the form

(PO) + Q(y) ulx, y) = f(x, y) 4.1)

defined on the unit square [0, 11, with

9 9
PO = = <p1(x) &) + pa) (4.22)

3 ]
Qy) = 5 <q1(y) 5;) + quy) (4.2b)

and where p;(x) g:(y) > 0. For simplicity, we assume that
the boundary conditions are of Dirichlet type, i.e., u(x, y)
= 0 on the domain boundary. A wider class of boundary
conditions is considered in [94].

By discretizing the differential operators P(x) and Q(y) on
a uniform @, with spacing h = M~", with 3-point central
diferences in the x-and y-directions, respectively, we obtain
a 5-point stencil discretization of (4.1). The discretized sys-
tem can be denoted as

(Pgny) + QanMun,n, = fy, 0, 4.3)

FFT solvers require that either P(x) or Q(y) should have
constant coefficients. If the coefficients p;(x) = pyand p,(x)
= p, of P(x) are constant, the discretized operator

Pn) = Py = %; (, -2 +EN+p, 4.9)

has also constant coefficients. Then, the Fourier transform
can be used to transform the discretized equation (4.3),
which depends on the two variables n, and n,, into a set of
decoupled equations depending on the single variable n,.
Specifically, due to the separability of equation (4.1), we can
express the solution u,, , and driving function f,_, in the
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form
M-1
Upyny = k21 G, n, Sin (kemn,h),
=

M-1
founy = kZ_1 Fen, sin (kemn h). (4.5)
Substituting (4.5) into (4.3), we obtain M — 1 independent
equations
(Pd + Qd(ny))akx,ny = ?kx,ny'
with

1=k =M-1 (46a)

2
B, = —% [1 = cos (kyxh)] + ps. (4.6b)
The boundary conditions of the transformed system are also
of Dirichlet type, i.e., .
Ok0 = dim = 0. 4.7)

Then, for each value of k,, the system (4.6)-(4.7) can be writ-
ten in matrix form as a tridiagonal system

I—31 Cq T —01 W —f1 W
b2 a; Cy 02 ?2
by_z am-2 cy-2 Opm-2 fM—Z
by-1 ay- Gy P
B M-1 am 1J | M 1_ B M 1_J
(4.8)

where the k, dependence of the solution, driving term, and
matrix entries has been suppressed. Each such system can

be solved directly with the following algorithm of com-
plexity O(M) (Table 2).

Table 2 Tridiagonal System Solver

LU factorization
@ i= a,
forn=23,---, M—-1
Bn i= bplon_q
ani=a, = BaCy_y
Forward substitution
vyi=Fy
forn=23,--,M~-1
Voi=F = BoVas
Backward substitution
Op—1:= Vy_qlay 4
forn=M-2,M-3,---1
G, = (v, = Cplip1)la,

Given the solutions &, ,, of systems (4.6)-(4.7) for all k,,
the solution u,,, , of the PDE can then be obtained from the
discrete sine transform (4.5).

Fast Fourier solvers rely therefore on the following three
steps.

Step 1: Perform a 1-D fast sine transform of f, , with
respect to n, to determine the hybrid Fourier coefficients
kx,ny*

Step 2: For each k,, with 1 < k, £ M — 1, calculate the
hybrid Fourier coefficients d, ,, by solving the tridiagonal
system corresponding to (4.6)-(4.7).
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Step 3: Perform a 1-D fast inverse sine transform to com-
pute the solution u,, ,, from the hybrid Fourier coefficients
Uy, ny

In the above discussion, we have assumed that the
boundary conditions are of Dirichlet type. However, other
choices of boundary conditions, such as Neumann or peri-
odic conditions, are also possible. The effect of a change
of boundary conditions is to replace the fast sine transform
in steps 1) and 3) above by fast cosine transforms, or FFTs
[93], [94]. The complexity of the resulting family of FFT
solvers is O(M? log (M)). However, it is important to keep
in mind that these solvers are restricted to problems with
arectangular domain, and where either P(x) or Q(y) has con-
stant coefficients.

B. Other Direct Methods

The above FFT solver was introduced by Hockney in 1965
[591 for the Poisson problem over a rectangle. In both [59]
and [60] Hockney discussed another direct method, called
cyclic reduction. This method is a Gaussian elimination pro-
cedure with a particular ordering. Specifically, assume that
in (4.3), the variables u,, ., are scanned column by column,
and let u, be the M — 1 dimensional vector formed by the
variables with column index n,. It is easy to check that the
set of vectors u, with1 < n, = M — 1 satisfies a block tri-
diagonal system. Then, assume that we eliminate one out
of every two columns from this system, say the columns
with n, even. The resulting system remains block tridi-
agonal, although the blocks may start to fill in. By pro-
ceeding recursively, after L = log (M) steps, asingle column
of variables remains. The resulting system of size M ~ 1can
be solved, and its solution can be backsubstituted into the
system obtained at the previous level, thus enabling us to
compute progressively all columns of the original system.
For more details on the cyclic block reduction method, the
reader is referred to [93), [94]. This method which was un-
stable in its original form, was later stabilized by Buneman
[22]. The complexity of the resulting procedure is O(M? log
(M)), as for FFT solvers.

The FFT and cyclic block reduction methods can be com-
bined to produce a third technique, called the Fourier anal-
ysis-cyclic reduction (FACR) algorithm, whose complexity
is O(M? log log (M)). The FFT, cyclic reduction and FACR
solvers are reviewed by Swarztrauber in [93]. Another sur-
vey [94] provides a more elementary introduction to this
topic.

The cyclic block reduction procedure can be viewed as
a special case of a more general family of direct solvers,
called sparse Gaussian elimination methods. These meth-
ods start from a system of the form

Ax =b (4.9)

where A is symmetric positive definite. The matrix A is usu-
ally sparse. However, when (4.9) is solved by performing a
Cholesky factorization A = LL7, the lower triangular matrix
L contains in general more nonzero elements than existed
in the lower triangular part of A, thus resulting in an increase
in the storage and computation time required to solve (4.9)
by Gaussian elimination. However, the amount of fill, i.e.,
the number of additional nonzero entries of L, depends
highly on the ordering of the variables. If P denotes an arbi-
trary permutation matrix, it may be of interest to replace the
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solution of (4.9) by that of
By

I
(]

(4.10a)
with

B = PAPT;y = Px; c = Pb. {4.10b)

An ordering is said to be optimal with respect to fill, if it
results in the least possible fill-in, and optimal with respect
to operation count if it minimizes the number of operations
required to solve (4.10a) by Gaussian elimination. If A is an
N x N matrix, there are N! different orderings of its rows
and columns, and the problem of finding the ordering with
least fill-in is NP complete. Efforts have therefore focused
on obtaining efficient algorithms for finding suboptimal
orderings with low fill-in and operation count. Numerous
reordering algorithms have been developed based on
results from graph theory. This topic is discussed in detail
in books by George and Liu [46], and Duff, Erisman, and Reid
[35].

V. RELAXATION METHODS AND THEIR ACCELERATION

A general mechanism for constructing iterative algo-
rithms for the solution of discretized elliptic PDEs consists
of using relaxation. In this approach, instead of requiring
that the entire system (3.1) of discretized equations should
be satisfied, we force only one or a few equations to hold
atany giventime. For the case of asingle equation, the value
of the variable u,, ,, is updated by forcing the discretization
equation to hold at point (n,h, n,h), while relaxing it at all
other points of the discretization grid Q. By using this pro-
cedure sequentially, or if possible in parallel, for all points
of 0, an updated value of the solution is obtained at all grid
points, and one can then proceed to the next iteration. If
the resulting iterative algorithm converges, the complete
system (3.1) of discretized equations will eventually be satis-
ifed.

In this section, we describe elementary relaxation meth-
ods, such as the Jacobi and Gauss-Seidel iterations, and use
a digital filtering viewpoint to analyze their convergence
behavior. The major shortcoming of these methods is their
slow convergence rate. Several acceleration schemes have
been proposed to improve their convergence. Acceleration
schemes can be divided into two categories, depending on
whether they are stationary or not. In a stationary scheme,
the same acceleration procedure is used at each iteration.
Thus, we can focus on a single iteration and try to optimize
its performance. The best example of such a procedure is
the successive over-relaxation (SOR) method. In a nonsta-
tionary scheme, the overall performance of the algorithm
is optimized by considering more than one iteration at a
time. Examples of such schemes include the Chebyshev
semi-iterative (CSI) and conjugate gradient (CG) methods.
Both stationary and nonstationary acceleration methods are
discussed below.

A. Elementary Relaxation Methods

Consider the discretization (3.5) of the model Poisson
problem. The Jacobi relaxation is given by

(m+1) _ 1¢,,m (m) (m)
un,,ny - H(Unx+1,ny + uﬂx_1,ﬂy + unx,ny+1

+ Ui, = by ) .1

nx, Ny
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where ul7, denotes the value of the variable u,,, ,, at the
mth iteration, withm =0, 1,2, - - - . From (5.1), we see that

: 1)
iven the values u™ at all points of @, the value uf; " at
g y

the next iteration is obtained by forcing equation (3.5) to
be locally satisfied at (n,h, n,h), independently of whether
it is violated at other points of Q.

One way to modify the Jacobi relaxation (5.1) is to par-
tition the grid points into red and black two groups as
described in Section Il and to perform the iteration

(ny, ny) red:
(m)
Ug",,;,” = %(ug?lﬂ,ny + U%'Llny + Upgn, +1
(m) 2
+ Ul = Ry n) (5.2a)

(ny, ny) black:

m+1 _ 1¢,,(m+1 (m+1) (m+1)
ufu,n, - Z(unx+1,ny + Unx~1,ny + unx,ny+1
(m+1) 2
+ upnt1 — bt ) (5.2b)

Thus, one iteration consists of two steps. In the first step,
a Jacobi relaxation is performed at all the red points and in
the second step, the values obtained at the red points in
the first step are used to perform a Jacobi relaxation at the
black points. The iteration (5.2) is known as the Gauss-Sei-
del relaxation for the red-black ordering. The reader is
referred to [75] for a detailed comparison of the red-black
Gauss-Seidel and Jacobi relaxations.

To analyze the convergence behavior of relaxation meth-
ods, itis convenient to view each iteration as corresponding
to a digital filtering operation on the solution error. For
example, if the Jacobi relaxation converges, the iteration
equation (5.1) reduces asymptotically to

= = = = 2
Unp,n, = %(Un,rl,ny + Up,—1,n, + Un,,ny+1 + Upon -1 — h fnx,ny)
(5.3)

where U, ,, is the exact solution of the discretized problem.
Subtracting (5.3) from (5.1), we find that the errors evolve
according to

emsV = NE + E;' + E, + E Vel 5.4

where
m o ,m _ T
en,,,ny - unx,ny Unx,ny (55>

is the error at the mth iteration. Thus, the Jacobi relaxation
can be viewed as a digital filtering process, where at each
iteration the FIR filter

JE, E) = E + E + E, + E) (5.6)

is applied to the errors obtained at the previous iteration.
Assume that the boundary conditions for the Poisson prob-
lem are of Dirichlet type, so that the errors are zero on the
domain boundary. To analyze (5.4) in the Fourier domain,

we observe that the functions
sin (kywn,h) sin (k,7n, h), 1<k, k,<M-1

withM =h"",are eigenfunctions of Jwhich are zero on the
domain boundary. They can therefore be used to expand
theerrors e, in the form (3.12). Inthe Fourier domain, the
iteration (5.4) is diagonalized and takes the form

Enit = Jiky k)&, 5.7)
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where the eigenvalues

Jiky, k) = 1icos (kymh) + cos (k,7h)] 5.8)

specify the spectrum of J. The spectrum magnitude | fik,,
k) is plotted in Fig. 4. We see from this figure that the Jacobi

(0,0) (n7)

(m0)

Fig. 4. The spectrum magnitude of the Jacobi iteration
operator.

relaxation acts as a notch filter. It filters out the middle fre-
quencies, but dampens only slightly the low and high fre-
quencies. Since | ftk,, k,)| < 1forall feasible wavenumbers,
the Jacobi relaxation converges. Its convergence rate is
determined by the spectral radius

e()) =  max
1<kuky<sM-1

|Jtke, k)| = cos (xh) = 1 — 1xh2,

(5.9

We see from (5.9) that the number of Jacobi iterations
required to reduce the error by a constant factor is pro-
portional to O(h~?). In order to determine the total number
of iterations needed for convergence, itis useful to observe
that since the discretized system is only an approximation
of the original continuous problem, the iteration can be
stopped when the solution error for the discretized system
is of the same order as the discretization error. We saw in
Section lI-C that the error for a 5-point discretization of the
Laplacian is O(h?). The total number of iterations required
by the jacobi relaxation is therefore O(h~?2 log (h=").
Similarly, denoting by e} ., and e{7), . the restriction of
the error at the m-th iteration to the red and black points,
respectively, we find that the errors for the red-black
Gauss-Seidel relaxation evolve according to

<e;,";:::> . <)> 5100
- = rb e
ehmy e,
1 0f0 1 To
Grb = [ ]I: :’ N [ :|
J ollo 1 0 l2

is the red-black Gauss-Seidel relaxation operator. For Di-
richlet boundary conditions, the red and black error func-

tions admita Fourier decomposition of the form (3.18). With
respect to this basis, the error dynamics (5.10) decouples

where

(5.10b)

1820

into a set of 2 X 2 matrix equations

am +1) &m
€rkuk ke k

<é(mﬂ’,) = Gutky ky)<A(m, ') 5.11a)
b, kx, ky

b, ks, ky
otk k) {o Jikys k) ]
rb\Rxs Ry, 0 iz(kn ky)
with (k,, k,) € K, where K|, is defined in (3.19a). The spectral
radius of G, is therefore given by

(5.11b)

p(Gy) = max |k, k)| = cos? (zh) = 1 — x*h%
kx, kyeKp

(5.12)

Comparing (5.9) and (5.12), we see immediately that the con-
vergence rate of the red-black Gauss-Seidel algorithm is
double that of the Jacobi relaxation. Since both algorithms
require the same number of operations per iteration, the
red-black Gauss-Seidel algorithm is twice as efficient.

