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A digital signal processing (DSP) approach is used to study 
numerical methods for discretizing and solving linear elliptic par- 
tial differential equations (PDEs). Whereas conventional PDE anal- 
ysis techniques rely on matrix analysis and on a space-domain point 
of view to study the performance of solution methods, the DSP 
approach described here relies on frequency domain analysis and 
on multidimensional DSP techniques. This tutorial paper dis- 
cusses both discretization schemes and solution methods. In the 
area of discretization, mode-dependent finite-difference schemes 
for general second-order elliptic PDEs are examined, and are illus- 
trated by considering the Poisson, Helmholtz, and convection-dif- 
fusion equations as examples. In the area of solution methods, we 
focus on methods applicable to self-adjoint positive definite ellip- 
tic PDEs. Both direct and iterative methods are discussed, which 
include fast Poisson solvers, elementary and accelerated relaxation 
methods, multigrid methods, preconditioned conjugate gradient 
methods and domain decomposition techniques. In addition to 
describing these methods in a DSP setting, an up-to-date survey of 
recent developments is also provided. 

I. INTRODUCTION 

Many physical and engineering systems are described by 
partial differential equations (PDEs). It i s  generally impos- 
sible to obtain closed-form analytical solutions for these 
equations due to the irregularity of problem domains, and 
because coefficients are usually spatially varying. Conse- 
quently, the numerical solution of PDEs plays an important 
role in understanding and simulatingawidevarietyof phys- 
ical phenomena. Since the late 194Os, the gradual emer- 
genceof high-speed computers, culminatingwith the intro- 
duction of supercomputers, has made it possible for 
researchers to test and develop new PDE solution tech- 
niques. The amount of research activity concerned with the 
numerical analysis of PDEs has therefore been growingvery 
rapidly. Many discretization schemes, computational algo- 
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rithms, and novel computer architectures have been pro- 
posed to solve PDEs efficiently. In spite of these develop- 
ments, the numerical solution of PDEs is  still one of the most 
challenging areas of numerical analysis due to the versatile 
and often complicated structure of PDEs, and because of 
the large amount of variables that need to be computed for 
two or higher dimensional problems. 

In this survey, we focus our attention on the discreti- 
zation and solution of 2-D second-order linear elliptic PDEs 
of the form 

a2u a2u au aU 

ax ay2 ax ay 
a 7  + b -  + c -  + d- + eu = f (1.1) 

with ab > 0, where the coefficients are in general functions 
of x and y. Elliptic PDEs are often used to characterize the 
steady-state behavior of physical systems defined over a 
bounded domain. In this context, boundaryconditions rep- 
resenting experimental conditions are usually imposed on 
the domain boundary, thus yielding a boundary-value 
problem.Thefamiliar Laplace, Poisson, Helmholtzand con- 
vection-diffusion equations are all special cases of (1.1). The 
solution of (1.1) has therefore a wide range of applications 

Elliptic PDEs can be divided into self-adjoint positive def- 
inite, indefinite and nonself-adjoint equations, depending 
on the eigenvalues of the associated differential operator. 
If an operator i s  self-adjoint, it has a real spectrum (eigen- 
values). Furthermore, if it i s  positive definite, all i ts eigen- 
values are positive. The discretization of self-adjoint pos- 
itive definite differential operators leads to symmetric 
positive definite (SPD) matrices. In contrast, the discreti- 
zation of nonself-adjoint elliptic operators gives rise to non- 
symmetric matrices whose eigenvalues are in general com- 
plex. It i s  customary to use the Poisson, Helmholtz, and 
convection-diffusion equations on the unit square Q = [0, 
I]’ with appropriate boundary conditions as model prob- 
lems for self-adjoint positive definite, indefinite and 
nonself-adjoint elliptic PDEs, respectively. They can be 
expressed as follows. 

Poisson equation: 

[131,[881. 

(1.2) 
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Helmholtz equation: 

a2u a2u 

ax2 ay 
- + 2 + w2u = f 

Convection-diffusion equation: 

a2u a2u au au 
ax2 ay ax ay 
- + > +  C - +  d -  = f. 

(1.3) 

(1.4) 

Generally speaking, the numerical solution of PDEs 
involves two tasks: (a) choosing a discretization scheme to 
transform the PDE of interest into a discrete problem that 
approximates it, and (b) selecting a solution method for the 
discretized problem. These two tasks are usually per- 
formed separately for single grid solution techniques, but 
they are combined for multigrid methods. For expository 
purposes, since the goals of the discretization and solution 
steps are different, they will be examined independently. 
In this paper, we study the discretization of all three model 
problems (1.2)-(1.4). As to solution methods, the design and 
analysis of iterative algorithms for solving self-adjoint pos- 
itive definite elliptic PDEs has reached an advanced state 
of development, whereas a complete theory i s  not yet avail- 
able for indefinite and nonself-adjoint PDEs. Thus,wefocus 
on the solution of self-adjoint positive definite PDEs mod- 
eled by the Poisson equation (1.2). 

Our exposition relies on a Digital Signal Processing (DSP) 
approach [31], [34], [78], [85]. From the DSP viewpoint, 2-D 
differential and finite-difference operators correspond to 
2-D analog and digital filters, respectively. The discretiza- 
tion of PDEs specifies an approximation problem, i.e., how 
to match the spectra of analog and digital filters. The solu- 
tion of PDEs requires the implementation of a deconvo- 
lution filter which recovers the input U from the output f 
given by (1.1). Thus, the discretization and solution of PDEs 
can be formulated as multidimensional filter specification 
and filter design problems, respectively. 

A key step in deriving discretization schemes i s  the selec- 
tion of a set of test functions for which the discretized oper- 
ator must behave in thesameway astheoriginal differential 
operator. It turns out that a good set of test functions can 
be chosen by using concepts of linear systems theory. 
Roughly speaking, they are obtained by examining thezeros 
of the system function corresponding to the differential 
operator. This approach leads to the mode-dependent dis- 
cretization scheme described in Section II. 

The discretization procedure leads to a system of finite- 
difference equations, which are often solved iteratively. The 
convergence rate of iterative methods is traditionally stud- 
ied within the framework of matrix iterative analysis [14], 
[96], [102]. This form of analysis uses tools from numerical 
linear algebra, where special concepts such as those of 
L-, M-, and consistently ordered matrices and related in- 
equalities are introduced to facilitate the characterization 
of the convergence property. The advantage of matrix anal- 
ysis i s  itsgeneral applicability. It can beapplied to PDEswith 
irregular geometries and spatially varying coefficients, or 
which are discretized with nonuniform grids, as long as the 
corresponding iteration matrices satisfy the desired prop- 
erties. 

An approach complementing the matrix formulation 
relies on model problem analysis, whereby the conver- 
gence rate of a given iterative method is  analyzed for a sim- 

ple model problem. This form of analysis has several advan- 
tages. First, it i s  much simpler and therefore provides some 
insight into the behavior of the algorithms that we study. 
Secondly, the estimates that are provided by this approach 
for parameters such as the optimum relaxation parameter 
for the Successive Over-Relaxation (SOR) method, or the 
smoothing rate of multigrid methods, are usually much 
sharper than comparable estimates provided by matrix 
analysis. Finally, the actual convergence behavior of an iter- 
ative method for a general class of problems can be well 
predicted by the model problem approach, as long as the 
model problem is chosen appropriately. 

The model problem approach relies heavily on Fourier 
analysis. In this survey, we show that it i s  in fact closely 
related to the digital filtering concept appearing in multi- 
dimensional DSP. Note that this relation was also pointed 
out in the earlier work of [I51 and [go], but only briefly. Sev- 
eral examples are given below. Accelerated relaxation 
methods such asthe SORand Chebyshev iterative methods 
can be viewed as parametrized lowpass filters for the error 
between the initial guess and the true solution, where the 
parameters are chosen to optimize the filtering character- 
istics. The incomplete LU preconditioning technique for 
the conjugate gradient method can be interpreted as cor- 
responding to the approximation of a 2-D noncausal FIR 
filter by the product of two causal and anticausal 2-D FIR 
filters. The difficulty in that respect lies in the fact that since 
2-D polynomials are generally not factorable, the 2-D causal 
and anticausal filters obtained by spectral factorization have 
infinite support, and need therefore to be approximated. 
Finally, if we consider multigrid solution methods, the 
interpolation and restriction operators appearing in the 
description of these algorithms are special cases of sam- 
pling-rate conversion operations occurring in multirate sig- 
nal processing. The details of all the above examples will 
be discussed below. The main purpose of these examples 
is to illustrate the fact that many tools and concepts arising 
in the solution of elliptic PDEs are amenable to interpre- 
tation and analysis from the point of view of rnultidimen- 
sional DSP. 

This survey contains two parts: the first part (Section II) 
considers discretization schemes, whereas the second part 
(Sections Ill-IX) examines solution methods. Readers seek- 
ing to locate quickly topics of interest may want to consult 
the following table of contents. 

II. Mode-Dependent Discretization 
A. The Mode-Dependent Finite-Difference Discretiza- 

B. Discretization of Homogeneous Boundary-Value 

C. Discretization of Homogeneous Boundary-Value 

D. Historical Notes 

tion Approach 

ODES 

PDEs 

1 1 1 .  Solution of Self-Adjoint Positive Definite Elliptic PDEs: 
Problem Formulation 

A. The Model Poisson Problem 
B. Orderings 
C. Fourier Analysis 
D. Summary 

IV. Direct Methods 
A. FFT Solvers 
B. Other Direct Methods 
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V. Relaxation Methods and Their Acceleration 
A. Elementary Relaxation Methods 
B. SOR Acceleration 
C. Polynomial Acceleration 
D. Historical Notes 

VI. Mul t igr id  Methods 
A. Two-grid Iteration 
B. Solution of the I - D  Poisson Problem 
C. Solution o f  the 2-D Poisson Problem 
D. Historical Notes 

VII. Preconditioned Conjugate Gradient Methods 
A. The Preconditioned Conjugate Gradient (PCG)Algo- 

r i thm 
B. Preconditioners Based o n  Incomplete Factorization 
C. Mult i level Preconditioners Based on  Filtering 
D. Historical Notes 

VIII. Domain Decomposit ion Methods 
A. Capacitance Matr ix Formulation 
B. 
C. 
D. Historical Notes 

IX. Parallel Computat ion 

Finally,wediscuss futureextensions and presentsomecon- 
c luding remarks in  Section X. 

Fourier Analysis of the Capacitance System 
Preconditioners for the Capacitance Matr ix 

I I .  MODE-DEPENDENT DISCRETIZATION 

Three types of discretization techniques, the finite-dif- 
ference, finite-element, and spectral methods, are com- 
monly used to  discretize spatial partial differential opera- 
tors. In this section, we focus our attention on  mode- 
dependent finite-difference discretization schemes (which 
constitute an extension of standard finite-difference meth- 
ods), since they are particularly interesting f rom a digital 
f i l ter ing point  of view. The reader i s  referred to [72] and the 
references therein for a discussion of the relation existing 
between spectral and mode-dependent discretization 
methods, and for a brief overview of mode-dependent 
finite-element methods. 

The analysis and design of mode-dependent finite-dif- 
ference discretization schemes can be formulated in  a sim- 
ple way in  the frequency domain. The Laplace and Z-trans- 
forms are used t o  represent the constant-coefficient 
differential operator and i ts  discrete approximation by 
polynomial expressions of the transform variables s and z. 
Then, the selection of a mode-dependent discretization 
scheme becomes equivalent to  requir ing that the spectra 
of the continuous and discretized operators, and their 
derivatives, should match each other at a number of fre- 
quencies i n  the transform domain. I n  DSP terms, since we 
require that the spectra of the continuous and discretized 
operators should be as close as possible, the PDE discre- 
tization problem can therefore be viewed as a fi l ter spec- 
ification and design problem. 

A. The Mode-Dependent Finite-Difference Discretization 
Approach 

Consider a funct ion of the fo rm 

k = l  2! bk)! xnk 1 X2 
cko + cklx + Ckz - + . + cknk - eskx 

where each term xPeskx, 0 zs p I nk, is called a mode of 
order p at the frequency sk. We are interested in  approx- 
imating a linear Rth-order constant-coefficient differential 
operator operating on  u(x), 

(2.1) 

where D = dldx, by a (r, - rl + 1)-point f inite-difference 
operator 

r 2  

Ld(#!) = b,E' (2.2) 
I = I 1  

where E is the shift operator defined on  an inf inite uni form 
grid Qh with spacing h, i.e. for nh, (n + r)h E Qh, E'u(nh) = 
u((n + r)h). Ld corresponds t o  a forward, backward or  cen- 
tral difference operator depending on  whether rl = 0, r, = 
0 or  -rl = r,, respectively. We denote by 

f n \  

u(x): u(x) = esx ckxk) (2.3) 
k=O 

the space spanned by polynomials of degree at most n mul-  
t ipl ied by  the factor es'. A mode-dependent finite-differ- 
ence discretization scheme is obtained by selecting the 
coefficients b, of Ld such that 

[ L d ( E )  - L(D)lu(x) = 0, 

for u(x) E C and x E Qh (2.4) 

where C, which i s  called the coincident space of Ld, i s  the 
direct sum of subspaces of the fo rm (2.3), i.e. 

(2.5) 

A mode in the coincident space C is called a coincident 
mode, and i t s  frequency is called a coincident frequency. 

The above mode-dependent finite-difference scheme 
specification can be converted easily t o  the transform 
domain. Let L(s)  be the spectrum obtained by  replacing D 
with s i n  (2.1) through the use of the Laplace transform, i.e., 

~(s) = C a,s'. 