Ifthe natural ordering is adopted, the Gauss-Seidel relax-
ation takes the form

(m+1 _ (m) (m+1) (m)
unx.ny) = %(un.ﬂ,ny + Up,—1,n, + Ungn,+1
m+1 2
+ Uiy — ) 5.13)

and is called the lexicographic Gauss-Seidel iteration. The
errors dynamics are given by

et = Gexelin, (5.14a)
where
E +E,
Giex = ;:?—_Ey_i (5.14b)

is a causal lIR filter. The spectral analysis of the operator Gie,
with Dirichlet boundary conditions has been performed by
Frankel [42], and was studied by Trefethen and LeVeque [77]
from a tilted grid viewpoint. For convenience, we consider
here the case of periodic boundary conditions. Then, the
eigenfunctions of Gy, are

i2x(kxnx + kynyh
’

e 0<k,k,<M-1

and, decomposing the errors with respect to this basis, the

spectrum of G, is given by

eiZrkeh o gi2ekyh
etk k) = 3 — g 2rkah “i2xkyh " (5.15)

Note that Gielk,, k) = 1 for (k,, k,) = (0, 0) and | Gieulky, k)|
< 1forall other feasible wavenumbers. This means that the
filter Gy, does not filter out the d.c. component of the error.
However, if u(x, y) is a solution of the model periodic prob-
lem, u(x, y) plus a constant is also a solution, and the lex-
icographic Gauss-Seidel method converges to one of these
solutions.

To summarize, the jacobi, red-black, and lexicographic
Gauss-Seidel relaxations admit a digital filtering interpre-
tation, where each iteration consists in applying a filter to
the errors obtained at the previous iteration. This filtering
process can be studied easily in the frequency domain, by
decomposing the errors in terms of properly selected Fou-
rier eigenmodes, and examining each mode indepen-
dently.
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B. SOR Acceleration

The red-black SOR iteration is obtained by introducing
a relaxation parameter w inside the Gauss-Seidel iteration
(5.2), i.e.,

(ny, n,) red:
(m+1) _ (m) w
unx,ny = (1 - w)un,,)ny + z (U;TL 1,0y + US::”— 1,0y

+ U e + U, g — B ) (5.16a)
(ny, n,) black:

m+1 _ @ +1 1
Unp,n, = a- w)u(n’:',)ny + Z (US‘Z,""I,)ny + u(r;:,r'l,)ny

+upa g+ Ut — B, ). (5.16b)
When w = 1, the SOR method reduces to the Gauss-Seidel
method. The error dynamics for the SOR iteration can be

expressed as

(m+1) (m)
<er,nx,ny > _ G (w)<e’,"x,ﬂy > (5 17a)
= Uy .
egt'nt, :')y e(b'?r)u, ny
where
1 0 1-— 0 w/
Grolw) =

w/ 1 - wll0 1
1-w w]

= (5.17b)
1 -ww 1-w+ wy?

is the red-black SOR iteration operator. With respect to the
red-black Fourier decomposition (3.18), the SOR iteration
reduces to 2 X 2 matrix iterations of the form (5.11a), where
Gtk k,) is replaced by

1-w wfik,, k,) ]
(1 - Wk, k) 1— o+ oAk, k)]
(5.18)

C,b(w, kx, ky) = [

Le} A be an eigenvalue of the matrix C,b(w, k,, k,), and let
u = J(k,, k,). Then, Nand p are related via the quadratic equa-
tion

2.2
A — 2(1 -0+ %)A F1-wl=0 (519

Note that as o varies, the eigenvalues A, and A\, move about
the complex plane. We are interested in how the quantity
p = max{|\|, |\;]) depends on w. When viewed as a function
of w, the discriminant

A =41 — wu?? + o*u?
of (5.19) has a real root at

2
TG a

It is easy to check that p < 1if and only if 0 < w < 2. Fur-
thermore, we have

{%[wlpl + Vol + 401 — WP,
p =

w -1 Wy < w < 2.

Wy (5.20)

0<w=<uw
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Im[A(@)]
[

0>2

W Re[M(®)]

w>2

Fig. 5. Root loci of A, and \, with fixed p.

The locus of eigenvalues A, and \, as w varies is plotted in
Fig. 5. When w = 0, the eigenvalues \; and ), coincide at
the value 1. As w increases from 0 to 1, both eigenvalues
move toward the origin along the real line but with different
speeds. When w reaches 1, the eigenvalues are 0 and p%
When 1 < w < wg, one eigenvalue increases its value from
0 and the other continues to decrease. They coincide again
at the point wy — 1 when » = wy. The eigenvalues become
complex conjugate pair with magnitude w — 1 for w > wg.
Thus, these eigenvalues lie outside of the unit circle for w
> 2. This plot shows that the spectral radius p is minimized
for w = wg.

Since p = fik,, ky), the relaxation parameter wywhich min-
imizes the spectral radius of G(w, ky, k) is a function of the
wavenumber (k,, k,). In order to minimize the spectral radius
of the space-domain operator G,,(w), we must therefore
select for w the value which minimizes the maximum over
all feasible wavenumbers of the spectral radius of G(w, k,,
k,). A straightforward analysis [75] shows that the optimal
relaxation parameter w, is given by the value of wy cor-
responding to the wavenumber (k,, k,) = (1, 1). Since ja,
1) = cos (wh), we obtain

2

== 2 — 2xh (5.21
@t T T4 VT = cos? (nh) B )

and the corresponding spectral radius is
HGCrplwop) = wope — 1 = 1 — 27h. (5.22)

We see from (5.22) that the number of iterations required
by the red-black SOR iteration to reduce the error by a con-
stant factor is O(h~"), so that this algorithm is one order of
magnitude faster than the Jacobi or red-black Gauss-Seidel
relaxations. However, this rate of convergence is achieved
only when the relaxation paramater is equal to its optimal
value w,p, and is sensitive to perturbations of the relaxation
parameter away from this value.

An interesting feature of the SOR method is that, since
the optimum relaxation parameter w,, is larger than wg for
all wavenumber components (k,, &) # (1, 1), the eigen-
values of G(wep) have all the same magnitude wop — 1. TO
illustrate this phenomenon, the spectra of the Jacobi and
SOR (with wg) iteration matrices are plotted in Fig. 6. The
eigenvalue of the Jacobi iteration matrix are all real and
occur in + — pairs. Their magnitude ranges from 0 to cos
(wh) = 1 — O(h?. Thus, different Fourier components con-
verge at different rates, and the slowest converging Fourier
componentis the one that establishes the convergence rate
of the Jacobi method. Through the SOR acceleration, these
eigenvalues are redistributed around a circle of radius wep
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Fig. 6. A typical eigenvalue map in the complex plane for
the Jacobi iteration (+) and the SOR iteration (°) with the
optimal relaxation parameter, where the case h = g and v
= 1.757 is plotted.

= 1=1 = O(h) in the complex plane. Since they have the
same magnitude, all Fourier components converge at the
same rate. Thus the acceleration effect of the SOR method
is achieved by balancing the convergence rates of the dif-
ferent Fourier components.

C. Polynomial Acceleration

The SOR procedure is a stationary one-step acceleration
technique, in the sense that it optimizes the convergence
behavior of one iteration, and uses the same acceleration
scheme at every subsequent iteration. There exists an alter-
native acceleration approach which optimizes the conver-
gence behavior of the overall algorithm, instead of consid-
ering only one step. Specifically, if a given iterative
procedure requires s steps to converge, we can select a set
of acceleration parameters w; with 1 < i < s and apply w;
at the ith iteration to increase the convergence rate. This
approach leads to the polynomial acceleration method
described below.

Consider the sequence of iterates generated by the iter-
ation

wmH = pym oo (5.23)

where P is assumed to have real eigenvalues, and p(P) <
1,sothat(5.23) converges. For example, one possible choice
for P is the Jacobi iteration matrix J. The error e™ = w'™ —
w at the mth iteration is given by

el? = Pmell. (5.24)

To improve the convergence of the sequence {w™}, we
can generate a new sequence {u'™} by performing a linear
combination

m
u™ = Z‘.O o, WY (5.25)
i=

where the coefficients a,, ; are real and satisfy

m
% i =1 (5.26)
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for all m. This condition is imposed in order to guarantee
that when w® = @, then ™ = G for m = 0. Let ™ be the
errorassociated with the new sequence u'™. From (5.24) and
(5.25), we can relate '™ and e!™ via

e™ = Q,.(P)e?,  where Q,(P) = ;0 am,iP"

is a matrix polynomial of degree m. Since e® = &7, the errors
associated with the {u™} iteration satisfy

e™ = Q,(P)e”. (5.27)

The problem is to select the coefficients o, ; so that the error
sequence {e™} converges to zero as fast as possible.
Since Q,,(P) is a polynomial function of P, it has the same
eigenvectors as P, and if u is an eigenvalue of P, the eigen-
value of Q,,(P) corresponding to the same eigenvector is
Q,(). Let S be the discrete spectrum of the matrix P, and
let pmin and pqa, denote the smallest and largest eigenvalues
of P. The polynomial acceleration problem can be formu-
lated as the minimax problem
min max |Q,,(x)]. (5.28)

am,i X€S
Since the discrete spectrum S is seldom known, the prob-
lem (5.28) cannot usually be solved as such. A modified ver-
sion which is easier to solve consists in replacing S in (5.28)

by the continuous spectrum S = {X:fmin < X < Lmax}- IN
this case, we can perform the change of variable

2X = (Bmax + Bie)

Kmax — Hmin

z{x) = (5.29)
so that (5.28) is transformed into a minimax problem defined
on the interval [~1, 1]. The solution of this new minimax
problem is well known and is given by the Chebyshev poly-
nomial of order m, T,,(2). In terms of the original variable
x, the solution is

Q%) = Tr(z(xN/ Trn(z(1) (5.30)

where the scaling by T,,(z(1)) ensures that the coefficient
constraint (5.26) is satisfied.