Let also Ld(z) be  the discrete spectrum obtained by  using 
the Z-transform t o  replace E by z in  (2.2), so that 

R 

1 = O  

1 2  12 

Ld (Z )  = b,Z' = c blerSh 
1 = 11 I = R 

where the lastequalityisdue to the  factthat sinceEis related 
to  D via E = ehD [32], we have z = esh. Then, the difference 
A between Land Ldcan beexpressed i n  termsofthevar iable 
s as 

A(s) = Ld(esh) - L(s) (2.6) 

and the mode-dependent finite-difference scheme speci- 
fication (2.4)-(2.5) takes the fo rm (see [72] for a proof )  

A'P)(sk) = 0; 0 I p s nk; 1 I k 5 K (2.7a) 

where 

(2.7b) 
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It is usuallyeasiertodeterminethecoefficients brof a mode- 
dependent finite-difference discretization scheme by using 
(2.7) rather than (2.4)-(2.5). 

The key element in the specification of a mode-depen- 
dent difference scheme is  the choice of coincident space 
C. In the following two subsections, we discuss the selec- 
tion of C for several types of problems. 

B. Discretization of Homogeneous Boundary-Value ODES 

ential equation 
Consider an Rth-order ( R  = 2m) homogeneous differ- 

2m 

r = O  
Lu  = 0, with L = arDr and a*,,, = 1 (2.8) 

on the interval [0, I], with given boundary conditions. We 
seek to discretize it with a (2m + 1)-point central difference 
schemeon a uniform grid with spacing h. Thecharacteristic 
equation of (2.8) i s  

L(S) = s2"' + a2m-1s2m-1 + . + a,s + a. 

with E[=, nk = 2m, where sk i s  a natural frequencyof L of 
order nk. Then, the operator L has the 2m-dimensional 
nullspace 

K 

N L  = a3 P n x - I ( S k )  
k = l  

To determine uniquely a (2m + 1)-point finite difference 
scheme, we need to specify a (2m + 1)-dimensional coin- 
cident space C. However, since a homogeneous finite-dif- 
ference equation can be scaled by an arbitrary constant, a 
2m-dimensional coincident space C is sufficient. An exact 
discretization for (2.8) is obtained by selecting 

C = N L .  (2.10) 

For this choice, the relations (2.7) yield 

K 

Ld(Z) = AZ-m n (Z - Zk)nk, with zk = eskh (2.11) 
k = l  

whereA is a scaling factor and the multiplication factorz-"' 
isduetothefactthatwewantLd(z)to beacentral difference 
scheme. The choice of scaling factor A does not affect the 
solution of the discretized equation 

Ld(E)Ud = 0. 

However, in order to analyze the discretization error A($, 
it i s  convenient to choose A such that Ld(esh) and L(s) are 
consistent over fine grids. This constraint implies that A 
must be proportional to h-*"', as h goes to zero. 

7 0  Laplace equation: For L(D) = D2, we know that N L  = 
{I, x}. The coincident modes have the same frequency sk 

= 0. According to (2.11), we have 

I!,(€) = A€-'(€ - I)' = A(€ - 2 + €-'). (2.12) 

If we choose C = N L  + {x2}, the constant A is uniquely 
determined. We obtain A = h-2, and in this case (2.12) 
reduces to the standard 3-point central difference scheme 
for 0'. 

7D convection-diffusion equation: Let L(D) = D 2  - aD, 
with a # 0. Then, NL = { I ,  eax} and sk = 0, a, so that in (2.11) 

we have 

L d ( E )  = A€- ' (€  - I)(€ - eah) 

= A[€ - (1 + eah) + eah€-l]. (2.13) 

If we select C = N L  + {x}, we find that A = a[h(eah - I)]- ', 
and (2.13) becomes identical to a scheme considered by 
Allen and Southwell [3]. 

C. Discretization of  Homogeneous Boundary-Value PDEs 

PDE on the square [0, 11' 
Consider a general 2D homogeneous boundary-value 

L(D,, Dy)u = 0, with L(D,, D,) = ar,,D:D; (2.14) 
r. s 

where 

ar a s  
I - -  Dx - axr' .; = ay" 

with appropriate boundary conditions. We discretize (2.14) 
with the finite-difference scheme 

and where E, and €,denote respectively the shift operators 
in thex-and y-directionson the uniform grid nhx,hyobtained 
by discretizing the unit square with horizontal and vertical 
meshes h, and h,. Relying upon a natural generalization of 
the I D  case, we have the following correspondences 
between 2D space domain operators and transform domain 
variables 

D, * s,, D, * s,, E, e* z,, E, e* zy (2.16) 

where s, = U, + iw, and s = U, + iwyr and where the iden- 
tities E, = ehxDx, E, = ehyDL, z, = ehxsx and zy = ehvsv are sat- 
isfied. For simplicity, we now restrict our attention to the 
case where h, = h, = h. 

Substituting U = esxx+s~y inside (2.14), we obtain the char- 
acteristic equation 

C ar,Ss:s; = 0. (2.17) 
r, s 

Since the complex equation (2.17) imposes only two real 
constraints on the real and imaginary parts of the complex 
variabless,and s,, thereare infinitelymanysolutions to this 
equation and therefore infinitely many modes in N L .  I t i s  
not possible to approximate all modes in N L  exactly. Thus, 
we have to select a finite-dimensional subspace DL c NL, 

called the dominant-mode space, as the coincident space 
Cfor Ld. The determination of DL depends on a rough esti- 
mate of the local behavior of the solution. This information 
i s  usually provided by the structure of the PDE operator and 
of the boundary conditions. In this section, we restrict our 
attention to the case where the dominant modes are either 
oscillating or exponentially growing (decaying). In other 
words, coincident frequencies are selected among the sets 

Laplaceequation: Let L(D,, DJ = D: + Dt. Sinceonlyone 
frequency(s,,s,) = (0,O) satisfiesthecharacteristicequation 
and belongs to the sets (2.18), (0,O) i s  selected as the unique 
coincident frequency. In this case, the mode-dependent 
and conventional discretization schemes are identical. 
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The following 5-point, rotated 5-point and 9-point stencil 
discretization schemes have been derived by several 
approaches [321, [65], [80], 

(2.19) 
1 

h 
L , + ( E x ,  E y )  = 7 ( E x  + E;’ + Ey + E;’ - 4) 

1 
2h Ld,x(Ex, E,) = 7 ( E x E y  + E;’Ey + €,E;’ + €;’E;’ - 4) 

(2.20) 

1 
6h2 

Ld,S(Ex, E y )  = -   EX + + E ,  + E;’) 

+ (E,€, + €,-‘Ey + €,E,’ + €;1€;’) - 201. 

(2.21) 

It is well known that the accuracy of the above schemes for 
discretizing the Laplace equation is O(h2),  O(h2)  and O(h6) ,  
respectively. 

We present now another derivation of these schemes by 
matching L(s,, sy) and Ld(Z,, zy)  at the coincident frequency 
(0, 0) in the transform domain. As before, we consider the 
expansion of A = Ld - L around (0, 0) ,  

A(s,, sy) = AcO,O)(O, 0) + A(’,o)(O, O)s, + Aco,”(O, O)s, 

of O(h6) for modes satisfying the characteristic equation 
s’, + s t  = 0. Then, substituting this equation inside (2.22) 
and setting coefficients up to order h5 equal to zero, we 
obtain nine independent constraints which specify (2.21) 
uniquely. 

Helmholtz equation: Let 

L(D, ,  D,) = 0: + D; + A*. 

Ifs, and sy are purely imaginary, the characteristic equation 
becomes 

U’, + w’y = x2, (2.23) 

which is a circle in the w,-wy plane, centered at the origin 
and with radius 1x1. There are infinitely many natural fre- 
quencies and, hence, there are many different ways to select 
coincident frequencies. Our choice i s  based on the follow- 
ing two considerations. First, if there i s  no further infor- 
mation about the dominant modes, a reasonable strategy 
consists in distributing the coincident frequencies uni- 
formly along the contour (2.23). Second, we want to pre- 
serve the symmetry properties of L, so that the resulting 
discretization scheme will have a simple form and will be 
easy to implement. 

Let us select 

1 + A‘p’q)(O, 0) - S ~ S ;  (2.22) 
P + q  2 3.p,q 2 0  p!q! 

where 

isafunction of thegrid size h. Hence, (2.22) i s  in fact a power 
series of h. Our derivation attempts to make the order of 
the residual terms in (2.22) as high as possible. 

The discretization schemes (2.19) and (2.20) can be derived 
by requiring respectively that 

A(O,O)(O, 0) = A(’,’)((), 0) = A(O,’)(o, 0) = A(2,0)(0, 0) 

= A(Or2)(o, 0) = 0 

and 

A(O,O)(o, 0) = A(’,’)((), 0) = A(O,’)(O, 0) = A””’(0, 0) 

= A(2ro)(0, 0) = A(o,2)(0, 0) = 0. 

Note the similarity between these requirements and (2.7). 
TheabovechoiceofconstraintsA‘P,q)(O,O) = Ohastaken into 
account the specific structure of operators Ld, +, Ld, and L. 
For example, in the case of the symmetry properties 
of L d , x  imply that A(2,0)(0, 0) = A(o,2)(0, 0),  so that among the 
sixconstraintswhichareused tospecifyLd, x(€x, €,),onlyfive 
are independent. 

By setting the coefficients of low order terms in (2.22) 
equal to zero, it is possible to obtain various high-order 
finite-difference discretization schemes. For example, to 
obtain the 9-point scheme (2.21), we need only to impose 
the requirement that this scheme should have an accuracy 

1812 
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as coincident frequencies as shown in Fig. l(a). With this 
choice, the discretization can be performed independently 

(C) 

Fig. 1. Coincident frequencies of the mode-dependent (a) 
5-point, (b) rotated 5-point, and (c) 9-point stencil discreti- 
zation of the Helmholtz equation. 
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in the x- and y-directions. The resulting scheme is  

+ E, + .(E;’ - 2 cos (9 h) + E Y ) ] .  

Two parameterSA and K remain undetermined. The param- 
eter K is  selected such that the discretization error A(sx, s,) 
corresponding to natural frequencies i s  proportional to 
O(h2), and A is used to normalize the above scheme so that 
Ld i s  consistent with L. This yields K = 1 and A = h-2 .  We 
obtain the symmetric 5-point stencil discretization operator 

(2.24) 

Rotatingtheabovefour coincident frequencies in thetrans- 
form domain and the associated 5-point stencil in the space 
domain by an angle ~14, we obtain another mode-depen- 
dent 5-point stencil discretization. In this scheme, the coin- 
cident frequencies become 

as shown in Fig. l(b), and the resulting discretization oper- 
ator is 

Note that this rotated 5-point stencil can be viewed as cor- 
responding to a discretization on a grid with spacing h h .  
By appropriately combining (2.24), (2.25) and adding a con- 
stant term, weobtain the9-point stencil discretization oper- 
ator, 

(2.26) 

= 2 1 [2 COS (IXlh) + 2 - 4 COS ($ h)] (2.27b) 

we are able to match Ld(Z,, z,) and L(s,, s,) at 8 frequencies 

as shown in Fig. l(c). Thus, (2.26) i s  a mode-dependent 
9-point stencil discretization operator for the Helmoltz 
equation. It can be shown that both Lh,+ and Lh,x have an 
accuracy of O(h2) and the Lh,9 has an accuracy of O(h6). 

Convection-diffusion equation: In this case, 

L(D,, Dy) = DZ + D; - 2aDx - 2PDY 

Then, if we consider only real frequencies (s,, s,) = (ux, U,), 
the characteristic equation reduces to 

U; + U; - 2a0, - 2pu, = 0, (2.28) 

which i s  a circle in the u , - ~ ,  plane centered at (a, 0) with 
radius d = (a2 + P2)1’2. 

The conventional approach for discretizing the above 
equation uses central differences to approximate the first 
and second order derivatives separately. This gives 

1 
h2 

+ (1 + oh)€;’ + (1 - fib)€,] 

L,&,, Ey) = - [(I + ah)€;’ + (1 - ah)€, - 4 

(2.29) 

which corresponds to selecting a single coincident fre- 
quencyat the origin. Allen and Southwell [3] combined two 
I -D mode-dependent schemes, i.e., (2.13), along the x- and 
y-directions. This yields 

(2.30) 

which corresponds to selecting (0, 0), (201, O), (0,2P), (2a, 2P) 
as coincident frequencies. Motivated by the discussion of 
the previous section, we can also select the coincident fre- 
quencies 

(U,, UJ = (Q + d COS (5 T + T ) ,  

uniformly along the contour (2.28), which gives the discre- 
tization operator 

+ - 4 cosh (5 h)]. (2.31) 

The multiplication of E, and E, by the factors and e-@’ 
in the space domain corresponds to a shift of the s, and sy 
variables in the transform domain, where s, and s, become 
s, - a and s, - PI  respectively. The above scheme shifts 
therefore the center (a, /3) of the circle (2.28) to the origin 
and interprets the resulting circle as corresponding to a 
Helmoltz equation with radius d. The coincident frequen- 
cies for the three schemes (2.29)-(2.31) are shown in Fig. 2. 
Following a procedure similar to the one used for the 
Helmoltz equation, we can also design mode-dependent 
rotated 5-point and 9-point stencil discretization schemes 
for the convection-diff usion equation. These schemes have 
an accuracy of O(h2) and O(h6), respectively.. 

D. Historical Notes 

Historically, the idea of selecting exponential functions 
as coincident modes was first suggested by Allen and 
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(a) 
U 2 

U 
4y 

(C) 

Fig. 2. Coincident frequencies of the (a) central difference, 
(b) Allen-Southwell, and (c) uniformly distributed mode- 
dependent 5-point discretizations of the convection-dif- 
fusion equation. 

Southwell [3] for discretizing the convection-diffusion 
equation. An important feature of this problem is  that there 
are large first-order terms in the governing second-order 
PDE. Due to these large first-order terms, there exists a 
boundary layer which cannot be well approximated by 
polynomials. The use of trigonometric functions as coin- 
cident modes was first discussed by Gautschi [451 for the 
numerical integration of ODES which have periodicor oscil- 
latory solutions whose periods can be estimated in advance. 
The advantage of selecting nonpolynomial functions as 
coincident modes has been recognized for years and 
applied to PDE problems repeatedly in the literature (see 
for example the references appearing in [72]). However, until 
recently, all mode-dependent discretization results were 
derived by considering one specific equation at a time, and 
it i s  only in [72] that a general framework was provided for 
the study of mode-dependent discretization methods. 