An interesting property of Chebyshev polynomials is that
they satisfy the three-term recurrence relation

Tmi1@) =22T(2) — T2, m =1 (5.31)

with Ty(2) = 1and T((2) = z. This property can be exploited
to generate the new sequence {u'™} efficiently, instead of
using expression (5.25), which has a high computational
cost, and requires a large amount of storage. By taking into
account the recursions (5.23) and (5.31) inside (5.25), we
obtain the following Chebyshev semi-iterative (CSl) accel-
eration procedure [57], [96] for iteration (5.23):

U™t = B [y(PU™ + €) + (1 = pu™]
+ (1= Bpau™™? (5.32)
with

2
y = ——-————2 (5.33a)
~ Bmax ~ Emin

Bi=1, Br=(01-1)7",
m =2 (533b)

ﬁm+1 =(1- %‘726m)_1/
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and

Pmax ~ Emin

g = .
2 = fmax = Hmin

(5.33¢)

To illustrate the redistribution of the eigenvalues of P
which is accomplished by the CSl acceleration method, the
function Qqo(x) describing how the eigenvalues of Q,,(P)
depend on those of P for m = 10 is plotted in Fig. 7. From

08}
06}
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02

Q1olH) 0 4 4+ [ v ot ST

041 1

-0.6F R

-0.81; 8
1 . . "

-1 -0.5 0 0.5 1
©

Fig. 7. Typical eigenvalue distribution for the Chebyshev
semi-iterative method plotted as function of the eigenvalues
of the Jacobi iteration (h = 75, pimax = — fmin = 0.98 and m
= 10).

this figure, we see that unlike the SOR method, where the
eigenvalues of G,,(wop) were all complex and equal in mag-
nitude, the eigenvalues of the CSI matrix Q,,(P) remain real,
and lie in the narrow interval

(~2r™21(1 + ™), 2r™2((1 + r™)]

with
1-V1-42 5 34
rE .
1+ V1 =02 ¢ )

As an example, consider the case where the CSI method
is used to accelerate the Jacobi iteration for the model Pois-
son problem with Dirichlet conditions, so that P = Jin (5.23).
The resulting algorithm is called the )-CSI method. The
asymptotic convergence rate of the J-CSI method can be
determined as follows. From (5.8), we know that

Bmax = €OS (wh),

and from (5.33c),

Bmin = —COs (wh) (5.35)

o = cos (wh).

Then, observing from Fig. 7 that the maximum value of
|Qm(x)| over the interval [gmin, tmax] is reached for x = pmay,
we find that

mi2

P(Qm(/» = IQm(l"max)l =2

e (5.36a)

where, from (5.34),

_ 1 =sin (xh)

"= 1 ¥ sin@ah) (5.36b)
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According to (5.27), the error of the J-CSI method at the
mth iteration is obtained by multiplying the initial error by
Q,,(J). The asymptotic error contraction factor per iteration
is therefore

tim @Q(N"™ =" = 1 - =h. (5.37)
This shows that the )-CSI method requires Oth~ Yy iterations
to reduce the error by a constant factor. A further improve-
ment in this algorithm was introduced by Golub and Varga
[51], who observed that for the the red-black ordering, the
recursion (5.32) can be rearranged in such a way that only
the odd iterates of the red points and the even iterates of
the black points need to be computed, thus cutting the
numerical complexity of the algorithm in half. The resulting
procedure is called the cyclic CS! method, and its numerical
complexity is the same as that of the SOR method.

D. Historical Notes

The development of relaxation methods for the solution
of large systems of linear equations was initiated by Gauss,
Jacobi, and Seidel in the 19th century, and Ridchardson,
Liebmann, and Southwell early in this century. Since acom-
prehensive account of the history of relaxation methods
can be found in a recent paper by Young (103], our com-
ments focus primarily on the application of Fourier analysis
to the study of these methods. The development of the SOR
theory in the late 1940s [42], [100], [101] marked the begin-
ning of a period of rapid progress in the area of iterative
methods. The Fourier approach adopted in this section has
for origin the work of Frankel [42] and Young[100], who used
Fourier-like basis functions to analyze the SOR method
applied to the naturally ordered Poisson problem with Di-
richlet boundary conditions. Recently, LeVeque and Tre-
fethen [77] reinterpreted Frankel’s result from a tilted grid
viewpoint. The same problem with periodic boundary con-
ditions was analyzed by Chan and Eiman [24]. The two-color
Fourier analysis of the SOR method for the red-black
ordered model Poisson problem with Dirichlet or periodic
boundary conditions was developed by Kuo et al. [70], [75].
The use of Chebyshev polynomials was first proposed by
Flanders and Shortley [41] for the solution of matrix eigen-
value problems, and subsequently led to the development
of the Chebyshev semi-iterative (CS1) method for solving
linear systems. A complete discussion of elementary relax-
ation methods and of the SOR and CSl acceleration pro-
cedures can be found in books by Birkhoff and Lynch [14],
Hageman and Young [57], Varga [96], and Young [102].

VI. MULTIGRID METHODS

The major limitation of elementary and accelerated relax-
ation methods is that while the components of the error
decrease very rapidly in certain frequency bands, they decay
only very slowly in other bands. The region of rapid decay
depends on the specific relaxation method that we con-
sider, but it consists typically of middle or high frequencies.
On the other hand, the region of slow decay always includes
thelow frequencies. This phenomenon reflects the fact that
the low frequency components of the solution depend on
global information, and a large number of iterations are
required for propagating information from the edges of the
problem domain to its center. Since the error becomes pro-

1823



gressively smoother as the iteration proceeds, it is natural
toconsider switchingto acoarser discretization grid, where
we can assume temporarily that an exact solver is available.
This solver can be used to compute the smooth compo-
nents of the error on the coarse grid, and the resulting cor-
rection can then be interpolated back to the fine grid and
combined with the original fine grid solution. Such a solu-
tion scheme is called a two-grid method. In this approach,
the fine grid provides the accuracy required by the approx-
imation while the coarse grid offers a faster convergence
rate for the low frequency Fourier components. Naturally,
the weakness of the above scheme is that we have assumed
that an exact solver is available on the coarse grid. This is
generally an unreasonable assumption, but we need only
to observe that the problem on the coarse grid can itself be
solved by a two-grid method. By proceeding recursively, we
obtain a multigrid scheme, where progressively coarser
grids are employed, until so few discretization points are
involved that a direct solver can be used to compute the
error on the coarsest grid. The resulting solution technique
is called a multigrid method.

Since the two-grid method is the main component of mul-
tigrid methods, our first step in this section is to perform
a detailed analysis of the two-grid iteration operator. We
use two-color Fourier analysis to find the spectrum of this
operator for the 1-D and 2-D modei Poisson problems. Then,
we describe several of the standard recursion patterns,
namely the V-cycle, W-cycle, and full-multigrid schemes,
that are used to generate multigrid methods from the two-
grid iteration.

A. Two-Grid Iteration

Consider two discretization grids @, and Q,,, with mesh
sizes h and 2h, respectively, and let

L,,uh = fh (61)

be the equation that we seek to solve on the fine grid, where
Ly, fy and up, denote the discretized operator, forcing func-
tion, and solution, respectively. An (h, 2 h) two-grid iteration
for solving this equation consists of the following three
steps.

Step 1: Presmoothing: Select a relaxation operator S, for
solving (6.1) on the fine grid. Typically, S, is the Gauss-Seidel
relaxation, but other choices are possible, such as the
damped Jacobi iteration described below. Then, given an
initial estimate uﬁ?’ of the solution, apply the S, iteration »,
times. If u}}) denotes the resulting approximate solution, the

© (O]

old (0]
Uy = Uy ———y —r,=f, - Lu,

v, relax

Fig. 8. Structure of an (h, 2h) two-grid method.
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corresponding residual is
o= fa — Lyul. (6.2)

Step 2: Coarse-Grid Correction: The residual r, can be
projected onto the coarse grid Q,, by using a restriction
operator /3", thus yielding f, = 13"r,. Then, since we assume
that an exact solver is available on Q,,, we use this solver,
which is denoted here by L3}, to find the solution u,, of the
coarse grid problem

Lypuz, = fop. (6.3)

If 13, denotes an interpolation operator for transferring a
function defined on Q,, onto the fine grid Q,, we can inter-
polate the coarse grid correction u,,, and add it to the solu-
tion obtained in Step 1, thus yielding
up = up + 1Buz. 6.4)

Step 3: Postsmoothing: Using uf as initial solution, we
apply the S, iteration », times. The resulting approximate
solution is uy .

The above three steps are illustrated in Fig. 8. Usually, the
numbers »; and », of pre- and post-smoothing iterations are
0,1or2,and v = vy + nyis 2 or 3. If

eoId = ugld _ U, enew = u,r;ew _ U (6.53)

are the solution errors before and after one full two-grid
iteration, the error dynamics for the two-grid iteration can
be expressed as

enew = M%heold (65b)

where the two-grid iteration operator M3" is given by
M = spKihsy (6.6)

and k2" is the coarse grid correction operator

K3 =1, — 13,150 130L,, (6.7)
Naturally, the two-grid iteration needs to be repeated
until the error becomes sufficiently small. It will be shown
below that the two-grid iteration operator M3" reduces the
error by a constant factor independent of h, so that only
O(log (h~ ") iterations are necessary to solve (6.1) within the
discretization accuracy O(h®), where p is a positive integer.
Note that equations (6.2)-(6.6) provide only a general
description of the two-grid iteration procedure. In order to
obtain an actual two-grid iteration, we need to select the
operators Sy, 12", 14, and L,, which have been left unspec-

ified in the above description. In spite of the fact that there
exist many different ways to choose these operators and

k H @ 3
Iy, + 4 = P ——— o 0P =
v, relax
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that they need to be adjusted to achieve the best conver-
gence performance for different applications, the effi-
ciency of multigrid methods does not usually depend on
this choice. It is the utilization of multiple discretization
grids that makes these methods converge very rapidly. In
the following subsections, S, is the red-black Gauss-Seidel
iteration operator, L, is the usual 3-point (resp. 5-point) dis-
cretization of the 1-D (resp. 2-D) Poisson operator on the
grid @y, and /3" and 13, are the full weighting restriction and
linear interpolation operators, respectively.

B. Solution of the 1-D Poisson Problem

Two-Grid Method and Analysis: Consider an (h, 2h) two-
grid method for solving the discretized 1-D Poisson equa-
tion

#(un,1 —2u, + U,y =1, 1=n=<N-1 (68
where the boundary values uyand uy are given, h is the grid
spacing, and N = h™"is even. For the 1-D problem (6.8), it
will be shown below that it is possible to choose the relax-
ation, restriction and interpolation operators so that M3"
= 0. This means that the two-grid method is a direct solver
for (6.8). However, this is not true in general for 2-D or 3-D
problems,

Quite often, a simple but crude technique, called the
smoothing rate analysis [18], can be used to study the con-
vergence behavior of two-grid or multigrid methods. This
analysis assumes that the coarse-grid correction operator
K%" annihilates all the low frequency components of the
error and preserves its high frequency components, i.e.,

0, 1=k<NR2
1

oy

k) = 6.9)

N2 =<=k=<sN-1.

Te

By expressing (6.6) in the frequency domain and using
assumption (6.9), we find that the two-grid iteration oper-
ator admits the frequency domain representation

1=k < NR

(6.10)
N2 <k<=N-1,

A 0[
M3 (k) = { .
s;’)‘l VZ(k),

where $,(k) denotes the spectrum of S,,. The largest mag-
nitude p of S(k) for N/2 < k < N — 1is called the smoothing
factor. Therefore, the convergence rate of the two-grid
method is related to the smoothing factor via

p(Mih) = ﬂ’n*vz.
To give an example, consider the damped Jacobi itera-
tion,

6.11)

Y = (1 = ol + S i+ Ul = B 632)

where w is a relaxation parameter. The damped Jacobi
smoother has the spectrum

Jiw, k) = (1 — w) + w cos (kxh) (6.13)

whose magnitude parameterized with w is plotted in Fig.
9. We can choose w to minimize the magnitude of the larg-
est eigenvalue in the high frequency region. The optimal
relaxation parameter is w = 2/3, whichis obtained by solving

f(w, g) = —Jlw, N) (6.14)
and the corresponding smoothing rate is
p= max &Kl =1 (6.15)
Ni2<ksN-1
The estimated two-grid convergence rate becomes
pMEN = Gy (6.16)

We should point out that the assumption (6.9) for the
smoothing rate analysis does not actually hold in practice.
However, because of its simplicity, this analysis is often use-
ful for estimating the convergence behavior of multigrid
methods.

There are situations where the smoothing rate analysis
predicts completely wrong results. One such case arises
when the red-black Gauss-Seidel relaxation is used as
smoother. Following a procedure similar to the one
employed for deriving (5.11), we find that with respect to
the coefficients (&, x, &, i) of the 1-D red-black Fourier series

09+

0.8

0.7+

0.6

05

eigenvalues

03t
02} w=10%

0.1}

wavenumber

Fig. 9. The spectrum of the 1-D damped Jacobi smoother parameterized with w (N = 256).
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expansion
N2=1

e, = k§1 é, i sin (kwnh), n even (6.17a)

N2
e, = k21 ép sin (kxnh),  n odd (6.17b)
the red-black Gauss-Seidel relaxation operator G,, can be
represented as

0 cos (kwh)
0 cos? (kwh)

with G,,(N/2) = 0. The expression (6.18) holds also for high
frequency components (k > N/2) which are aliased into the
low frequency region. Thus, the red-black Gauss-Seidel
smoother attenuates rapidly the middle frequency com-
ponents (k = N/2) but works poorly for the low and high
frequencies. According to the smoothing rate analysis, we
have

Coplk) = [ ] 1<k<N2-1 (618

max |Gk = cos® (xh) =~ 1 — x’h%  (6.19)
NR<sksN-1
This implies a poor convergence of the correspoding mul-
tigrid method. However, contrary to this prediction,
numerical experiments show that the multigrid method
with the red-black Gauss-Seidel smoother is an exact sol-
ver for the 1-D Poisson problem and converges very rapidly
in the 2-D case. Thus, in order to explain the effectiveness
of the red-black Gauss-Seidel smoother, we cannot assume
that the condition (6.9) holds. It is necessary to perform a
complete two-grid analysis, i.e., to study the spectrum of
the coarse-grid corrector K" defined in (6.7), as well as that
of the smoother S;,.
We have first to define more precisely the operators
appearing in (6.2)-(6.4). The h-grid and 2 h-grid Laplacians
are

1 1 -
Ly =gz " = 2+ Epi Ly = (5 (Bl = 2+ E)
(6.20)

where £y, = EZ. To restrict a function from Q, to Q,,, we per-
form an averaging operation with coefficients 1/4, 1/2 and
1/4 and then down-sample the averaged sequence on @y,
The restriction operator is denoted by

1303, 3, 113k, (6.21a)

To interpolate a function from Q,, to Q25,, we use a linear
interpolation scheme for grid points belonging to 2, — Q..
The interpolation operator is written as

’;hil%, 1, %}gh (6.21b)

With respect to the red-black Fourier expansion (6.17),
the action of the h-grid discretized Laplacian and identity
operator /, on the red-black Fourier vector (&, &, )" can
be represented by the 2 x 2 matrices

. 2 -1 cos tkwhy | 10
Lyk) = —= [ :'; 1,(k) = l: ]
"R L cos (kah) -1 M= 10

(6.22a)
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Observing thatin the 1-D case, the points of the coarse grid
coincide with the red points of the fine grid, we find that
the red-black spectral representations of the restriction and
interpolation operators /3" and /3, correspond respectively
to mappings from (&, ,, éblk)T onto &, and from €, onto
(&4 5", and are given by

b _ 11 €os(kTh) | o 1
1z (k)—L,——2 13K = cos kb |

(6.22b)

Furthermore, with respect to the Fourier componenté, , the
2h-grid discretized Laplacian is represented by the spec-
trum

2(cos 2kwh) — 1

T (6.22¢)

Lotk =

We obtain therefore

REP(k) = Ttk — T3ak) Lontk) T2P(Kk) Latk)

0 0
= [ ] 6.23)
—cos (kwh) 1

Finally, choosing S, = G, and »1 = », = 1 in (6.6), we find
that the red-black spectral representation of the two-grid
operator is given by

M3k = Culk) RE(K) Gulk). (6.24)

From (6.18) and (6.23), it is easy to check that M3"(k) are 2
X 2 zero matrices for 1 < k < N/2 — 1and M3"(N/2) = 0.
Thus, the two-grid method with red-black Gauss-Seidel
smoothing is a direct solver.

Multigrid methods: The implementation of the two-grid
method requires inverting the coarse-grid Laplacian oper-
ator Ly,. An efficient way to carry out this inversion is to use
a (2h, 4h) two-grid iteration. By using nested two-grid iter-
ations, we can therefore reduce the original problem to one
defined on progressively coarser grids, until a direct solver
can be used to invert the discretized operator on the coars-
est grid. Thus, if the mesh-size on the finest grid is h = 2t
with L > 2, the following nested iteration specifies an L-grid
solver:

M3 = Gully = 153nXan13")Gro (6.25a)
with
M3l forh=2"2<i=<1-1
Xn = (6.25b)
L, for h = 1/2.

One can prove by induction that this multigrid algorithm
solves the 1-D Poisson problem directly. It is possible to
simplify this algorithm to save computations. See [74] for
details.

C. Solution of the 2-D Poisson Problem

Let L, and Ly, be the 5-point discretizations of the Lapla-
cian on @, and.Q, i.e.,

1
Ly = 35 (Enye + Eil— 4+ Epy + E7)) (6.262)

1
Ly, = ahr (Eznx + Eznx — 4 + Eany + Ezn,).  (6.26b)
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Then, 13" and /4, denote the full-weighting restriction and
linear interpolation operators, given respectively by

11 1|2k
i 8 16

2h,

15" }—, 3 % (6.27a)
111
6 8 6,

and

11 1|h
4 2 4

h

Bpif3 13 (6.27b)
111
12 4,

We consider only the case 1 < k,, k, < N/2. Each of the
4 x 4 frequency domain matrices appearing below cor-
responds to a mapping from the vector space spanned by

(?k/ _Fﬁl Bkr ‘BR>T

onto itself, where

k = (k, k), 1=<k,k, < ;;
{(N - k., k), fork, =k,
= .28
(kyy N — k), for k, < k,. (6.26)

When k, or k, is equal to N/2, the 4 X 4 matrices reduce to
2 X 2 or 1 X 1 matrices. The analysis of these degenerate
cases can be found in [74] and is omitted here. We also use
the abbreviations

cos §, + cos 9, _
a = ;a

2

cos b, + cos b,

I

8 = cos 8, 0,; B = cos b, cos B, 6.29)

where 8, = k,wh, 6, = k,wh, 8, = k,wh, and 6, = k,wh.
The matrices representing operators I, L, and Ly in the
frequency domain can be written as

. o). 4| -1 J
Intky, k) = 0 4 ; Lntky, k) =5 < (6.30a)

N h?

Lotk k) = 55, 8 =2a" =B =1 (6.30b)
whereQisthe2 x 2zero matrix, / isthe 2 x 2 identity matrix,
and

] = diag (a, &). (6.30¢)

The decomposition shown in Fig. 10, which is commonly
used in multirate digital signal processing [31], provides a

down
low, .
— P 1| sampling [
filtering 0, : O
(a)
uP. lowpass
_4 sampling { | b o
0 : O filtering
(b)

Fig. 10. Decomposition of the (a) restriction and (b) inter-
polation operators.
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simple physical interpretation of the interpolation and
restriction operators, and is also useful for deriving their
frequency domain matrices. In this decomposition, the
restriction procedure /3" is divided into two steps,

Step 1: Lowpass filtering (or averaging) at every point of
Q,, where the weighting coefficients are specified by the
stencil (6.27a).

Step 2: Down-sampling (or injecting) values from @, to
th.

The interpolation operator 1%, is also decomposed into
two steps,

Step 1: Up-sampling values from @y, to @, where we
assign 0 to points which belong to @), — Q3.

Step 2: Lowpass filtering at every point of @, where the
weighting coefficients are specified by the stencil (6.27b).

It is relatively easy to find a frequency domain matrix rep-
resentation for each of the above steps. Combining them
together, we obtain

"6, 0)=0 10 0

1+8 0 2 0
11 0 1+8 0 2&
x =
41 20 0 1+8 0
0 2a 0 1+ 8
. 1 ~
=Z[1+6 1+ 8 2a 24] (6.312)
and
1+8 0 2a 0 1
. 0 1+8 0 2& 111
17,0, 0,) = X =
2a 0 1+8 0 210
0 2& 0 1+ 8 0
1+ 8
1] 1+8
= (6.31b)
2| 2a
24

Thus, in the frequency domain, the down-sampling oper-
ation adds the high frequency component —F¢ to the low
frequency component #. This phenomenon is known as
aliasing [31]. Similarly, the up-sampling operation sets the
high-frequency component —f;equal to the low-frequency
component ;. This duplication effectis called imaging (31].
The lowpass filters which are cascaded with the down- and
up-sampling operations reduce the aliasing and imaging
effects. For example, when 6, and 8, are close to 0, @ = 1,
B8 =1,&=0,and B = —1. Hence, the aliasing and imaging
effects occurring between (7, 5,)" and (7, b¢)' are sub-
stantially eliminated by the associated lowpass filters.

From (6.30) and (6.31), we can compute the spectrum

2 (k,, k) of the coarse-grid correction operator. The fre-
quency domain matrix corresponding to the red-black
Gauss-Seidel iteration is

. 0 J
Cuvlky, k) = L 6.32)
0 J
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Note that G, (k,, k,) is a matrix of rank 2 rather than 4. Com-
bining the spectra of the smoothing and coarse-grid cor-
rection operators, we obtain the spectrum of the two-grid
operator

M3k, k) = Cratky, k) R3"(k,, k) Gk, k) (6.33)

which is again a matrix of rank 2. In [92] this feature was
exploited to find a closed-form expression for the spectral
radius of the two-grid operator. If » = v, + »,, we get

1
) v=1

p(M3") = (6.34)

1 NS
— >
2w (V + 1> povz2

In (6.34), the maximum of p[M?3"(0)] occurs at § = (x/2, 0) or
(0, x/2) when » = 1 and at (cos ™" [(»/» + 1), cos ™' [(v/v +
1)) when » = 2. Note since M}" # 0, the two grid method
is not a direct solver in the 2-D case. However, the spectral
radius p is a constant independent of the grid size h, so that
only O(log (h~") two-grid iterations are needed to solve
(6.1) with an accuracy equal to the 5-point discretization
error O(h?.

Multigrid methods: As in the 1-D case, we can recursively
invoke the two-grid method to obtain multigrid algorithms.
However, different recursion patterns may be needed for
different 2-D or 3-D problems. Three commonly used recur-
sion patterns, the V-cycle and W-cycle and fuil muitigrid
algorithms are shown in Fig. 11.

(a)

AW 1>

N

\ n__ T |,
AN\

(©

Fig. 11. lllustration of (a) V-cycle, (b) W-cycle, and (c) full
multigrid methods.

From this figure, we see that while the V-cycle multigrid
algorithm applies the coarse-grid correction operator once
per cycle, the W-cycle algorithm applies it twice. The num-
merical complexity per cycle of the V-cycle algorithm is
therefore smaller than that of the W-cycle algorithm. On the
other hand, since the W-cycle algorithm yields a better
approximation of L, it requires fewer cycles to converge.
The choice of cycling scheme depends on how the above
tradeoff is affected by the problem that we seek to solve.
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For the model Poisson problem, the V-cycle algorithm works
well. It requires just a few cycles (two or three) to converge
within a fixed accuracy (independent of h), so that there is
no need to use the W-cycle algorithm. However, the W-cycle
algorithm is usually superior for difficult problems, such as
highly anisotropic or nonlinear problems.

In the full multi-grid (FMG) scheme, instead of solving the
discretized problem (6.1) on the fine grid only, we solve it
on all grids, starting from the coarsest grid. Once (6.1) has
been solved within the discretization accuracy of a given
grid, we interpolate the solution to the next finer grid, and
use this solution as initial estimate for the V- or W-cycle mul-
tigrid algorithm applied to the next problem. The advantage
of this approach is that, because we are using a good initial
estimate for each successive problem, only a constant num-
ber of V- or W-cycle iterations are needed to solve (6.1)
within the discretization error O(h*) of each grid. The total
computational cost of the FMG algorithm is therefore very
small, and equals the cost of a constant number of smooth-
ing iterations on the finest grid [18], [54], [92].