I 11.  SOLUTION OF SELF-ADJOINT POSITIVE DEFINITE ELLIPTIC 
PDEs: PROBLEM FORMULATION 

Once (1.1) has been discretized with a finite-difference 
or finite-element scheme, the remaining task is to solve a 
system of linear difference equations of the form 

(3.1) 
whereA isasparsematrix,and udand fdarediscreteapprox- 
imations of U and f, respectively. Suppose that U,, and fdare 
vectors of length N. The solution of (3.1) by Caussian-elim- 
ination requires O(N3) operations, which is prohibitive for 
most practical applications. However, if the matrixA is  sym- 

AUd = fd 
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metric positive definite (SPD), several direct and iterative 
methods [14], [57], [96], which require between O(N) and 
O(N2) operations, can be used to solve (3.1) efficiently. 

In the following, we shall restrict our attention to the case 
where the coefficient matrix A in (3.1) is  SPD. In terms of 
thedifferential operator (l.l), thisamounts to second-order 
self-adjoint positive definite elliptic PDEs which can be 
expressed in the form 

where 6 and Care positive functions and D 5 0. This sub- 
class of equations includes the Poisson equation, which will 
be used below as the prototype for equations of the form 
(3.2). 

To study the convergence rate of iterative solution tech- 
niques for (3.2), the traditional approach consists in using 
matrix iterative analysis [14], [57, [96], which relies on a 
detailed characterization of the structure of iteration matri- 
ces. Another approach, which has become popular recently, 
uses Fourier analysis to study the convergence behavior for 
a simple model problem. If the model problem is repre- 
sentative of the general class of problems that we want to 
solve, the convergence behavior for general problems can 
be inferred from the results obtained for the model prob- 
lem. Since this second approach analyzes the effect of iter- 
ations on each Fourier mode through the use of digital sig- 
nal processing methods, it is called here the DSP approach. 

The advantage of the matrix approach is  its general appli- 
cability. It can be applied to PDEs with irregular domain 
geometries, spatially varying coefficients, and when the dis- 
cretization i s  performed on nonuniform grids. The only 
requirement is that the iteration matrices should possess 
certain properties, such as property A or consistent order- 
ing [57, [IOI], [102]. In contrast, the DSP approach can only 
be rigorously applied to a small class of problems. It pre- 
sents, however, several advantages. First, the matrix 
approach i s  in general much more complicated than the 
DSP approach. Second, for simple problems, the DSP 
approach yields more accurate estimates of important 
quantities such as the optimal relaxation parameter for the 
SOR method, the smoothing rate of multigrid methods, or 
the eigenvalue distribution of the preconditioned operator 
obtained by applying a preconditioner to the discretized 
form of (3.2). Finally, the convergence behavior of iterative 
algorithms predicted by the DSP analysis of simple model 
problems is usuallyconsistentwith results obtained by per- 
forming numerical experiments on complicated problems. 
Thus, in spite of its simplicity, the DSP approach provides 
results which are applicable to very general problems. 

A. The Model Poisson Problem 

tion on the unit square Q = [0, 112 
The standard model problem for (3.2) i s  the Poisson equa- 

(3.3) 

with appropriate boundaryconditions. It can be discretized 
on a uniform grid 

Q,, = { (nxh,  nyh):O I nx, ny 5 M }  (3.4) 
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with grid spacing h = M- ' .  Approximating the Laplacian 
with the 5-point finite-difference scheme (2.19), and denot- 
ing by unx,,, the discrete approximation of the solution 
u(n,h, nyh), we obtain the discretized system 

1 - 
h2 ( ~ n x + l , n ,  + % - l , n y  + ~ n x , n , + 1  

(3.5) 

at points (n,h, nyh) which are located in the interior of a h ,  

i.e., for 1 5 n,, ny 5 M - 1. This system can be rewritten 
in terms of shift operators as 

(3.6) 

with 

A(€,, €,) = 1 - a(€ ,  + €yl  + E, + E;'). (3.7) 

Boundary Conditions: For self-adjoint positive definite 
elliptic PDEs, it has been observed empirically [24] that the 
convergence behavior of a given iterative algorithm is  not 
significantlyaffected by the choice of boundary conditions. 
This implies that we can, without loss of rigor, restrict our 
attention to Dirichlet or periodic boundary conditions, 
since these boundary conditions have the advantage that 
they lend themselveseasilyto Fourier analysis. For Dirichlet 
boundary conditions, the solution u(x, y )  i s  specified along 
the boundary of the domain 0. In terms of the discretized 
system ( 3 3 ,  this means that u , , ~ , ~ ,  u , . , ~ ,  u ~ , ~ ~  and uM,," are 
given. Thus, the system (3.5) consists of (M - 1)'equations 
in (M - unknowns. Since nonzero boundary values can 
be moved to the right hand side and treated as part of the 
driving function, the system (3.5) with Dirichlet boundary 
conditions can be replaced by an equivalent system with 
a modified driving function and zero boundary conditions. 
Without lossof generality, the system (3.5)with zero bound- 
ary conditions 

unx,O = Un,,M = UO,n, = UM,n, = 0 (3.8) 

where 1 I n,, n, 5 M - 1,  is therefore called the model 
Dirichlet problem. Similarly, the system (3.5) with periodic 
boundary conditions 

(3.9) 

where 0 I n,, ny s M - 1, is  called the modelperiodicprob- 
lem. It i s  easy to check that the model periodic problem 
involves M2 equations in M 2  variables. 

unx,O = unx,M and UO,n, = uM,ny 

B. Orderings 

To specify an algorithm for processing a multidimen- 
sional sequence, it i s  important to indicate the order in 
which the sequence should be computed. For example, a 
certain ordering of grid points is needed to implement 2D 
IIR filters. Similarly, for PDE algorithms, it is necessary to 
indicate clearly the ordering scheme which i s  employed, 
since the numerical performance of a given algorithm 
depends in general on the ordering [I], [70], [87]. We will 
focus our attention here on the natural and red-black 
orderings, since they are the most commonly employed, 
and are both amenable to Fourier analysis. The natural 
ordering corresponds to a standard rowwise (or column- 
wise) lexicographic ordering of the grid points. In the red- 

black ordering, the grid points are partitioned into two 
groups, which a grid point (n,, n,) i s  red if n, + n, is even, 
and black if n, + ny is  odd. Then, as a group, the red points 
precede the black points, but within each group, points are 
ordered according to the natural ordering. 

Many PDE algorithms have the feature that numerical 
operations at a given point require only local information. 
In this case, it is usually possible to divide the grid points 
intosubsets such that operations performed at pointswithin 
a subset are independent of each other. In this case, the 
ordering of points within a subset i s  not important, since 
operations at such points can be implemented in parallel 
on a multiprocessor machine. When solving equation (3.51, 
this leads us to consider the following parallel versions of 
the natural and red-black orderings. 

Parallel natural ordering: 

(n,, n,) < (m,, my) if n, + ny < m, + my. (3.10) 

Parallel red-black ordering: 

(n,, ny) < (m,, my) if (n,, ny) red and (m,, my) black. 

(3.11) 

In (3.10) and (3.11), theorder between grid points isdenoted 
by an inequality sign. Note that the above parallel natural 
ordering does not specify an order for points (n,, n,) such 
that n, + ny is  constant. Similarly, for the parallel red-black 
ordering, no order i s  imposed for points of the same color. 
This is due to the fact that when the Gauss-Seidel or SOR 
methods described in Section V below are used to solve 
(3.5), for the natural ordering, points along constant n, + 
ny lines can be updated in parallel. On the other hand, for 
the red-black version of the same relaxation methods, all 
points of identical color can be updated in parallel. From 
the point of view of parallelism, the red-black ordering is 
therefore preferable, since only two steps are required to 
scan all the grid points, instead of O(N1'2) steps for the nat- 
ural ordering. However, the convergence rate of a given 
iterative algorithm can also be affected by the choice of 
ordering. For example, it has been shown recently [70] that 
the rate of convergence of the symmetric successive over- 
relaxation (SSOR) and of several preconditioned conjugate 
gradient methods can be slowed significantly i f  we use a 
red-black ordering instead of the natural ordering. Thus, 
when selecting a given ordering, one has to be careful to 
examine both the numerical complexity of the resulting 
algorithm as well as its parallelism. 

C. Fourier Analysis 

Several different Fourier basis functions will be intro- 
duced to expand 2D sequences. A sequence u , , ~ , , ~  defined 
on a h  with zero boundary values can be expanded in a 
sinusoidal Fourier series of the form 

M - I  M - 1  

u , ,~ , ,~  = C C fik,,k, sin (k,?m,h) sin (kYrnyh). (3.12) 

It is easy to see that when A(€,, EY) i s  given by (3.7), we have 

k l = l  k , = l  

A(€,, EY) sin (k,m,h) sin (k,m,h) 

= &k,, k,) sin (k,irn,h) sin (kym,h) (3.13) 
with 

A(k,, k,) = 1 - ;[COS ( k , ~ h )  + COS (kynh)]. (3.14) 
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Therefore, sin (k,*n,h) sin (k,myh) i s  an eigenfunction of 
operator A(€x, E,) corresponding to the eigenvalue &kX, ky). 
It is worth noting at this point that by imposing the con- 
dition that the solution U,",,,, i s  synthesized by a finite num- 
berof Fourier sinefunctionsas in (3.12),weareableto ignore 
the zero boundary conditions (3.8) for the model Dirichlet 
problem and treat A(€,, E,) as a shift-invariant operator 
defined on an infinite grid. 

Next, consider a sequence u , ~ , , ~  defined on Qh which sat- 
isfies the periodic boundaryconditions (3.9). The sequence 
U,,,,,, can be expanded in complex exponential Fourier 
series as 

M - 1  M-1  

Since 

where 

A(k,, k,) = 1 -  COS (kX2*h) + COS (kY2*h)] (3.17) 

weseethate'2s(k"""+ky"Y)h isan eigenfunction ofA(€,,€,)with 
eigenvalue (3.17). Consequently, by expressing an arbitrary 
solution as a finite sum of such eigenfunctions, where k, 
and k, are integers between 0 and M - 1, we can ignore the 
periodic boundary conditions (3.9) for the model periodic 
problem and view A(€,, E,) as a shift-invariant operator 
defined on an infinite grid. 

To analyze algorithms with a red-black ordering, we can 
employ a variant of the above Fourier decompositions, 
which i s  known as the two-color Fourier analysis [691, [701. 
Consider the model Dirichlet problem, and let U,',,,, be a 
sequence defined on t$, with zero boundary values. The 
restriction of this sequence to the red and black points 
defines two subsequences: the red sequence u,,,~,,,,, and 
the black sequence Ub,,,,,,,. They can be expanded respec- 
tively in Fourier series as 

U r , n , n ,  = C(kx,ky)eK, fir,k,k, sin (kx*nxh) sin (ky*kh), 

n, + nyeven 

Ub,nx,ny = C(kr,ky)EKb fib,k.,k, sin (kxsnxh) sin (ky*kh), 

n, + ny odd (3.18) 

where for M even, 

(k,, k,) E N2:k, + k, 5 M - 1, k,, k, 2 1 or 

3 M 
2 

1 I k, I - - 1, k, = M - k, (3.19a) 

and 

K, = Kb U {(M/2, M/2)}. (3.19b) 

It i s  straightforward to check that the Fourier coefficients 
fikx,ky, fiM-kx,+kY in the sinusoidal expansion (3.12) and 
fi,,kx,ky, fib,k,,k,, in the red-black expansion (3.18) are related 
via 

( ~ k x r k y )  = [' 'I( fikx'ky ), (k,, k,) E Kb 
Ub,kx.ky fiM-k.,M-ky 

(3.20a) 

fi,k,,k, = fik.,k,, (kxl k,) = M 2 ,  M12). (3.20b) 

The expression can be interpreted as follows. When the 
sequence U,,,," i s  sampled only at the red points, instead 
of all points of the high frequency component (M - k,, 
M - k,) i s  aliased into the low frequency component (kx,  
k,), so that two Fourier components coexist in the low fre- 
quency region. A similar aliasing phenomenon occurs when 
u , , , , ~  i s  sampled at the black points only (see Fig. 3). Note 

(b) 
Fig. 3. (a) Conventional and (b) folded two-color Fourier 
domains where Ox = k,*h and By = k,uh. 

also that K, and Kb differ by the single element (M/2, M/2), 
so that at the frequency (M12, M/2) a single Fourier coeffi- 
cient fir,~/2,~/2 i s  used to represent the 2D sequence u,,~, ,~.  
This frequency can therefore be viewed as being degen- 
erate. 

With respect to the two-color decomposition (3.18), the 
discretized system (3.5) can be rewritten as 

with 

and 
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Toobtain afrequencydomain representation of the above 
system, we can substitute the Fourier decomposition (3.18) 
inside (3.21) and match Fourier components. For a non- 
degenerate frequency (k,, k,), this gives 

with 

and where 

P(k,, k,) = ;[COS (k,rh) + cos (ky*h)] (3.26) 

i s  the Fourier transform of the space domain operatorA(EX, 
E,). For the degenerate frequency (k,, k,) = (M12, M/2), we 
obtain 

h2 
O r ,  M12, MI2 = - 7 ?r,M/, M12. 

Note that the above results rely in part on the fact that 
for the Dirichletcase, theeigenfunctionsof the2 x 2 matrix 
operator A(€,, E,) are of the form v(k,, k,) sin (k,rn,h) sin 
(kyrn,h) where the 2-vector v(k,, k,) i s  an eigenvector of the 
matrix A(k,, ky). 