D. Historical Notes

The idea of solving elliptic PDEs by using relaxation on
multiple grids was first proposed by Fedorenko [39] and
Bakhvalov [12] in the 1960s. However, it was not until the
work of Brandt [18], Nicolaides [83], and Hackbush [54] in
the 1970s that the efficiency of multigrid methods are rec-
ognized, and that their convergence properties were fully
analyzed. Brandt used Fourier analysis to study the error-
smoothing rate in the high frequency region. Subse-
quently, Stiiben and Trottenberg [92] also used a Fourier
approach to analyze a complete two-grid method including
fine-grid smoothing, restriction, coarse-grid inversion and
interpolation. Since all the elements of multigrid methods
are already presentinatwo-grid cycling scheme, the results
obtained for this scheme are usually a good indicator of the
performance of more general multigrid algorithms. More
recently, it was shown in [74] that the analysis of two-grid
iterations can be simplified significantly by using two-color
Fourier analysis. The book by Briggs [20] and article by Jes-
persen [63] provide a good introduction to multigrid meth-
ods for readers not acquainted with the subject. The pro-
ceedings of European multigrid conferences in 1981([55] and
1985 [56] include several interesting theoretical and prac-
tical contributions, particularly concerning the application
of multigrid methods to problems of fluid dynamics and
aerodynamics. A book edited recently by McCormick [81]
contains several articles on various aspects of multigrid the-
ory, as well as an exhaustive multigrid bibliography until
1987. Finally, [54] gives a rigorous mathematical treatment
of multigrid methods, and in particular of their conver-
gence properties.

VIl. PRecONDITIONED CONJUGATE GRADIENT METHODS

In the previous two sections, we have examined relax-
ation methods for solving elliptic PDEs on single and mul-
tiple grids. In this section, we consider solution techniques
which combine the conjugate gradient algorithm with a
preconditioning procedure, whose role is to reduce the
condition number of the original system, thereby decreas-
ing accordingly the number of iterations required by the
conjugate gradient algorithm.
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A. The Preconditioned Conjugate Gradient (PCG)
Algorithm

When the conjugate gradient (CG) algorithm was intro-
duced in the 1950s to solve SPD (symmetric positive defi-
nite) systems of the form (3.1), it was considered by some
researchers as a direct method, since in the absence of
roundoff errors, ityields an exact solution in at most N steps,
where N is the order of the system. However, because of
roundoff errors, this finite termination property does not
hold in practice. Furthermore, since the SOR or CSI meth-
ods require only O(N "?log N) iterations for the model Pois-
son problem, the conjugate gradient algorithm would in
fact be relatively inefficient if it truly required N steps to
solve this problem.

This forced researchers to view the CG method as an iter-
ative method, and in this context it was found that a useful
bound for the norm of the error e™ after miterations is [7],

(8]

Vi - 1]’"
7.1

le™1, < nem’n,{
k+ 1

where «(A) denotes the condition number of the matrix A
in (3.1), and | xll, = (x”Ax)"2 For the 2D model Poisson
problem, since for Dirichlet or periodic boundary condi-
tions the eigenvalues are given respectively by (3.14) or
(3.17), it is easy to check that x(A) = O(h~?) = O(N). Sub-
stituting this value inside the bound (7.1) we can conclude
that the CG procedure reduces the error by a constant fac-
tor in at most O(N"?) iterations, so that its rate of conver-
gence is comparable to that of the SOR and CSI methods.

Aithough the bound (7.1) is rather conservative since it
does not take into account the clustering of the eigenvalues
of A, it provides an important clue for improving the CG
method. Specifically, by introducing a SPD precondition-
ing transformation M, the system (3.1) can be transformed
into

Ady =1 7.2)
where A, g, and 7, are related to A, uy and f, via

A=M2AM7, ay = M"u,, f,=M"f, (7.3

and M"? denotes the symmetric square-root of M. From the
definition of A, we see that it is SPD. If the transformation
M is easy to invert, and if the condition number «(A) of the
transformed system is much less than «(A), it becomes
advantageous to apply the CG algorithm to the precon-
ditioned system (7.2) instead of the original system (3.1).
Note that since the matrices A and M ~'A are related by a
similarity transform, we can examine the spectrum of M ~'A
instead of that of A in order to find the convergence rate
of the PCG method. In the following, M and M ~'A will be
called respectively the preconditioner and the precondi-
tioner operator.

With the initialization:
xg arbitrary, ro=py=b — Ax, andB; =0

thek + 1th(k =0,1,2, - - -) iteration of the PCG algorithm
consists of the following two steps [50):
Step 1: Preconditioning: Solve

Mz, = r, (7.4)

for z,.
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Step 2: CG iteration: Compute
Bi+1 = @k, 12k -1, Tk-9)

Pe+1 = Zk + Brs1Pxk

@iy B Pr+1, APr+)

O 41
Xk+1 = Xt agr1Pr+n
Tex1 = Tk = s 1APk+ 1 @.3)

If the spectrum of A has no special clustering feature, and
if the condition number «(A) >> 1, the bound (7.1) for the
error norm indicates that the number of PCG iterations
required to reduce the error by a constant factor is pro-
portional to O(v«(A)). Thus, the goal of preconditioning is
to find preconditioners M which are easy to invert, since
each PCG iteration requires the solution of a system of the
form (7.4), and such that the condition number of A is as
small as possible.

If both A and M have Fourier functions as eigenfunctions,
the spectrum of M ~'A can be analyzed directly in the fre-
quency domain. In this context, the design of precondi-
tioners corresponds to an inverse filtering problem. That
is, given an FIR filter A, we seek to construct a filter M L
A~ such that M ~" can be implemented efficiently. Note
that since A~ " is a noncausal IIR filter, this last constraint
precludes selecting M = A.

Many elliptic preconditioners have been proposed in the
literature. Depending on whether they rely on operations
performed on a single discretization grid, or a sequence of
discretization grids, they fall into the category of single-
level, or of multi-level preconditioners. Examples of single-
level preconditioners include the SSOR (symmetric suc-
cessive over-relaxation) [5], ILU (incomplete lower and
upper factorization) [82], MILU (modified 1LU){36] methods,
as well as polynomial preconditioners [4], [64]. Examples of
multilevel preconditioners include the multigrid method
[66], [67] as well as the HB (hierarchical basis) [104], [84], and
MF (multilevel filtering) {71], [95] preconditioners. Since the
design of elliptic preconditioners is an active research area,
we do not attempt to survey all existing preconditioning
techniques. Instead, our goal is to relate the design and
analysis of some preconditioners to familar concepts in DSP
to motivate further research along this line.

B. Preconditioners Based on Incomplete Factorization

Among single-level preconditioners, we focus on those
obtained by incomplete factorization. Note that the Cho-
lesky algorithm can be used to factor the coefficient matrix
A into a product of lower and upper triangular matrices.
However, although A is sparse, the Cholesky algorithm
resultsin fillin for its lower and upper triangular factors. The
amount of fillin depends on the bandwidth B of A, which
may be significant, say O(N"?) for a discretized self-adjoint
elliptic PDE problem. The resulting band Cholesky algo-
rithm then requires O(N B?) operations [50], p. 155. We are
therefore led to consider preconditioners which require
only an approximate factorization of A, i.e., A = LU, and
with a computational complexity of O(N). Efficient approx-
imate factorization procedures of this type can be obtained
by requiring that the lower and upper triangular factors L
and U should have the same sparsity pattern as A. From the
multidimensional signal processing viewpoint, construct-
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ing an incomplete factorization is equivalent to factoring
of anoncausal IR filter A~ approximately into the product
of two causal IIR filters U~ and L™~ of fixed size.

The ILU and MILU factorizations, which were originally
introduced in [82] and [36] respectively, rely on two different
rules for constructing L and U. Both factorizations require
that L and U should have the same zero entries as the lower
and upper triangular parts of A, and that the nonzero off-
diagonal entries of A should be equal to the corresponding
entries of M = LU. The difference between the two fac-
torizations lies in the way the diagonal elements of M are
specified (see Fig. 12). For the ILU factorization, the diag-

@ D o
DD = 0 x OO0
ORS, ©,
L

(@)

= &0 x O
@

L U
(b)

Fig. 12. Stencil representation of local operators for the (a)
ILU and (b) MILU preconditioners.

onal elements of A and M are required to be the same,
whereas for the MILU factorization we require that, for all
rows, the row sum of M must differ from the corresponding
row sum of A by a small quantity ch?, where c is a constant
independent of h.

1 1
UE,E)=1—--E ——FE (7.6b)
a a

where a is a constant to be determined. Since the only non-
zero coefficients of L(E,, E)) (resp. U(E,, E,)) are those of 1,
E;"and E; " (resp. 1, E,and E,), L and U have the same spars-
ity pattern as the lower and upper triangular parts of A(E,,
E,). The local ILU preconditioners M, (E,, E,) is the product
of L(E, E,) and U(E,, E):

1 2
M\(E,, E) = p [a + P .+ E, + EJ" + E;Y

+31 (E.E; + ESE, } 7.7)
a

Comparing (3.7) and (7.7), we see that the coefficients of the
off-diagonal terms E,, £, E,, and E;" of operator A(E,, E,)
are matched by those of M;(E,, E,). Note that M, contains
some additional off-diagonal terms of the form E,E," and
E;'E,.The LU factorization imposes the additional require-
ment that the coefficients of the diagonal terms of M, and
A should be the same. This implies (see Fig. 12)

2
a+-=4 (7.8)
a
sothata = 2 + /2. This value of ais in fact observed asymp-
totically in the ILU factorization of the model Poisson prob-
lem with Dirichlet boundary conditions.

Therefore, the [LU-preconditioned Laplacian can be writ-
ten in operator form as

1
(M"A) (E, E) = [1 7 E+E T ET+EY

-1

1

+———(F +E‘1+E;‘E]
8+4Ji(‘ Y »

1 - -
X [1 o EHE +ET+ Ey‘)]. 7.9)
Itis straightforward to compute the spectrum of M['Awith
respect to the Fourier basis functions e?"®n=+kmih e

obtain

1 — jlcos (k,2mh) + cos (k,27h)]

Mk, k) Ak, k) =

1 - %[cos (k,2mh) + cos (ky27rh)] +

Each row of the matrix factors L and U specifies local finite-
difference operators L (E,, E) and U(E,, E). Even if the PDE
discretization operator A(E,, E,) has constant coefficients
the local operators L (E,, £,) and U(E,, E,) have usually space-
dependent coefficients, due to boundary effects. However,
for points far away from the domain boundary, these coef-
ficients tend asymptotically to constant values. In the fol-
lowing, we ignore boundary effects and restrict our atten-
tion to the asymptotic behavior of incomplete factorization
preconditioners.

ILU Preconditioners: For the model Poisson problem with
the natural ordering, the local factorization operators L (£,,
E,) and U(E,, E,) take the form [82]

1 - -
LE, E) = 2@- EX—EY (7.6a)
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(7.10)
1

———= cos (k, — k,)27h)

4+ 242 ’

where k,and k are integers between 1and N — 1. This spec-
trum is plotted in Fig. 13. From this plot, as well as from a
direct analysis, it is easy to check that the spectrum reaches
its minimum at the four corners of the domain 1 < k,, k,
= N — 1, and its maximum at the center, i.e., for k, = k,
= NI2. Furthermore, the minimum and maximum are pro-
portional to O(h% and O(1), respectively. This gives

AmaxA) _ Amax(Mi'A)
ANin @A) Apin(M[TA)

Since the condition number of A is of the same order as that
of A, it is tempting to conclude that the ILU factorization
is not a good preconditioner for the CG algorithm. How-
ever, from Fig. 13, we see that except at the four corners
of the (k,, k,) domain, the eigenvalues of A are close to 1.
A consequence of this eigenvalue clustering property is that

x(A) = =0khd. @11
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Fig. 13. Typical surface plot of the spectrum of the ILU pre-
conditioned Laplacian where 8, = 27k, h, 8, = 2xk, h and
h = 0.02.

the ILU preconditioner has a significant acceleration effect
on the CG algorithm which is not reflected by the bound
7.1).

MILU Preconditioner: The MILU preconditioner has the
same sparsity pattern as the ILU preconditioner, so that (7.6)
and (7.7) also apply. Thus, for the model Poisson problem
with the natural ordering, the MILU preconditioner can be
represented as

1 2
My(E,, E) = y [a +3- (Ec +E, + EJT+ E)

1
+ ;(Exfﬁ + E;1Ey)]. (7.12)

The difference between the ILU and MILU factorizations
lies in how the constant a is determined. For the MILU fac-
torization [36], it is required that the row sum of My(E,, E,)
should differ from the row sum A(E,, E,)), which is zero, by
a small quantity 8. This gives

1 4
—(a+——4>=6 (7.13)
4 a

and selecting 6 = ch?4 with ¢ > 0, we obtain
h? 1
a=2+ CT + 3 V8ch? + cZh*. (7.14)

As was observed above, the spectrum of the ILU precon-
ditioner M, approximates poorly the spectrum of A at the
four corners of the domain 1 < k,, k, = N — 1. In the mod-
ified ILU scheme, the condition (7.13) is imposed in order
to guarantee that the preconditioner M,, approximates A
well in this region. By performing a Fourier analysis iden-
tical to the one employed for the ILU case, the spectrum
and condition number of the MILU-preconditioned La-
placian can be evaluated. A surface plot of the spectrum is
shown in Fig. 14. This plot indicates that the smallest eigen-
values are of order 1, and the largest eigenvalues occur near
the end points of the transverse diagonal k, + k, = N. These
eigenvalues are of order h™", and consequently

A max (M 'A)
A min (MA_41A)
Comparing (7.11) and (7.15), we see that the condition num-

ber of the MILU preconditioned system is one order of mag-
nitude smaller than that of the ILU preconditioned system.

kp(A) = = Oh™". (7.15)
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0,2m)

(0.0)

Fig. 14. Typical surface plot of the spectrum of the MILU
preconditioned Laplacian where 6, = 27k, h, 6, = 2nk,h, h
= 0.02 and ¢ = 70.

Numerical experiments have confirmed that the ILU-CG
and MILU-CG require, respectively, O(h~" and O(h™"?)
iterations to converge (24].

The ordering of grid points plays in general an important
role in determining the form of the coefficient matrix A, and
hence of the preconditioners. With the red-black ordering,
the ILU and MILU preconditioners take completely differ-
ent forms and the spectra of preconditioned operators
behave very differently. See [70] for more details.

C. Multilevel Preconditioners Based on Filtering

The focus of research on elliptic preconditioners has
shifted recently to the design of preconditioners with amul-
tilevel (or hierarchical) grid structure. Since the global fea-
tures of elliptic operators can be reproduced more easily
by multilevel preconditioners, the resulting precondi-
tioned systems have often very small condition numbers,
ranging from O (1) to O(log® h~") where « is a small integer,
and hence the corresponding PCG algorithms converge
very quickly. Another advantage of multilevel precondi-
tioners is that they can be effectively implemented on mas-
sively parallel computers [71] and, therefore, are attractive
for paralle! computation.

Several multilevel preconditioners have been proposed.
One such preconditioner is the MG algorithm of Section
V1. When combined with the CG method, it yields the MG-
CG algorithm. The motivation for using the MG algorithm
as a preconditioner is that its speed of convergence is gov-
erned by the smoothness of the solution function, whereas
the convergence rate of the CG method is not affected by
this feature. Consequently, the MG-CG method is more
effective than the MG method alone for certain applica-
tions, such as the solution of interface problems, where
because of presence of several materials, the elliptic PDE
has discontinuous coefficients. Two other types of multi-
level preconditioners have been proposed by Yserentant
[104],{105]) and Bramble, Pasciak, and Xu [17],[99] in the con-
text of finite-element methods. Yserentant considered a
new set of basis functions, known as the hierarchical basis.
Bramble et al. introduced a sequence of basis functions
which are defined at various discretization levels and called
multilevel nodal basis functions. Roughly speaking, the
preconditioning step M ~'r consists in projecting the resid-
ual r onto these basis functions. In the following, we exam-
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ineyet another preconditioner, the multilevel filtering (MF)
preconditioner, which was proposed recently in [71]. This
preconditioner relies explicitly on multirate digital signal
processing techniques and can be best described in the
Fourier domain.

The filtering approach to the design of preconditioners
can be described as follows. Suppose that we approximate
the spectrum of an elliptic operator by a piecewise-constant
function. In the space domain, this approximating function
corresponds to an operator which (i) splits the input func-
tion into several components, where each such component
consists of wavenumbers within a narrow band, (ii) scales
each component by a constant, and (iii) recombines all the
scaled components. The inverse of such an operator is easy
to implement, since it has the same form, except that the
scaling constants are inverted. [n multirate digital signal
processing, the decomposition of a signal into components
consisting of different wavenumber bands, and vice versa,
isaccomplished by afilter bank analyzer (resp. synthesizer).
Although there exists anumber of techniques for designing
filter banks (see[31], Chapter 7), the filter bank which is used
for the MF preconditioning technique is obtained by cas-
cading a sequence of lowpass operating on different dis-
cretization grids, in combination with down- and up-sam-
pling operations.

To be more precise, consider the 1D Poisson equation on
[0, 1Y with zero boundary conditions. After discretization on
auniform grid @, with spacing h = 2 =%, where Lis a positive
integer, we obtain

(-1E+1 -1 Nu,=f, 1=nsN-1 (7.6
with N = 2. This system can be rewritten as
Au=f (7.17)

where A is the tridiagonal matrix with diagonal elements
—1/2,1 and —1/2. A can be diagonalized as

A=WAW (7.18)
where
Ag=diag (N, * -« , Ny 77, A=)y
A =1 — cos (kwh) (7.19a)

and W is a square matrix of size N — 1, whose kth row is

N
sin (km(N — T)h)).

2 12
wi = <—> (sin (kxh), - - -, sin (kwnh), - - -,

(7.19b)

The diagonalization of the matrix A can be interpreted as
a decomposition of the driving and solution functions into
their Fourier components. Furthermore, A, is just the spec-
trum A (k) of the 1D Laplacian.

In the wavenumber domain, the spectrum A(k) can be
approximated by a piecewise constant function

Pk)=c, keB, 1<l=l (7.20a)

where
Bi={keN2 —1<k<2} (7.20b)

denotes the /th wavenumber band. Let A, be the diagonal
matrix with P(k) as kth diagonal element and P = W A,W.
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Then, the P-preconditioned Laplacian takes the form

PTIA = WiAp-aW 7.212)
with
) N g A
Ap-1y = (Ap7A, = diag <C—:, C_Z' c—z' e,
Apr M )‘N—1>. (7.21b)
o' o’ T a

The question is how to choose the constants c; in order to

reduce the condition number of P ~'A. If we select
¢ =470 (7.22)

it can be shown [71] that the eigenvalues of P ~"A satisfy
2
1= \NPTA) < T~ 493 (7.23)

so that the condition number x(P~'A) is bounded by 4.93,
a constant independent of the grid size h. In Figure 15, we

108
104 :

10% 1

cigenvalue

10
0

50 100 150 200 250 300

‘wavenumber

Fig. 15. Spectraof A, P~'and P"' A

plot the spectra A(k), P~"(k)and P~ '(k) A(k) for N =h~" =
256, when c; is given by (7.22).

For P to be an effective preconditioner, P~'r has to be
easily computable for any given vector r. It is clear that P~
= W'A;'W is a piecewise constant function in the wave-
number domain. The preconditioning procedure

P 'r= WA 'Wr (7.24)

consists therefore of three steps: decomposition, scaling,
and synthesis, which are represented here by multiplica-
tions by W, A;" and W', respectively. To clarify this com-
ment, we can rewrite (7.24) as

L
1
P'r= <Z = w,’w,)
1=1¢

where W, 1 <1 < L,are(N — 1)*square matrices which have
the same 2'~" to 2! — 1 rows as W and zero vectors for
remaining rows. Then, the multiplications by W,and W/ in
the decomposition and synthesis steps of (7.25) can be
implemented with FFTs and inverse FFTs. This is due to the
factthat W,isamapping from the space domain to the wave-
number domain, whereas W/ is a mapping from the wave-
number domain to the space domain. Using this technique,

(7.25)
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we obtain a preconditioner implementation similar to the
fast Poisson solver of Section IV.

Let Fi¥ = W/W,. Then, F{? is a mapping from the space
domain to the space domain. In addition, we have

Fi' = WTAgW (7.26a)
where Agiis a diagonal matrix whose kth element is

1, kEB;

Fidk) = { (7.26b)

0, otherwise.

We see that the Fi? functions as an ideal bandpass filter
for the band B,. Although it is possible to implement the
ideal bandpass characteristic (7.26b) with FFTs or bandpass
filters of size N, the resulting implementations either can-
not be extended to more general PDEs, or are too expensive
(i.e., or complexity O(N?). This leads us to approximate the
ideal bandpass filter Fi¥ with a nonideal filter F, with

R 1, k e B,
Fi(k) = { (7.27)
0, otherwise,

so that F; can be implemented cost effectively for general
problems.

An implementation of the preconditioner (7.25) would
then consist of using digital filters to realize F,in the decom-
position step, followed by a simple addition for the syn-
thesis step. However, the decomposition and synthesis
steps would be asymmetric, which is an undesirable feature
in the multigrid context. This motivates us to write (7.25)
differently as

L
P = <E 1 F,TF,>r. (7.28)

I=1¢

The block diagram of Fig. 16 describes a procedure for
constructing the bandpass filters F, with1 < / < L, in terms
of a cascade of elementary low-pass filters H,, H; — 1,
-+, H,. From Fig. 16, we see that F, can be expressed in
terms of the filters H, as

Fr=1-H, (7.29a)

T —]‘] H I Hp.,

L
F, II Hpjl, 2=<sl=sL-1 (729b)
+1

H
—
<
|
[
©
1t

1l
=~
I

F (7.29¢)

Let the elementary filter H; be an FIR filter of the form
/

H, =a, + 21 aE’ + E7) (7.30)
i=

where the coefficients a; are selected so that the spectrum
H, (k) approximates an ideal lowpass filter, i.e.,
0=sk<2t -1

1,
H k) = 7.31)
60 [o, 201 < k = 2L, (

The coefficients a;can be determined by using any standard
digital low-pass filter design technique. One specific choice
is examined in [71]. The same coefficients are also used for
constructing the /th-level elementary filter

Hy=ay+ 2 a(E* T + E7%7) (7.32)
j=1

with 2 < [ < L. Comparing (7.30) and (7.32), we see that the
only difference between elementary filters H, and H, is that
while H; constructs a weighted average of points separated
by a distance of h, the /th-level filter H, performs the same
average over points separated by a distance of 2~ 'h. Since
some of the points needed to perform the above averages
may be located outside the domain @, the system (7.16) is
viewed as defined on an infinite grid with an odd-periodic
extended driving function, i.e.,

foo=—f, and fyipn =1, (7.33)

for p integer. The preconditioner shown in Fig. 16 is called
the SGMF preconditioner.

The SGMF preconditioner of Fig. 16 can be simplified fur-
ther by deleting paths corresponding to / — H,. The result-
ing modified SGMF preconditioner is shown in Fig. 17. It
can be expressed as

I3
Q 'r= <IZ1 % c,Tc,>r (7.34)
=10Q

Fig. 16. Block diagram of the MF preconditioned with a single discretization grid (SGMF).
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Fig. 17. Block diagram of the modified SGMF preconditioner.

with
GL =, (7.35a)
G

B'H,, 1<lsL-1 (735

L
II
p=I=1
and where the scaling constants d| are related to the con-
stants ¢; via
L
1
> -

1
- . .36

Note that unlike the preconditioner P, which relied on
bandpass filters F;, the modified preconditioner Q is imple-
mented in terms of lowpass filters G,. A consequence of this
feature is that the wavenumber components of the residual
r belonging to the band B, are present at the first L — [ +
1 levels. Since according to Fig. 18, these components are
multiplied by d;", - - -, d;" respectively, the precondi-
tioners Q and P will be equivalent only if the constants ¢,
and d; satisfy the relation (7.36).

The filtering operations that we have just described are
performed at every grid point, for all levels 2 < | < L. If the
order J of filters H, is finite, the number of operations
required for such an implementation is proportional to O(N
log N), where N is the total number of unknowns. However,
since waveforms consisting only of low wavenumber com-
ponents can be represented accurately on coarser grids, we
can incorporate the multigrid structure into the above
framework. This is illustrated in Fig. 18, which we call the
MGMEF preconditioner. Note that the MGMF precondi-
tioner is obtained by inserting 2: 1 down-samples (/{” ") and
1:2 up-samples (//_,) into the modified SGMF precondi-
tioner. It is easy to see that the number of operations
required by the MGMF preconditioner if proportional to
O(N) instead of O(N log N) for the SGMF case.