In the previous two-color Fourier analysis of the red-black 
ordering, we have assumed that the boundary conditions 
are of Dirichlet type. For the caseof periodic boundarycon- 
ditions, a similar two-color Fourier analysis can be devel- 
oped. One needs only to replace the sinusoidal expansions 
(3.18) by complexexponential Fourier series. Since the anal- 
ysis i s  identical to the Dirichlet case, the details areomitted. 
We find that identities (3.21)-(3.25) remain valid, provided 
that the function P(k,, k,) i s  replaced by 

P(k,, ky) = :[COS (k,2rh) + COS (ky2rh)]. (3.27) 

D. Summary 

In this section, we have examined the model Poisson 
problem with Dirichlet or periodic boundary conditions, 
and with a natural or red-black ordering. In each case, a 
Fourier basis has been introduced to expand 2D sequences 
satisfying the boundary conditions. For such sequences, it 
has been shown that the system (3.5) can be viewed as a 
linear shift-invariant (LSI) system in the space domain, and 
can therefore be analyzed in the frequency domain. The 
results of our analysis are summarized in Table 1. 

The Fourier analysis that we have developed in this sec- 
tion has focused on the operator A(€,, Ey) defined in (3.7) 

Table 1 Fourier Decomposition for Several Orderings 
and Boundary Conditions 

Fourier basis 
Ordering B.C. A ( f x ,  E,) functions a ( k , ,  k , )  

natural Dirichlet (3.7) (3.12) (3.14) 
natural periodic (3.7) (3.15) (3.17) 
red-black Dirichlet (3.22) (3.18) (3.25), (3.26) 
red-black periodic (3.22) r-b complex (3.25), (3.27) 

sinusoids 

or (3.22). Since this operator i s  an FIR filter, the ordering of 
grid points does not play a role in its implementation, so 
that as far as A is concerned, the distinction between the 
natural and red-black orderings i s  really unnecessary. 
However, when solving (3.5), our actual goal is to imple- 
ment the inverse filter A-’(€,, E,), which i s  a 2D I IR filter, 
and for which the choice of ordering does matter. To syn- 
thesize this filter, we will rely on the iterated application of 
deconvolution filters, which will be in general of 2D IIRtype, 
thus explaining our interest in the choice of ordering. 

IV. DIRECT METHODS 

Several efficient direct methods have been developed for 
solving elliptic PDEs. These methods usually exploit special 
features of certain classes of PDEs, and are often restricted 
to regular domain geometries. They are therefore not as 
widely applicable as the iterative methods to be discussed 
in the following sections. Furthermore, except for fast Fou- 
rier solvers, direct methods rely mainly on matrix or graph- 
theoretic techniques. Thus, they do not fit well the DSP 
viewpoint adopted in this paper. Consequently, in this sec- 
tion we focus primarily our attention on FFT solvers. How- 
ever, for completeness, several other direct methods, such 
as cyclic block-reduction and sparse Gaussian elimination 
methods, are briefly discussed. 

A. FFT Solvers 

tic PDEs of the form 
Fast Fourier solvers are applicable to 2-D separable ellip- 

(4.1) (fix) + Q(yN u(x, y) = f(x, Y) 

defined on the unit square [0, 112, with 

(4.2a) 

and where pl(x) ql(y) > 0. For simplicity, we assume that 
the boundary conditions are of Dirichlet type, i.e., u(x, y) 
= 0 on the domain boundary. A wider class of boundary 
conditions i s  considered in [94]. 

By discretizing the differential operators f(x) and Q(y) on 
a uniform Qh with spacing h = M-’ ,  with 3-point central 
diferences in thex-and y-directions, respectively,weobtain 
a 5-point stencil discretization of (4.1). The discretized sys- 
tem can be denoted as 

(Pd(nx) Qd(ny))un,,n, = fn,,,n,* (4.3) 

FFT solvers require that either P(x) or Q(y) should have 
constant coefficients. If the coefficients pl(x) = p1 and p2(x) 
= p2 of f(x) are constant, the discretized operator 

has also constant coefficients. Then, the Fourier transform 
can be used to transform the discretized equation (4.3), 
which depends on the two variables nx and n,, into a set of 
decoupled equations depending on the single variable ny’ 
Specifically, duetothe separabilityof equation (4.1),wecan 
express the solution unX,,, and driving function fn,,n, in the 
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form 
M - 1  

= c f i k x , n y  sin (k,xn,h), unx,ny k x = l  

M - 1  

f,,x,ny = c fkx,nv Sin (k,m,h). (4.5) 

Substituting (4.5) into (4.3), we obtain M - 1 independent 
equations 

k, = 1 

(p, + Qd( f ly ) ) f ik , ,ny  = fk,,nyr 1 5 k, 5 M - 1 (4.W 

with 

P, = -+ [I - cos (k,*h)] + p2. (4.6b) 
h 

The boundaryconditionsof thetransformed system arealso 
of Dirichlet type, i.e., 

(4.7) 

Then, for each value of k,, the system (4.6)-(4.7) can be writ- 
ten in matrix form as a tridiagonal system 

f i k z , O  = f ikx,M = 0. 

where the k, dependence of the solution, driving term, and 
matrix entries has been suppressed. Each such system can 
be solved directly with the following algorithm of com- 
plexity O ( M )  (Table 2). 

Table 2 Tridiagonal System Solver 

LU factorization 
a1 := a, 
for n = 2,3; . ., M - 1 

P, := bnla,-, 
a, := a ,  - P,c,-, 

Forward substitution 
v, : = ?, 
for n = 2,3; . ., M - 1 

V" := ?" - P , V , - l  
Backward substitution 

O M - ,  := VM- , /CxM- ,  

for n = M - 2, M - 3; . .,I 
ir" = (v ,  - c,ir,+,)/a, 

Given the solutions iik,,,, of systems (4.6H4.7) for all k,, 
the solution u , ~ , , ~  of the PDE can then be obtained from the 
discrete sine transform (4.5). 

Fast Fourier solvers rely therefore on the following three 
steps. 

Step 7: Perform a I -D fast sine transform of fn,,,, with 
respect to n, to determine the hybrid Fourier coefficients 

Step 2: For each k,, with 1 5 k, C. M - 1, calculate the 
hybrid Fourier coefficients Okr,n, by solving the tridiagonal 
system corresponding to (4.6)-(4.7). 

fkx,ny 

Step 3: Perform a I -D fast inverse sine transform to com- 
pute the solution u , ~ , , ~  from the hybrid Fourier coefficients 

In the above discussion, we have assumed that the 
boundary conditions are of Dirichlet type. However, other 
choices of boundary conditions, such as Neumann or peri- 
odic conditions, are also possible. The effect of a change 
of boundary conditions i s  to replace the fast sine transform 
in steps 1) and 3) above by fast cosine transforms, or FFTs 
1931, [94]. The complexity of the resulting family of FFT 
solvers i s  O(M2 log (M)). However, it i s  important to keep 
in mind that these solvers are restricted to problems with 
a rectangular domain, and where either P(x) or Q ( y )  has con- 
stant coefficients. 

Ukx,nv* 

8. Other Direct Methods 

The above FFT solver was introduced by Hockney in 1965 
[59] for the Poisson problem over a rectangle. In both [59] 
and [60] Hockney discussed another direct method, called 
cyclicreduction. This method is a Gaussian elimination pro- 
cedure with a particular ordering. Specifically, assume that 
in (4.3,  the variables u,",,~ are scanned column by column, 
and let U,, be the M - 1 dimensional vector formed by the 
variables with column index n,. It i s  easy to check that the 
set of vectors unX with 1 5 n, 5 M - 1 satisfies a block tri- 
diagonal system. Then, assume that we eliminate one out 
of every two columns from this system, say the columns 
with n, even. The resulting system remains block tridi- 
agonal, although the blocks may start to fill in. By pro- 
ceeding recursively, after L = log ( M )  steps, a single column 
of variables remains. The resulting system of size M - 1 can 
be solved, and i t s  solution can be backsubstituted into the 
system obtained at the previous level, thus enabling us to 
compute progressively all columns of the original system. 
For more details on the cyclic block reduction method, the 
reader i s  referred to [93], 1941. This method which was un- 
stable in i ts  original form, was later stabilized by Buneman 
[22]. The complexity of the resulting procedure i s  O(M2 log 
(M)), as for FFT solvers. 

The FFT and cyclic block reduction methods can be com- 
bined to produce a third technique, called the Fourier anal- 
ysis-cyclic reduction (FACR) algorithm, whose complexity 
is O(M2 log log (M)). The FFT, cyclic reduction and FACR 
solvers are reviewed by Swarztrauber in [93]. Another sur- 
vey [94] provides a more elementary introduction to this 
topic. 

The cyclic block reduction procedure can be viewed as 
a special case of a more general family of direct solvers, 
called sparse Gaussian elimination methods. These meth- 
ods start from a system of the form 

AX = b (4.9) 

where A i s  symmetric positive definite. The matrix A i s  usu- 
ally sparse. However, when (4.9) is  solved by performing a 
Cholesky factorization A = LL', the lower triangular matrix 
L contains in general more nonzero elements than existed 
in the lower triangular part of A, thus resulting in an increase 
in the storage and computation time required to solve (4.9) 
by Gaussian elimination. However, the amount of fill, i.e., 
the number of additional nonzero entries of L, depends 
highly on the ordering of the variables. If P denotes an arbi- 
trary permutation matrix, it may be of interest to replace the 
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solution of (4.9) by that of 

By = c (4.10a) 

with 

B = PAP'; y = Px; c = Pb. (4.10b) 

An ordering is said to be optimal with respect to fill, if it 
results in the least possible fill-in, and optimal with respect 
to operation count if it minimizes the number of operations 
required to solve (4.10a) by Gaussian elimination. If A i s  an 
N x N matrix, there are N! different orderings of its rows 
and columns, and the problem of finding the ordering with 
least fill-in is NP complete. Efforts have therefore focused 
on obtaining efficient algorithms for finding suboptimal 
orderings with low fill-in and operation count. Numerous 
reordering algorithms have been developed based on 
results from graph theory. This topic i s  discussed in detail 
in books by Ceorgeand Liu [46], and Duff, Erisman,and Reid 
1351. 

v. RELAXATION METHODS AND THEIR ACCELERATION 

A general mechanism for constructing iterative algo- 
rithms for the solution of discretized elliptic PDEs consists 
of using relaxation. In this approach, instead of requiring 
that the entire system (3.1) of discretized equations should 
be satisfied, we force only one or a few equations to hold 
at any given time. For the case of a single equation, thevalue 
of the variable u , , ~ , , ~  i s  updated by forcing the discretization 
equation to hold at point (n,h, n,h), while relaxing it at all 
other points of the discretization grid n h .  By using this pro- 
cedure sequentially, or if possible in parallel, for all points 
of ah, an updated value of the solution i s  obtained at all grid 
points, and one can then proceed to the next iteration. If 
the resulting iterative algorithm converges, the complete 
system (3.1) of discretized equations will eventually be satis- 
ifed. 

In this section, we describe elementary relaxation meth- 
ods, such as the Jacobi and Gauss-Seidel iterations, and use 
a digital filtering viewpoint to analyze their convergence 
behavior. The major shortcoming of these methods is  their 
slow convergence rate. Several acceleration schemes have 
been proposed to improve their convergence. Acceleration 
schemes can be divided into two categories, depending on 
whether they are stationary or not. In a stationary scheme, 
the same acceleration procedure is used at each iteration. 
Thus, we can focus on a single iteration and try to optimize 
its performance. The best example of such a procedure i s  
the successive over-relaxation (SOR) method. In a nonsta- 
tionary scheme, the overall performance of the algorithm 
is optimized by considering more than one iteration at a 
time. Examples of such schemes include the Chebyshev 
semi-iterative (CSI) and conjugate gradient (CC) methods. 
Both stationary and nonstationary acceleration methods are 
discussed below. 

A. Elementary Relaxation Methods 

problem. The Jacobi relaxation is given by 
Consider the discretization (3.5) of the model Poisson 

(5.1) 

where LI~:,),,~ denotes the value of the variable U,",+ at the 
mth iteration, with m = 0,1,2, . . . From (5.1), we see that 
given the values UL;,),,~ at all points of n h ,  the value U::,:;) at 
the next iteration i s  obtained by forcing equation (3.5) to 
be locally satisfied at (nxh, n,h), independently of whether 
it i s  violated at other points Of a h .  

One way to modify the Jacobi relaxation (5.1) i s  to par- 
tition the grid points into red and black two groups as 
described in Section I l l  and to perform the iteration 
(n,, n,) red: 

(nx, n,,) black: 

(5.2a) 

(5.2b) 
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Thus, one iteration consists of two steps. In the first step, 
a Jacobi relaxation i s  performed at all the red points and in 
the second step, the values obtained at the red points in 
the first step are used to perform a Jacobi relaxation at the 
black points. The iteration (5.2) i s  known as the Gauss-Sei- 
del relaxation for the red-black ordering. The reader is 
referred to [75] for a detailed comparison of the red-black 
Gauss-Seidel and Jacobi relaxations. 

To analyze the convergence behavior of relaxation meth- 
ods, it isconvenient toview each iteration as corresponding 
to a digital filtering operation on the solution error. For 
example, if the Jacobi relaxation converges, the iteration 
equation (5.1) reduces asymptotically to 

- - + znx,ny-l - h2fnx,n> unx,ny - ~Gn,+l,ny + unx-l,ny + unX,ny+l 

(5.3) 

whereEn,,ny i s  the exact solution of the discretized problem. 
Subtracting (5.3) from (5.1), we find that the errors evolve 
according to 

- 1  - 

where 

(5.5) 

i s  the error at the mth iteration. Thus, the Jacobi relaxation 
can be viewed as a digital filtering process, where at each 
iteration the FIR filter 

] (Ex,  E,) = + €;I + €, + €;I) (5.6) 

is applied to the errors obtained at the previous iteration. 
Assume that the boundaryconditions for the Poisson prob- 
lem are of Dirichlet type, so that the errors are zero on the 
domain boundary. To analyze (5.4) in the Fourier domain, 
we observe that the functions 

sin (k,m,h) sin (k,m,h), 1 5 k,, k ,  5 M - 1 

with M = h-',areeigenfunctionsof/which arezeroon the 
domain boundary. They can therefore be used to expand 
the errors eh:$+ in the form (3.12). In the Fourier domain, the 
iteration (5.4) i s  diagonalized and takes the form 

(5.7) 
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where the eigenvalues into a set of 2 x 2 matrix equations 

j(k,, k,) = ;[COS (k,*h) + COS (k,rh)] (5.8) 

specify the spectrum of J. The spectrum magnitude I@,, 
k,)\ is plotted in Fig. 4. We see from th i s  figure that the Jacobi 

(w4 
Fig.4. The spectrum magnitude of the Jacobi iteration 
operator. 

relaxation acts as a notch filter. It filters out the middle fre- 
quencies, but dampens only slightly the low and high fre- 
quencies. Since l j (kx,  k,)( < 1 for all feasible wavenumbers, 
the Jacobi relaxation converges. Its convergence rate i s  
determined by the spectral radius 

(5.11 b) 

with (kX,  k,) E Kb, where Kb is  defined in (3.19a). The spectral 
radius of Grb i s  therefore given by 

P(Grb) = maX ( j2 (kx ,  ky)l = COS2 (Th) 1 - T2h2. 
kr.kyEKb 

(5.12) 

Comparing(5.9)and (5.12),we see immediatelythatthecon- 
vergence rate of the red-black Gauss-Seidel algorithm is  
double that of the Jacobi relaxation. Since both algorithms 
require the same number of operations per iteration, the 
red-black Gauss-Seidel algorithm is  twice as efficient. 

I f  the natural ordering i s  adopted, the Gauss-Seidel relax- 
ation takes the form 

and is called the lexicographic Gauss-Seidel iteration. The 
errors dynamics are given by 

We see from (5.9) that the number of jacobi iterations 
required to reduce the error by a constant factor i s  pro- 
portional to O(h-2).  In order to determine the total number 
of iterations needed for convergence, it i s  useful to observe 
that since the discretized system is  only an approximation 
of the original continuous problem, the iteration can be 
stopped when the solution error for the discretized system 
i s  of the same order as the discretization error. We saw in 
Section Il-C that the error for a 5-point discretization of the 
Laplacian is O(h2). The total number of iterations required 
by the Jacobi relaxation i s  therefore O(h-2 log (h-I)). 

and eh!,!,+ the restriction of 
the error at the rn-th iteration to the red and black points, 
respectively, we find that the errors for the red-black 
Gauss-Seidel relaxation evolve according to 

Similarly, denoting by 

where 

I O O J  

J O O I  O J 2  
Grb = [ ][ ] = ] (5.10b) 

i s  the red-black Gauss-Seidel relaxation operator. For Di- 
richlet boundary conditions, the red and black error func- 
tionsadmit a Fourier decomposition of the form (3.18). With 
respect to this basis, the error dynamics (5.10) decouples 
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isacausal IIRfilter.The spectral analysisof theoperator GI,, 
with Dirichlet boundary conditions has been performed by 
Frankel [42], and was studied by Trefethen and LeVeque [77l 
from a tilted grid viewpoint. For convenience, we consider 
here the case of periodic boundary conditions. Then, the 
eigenfunctions of GIex are 

e~2*(klnx +kyny)h, 0 5 k,, k ,  I M - 1 

and, decomposing the errors with respect to this basis, the 
spectrum of GI,, i s  given by 

e ~ 2 r k x h  + er2rkyh 

clex(kxt ky) = - e-r2rkxh - e-~2rkyh‘  (5*15) 

Note that c ~ , , ( k ~ ,  k,) = 1 for (k,, k,) = (0,O) and Ic~eAk,, k,)l 
< 1 for all other feasible wavenumbers. This means that the 
filter Clex does not filter out the d.c. component of the error. 
However, if u(x, y )  is a solution of the model periodic prob- 
lem, u(x, y) plus a constant is also a solution, and the lex- 
icographic Gauss-Seidel method converges to one of these 
solutions. 

To summarize, the Jacobi, red-black, and lexicographic 
Gauss-Seidel relaxations admit a digital filtering interpre- 
tation, where each iteration consists in applying a filter to 
the errors obtained at the previous iteration. This filtering 
process can be studied easily in the frequency domain, by 
decomposing the errors in terms of properly selected Fou- 
rier eigenmodes, and examining each mode indepen- 
dently. 

PROCEEDINGS OF THE IEEE, VOL. 78, NO. 12, DECEMBER 1990 

_ _ ~  __ ~ 



6. SOR Acceleration r r n [ A ( o > l  
The red-black SOR iteration i s  obtained by introducing 

a relaxation parameter w inside the Gauss-Seidel iteration 
(5.21, i.e., 

(nx, n,) red: 

0 ununy ( m + V  = (1 - w)ui~)n, + 4 (d:!l,ny + ~ 2 1 . n ~  

+ d;,)n,+i + 4;!ny-i - h2fnx,n> (5.16a) 

4 

(nx, n,) black: Fig. 5. Root loci of A, and A2 with fixed p. 

,,(m+1) = + W (,p+i) + ,,(m+1) 
" " , f l y  (1 - w)d::ny n,+l ,ny  n,-1.ny 

(5.16b) 

When w = 1, the SOR method reduces to the Gauss-Seidel 
method. The error dynamics for the SOR iteration can be 
expressed as 

+ U ( m + l )  + U(m+l) - h2f 
n,,n,+1 n,,n,-1 nx,flJ* 

where 

0 I - w  w] 
Grb(w) = [' ] 

w] 1 - 0  

is the red-black SOR iteration operator. With respect to the 
red-black Fourier decomposition (3.181, the SOR iteration 
reduces to 2 x 2 matrix iterations of the form (S.Ila), where 

k,) is replaced by 

(5.18) 

Le; A be an eigenvalue of the matrix er&, k,, ky), and let 
p = / ( k x ,  k,).Then,Aandpare relatedviathequadraticequa- 
tion 

Note that as ovaries, the eigenvalues A1 and A2 move about 
the complex plane. We are interested in how the quantity 
p = max(lAl), IA2()  depends on w. When viewed as afunction 
of w, the discriminant 

A = 4(1 - w)w2p2 + w4p4 

of (5.19) has a real root at 

2 
wd = (5.20) 

1 + G' 
It i s  easy to check that p < 1 if and only i f  0 < w < 2. Fur- 
thermore, we have 

The locus of eigenvalues XI and X2 as w varies i s  plotted in 
Fig. 5. When w = 0, the eigenvalues Al and A2 coincide at 
the value 1. As w increases from 0 to 1, both eigenvalues 
move toward theorigin along the real line butwith different 
speeds. When w reaches 1, the eigenvalues are 0 and p2. 
When 1 e w I wd, one eigenvalue increases its value from 
0 and the other continues to decrease. They coincide again 
at the point wd - 1 when w = wd. The eigenvalues become 
complex conjugate pair with magnitude w - 1 for w > Wd. 

Thus, these eigenvalues lie outside of the unit circle for w 
> 2. This plot shows that the spectral radiusp is minimized 
for w = w,,. 

Sincep = j(k,, k,), the relaxation parameter wdwhich min- 
imizes the spectral radius of Grb(W, k,, k,) isafunction of the 
wavenumber(k,,k,). Inordertominimizethespectral radius 
of the space-domain operator Crb(w), we must therefore 
select for w the value which minimizes the maximum over 
all feasible wavenumbers of the spectral radius of c(w, k,, 
k,). A straightforward analysis [75] shows that the optimal 
relaxation parameter wept is given by the value of ad  cor- 
responding to the wavenumber (kx,  k,) = (1, 1). Since ] C l ,  
1) = cos (rh), we obtain 

wopt = = 2 - 2rh (5.21) 
2 

1 + J1 - cos2 (ah) 

and the corresponding spectral radius is 

P(Crb(Wopt)) = Wept - 1 1 - 2rh. (5.22) 

We see from (5.22) that the number of iterations required 
by the red-black SOR iteration to reduce the error byacon- 
stant factor is O(h-'), so that this algorithm is one order of 
magnitudefasterthan the Jacobi or red-blackGauss-Seidel 
relaxations. However, this rate of convergence is achieved 
only when the relaxation paramater is equal to i t s  optimal 
valuew,,,, and is sensitive to perturbations of the relaxation 
parameter away from this value. 

An interesting feature of the SOR method is  that, since 
the optimum relaxation parameter wept is larger than Wdfor 
al l  wavenumber components (kx, k,) # (I, I), the eigen- 
values of Grb(W,pt) have all the same magnitude wept - 1. To 
illustrate this phenomenon, the spectra of the Jacobi and 
SOR (with wept) iteration matrices are plotted in Fig. 6. The 
eigenvalue of the Jacobi iteration matrix are all real and 
occur in + - pairs. Their magnitude ranges from 0 to cos 
(rh) = 1 - O(h2).  Thus, different Fourier components con- 
verge at different rates, and the slowest converging Fourier 
component is theone that establishes the convergence rate 
of the Jacobi method. Through the SOR acceleration, these 
eigenvalues are redistributed around a circle of radius wept 
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real axis 

Fig. 6. A typical eigenvalue map in the complex plane for 
the Jacobi iteration (+) and the SOR iteration (0) with the 
optimal relaxation parameter, where the case h = &and w 
= 1.757 i s  plotted. 

- 1 = 1 - O(h) in the complex plane. Since they have the 
same magnitude, all Fourier components converge at the 
same rate. Thus the acceleration effect of the SOR method 
is  achieved by balancing the convergence rates of the dif- 
ferent Fourier components. 

C. Polynomial Acceleration 

The SOR procedure i s  a stationary one-step acceleration 
technique, in the sense that it optimizes the convergence 
behavior of one iteration, and uses the same acceleration 
scheme at every subsequent iteration. There exists an alter- 
native acceleration approach which optimizes the conver- 
gence behavior of the overall algorithm, instead of consid- 
ering only one step. Specifically, if a given iterative 
procedure requires s steps to converge, we can select a set 
of acceleration parameters o, with 1 I i I s and apply U, 
at the ith iteration to increase the convergence rate. This 
approach leads to the polynomial acceleration method 
described below. 

Consider the sequence of iterates generated by the iter- 
ation 

(5.23) 

where P i s  assumed to have real eigenvalues, and p ( P )  < 
1, so that (5.23) converges. For example, one possible choice 
for P is the Jacobi iteration matrix 1. The error e',") = w("') - 
w at the mth iteration i s  given by 

W ( m + V  = pW(m + 

- 

(5.24) 

To improve the convergence of the sequence { w ( ~ ) } ,  we 
can generate a new sequence {U('")} by performing a linear 
combination 

= prnet). 

rn 

,=o 
= c cYrn,,W(') (5.25) 

where the coefficients am,, are real and satisfy 
m 

c CYrn,, = I 
1=0 
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(5.26) 

for all m. This condition i s  imposed in order to guarantee 
that when w(O) = U, then U@) = U for rn 2 0. Let e'") be the 
error associated with the new sequence U("'). From (5.24)and 
(5.25), we can relate e""' and e r )  via 

m 

e(rn) = Q,(P)e:', where Qrn(P) = am,,frn 

i s  a matrix polynomial of degree m. Since e"' = et), the errors 
associated with the {U('")} iteration satisfy 

e(rn) = Q,(P)e'". (5.27) 

The problem is  to select the coefficients a,,,, so that the error 
sequence 

Since Qm(P) i s  a polynomial function of P, it has the same 
eigenvectors as P, and if p i s  an eigenvalue of P, the eigen- 
value of Qm(P) corresponding to the same eigenvector i s  
Qm(p). Let S be the discrete spectrum of the matrix P, and 
let pmin and pma,denote the smallest and largest eigenvalues 
of P. The polynomial acceleration problem can be formu- 
lated as the minimax problem 

,=o  

converges to zero as fast as possible. 

(5.28) 

Since the discrete spectrum S is seldom known, the prob- 
lem (5.28) cannot usually be solved as such. A modified ver- 
sion which is easier to solve consists in replacing S in (5.28) 
by the continuous spectrum 3 = (x:wmin I x I P,,,}. In 
this case, we can perform the change of variable 

(5.29) 

so that (5.28) i s  transformed into a minimax problem defined 
on the interval [-I, I]. The solution of this new minimax 
problem i s  well known and i s  given by the Chebyshev poly- 
nomial of order m, Trn(z). In terms of the original variable 
x, the solution i s  

Q m k )  = Trn(Zh)YTm(dl)) (5.30) 

where the scaling by Trn(z(l)) ensures that the coefficient 
constraint (5.26) i s  satisfied. 