The generalization of the MF preconditioner to multi-
dimensional problems on regular domains is straightfor-
ward. For example, the 2-D elementary filter H, can be

Fig. 18. Block diagram of the MGMF preconditioner.
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obtained as the tensor product of 1-D elementary filters
along the x- and y-directions. It has been shown by Fourier
analysis that the condition number of the MF-precondi-
tioned Laplacian implemented with nonideal filters is pro-
portional to O(1) for the 1-D, 2-D and 3-D cases. This implies
that the MF-CG method converges in a finite number of iter-
ations independently of h, which has been confirmed by
numerical experiments [71], [95].

D. Historical Notes

The conjugate gradient method for solving linear systems
of equations was developed in late 1940s and early 1950s
by Hestenes, Stiefel, and others. For a history of the con-
jugate gradient algorithm and the closely related Lanczos
algorithm, the readers are referred to a recent survey by
Golub and O’Leary [49], which contains an annotated bib-
liography for the period 1948-1976. A detailed presentation
of the SSOR, ILU, and MILU preconditioners can be found
in the book by Axelsson and Barker [7]. The Fourier analysis
of the ILU, MILU and SSOR preconditioners for the natu-
rally ordered Poisson problem with periodic boundary con-
ditions was performed by Chan and Elman [24]. They also
observed strong similarities in the eigenvalue distribution
of incomplete factorization preconditioners for the
Dirichlet and periodic problems. Kuo and Chan [70] used
two-color Fourier analysis to study the eigenvalue distri-
bution of the ILU, MILU, and SSOR preconditioned La-
placian with the red-black ordering. In the last few years,
a growing amount of work has focused on the design of
multilevel preconditioners. A brief survey of recent
advances in this area can be found in the papers by Kuo,
Chan, and Tong {71} and by Axelsson and Vassilevski [11].

VII. DoMmAIN DECOMPOSITION METHOD

Domain decomposition methods rely on a partition of
the domain of definition Q of a given PDE into subdomains
Q; with or without overlapping regions. The original prob-
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lemis then decomposed into smaller problems defined over
each subdomain, which can be solved independently, pro-
vided that a strategy is developed for evaluating the vari-
ables corresponding to overlapping regions, or to inter-
faces between subdomains. Domain decomposition
technique present several advantages. First, it is often pos-
sible to select the subdomain ©; in such a way that special
solvers, such as fast direct solvers or MG methods, can be
applied to the subproblems, even though they are not
applicable to the problem defined over the entire domain
. This is the case for example when Q is irregular, but can
be represented as the union of regular subdomains Q;, or
when the PDE has constant parameters over each subdo-
main, but not over the entire domain, such as for interface
problems between different materials. Domain decom-
position methods are also attractive from the point of view
of parallel computation, since all subproblems can be
solved in parallel.

Domain decomposition algorithms can be divided into
two categories, depending on whether the subdomains
overlap or not. Algorithms with overlapping subdomains
fall into the category of Schwartz alternating methods [89],
whereas those with nonoverlapping subdomains are called
iterative substructuring or capacitance matrix methods. We
restrict our attention here to capacitance matrix methods,
where the domain is decomposed into regular subdo-
mains, and the capacitance system governing the variables
on the interfaces between subdomains is solved by an iter-
ative method, such as the PCG algorithm. Since each iter-
ation requires the solution of problems over each sub-
domain, itis important to find good preconditioners for the
capacitance system. To do so, we use Fourier analysis to
study the capacitance system corresponding to a simple
model problem consisting of Poisson’s equation defined
over a rectangle divided horizontally into two subrectan-
gles. This analysis leads to FFT-based preconditioners,
which are then shown to be effective for more complex
domain geometries.

A. Capacitance Matrix Formulation

Consider a discretized elliptic PDE with Dirichlet bound-
ary conditions,

Au=f @®.1

whose domain Q is partitioned into two nonoverlapping
subdomains 2, and @, with an interface region I', as shown
in Fig. 19. By partitioning the solution uand driving function
finto subvectors u; and £, with i = 1, 2, 3, corresponding
to the unknowns and driving terms indexed by points of
2, @5, and T, respectively, (8.1) can be expressed in block

Fig. 19. A general domain and its partitioning.
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form as

Aqy A uq f1
Aypy Ap ul=146] 8.2)
Al AL AL us fy

Using block Gaussian elimination, the system (8.2) can be
solved as follows:
Step 1: Determine u; by solving the capacitance system

Cu; =g 8.3
where the capacitance matrix
C = Ay — ALAR A — ALAR Ay 8.4)
is the Schur complement of diag (A, Ay,) inside A, and
8 = f; — ALATf — ALAR'f,. (8.5)
Step 2: Compute u, and u, from
ur = AR = AR'g (8.6a)

with

g1=f —Apus and g =1, — Apu;.  (8.6b)

In (8.5) and (8.6), we need to invert the matrices A,; and
Az, which describe the coupling among variables of sub-
domains ©, and 2,, respectively. The operation A7'w (or
A%'w), where w is an appropriate vector, is called a sub-
problem solve. It can often be implemented by using fast
direct or MG methods. The solution of the capacitance sys-
tem (8.3) is more difficult. It is usually not desirable to form
the capacitance matrix C explicitly, since the direct com-
putation of the elements of C is very expensive. Instead,
when (8.3) is solved by iterative methods such as the PCG
algorithm, only the computation of Cw is required, which
involves two subproblem solves. Due to the high cost of
computing Cw, itis important that iterative methods should
converge very fast. Consequently, the design of good pre-
conditioners for the capacitance matrix C is the key to the
development of efficient nonoverlapping domain decom-
position algorithms.

B. Fourier Analysis of the Capacitance System

As a first step, we consider the case where the matrix A
in (8.1) represents the 5-point discretized Laplacian with
local operator (3.7), defined over a rectangular domain €.
We also assume that 2 is decomposed horizontally into two
rectangular strips @, and @,, as shown in Fig. 20. In the

¥y
Ly
Q
T3
Ofb-—==--q—=x
Q,
~L,

Fig. 20. A rectangular domain and its partitioning.
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x-direction, Q is discretized uniformly with mesh size h =
N -, where N — 1 is the number of internal discretization
points. In the y-direction, we assume that the widths L; and
L, of @, and @, satisfy

Ly =Mh and

where M; and M, are positive integers.

A consequence of this simple decomposition geometry
is that Fourier analysis can be employed to study the capac-
itance system (8.3). Specifically, we show below that the
matrices Az, A3 A7 Ayand AL A% Ay appearing in the def-
inition (8.4) of C all have for eigenvectors the sine vectors

w] = V2h(sin (kxh), - - -, sin (kxnh), - - -,
sin (kx(N — 1)h)) (8.8)

with1 < k< N-1.
First, the local operator corresponding to A;; can be
expressed as

L, = Mph 8.7)

1~ 1E + ESY.
Consequently, by operating with A3; on w, we obtain

Anw, = [1 — ] cos kxh)lw, = 32 + opw,  (8.9)

with
kzh
o = 4 sin? (%) 8.10)
Thus, w, is an eigenvector of Aj;.
Next, we examine —ALAR'AL Let AAzw, = v,
so that
A11Vk = A13Wk. 8.11)

The equation (8.11) can be viewed as obtained by discre-
tizing Laplace’s equation (the driving function is zero) on
Q, with zero boundary values along the east, north and west
boundaries and w; along the south boundary. It turns out

that its solution v, admits the closed-form expression
vi(ny, Y = ~2h sin (kn,wh)d, +(n,) 8.12)

where d, 4(n,) satisfies the difference equation

dis(n, — 1) — @ + 6,) diq(n) + dis(n, + 1) = 0,

1=n, <M -1 8.13)

with boundary conditions d; 4(0) = 1 and d, ;(M;) = 0. We
are interested here in the quantity

—ABAR Apwy = —ALv = 1vidn,, n, = 1) = 1 dy s(Hw,

(8.14)

Thus, w, is an eigenfunction of —AL;A;'A;; with eigen-
value d; ;(1)/4. The same procedure can be used to analyze
the matrix —ALAp' Ay, This gives

—ALAR Apw, = 1d, (Dw, (8.15)
where d; ,(1) is obtained by solving
dian, — 1) — 2 + o) dk,z(ny) + du(ny + 1) =0,

1=n s M -1 (8.16)
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with boundary conditions d »(0) = 1and d, ;(M,) = 0. Com-
bining (8.9), (8.14), and (8.15) yields

Cwi = 32 + op + dia(D + dio(Mwi = Newye (8.17)

for 1 <= k = N — 1, so that w, is an eigenvector of C, as
claimed. Further analysis shows [23] that the eigenvalue A,
associated to w, can be expressed as

A = glk, My, M) Vo, + 1o} (8.18)

where o, is given by (8.10), and

1+ak 1+
=X ZTXE) (g9
g(k: M, M) 4(1 — 724| + 1-— .YkMz ( a)

with
e =1+ %Uk — Vo + %Uk)z.

Note that o is the spectrum of the 1-D Laplacian operator
L =2 — (E, + E;") defined on I';. The respective spectra A,
and g, of the capacitance matrix C and Laplacian L, and the
function g(k, My, M,), are plotted in Fig. 21 for M, = M, =
40 and h™" = 256.

The geometric parameters M, and M, which specify the
sizes of subdomains @, and @, affect only the function g(k,
M;, M,). From Fig. 21, we see that this function has values

(8.19b)

10' E ! A T T T E
E emmmemmeTE o ]
100 | - \ E
: 9(k,M,M,) ]
101
102 g
j ]
103§ E
104 ) A
0 50 100 150 200 70 o

wavenumber

Fig. 21. Plots of \,, 0, and g(k, M;, M,) as functions of the
wavenumber k.

of O(1). For large M, and M, with fixed k, g (k, M4, M) reaches
its asymptotic value 0.5 rapidly. Therefore, (8.18) can be sim-
plified as

Ak = 0.5*/0‘( + %O'k.

Since 02 << g, for small k and jo} = o, for large k, an even
rougher estimate for A, is

A = 0.5V, (8.21)

In summary, we have shown in this section that if W is
the orthonormal matrix of size N — 1 whose columns are
the sine vectors w,, the capacitance matrix C associated to
the partition of a rectangular domain into two horizontal

(8.20)
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strips admits the eigenvalue/eigenvector decomposition
C=WAW" with
A=diag {N\, ", Nt 00, Ayl (8.22)

C. Preconditioners for the Capacitance Matrix

From (8.22) and (8.18), it is easy to check that, for h suf-
ficiently small, the condition number of the capacitance
matrix C is given by

k(C) = ——— =~ — = Oh™") (8.23)

with

1(1+e?™ 14e%"
573 <1 —eh T o e‘““)'
Itis therefore of interest to design preconditioners M such
that (M ~'C) = O(1). Several such preconditioners have
been proposed in the literature. These preconditioners are
all of the form

M = wDW’ (8.24)

and differ only by the choice of diagonal matrix D. Dryja
[33], and Golub and Mayers [48] proposed preconditioners
with

Dp = 0.5 diag {Vo,}  and

D¢; = 0.5 diag { Vo, + %Uzk}

respectively. These preconditioners can be motivated by
the eigenvalue decomposition (8.22) for C, and approxi-
mations (8.21) and (8.20), respectively, for the eigenvalues
A, of C. More recently, Chan [23] proposed the selection
of

(8.25a)

Dc = A (8.25b)

where \ is given by (8.22). The preconditioner M given by
(8.24), (8.25b) is exact for Poisson’s equation and the domain
decomposition geometry of Fig. 20. Finally, observe that all
preconditioners of the form (8.24) admit FFT implementa-
tions.

An interesting feature of the above preconditioners is
that, although they were designed for the case where Q is
a rectangle divided horizontally into two subrectangles,
they are applicable to complex domain geometries where
2 is the union of an arbitrary number of rectangles. Con-
sider for example the Poisson equation defined on the L-
or C-shaped regions of Figs. 22(a) and 22(b). For the L-shaped
domain of Fig. 22(a), @ can be viewed as obtained by assem-
bling the three elementary rectangles @, withi = 1,2, 3. The
corresponding interfaces are I'y and T's. Consider now a
decomposition of © into two rectangles ; and Q,; = @, U
Q3. The corresponding capacitance system defined over
interface I', is

Cauy = g4 (8.26)

To precondition this system, we can ignore the presence
of @3, and let M, be the preconditioner given by (8.24), (8.25b)
whenwe partition @y, = 2, U @,into @,and @, with interface
T,. It was shown by Chan and Resasco [27] that with this
choice, the condition number x(M;"'C,) is O(1). A similar
result holds for the C-shaped domain geometry of Fig. 22(b)
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Fig. 22. (a) L-shaped and (b) C-shaped domains and their
partitionings.