An interesting property of Chebyshev polynomials is that 
they satisfy the three-term recurrence relation 

2x - b m a x  + Pmin) 

Pmax - Pmin 
z(x) = 

T,+~(Z) = 2zTrn(z) - Tm-1(z), m 2 1 (5.31) 

with To(z) = 1 and T,(z) = z. This property can be exploited 
to generate the new sequence {U("')} efficiently, instead of 
using expression (5.25), which has a high computational 
cost, and requires a large amount of storage. By taking into 
account the recursions (5.23) and (5.31) inside (5.25), we 
obtain the following Chebyshev semi-iterative (CSI) accel- 
eration procedure [57l, [96] for iteration (5.23): 

U ( m + l )  = Prn+l[y(PU(m) + c) + (1 - y)u'm'] 

+ (1 - pm+l)u(rn- l )  

with 

p1 = 1, p2 = (1 - ;a*)-', 

(5.32) 

(5.33a) 

(5.33b) 
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and 

(5.33c) 

To illustrate the redistribution of the eigenvalues of P 
which is  accomplished by the CSI acceleration method, the 
function Qlo(x) describing how the eigenvalues of Qm(P) 
depend on those of P for m = 10 is  plotted in Fig. 7. From 

Pmax - Pmin 

2 - pmax - pmin'  
U =  

0.8 1 i 

O! 0.4 

0.2 

QI&) o 

-0.2 

-0.4 1 1 -0.61 -0.8 

11 I 
-0.5 0 0.5 1 

I.1 

Fig. 7. Typical eigenvalue distribution for the Chebyshev 
semi-iterative method plotted as function of theeigenvalues 
of the jacobi iteration ( h  = A, pm,, = - pmin = 0.98 and rn 
= IO). 

this figure, we see that unlike the SOR method, where the 
eigenvalues of Crb(uopt) were al l  complex and equal in mag- 
nitude, the eigenvalues of the CSI matrix Qm(P) remain real, 
and lie in the narrow interval 

with 

I - J i - 7  
I+-* 

r =  (5.34) 

As an example, consider the case where the CSI method 
i s  used to accelerate the Jacobi iteration for the model Pois- 
son problem with Dirichlet conditions, so that P = J in (5.23). 
The resulting algorithm i s  called the J-CSl method. The 
asymptotic convergence rate of the J-CSl method can be 
determined as follows. From (5.8), we know that 

/Imax = cos (rh), pmin = -cos (xh) (5.35) 

and from (5.33c), 

U = cos (rh) .  

Then, observing from Fig. 7 that the maximum value of 
IQ,(x)I over the interval [p,,,, pmax] is reached for x = p,,,, 
we find that 

ml2 

d Q m ( / ) )  = IQm(pmax)l = 2 - 1 + r"' 
(5.36a) 

where, from (5.34, 

1 - sin (xh) 
1 + sin (?rh)' 

r =  (5.36b) 

According to (5.27), the error of the J-CSl method at the 
mth iteration i s  obtained by multiplying the initial error by 
Q,( /). The asymptotic error contraction factor per iteration 
i s  therefore 

lim (P(Q,,,(J))'"? = r l / *  = I - xh. (5.37) 

This shows that the J-CSl method requires O(h-') iterations 
to reduce the error by a constant factor. A further improve- 
ment in this algorithm was introduced by Golub and Varga 
[51], who observed that for the the red-black ordering, the 
recursion (5.32) can be rearranged in such a way that only 
the odd iterates of the red points and the even iterates of 
the black points need to be computed, thus cutting the 
numerical complexityof thealgorithm in half. The resulting 
procedure is called thecyclic CSI method, and its numerical 
complexity i s  the same as that of the SOR method. 

i n - m  
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D. Historical Notes 

The development of relaxation methods for the solution 
of large systems of linear equations was initiated by Gauss, 
Jacobi, and Seidel in the 19th century, and Ridchardson, 
Liebmann, and Southwell early in this century. Sinceacom- 
prehensive account of the history of relaxation methods 
can be found in a recent paper by Young [103], our com- 
ments focus primarilyon the application of Fourier analysis 
to the study of these methods. The development of the SOR 
theory in the late 1940s [42], [IOO], [ l o l l  marked the begin- 
ning of a period of rapid progress in the area of iterative 
methods. The Fourier approach adopted in this section has 
fororigin theworkof Frankel [42]andYoung[100],who used 
Fourier-like basis functions to analyze the SOR method 
applied to the naturally ordered Poisson problem with Di- 
richlet boundary conditions. Recently, LeVeque and Tre- 
fethen [77J reinterpreted Frankel's result from a tilted grid 
viewpoint. The same problem with periodic boundary con- 
ditions was analyzed by Chan and Elman [24]. The two-color 
Fourier analysis of the SOR method for the red-black 
ordered model Poisson problem with Dirichlet or periodic 
boundary conditions was developed by Kuo et al. [70], [75]. 
The use of Chebyshev polynomials was first proposed by 
Flanders and Shortley [41] for the solution of matrix eigen- 
value problems, and subsequently led to the development 
of the Chebyshev semi-iterative (CSI) method for solving 
linear systems. A complete discussion of elementary relax- 
ation methods and of the SOR and CSI acceleration pro- 
cedures can be found in books by Birkhoff and Lynch [14], 
Hageman and Young [57, Varga [96], and Young [102]. 

VI. MULTIGRID METHODS 

The major limitation of elementary and accelerated relax- 
ation methods is  that while the components of the error 
decreasevery rapidly in certain frequency bands, they decay 
only very slowly in other bands. The region of rapid decay 
depends on the specific relaxation method that we con- 
sider, but it consists typically of middle or high frequencies. 
On theother hand, the region of slow decay always includes 
the lowfrequencies.This phenomenon reflects the factthat 
the low frequency components of the solution depend on 
global information, and a large number of iterations are 
required for propagating information from the edges of the 
problem domain to its center. Since theerror becomes pro- 
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gressively smoother as the iteration proceeds, it i s  natural 
to consider switching to acoarser discretization grid, where 
we can assume temporarily that an exact solver i s  available. 
This solver can be used to compute the smooth compo- 
nents of the error on the coarse grid, and the resulting cor- 
rection can then be interpolated back to the fine grid and 
combined with the original fine grid solution. Such a solu- 
tion scheme is called a two-grid method. In this approach, 
the fine grid provides the accuracy required by the approx- 
imation while the coarse grid offers a faster convergence 
rate for the low frequency Fourier components. Naturally, 
the weakness of the above scheme is  that we have assumed 
that an exact solver i s  available on the coarse grid. This is 
generally an unreasonable assumption, but we need only 
to observe that the problem on the coarse grid can itself be 
solved by a two-grid method. By proceeding recursively, we 
obtain a multigrid scheme, where progressively coarser 
grids are employed, until so few discretization points are 
involved that a direct solver can be used to compute the 
error on thecoarsest grid. The resulting solution technique 
is  called a multigrid method. 

Sincethetwo-grid method isthe main componentof mul- 
tigrid methods, our first step in this section is  to perform 
a detailed analysis of the two-grid iteration operator. We 
use two-color Fourier analysis to find the spectrum of this 
operator for the I-D and 2-D model Poisson problems. Then, 
we describe several of the standard recursion patterns, 
namely the V-cycle, W-cycle, and full-multigrid schemes, 
that are used to generate multigrid methods from the two- 
grid iteration. 

A. Two-Grid Iteration 

Consider two discretization grids nh and n2hr with mesh 
sizes h and 2h, respectively, and let 

betheequation thatwe seek to solveon the finegrid, where 
Lh, fh and uh denote the discretized operator, forcing func- 
tion, and solution, respectively. An (h, 2 h) two-grid iteration 
for solving this equation consists of the following three 
steps. 

Step 7: Presmoothing: Select a relaxation operator Sh for 
solving (6.1) on the finegrid. Typically, Sh i s  the Gauss-Seidel 
relaxation, but other choices are possible, such as the 
damped Jacobi iteration described below. Then, given an 
initial estimate U:' of the solution, apply the Sh iteration v1 
times. If uf'denotes the resulting approximate solution, the 

Fig. 8. Structure of an ( h ,  2h) two-grid method. 

1824 

corresponding residual i s  

rh = fh - (6.2) 

Step 2: Coarse-Grid Correction: The residual rh can be 
projected onto the coarse grid n2h by using a restriction 
operator lih, thus yielding f2h = /ihrh. Then, since we assume 
that an exact solver i s  available on n2h, we use this solver, 
which is denoted here by L;;, to find the solution U2h of the 
coarse grid problem 

L2hU2h = f2h* (6.3) 

If I;,, denotes an interpolation operator for transferring a 
function defined on n2h onto the fine grid Oh, we can inter- 
polate the coarse grid correction Uph, and add it to the solu- 
tion obtained in Step 1, thus yielding 

(6.4) 

Step 3: Postsmoothing: Using U:) as initial solution, we 
apply the Sh iteration v2 times. The resulting approximate 
solution is U:). 

The above three steps are illustrated in Fig. 8. Usually, the 
numbers v, and v2 of pre- and post-smoothing iterations are 
0 , l  or 2, and v = v1 + v2 is 2 or 3. If 

cold = u;ld - - (6.5a) 

u(2) h - - h + lkhUZh* 

enew = ,,yw - - U 

are the solution errors before and after one full two-grid 
iteration, the error dynamics for the two-grid iteration can 
be expressed as 

(6.5b) enew = Miheold 

where the two-grid iteration operator Mih is given by 

Mih = s;;zK;hs; (6.6) 

and Kih i s  the coarse grid correction operator 

Kih = /h - /,hhL;i/ihLh. (6.7) 

Naturally, the two-grid iteration needs to be repeated 
until the error becomes sufficiently small. It will be shown 
below that the two-grid iteration operator Mih reduces the 
error by a constant factor independent of h, so that only 
O(1og (h-')) iterations are necessary to solve (6.1) within the 
discretization accuracy O(hP), wherep i s  a positive integer. 

Note that equations (6.2)-(6.6) provide only a general 
description of the two-grid iteration procedure. In order to 
obtain an actual two-grid iteration, we need to select the 
operators Sh, /ih, I&,, and L2h which have been left unspec- 
ified in the above description. In spite of the fact that there 
exist many different ways to choose these operators and 
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that they need to be adjusted to achieve the best conver- 
gence performance for different applications, the effi- 
ciency of multigrid methods does not usually depend on 
this choice. It i s  the utilization of multiple discretization 
grids that makes these methods converge very rapidly. In 
the following subsections, S h  is the red-black Gauss-Seidel 
iteration operator, Lzh is the usual 3-point (resp. 5-point) dis- 
cretization of the I-D (resp. 2-D) Poisson operator on the 
grid 0 2 h ,  and /ihand /;,are the full weighting restriction and 
linear interpolation operators, respectively. 

B. Solution of  the I-D Poisson Problem 

Two-Grid Method and Analysis: Consider an (h, 2 h) two- 
grid method for solving the discretized I-D Poisson equa- 
tion 

1 
- h2 (U,,-, - 2u, + U,+,)  = fn, 1 5 n s N - 1 (6.8) 

where the boundary values U,, and uN are given, h is  the grid 
spacing, and N = h-’ i s  even. For the I-D problem (6.8), it 
will be shown below that it i s  possible to choose the relax- 
ation, restriction and interpolation operators so that M i h  
= 0. This means that the two-grid method i s  a direct solver 
for (6.8). However, this i s  not true in general for 2-D or 3-D 
problems, 

Quite often, a simple but crude technique, called the 
smoothing rate analysis [18], can be used to study the con- 
vergence behavior of two-grid or multigrid methods. This 
analysis assumes that the coarse-grid correction operator 
K:h annihilates al l  the low frequency components of the 
error and preserves its high frequency components, i.e., 

0, 1 s k < NI2 
(6.9) 

By expressing (6.6) in the frequency domain and using 
assumption (6.91, we find that the two-grid iteration oper- 
ator admits the frequency domain representation 

I,, NI2 s k 5 N - 1. 
kfh(k)  = 

1 s k < NI2 

NI2 5 k s N - 1, 
(6.10) 

s;+Yk), 
M i h ( k )  = 

where sh(k) denotes the spectrum of Sh. The largest mag- 
nitudep of sh(k) for NI2 s k s N - 1 i s  called the smoothing 
factor. Therefore, the convergence rate of the two-grid 
method is related to the smoothing factor via 

p ( M i h )  = p”’+Q. (6.11) 

To give an example, consider the damped Jacobi itera- 
tion, 

w 
uLm+’) = (1 - O ) U L ~ ’  + 2 (u;~!~ + - h2f,) (6.12) 

where w is a relaxation parameter. The damped Jacobi 
smoother has the spectrum 

J(w, k)  = (1 - U) + COS (kah) (6.13) 

whose magnitude parameterized with w is plotted in Fig. 
9. We can choose w to minimize the magnitude of the larg- 
est eigenvalue in the high frequency region. The optimal 
relaxation parameter i s w  = 213,which is obtained by solving 

(6.14) 

and the corresponding smoothing rate is 

f i  = max I]($, k)( = 3. (6.15) 
NI2 d k 5 N -1 

The estimated two-grid convergence rate becomes 

p ( M i h )  = ( j , ” ’ + m .  (6.16) 

We should point out that the assumption (6.9) for the 
smoothing rate analysis does not actually hold in piactice. 
However, becauseof its simplicity, thisanalysis isoften use- 
ful for estimating the convergence behavior of multigrid 
methods. 

There are situations where the smoothing rate analysis 
predicts completely wrong results. One such case arises 
when the red-black Gauss-Seidel relaxation is used as 
smoother. Following a procedure similar to the one 
employed for deriving (5.11), we find that with respect to 
thecoefficients(&,,k, eb,Jofthe I-D red-black Fourierseries 

“0 50 100 150 200 250 300 

wavenumber 

Fig. 9. Thespectrumofthel-DdampedJacobi smoother parameterizedwithw(N = 256). 
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expansion 
NI2 - 1 

k = l  

NI2 

k = l  

e,, = C &r,k sin (krnh), n even (6.17a) 

e,, = C 6b.k sin (kanh), n odd (6.17b) 

the red-black Gauss-Seidel relaxation operator Grb can be 
represented as 

0 cos (krh) 
, 1 5 k 5 N/2 - 1 (6.18) 

Cr,(k) = [ I  0 cos2 (kah) 

with Crb(N/2) = 0. The expression (6.18) holds also for high 
frequency components (k > N/2) which are aliased into the 
low frequency region. Thus, the red-black Gauss-Seidel 
smoother attenuates rapidly the middle frequency com- 
ponents (k = N/2) but works poorly for the low and high 
frequencies. According to the smoothing rate analysis, we 
have 

max lcrb(k)[ = cos2 (ah) = 1 - a2h2. (6.19) 

This implies a poor convergence of the correspoding mul- 
tigrid method. However, contrary to this prediction, 
numerical experiments show that the multigrid method 
with the red-black Gauss-Seidel smoother i s  an exact sol- 
ver for the 1-D Poisson problem and converges very rapidly 
in the 2-D case. Thus, in order to explain the effectiveness 
of the red-black Gauss-Seidel smoother, we cannot assume 
that the condition (6.9) holds. It i s  necessary to perform a 
complete two-grid analysis, i.e., to study the spectrum of 
the coarse-grid corrector Kih defined in (6.7), as well as that 
of the smoother sh.  

We have first to define more precisely the operators 
appearing in (6.2)-(6.4). The h-grid and 2h-grid Laplacians 
are 

NI2 4 k 4 N -1 

1 1 
Lh = (Eil - 2 + Eh); L2h = - - 2 + Ezh) 

(2 h)' 

(6.20) 

where E2h = €;.To restrict a function from 62h to 622h, we per- 
form an averaging operation with coefficients 114, 112 and 
114 and then down-sample the averaged sequence on 622h. 

The restriction operator is denoted by 

(6.21a) 

To interpolate a function from 622h to Oh, we use a linear 
interpolation scheme for grid points belonging to 62h - 622h. 

The interpolation operator is written as 

/ ! h : l i t  1, i12hh. (6.21 b) 

With respect to the red-black Fourier expansion (6.17), 
the action of the h-grid discretized Laplacian and identity 
operator / h  on the red-black Fourier vector &,$)'can 
be represented by the 2 x 2 matrices 

(6.22a) 

1826 

Observing that in the I -D case, the points of the coarse grid 
coincide with the red points of the fine grid, we find that 
the red-black spectral representations of the restriction and 
interpolation operators /Zhh and /!h correspond respectively 
to mappings from (6?r,kr onto &r,k and from &r,k onto 

@b,k)', and are given by 

(6.22b) 

Furthermore,with respecttothe Fouriercomponent&r,kthe 
2 h-grid discretized Laplacian is represented by the spec- 
trum 

(6.22~) 

We obtain therefore 

Finally, choosing Sh = Grb and v1 = vz = 1 in (6.6), we find 
that the red-black spectral representation of the two-grid 
operator i s  given by 

From (6.18) and (6.23), it is easy to check thatAdEh(k) are 2 
x 2 zero matrices for 1 5 k I NI2 - 1 and Mih(N/2) = 0. 
Thus, the two-grid method with red-black Gauss-Seidel 
smoothing i s  a direct solver. 

Multigrid methods: The implementation of the two-grid 
method requires inverting the coarse-grid Laplacian oper- 
ator L2h. An efficient way to carry out this inversion i s  to use 
a (2h, 4h) two-grid iteration. By using nested two-grid iter- 
ations, wecan therefore reduce theoriginal problem to one 
defined on progressively coarser grids, until a direct solver 
can be used to invert the discretized operator on the coars- 
est grid. Thus, if the mesh-size on the finest grid i s  h = 2-L 
with L > 2, the following nested iteration specifiesan L-grid 
solver: 

with 

xh = {Mih, for h = 2-', 2 5 I 5 L - 1 
(6.2513) 

Lh', for h = 112. 

One can prove by induction that this multigrid algorithm 
solves the I-D Poisson problem directly. It i s  possible to 
simplify this algorithm to save computations. See [74] for 
details. 

C. Solution of the 2-D Poisson Problem 

Let Lh and L2h be the 5-point discretizations of the Lapta- 
cian on 62h and.Q2,,, i.e., 
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Then,/ihand /;hdenotethefull-weighting restriction and 
linear interpolation operators, given respectively by 

and 

1 1  1 1 1  
4 2 4 2 h  

We consider only the case 1 5 k,, k ,  < N12. Each of the 
4 x 4 frequency domain matrices appearing below cor- 
responds to a mapping from the vector space spanned by 

( f k ,  -&, b k ,  -6t)' 
onto itself, where 

N 
k = (k,, k,), 1 I k,, k ,  < -; 

2 

L = [  (6.28) 

When k,  or k,  is equal to N l 2 ,  the 4 x 4 matrices reduce to 
2 x 2 or 1 x 1 matrices. The analysis of these degenerate 
cases can be found in [74] and is omitted here. We also use 
the abbreviations 

(N - k,, k,), 

(kx, N - k,), 

for k,  2 k,  

for k, < k,. 

cos e, + cos 9,. - cos e, + cos e, 
2 

, a =  a =  , 

p = cos ex e,; p = cos e, cos 6, 
2 

(6.29) 

The matrices representing operators / h ,  L h ,  and L;; in the 
where 0, = k,rh ,  0, = k y r h ,  e, = k x r h ,  and 8, = k,ah. 

frequency domain can be written as 

(6.30b) 

where 0 i s  the 2 x 2 zero matrix, I is  the2 x 2 identity matrix, 
and 

1 = diag (a, &). (6.30~) 

The decomposition shown in Fig. 10, which i s  commonly 
used in multirate digital signal processing [31], provides a 

h2 
26 

i;;(k,, k,) = -, 6 2a2 - p - 1 

sampling -I, n, : o h  filtering 

(b) 

Fig. 10. Decomposition of the (a) restriction and (b) inter- 
polation operators. 
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simple physical interpretation of the interpolation and 
restriction operators, and is  also useful for deriving their 
frequency domain matrices. In this decomposition, the 
restriction procedure I i h  is  divided into two steps, 

Step 7: Lowpass filtering (or averaging) at every point of 
nh, where the weighting coefficients are specified by the 
stencil (6.27a). 

Step 2: Down-sampling (or injecting) values from O h  to 

The interpolation operator /?h is also decomposed into 
two steps, 

Step 7: Up-sampling values from fi2h to n h ,  where we 
assign 0 to points which belong to f i h  - f i 2 h .  

Step 2: Lowpass filtering at every point of a h ,  where the 
weighting coefficients are specified by the stencil (6.27b). 

It i s  relatively easy to find a frequency domain matrix rep- 
resentation for each of the above steps. Combining them 
together, we obtain 

n 2 h .  

f 2  h 
h (ex, e,) = [I I o 01 

p + p  0 2ff 0 1 
1 + p  0 2& .!I 4 O 2ff 0 1 + p o  

Lo 2,5 o I+DJ 
(6.31a) 1 

4 
=-[ I  + p 1 + B  2ff 2 4  

and 

(6.31 b) 

Thus, in the frequencydomain, the down-sampling oper- 
ation adds the high frequency component - f k  to the low 
frequency component fk.  This phenomenon i s  known as 
aliasing [31]. Similarly, the up-sampling operation sets the 
high-frequency component -Fiequa1 to  the low-frequency 
component f k .  This duplication effect is  called imaging [31]. 
The lowpass filters which are cascaded with the down- and 
up-sampling operations reduce the aliasing and imaging 
effects. For example, when 0, and 9, are close to 0, a = 1, 
0 = 1, & = 0, and 6 = -1. Hence, the aliasing and imaging 
effects occurring between ( f k ,  hk)' and (fk, 6,)' are sub- 
stantially eliminated by the associated lowpass filters. 

From (6.30) and (6.31), we can compute the spectrum 
h (k,, k,) of the coarse-grid correction operator. The fre- 

quency domain matrix corresponding to the red-black 
Gauss-Seidel iteration is 

k 2 h  

(6.32) 
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Note that C,,(k,, k,) i s  a matrix of rank2 rather than 4. Com- 
bining the spectra of the smoothing and coarse-grid cor- 
rection operators, we obtain the spectrum of the two-grid 
operator 

which is again a matrix of rank 2. In [92] this feature was 
exploited to find a closed-form expression for the spectral 
radius of the two-grid operator. If v = v1 + Y ~ ,  we get 

v = l  

p(M2hh) = (6.34) 

In (6.34), the maximum of p[Qih(0)] occurs at 0 = ( d 2 , O )  or 
(0, ~12) when v = 1 and at (cos-' [(vlv + cos-' [(vlv + 

when v L 2. Note since Mih # 0, the two grid method 
is  not a direct solver in the 2-D case. However, the spectral 
radiusp is  a constant independent of the grid size h, so that 
only O(log (b- ')) two-grid iterations are needed to solve 
(6.1) with an accuracy equal to the 5-point discretization 
error O(b2).  

Multigridrnethods: As in the I-D case, we can recursively 
invoke the two-grid method to obtain multigrid algorithms. 
However, different recursion patterns may be needed for 
different 2-D or 3-D problems. Three commonly used recur- 
sion patterns, the V-cycle and W-cycle and full multigrid 
algorithms are shown in Fig. 11. 

7 i  

(C) 

Fig. 11. Illustration of (a) V-cycle, (b) W-cycle, and (c) full 
multigrid methods. 

From this figure, we see that while the V-cycle multigrid 
algorithm applies the coarse-grid correction operator once 
per cycle, the W-cycle algorithm applies it twice. The num- 
merical complexity per cycle of the V-cycle algorithm is 
thereforesmaller than that of the W-cyclealgorithm. On the 
other hand, since the W-cycle algorithm yields a better 
approximation of L;;, it requires fewer cycles to converge. 
The choice of cycling scheme depends on how the above 
tradeoff i s  affected by the problem that we seek to solve. 

For the model Poisson problem, theV-cycle algorithm works 
well. It requires just afew cycles (two or three) to converge 
within a fixed accuracy (independent of h), so that there i s  
no need to use the W-cyclealgorithm. However, the W-cycle 
algorithm is  usuallysuperior for difficult problems, such as 
highly anisotropic or nonlinear problems. 

In the full multi-grid (FMG) scheme, instead of solving the 
discretized problem (6.1) on the fine grid only, we solve it 
on all grids, starting from the coarsest grid. Once (6.1) has 
been solved within the discretization accuracy of a given 
grid, we interpolate the solution to the next finer grid, and 
usethissolutionasinitialestimatefortheV-orW-cyclemul- 
tigrid algorithm applied to the next problem. The advantage 
of this approach is  that, because we are using a good initial 
estimate for each successive problem, onlyaconstant num- 
ber of V- or W-cycle iterations are needed to solve (6.1) 
within the discretization error O(hP) of each grid. The total 
computational cost of the FMG algorithm is  therefore very 
small, and equals the cost of a constant number of smooth- 
ing iterations on the finest grid [181, [541, [921. 

D. Historical Notes 

The idea of solving elliptic PDEs by using relaxation on 
multiple grids was first proposed by Fedorenko [39] and 
Bakhvalov [I21 in the 1960s. However, it was not until the 
work of Brandt [18], Nicolaides [83], and Hackbush [54] in 
the 1970s that the efficiency of multigrid methods are rec- 
ognized, and that their convergence properties were fully 
analyzed. Brandt used Fourier analysis to study the error- 
smoothing rate in the high frequency region. Subse- 
quently, Stuben and Trottenberg [92] also used a Fourier 
approach to analyze a complete two-grid method including 
fine-grid smoothing, restriction, coarse-grid inversion and 
interpolation. Since all the elements of multigrid methods 
are already present in a two-grid cycling scheme, the results 
obtained for this scheme are usually a good indicator of the 
performance of more general multigrid algorithms. More 
recently, it was shown in [74] that the analysis of two-grid 
iterations can be simplified significantly by using two-color 
Fourier analysis. The book by Briggs [20] and article by Jes- 
persen [63] provide a good introduction to multigrid meth- 
ods for readers not acquainted with the subject. The pro- 
ceedings of European multigrid conferences in 1981 [55] and 
1985 [56] include several interesting theoretical and prac- 
tical contributions, particularly concerning the application 
of multigrid methods to problems of fluid dynamics and 
aerodynamics. A book edited recently by McCormick [81] 
contains several articles on various aspects of multigrid the- 
ory, as well as an exhaustive multigrid bibliography until 
1987. Finally, [54] gives a rigorous mathematical treatment 
of multigrid methods, and in particular of their conver- 
gence properties. 

VI I .  PRECONDITIONED CONJUGATE GRADIENT METHODS 

In the previous two sections, we have examined relax- 
ation methods for solving elliptic PDEs on single and mul- 
tiple grids. In this section, we consider solution techniques 
which combine the conjugate gradient algorithm with a 
preconditioning procedure, whose role is to reduce the 
condition number of the original system, thereby decreas- 
ing accordingly the number of iterations required by the 
conjugate gradient algorithm. 
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A. The Preconditioned Conjugate Gradient fPC0 
Algorithm 

When the conjugate gradient (CG) algorithm was intro- 
duced in the 1950s to solve SPD (symmetric positive defi- 
nite) systems of the form (3.1), it was considered by some 
researchers as a direct method, since in the absence of 
roundoff errors, it yields an exact solution in at most N steps, 
where N is the order of the system. However, because of 
roundoff errors, this finite termination property does not 
hold in practice. Furthermore, since the SOR or CSI meth- 
ods require only O(N112 log N )  iterations for the model Pois- 
son problem, the conjugate gradient algorithm would in 
fact be relatively inefficient if it truly required N steps to 
solve this problem. 

This forced researchers to view the CG method as an iter- 
ative method, and in this context it was found that a useful 
bound for the norm of the error elrn’ after m iterations is  [A, 
181 

(7.1) 

where K(A) denotes the condition number of the matrix A 
in (3.1), and IIxIIA = (xTAx)l12. For the 2D model Poisson 
problem, since for Dirichlet or periodic boundary condi- 
tions the eigenvalues are given respectively by (3.14) or 
(3.17), it i s  easy to check that K(A) = O(h-*) = O(N).  Sub- 
stituting this value inside the bound (7.1) we can conclude 
that the CG procedure reduces the error by a constant fac- 
tor in at most O(N’”) iterations, so that its rate of conver- 
gence is  comparable to that of the SOR and CSI methods. 