[27]. This indicates that preconditioners designed for rect-
angular domains remain effective for more complex domain
geometries. More generally, for an arbitrary problem such
as the one depicted in Fig. 19, one may fit the domain with
two subrectangles in such a way the geometric parameters
M; and M, can be estimated, and then used to design a pre-
conditioner of the form (8.24)-(8.25).

D. Historical Notes

The first domain decomposition technique for solving
elliptic problems was introduced by Schwartz in 1869, who
proposed an alternating procedure, where the problem is
solved by going in alternance from one subdomain to
another. A short history of the early work on domain
decomposition methods can be found in (98]. The recent
interest in domain decomposition techniques is due to the
fact that these methods are intrinsically parallel, and are
therefore well adapted to parallel computers. A recent paper
by Keyes and Gropp [68] provides a good introduction to
domain decomposition methods for readers unfamiliar with
this topic. It gives an overview of various domain decom-
position techniques, compares their performance, and dis-
cusses their parallel implementation. The Fourier analysis
of the capacitance matrix for a rectangular domain divided
into two subrectangles was first proposed by Chan [23]. The
extension of this analysis to the case of a rectangle divided
into an arbitrary number of rectangular strips is described
in [26]. In [27], [28], Chan and Resasco presented a general
framework for the analysis and construction of domain
decomposition preconditioners over irregular regions. For
a more general perspective on domain decomposition
methods, and on their application to a wide variety of PDEs,
readers may wish to consult the preceedings of two con-
ferences on domain decomposition methods held in 1987
and 1988 [47], [25].

IX. PARALLEL COMPUTATION

There has been much progress during the last 20 years
in developing vector and parallel computer architectures
[61], [62] and algorithms for solving elliptic PDEs. In this sec-
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tion, we focus on algorithms for parallel computers and will
give a brief account of the main achievements in this area.
For a more thorough review, we refer readers to the work
of Ortega and Voigt [86], [87].

As indicated in Section Ill, one way to parallelize PDE
algorithms is to reorder the sequence of grid points to be
processed in such a way that a large number of operations
can be performed in parallel. For example, the red-black
ordering is more attractive than the natural ordering for
solving 5-point discretized elliptic PDEs, as far as parallel
implementation is concerned. One interesting question
that arises in this context is whether the convergence rate
of iterative algorithms is affected by the reordering scheme.
This problem has been studied in [1], [38], [70], {75], [77]. In
particular, the effect of the red-black ordering on SOR and
PCG algorithms is discussed in detail in [70]. Briefly speak-
ing, the convergence rate of the SOR algorithm is inde-
pendent of ordering schemes, but the convergence rate of
PCG algorithms depends on the choice of ordering. For the
CG method preconditioned by the MILU or SSOR method,
the convergence rate of the red-black ordering is one order
of magnitude slower than that of the natural ordering [38],
[70]. For PCG methods, there exists therefore a tradeoff
between the rate of convergence and the degree of par-
allelism that can be achieved.

No such tradeoff exists for the SOR method, but another
difficulty arises when one seeks to implement it in parallel.
Specifically, when the coefficients of the PDE are space-
dependent, the optimal relaxation parameter depends in
general on global information and must be estimated adap-
tively [57]. The estimation of the relaxation parameter
requires global communication between all processors, a
feature that slows down the SOR algorithm significantly. To
overcome this difficulty, a local relaxation procedure was
proposed in[16], [37], [75] where different relaxation param-
eters are used at every grid point, and are determined on
the basis of local information. Since, unlike the conven-
tional SOR algorithm, no global information is needed for
determining the optimal local relaxation parameters, the
communication time between multiple processors is sig-
nificantly reduced. Another extension of the red-black SOR
algorithm involves the use of more than two colors for
ordering the grid points. The motivation for considering
multiple coloring schemes is that when elliptic PDEs are
discretized on high-order stencils, more than two colors are
necessary to decouple all grid points of the same color. For
the case of a 9-point stencil discretization, four colors are
needed. The extension of the red-black SOR algorithm to
multiple coloring schemes can take different forms. For the
9-point discretized Poisson problem, two such extensions
have been proposed by Adams, Leveque, and Young [2],
and by Kuo and Levy [73], which rely respectively on a sin-
gle- or two-level relaxation scheme. Both of these methods
are easily parallelizable on mesh-connected processor
arrays.

In parallel implementations of the PCG algorithm, the
major bottleneck is usually the parallelization of the pre-
conditioner (7.4), since the remaining steps of the PCG algo-
rithm can be parallelized in a straightforward way. The main
difficulty lies in the fact that elliptic PDE problems involve
a global coupling of all grid points. In order to be effective,
preconditioners must take into account this global cou-
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pling by including a mechanism for transmitting infor-
mation from one point of the problem domain to another.
Consequently, preconditioners that use purely local infor-
mation, such as the red-black ordered MILU and SSOR and
polynomial preconditioners, are fundamentally limited in
their ability to improve the convergence rate of the CG algo-
rithm. On the other hand, global coupling through a natural
ordering grid traversal is not highly parallelizable. To con-
struct highly parallelizable and effective preconditioners,
we are therefore led to consider preconditioners which
share global information through a multilevel grid struc-
ture, thus ensuring a good convergence rate, but perform
only local operations on each grid level, and hence are
highly parallelizable. Preconditioners that have this feature
include the multigrid method when used as a precondi-
tioner [66], [67], and the hierarchical basis basis precon-
ditioner [104], [105]. More recently, new multilevel precon-
ditioners have been proposed by Bramble, Pasciak, and Xu
[17], [99] and Kuo, Chan, and Tong [71]. These precondi-
tioners differ from multgrid methods by the fact that the
smoothing operation in multigrid methods is replaced by
a simple scaling operation, as was shown in Section VII-B.
Other types multilevel preconditioners have been exam-
ined in [6], [9], [10], [76], [97]. A detailed comparison of sev-
eral multilevel elliptic preconditioners can be found in [71].

The parallelization of multigrid methods or multilevel
preconditioners on multiprocessor machines is one of the
most challenging areas in parallel computing for elliptic
PDEs. A significant amount of work has focused on par-
allelizing standard multigrid algorithms on mesh-con-
nected arrays[19], [44] and hypercubes[29]. Variants of stan-
dard multigrid algorithms aiming at achieving more
parallelism on massively parallel computers have also been
proposed. These parallel multigrid algorithms include the
concurrent multigrid method [44] and the superconvergent
multigrid method {43). A survey of developments in this field
up to 1987 is presented in [30]. More recent contributions
can be found in [79]. Roughly speaking, two fundamental
issues arise in parallelizing multigrid methods. One is to
find an appropriate mapping which assigns adjacent grid
points to neighboring processors so that only local com-
munication is required. Since the hierarchy of grids in the
multigrid algorithm complicates the flow of data, this is in
general not easy. However, for the hypercube machine this
mapping problem has been solved by Chan and Saad [29].
The second problem is usually known as that of load bal-
ancing. To get maximal parallelism, we need as many pro-
cessors as there are points at the fine grid level. However,
when relaxation is performed on the coarse grid, the major-
ity of the processors become idle. Thus, the problem is to
reduce the number of idle processors as much as possible
so that the efficiency of the entire multiprocessor system
is maximized. One promising way to solve this problem is
to perform concurrent iterations at different grid levels. For
example, we may use filtering to split the problem into mul-
tiple subproblems defined on different grids, where each
subproblem corresponds to a different spectral compo-
nentof the original problem. These subproblems could then
be solved simultaneously by performing concurrent relax-
ations on all grids. However this approach raises many
questions: what is the optimal splitting scheme? What s the
best filter for dividing a given problem into subproblems?
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How is the convergence and efficiency of standard multi-
grid algorithms affected by this decomposition procedure?

Domain decomposition provides a natural way to achieve
parallel computation. This approach is particularly suitable
for a coarse grain parallel computing environment where
there are considerably fewer processors than grid points.
One important issue in domain decomposition is the selec-
tion of the number of subdomains. On one hand, more sub-
domains imply more parallelism. On the other hand, the
communication cost per iteration and the overall number
of iterations tend to increase with the number of subdo-
mains. Thus, the answer is generally architecture-and prob-
lem-dependent. The complexity of parallel implementa-
tions of domain decomposition techniques on aring, atwo-
dimensional mesh, and an n-cube has been studied by
Gropp and Keyes [52]. Some performance analysis results
and numerical experiments have also been reported in {21],
[53], [58].

X. CONCLUSION AND EXTENSIONS

Digital signal processing (DSP) and the numerical solu-
tion of PDEs have been traditionally considered as separate
research areas. However, during the last 30 years Fourier
analysis has been used increasingly by numerical analysts
to analyze and design numerical PDE algorithms. Without
surprise, results obtained by Fourier analysis can be refor-
mulated within the DSP framework. Recently research work
[69], [71], (72], [73], [75] has focused on bridging the gap
between these two separate research areas, and a number
of interesting new results have been obtained as a con-
sequence of this effort. In this paper, we have described in
detail the link existing between DSP and the numerical
solution of PDEs, so that numerical PDE algorithms can be
understood by electrical engineers in a more familiar set-
ting. In addition, a number of recent developments on iter-
ative solution techniques for elliptic PDEs have been
reviewed so as to provide readers with the most up-to-date
knowledge in this area.

The effort to bridge the gap between DSP and numerical
differential equations will benefit researchers in both areas.
From the electrical engineering side, researchers will be
able to study existing numerical algorithms for different
equations more easily. They will also find numerous inter-
esting and challenging problems in the solution of differ-
ential equations, for example, the solution of PDEs con-
sisting of both space and time variables. From the numerical
analysis side, researchers will have new set of tools to ana-
lyze and design numerical algorithms. Further advances
based on this connection can be expected in the future.

Itisworthwhile to emphasize that the DSP approach relies
on tools that are usually not used in the matrix context: the
theory of multidimensional signals and systems [34] and fre-
quency-domain analysis. To form a matrix equation, a 1-D
ordering is required and, therefore, the proximity of grid
points in multidimensional meshes is disguised. This phe-
nomenon does not occur for multidimensional DSP tech-
niques, since they are fully adapted to the spatial nature of
the signals being studied. The discretized system of equa-
tions for the elliptic problem is loosely coupled in the space
domain, but totally decoupled in the frequency domain. In
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other words, transforming the system from the space
domain to the frequency domain corresponds to a di-
agonalization procedure whereby a sparse matrix is trans-
formed into a diagonal matrix, thus leading to a much sim-
pler analysis. Due to its simplicity, the DSP approach pro-
vides some valuable insight into the choice of solution
method, as well as some guidelines towards the develop-
ment of more versatile and efficient solution techniques.
This point has been demonstrated in the application of dig-
ital filtering theory to the design of elliptic preconditioner
as discussed in Section Vil. Thus, we conclude that the DSP
approach can serve as complement to the classical matrix
analysis, which is more generally applicable but less trans-
parent.

In this tutorial paper, we have examined discretization
schemes and solution methods for solving elliptic PDEs
from the DSP viewpoint. We studied mode-dependent
finite-difference schemes for three model elliptic PDE prob-
lems, i.e., the Poisson, Helmholtz, and convection-diffu-
sion equations. The extension of mode-dependent discre-
tization schemes to coupled differential equations and time-
dependent problems, such as hyperbolic and parabolic
PDEs, is currently being investigated. We also reviewed var-
ious methods for solving self-adjoint positive definite ellip-
tic PDEs modeled by the Poisson equation, including direct
methods, elementary and accelerated relaxation methods,
multigrid methods, preconditioned conjugate gradient
methods, and the domain decomposition technique.

Alimitation of the DSP/Fourier point of view that we have
adopted here is that it is restricted primarily to finite-dif-
ference discretization methods. Although the rigorous
applicability of Fourier analysis to finite-element methods
remains in doubt, it was shown by Strang and Fix [40], [91]
that the Fourier approach can provide useful insights into
the accuracy and stability of finite-element schemes. We
hope that these early results will ultimately lead to a com-
plete frequency-domain theory of finite-element methods.
Finally, we expect that the DSP viewpoint will also be help-
ful to develop new efficient algorithms for solving more dif-
ficult elliptic PDEs such as indefinite and nonself-adjoint
problems modeled by the Helmholtz and convection-dif-
fusion equations.
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