Although the bound (7.1) i s  rather conservative since it 
does not take intoaccount the clustering of theeigenvalues 
of A, it provides an important clue for improving the CG 
method. Specifically, by introducing a SPD precondition- 
ing transformation M, the system (3.1) can be transformed 
into 

A f id  = fd (7.2) 

where A, fid and fd are related to A, and fd via 

A = M“2AM -112, f i d  = M’12Ud, ?d = M112fd (7.3) 

and M’12 denotes the symmetric square-root of M. From the 
definition of A, we see that it i s  SPD. I f  the transformation 
M is  easy to invert, and if the condition number K(A)  of the 
transformed system is  much less than K(A), it becomes 
advantageous to apply the CG algorithm to the precon- 
ditioned system (7.2) instead of the original system (3.1). 
Note that since the matrices A and M -’A are related by a 
similarity transform, we can examine the spectrum of M -’A 
instead of that of A in order to find the convergence rate 
of the PCG method. In the following, M and M -’A will be 
called respectively the preconditioner and the precondi- 
tioner operator. 

xo arbitrary, 

With the initialization: 

ro = po = b - A h ,  and p1 = 0 

the k + I t h  ( k  = 0,1 ,2 ,  - . )  iteration of the PCG algorithm 
consists of the following two steps [50]: 

Step 1: Preconditioning: Solve 

M Z k  = rk  (7.4) 

for zk. 

Step 2: CG iteration: Compute 

x k + l  = xk + a k + l p k + l  

r k + l  = rk - ak+lAPk+l. (7.5) 

If the spectrum of A has no special clusteringfeature, and 
i f  the condition number K(A)  >> 1, the bound (7.1) for the 
error norm indicates that the number of PCG iterations 
required to reduce the error by a constant factor i s  pro- 
portional to O( m. Thus, the goal of preconditioning is  
to find preconditioners M which are easy to invert, since 
each PCG iteration requires the solution of a systempf the 
form (7.4, and such that the condition number of A is as 
small as possible. 

If bothA and M have Fourier functions aseigenfunctions, 
the spectrum of M-’A can be analyzed directly in the fre- 
quency domain. In this context, the design of precondi- 
tioners corresponds to an inverse filtering problem. That 
is, given an FIR filter A, we seek to construct a filter M-’ = 
A- lsuch that M - ’  can be implemented efficiently. Note 
that since A- ’  is a noncausal I IR filter, this last constraint 
precludes selecting M = A. 

Many elliptic preconditioners have been proposed in the 
literature. Depending on whether they rely on operations 
performed on a single discretization grid, or a sequence of 
discretization grids, they fall into the category of single- 
level, or of multi-level preconditioners. Examples of single- 
level preconditioners include the SSOR (symmetric suc- 
cessive over-relaxation) [5], ILU (incomplete lower and 
upper factorization) [82], MlLU (modified ILU) [36] methods, 
as well as polynomial preconditioners [4], [U]. Examples of 
multilevel preconditioners include the multigrid method 
[66], [67l as well as the HB (hierarchical basis) [104], [U], and 
MF (multilevel filtering) [71], [95] preconditioners. Since the 
design of elliptic preconditioners is an active research area, 
we do not attempt to survey all existing preconditioning 
techniques. Instead, our goal i s  to relate the design and 
analysis of some preconditioners to familar concepts in DSP 
to motivate further research along this line. 

B. Preconditioners Based on Incomplete Factorization 

Among single-level preconditioners, we focus on those 
obtained by incomplete factorization. Note that the Cho- 
lesky algorithm can be used to factor the coefficient matrix 
A into a product of lower and upper triangular matrices. 
However, although A i s  sparse, the Cholesky algorithm 
results in fillin for i t s  lower and upper triangular factors. The 
amount of fillin depends on the bandwidth B of A, which 
may be significant, say O(N”2) for a discretized self-adjoint 
elliptic PDE problem. The resulting band Cholesky algo- 
rithm then requires O(NB2) operations [50], p. 155. We are 
therefore led to consider preconditioners which require 
only an approximate factorization of A, i.e., A = LU, and 
with a computational complexity of OW). Efficient approx- 
imate factorization procedures of this type can be obtained 
by requiring that the lower and upper triangular factors L 
and U should have the same sparsity pattern as A. From the 
multidimensional signal processing viewpoint, construct- 
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ing an incomplete factorization i s  equivalent to factoring 
of a noncausal I IR filter A- ’  approximately into the product 
of two causal I I R  filters U-’ and L-’ of fixed size. 

The ILU and MlLU factorizations, which were originally 
introduced in [821 and [36] respectively, rely on twodifferent 
rules for constructing L and U. Both factorizations require 
that L and U should have the same zero entries as the lower 
and upper triangular parts of A, and that the nonzero off- 
diagonal entries ofA should be equal to the corresponding 
entries of M = LU. The difference between the two fac- 
torizations lies in the way the diagonal elements of M are 
specified (see Fig. 12). For the ILU factorization, the diag- 

1 1  
a a  

U(€,, E,) = 1 - - E, - - E ,  (7.6b) 

where a i s  a constant to be determined. Since the only non- 
zero coefficients of ,!(E,, E,) (resp. U(€,, E,)) are those of 1, 
E;’ and E;’ (resp. 1, E, and E,), L and U have the same spars- 
ity pattern as the lower and upper triangular parts of A(€,, 
E,). The local ILU preconditioners M,(E,, E,) i s  the product 
of L(E,, E,) and U(€,, E,): 

- (E, + E, + E;’ + E;’ )  

MI 

= w  
(7.7) 

Comparing (3.7) and (7.7), we see that the coefficients of the 
off-diagonal terms E,, E;’, E,, and E;’ of operator A(€,, E,) 
are matched by those of MI(€,, E,). Note that MI contains 
some additional off-diagonal terms of the form E,€;’ and 
€;’€,.The ILU factorization imposestheadditional require- 
ment that the coefficients of the diagonal terms of M, and 
A should be the same. This implies (see Fig. 12) 

2 
a + - = 4  (7.8) a 

so that a = 2 + &. This value of a is in fact observed asymp- 
totically in the ILU factorization of the model Poisson prob- 
lem with Dirichlet boundary conditions. 

Therefore, the ILU-preconditioned Laplacian can be writ- 
ten in operator form as 

1 1 + - (Ex€; ’  + €;‘Ey) . 

U 

go 
(MF’A) (E, ,  E,) = 1 - - (E, + E, + E;’ + E;’) 

7 -1 

U I :  
Fig. 12. Stencil representation of local operators for the (a) 
ILU and (b) MILU preconditioners. 

+- I (E, + E;’ + €; ’Ey)  
8 + 4 &  

x 1 - - (E, + E, + €;I + E;’) I :  onal elements of A and M are required to be the same, 
whereas for the MlLU factorization we require that, for all 
rows, the row sum of M must differ from the corresponding 
row sum ofA by a small quantity where is a constant 
independent of h. obtain 

It i s  straightforward to compute the spectrum of M;’A with 
respect to the Fourier basis functions ei2*(kinx+ k y n y ) h .  We 

1 - ;[cos (kX27rh) + cos (kY27rh)l 
A;’(kx, k,) A(k,, k,) = (7.10) 

I - - 1 [COS (kX2*h) + COS ( k y 2 ~ h ) l  + ~ 1 cos (k, - kY)27rh) 
2 4 + 2 &  

Each rowofthematrixfactorsLand Uspecifieslocalfinite- 
difference operators L(E,, E,) and U(€,, E,). Even if the PDE 
discretization operator A (E,, E,) has constant coefficients 
the local operators L(E,, E,) and U(€,, E,) have usually space- 
dependent coefficients, due to boundary effects. However, 
for points far away from the domain boundary, these coef- 
ficients tend asymptotically to constant values. In the fol- 
lowing, we ignore boundary effects and restrict our atten- 
tion to the asymptotic behavior of incomplete factorization 
preconditioners. 

ILU Preconditioners: For the model Poisson problem with 
the natural ordering, the local factorization operators L (E,, 
E,) and U(€,, E,) take the form [82] 

1 
4 (7.6a) LE, ,  E,) = - (a - E;’ - E ; ’ )  

where k,and k, are integers between 1 and N - 1.This spec- 
trum is plotted in Fig. 13. From this plot, as well as from a 
direct analysis, it iseasy tocheck that the spectrum reaches 
its minimum at the four corners of the domain 1 5 k,, k, 
s N - 1, and its maximum at the center, i.e., for k, = k, 
= N12. Furthermore, the minimum and maximum are pro- 
portional to O(h2) and 0 ( 1 ) ,  respectively. This gives 

Sincethecondition numberofA isofthesameorderasthat 
of A, it i s  tempting to conclude that the ILU factorization 
i s  not a good preconditioner for the CC algorithm. How- 
ever, from Fig. 13, we see that except at the four corners 
of the (k,, k,) domain, the eigenvalues of A are close to 1. 
Aconsequence of this eigenvalueclustering property i s  that 
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(0.0) 

Fig. 13. Typical surface plot of the spectrum of the ILU pre- 
conditioned Laplacian where 8, = 2rk ,h ,  OY = 2rk ,h  and 
h = 0.02. 

the ILU preconditioner has a significant acceleration effect 
on the CG algorithm which i s  not reflected by the bound 
(7.1). 

MlLU Preconditioner: The MlLU preconditioner has the 
samesparsity pattern asthe ILU preconditioner, sothat (7.6) 
and (7.7) also apply. Thus, for the model Poisson problem 
with the natural ordering, the MlLU preconditioner can be 
represented as 

- (E, + E, + E;’ + E,?) 

1 1 
a 

+ - (E,€,’ + €; ’Ey)  . (7.12) 

The difference between the ILU and MlLU factorizations 
lies in how the constant a is determined. For the MlLU fac- 
torization [36], it is required that the row sum of M,(E,, EY) 
should differ from the row sum A(€,, E,), which is zero, by 
a small quantity 6. This gives 

1 (a + 4 - 4) = 6 
4 

(7.1 3) 

and selecting 6 = ch214 with c > 0, we obtain 

ch2 1 
2 2  

a = 2 + - + - J&h2 + c2h4. (7.14) 

As was observed above, the spectrum of the ILU precon- 
ditioner MI approximates poorly the spectrum of A at the 
four corners of the domain 1 5 k,, k, 5 N - 1 .  In the mod- 
ified ILU scheme, the condition (7.13) i s  imposed in order 
to guarantee that the preconditioner M, approximates A 
well in this region. By performing a Fourier analysis iden- 
tical to the one employed for the ILU case, the spectrum 
and condition number of the MILU-preconditioned La- 
placian can be evaluated. A surface plot of the spectrum i s  
shown in Fig. 14. This plot indicates that the smallest eigen- 
values are of order 1, and the largest eigenvalues occur near 
the end points of the transverse diagonal k, + k, = N. These 
eigenvalues are of order h-’, and consequently 

Comparing (7.11) and (7.15), we see that the condition num- 
berof theMILU preconditioned system isoneorder of mag- 
nitude smaller than that of the ILU preconditioned system. 
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Fig. 14. Typical surface plot of the spectrum of the MlLU 
preconditioned Laplacian where 8, = 2rk,h, 8,  = 2rk,h, h 
= 0.02 and c = 70. 

Numerical experiments have confirmed that the ILU-CG 
and MILU-CG require, respectively, O(h-’) and O(h-’”) 
iterations to converge [24]. 

The ordering of grid points plays in general an important 
role in determining the form of the coefficient matrixA, and 
hence of the preconditioners. With the red-black ordering, 
the ILU and MlLU preconditioners take completely differ- 
ent forms and the spectra of preconditioned operators 
behave very differently. See [70] for more details. 

C. Multilevel Preconditioners Based on Filtering 

The focus of research on elliptic preconditioners has 
shifted recentlyto thedesignof preconditionerswith amul- 
tilevel (or hierarchical) grid structure. Since the global fea- 
tures of elliptic operators can be reproduced more easily 
by multilevel preconditioners, the resulting precondi- 
tioned systems have often very small condition numbers, 
rangingfrom 0 ( 1 )  to O(log”h-’) wherea is a small integer, 
and hence the corresponding PCG algorithms converge 
very quickly. Another advantage of multilevel precondi- 
tioners is that they can be effectively implemented on mas- 
sively parallel computers [71] and, therefore, are attractive 
for parallel computation. 

Several multilevel preconditioners have been proposed. 
One such preconditioner is the MG algorithm of Section 
VI. When combined with the CG method, it yields the MG- 
CG algorithm. The motivation for using the MG algorithm 
as a preconditioner is that its speed of convergence is  gov- 
erned by the smoothness of the solution function, whereas 
the convergence rate of the CG method is not affected by 
this feature. Consequently, the MG-CG method is  more 
effective than the MG method alone for certain applica- 
tions, such as the solution of interface problems, where 
because of presence of several materials, the elliptic PDE 
has discontinuous coefficients. Two other types of multi- 
level preconditioners have been proposed by Yserentant 
[104], [I051 and Bramble, Pasciak, and Xu [ Iq ,  [99] in thecon- 
text of finite-element methods. Yserentant considered a 
new set of basis functions, known as the hierarchical basis. 
Bramble et al. introduced a sequence of basis functions 
which are defined at various discretization levels and called 
multilevel nodal basis functions. Roughly speaking, the 
preconditioning step M - ’ r  consists in projecting the resid- 
ual ronto these basis functions. In the following, we exam- 

- 



ine yet another preconditioner, the multilevel filtering (MF) 
preconditioner, which was proposed recently in [71]. This 
preconditioner relies explicitly on multirate digital signal 
processing techniques and can be best described in the 
Fourier domain. 

The filtering approach to the design of preconditioners 
can be described as follows. Suppose that we approximate 
the spectrum of an ellipticoperator bya piecewise-constant 
function. In the space domain, this approximating function 
corresponds to an operator which (i) splits the input func- 
tion into several components, where each such component 
consists of wavenumbers within a narrow band, (ii) scales 
each component by a constant, and (iii) recombines all the 
scaled components. The inverse of such an operator is  easy 
to implement, since it has the same form, except that the 
scaling constants are inverted. In multirate digital signal 
processing, the decomposition of a signal intocomponents 
consisting of different wavenumber bands, and vice versa, 
isaccomplished byafilter bank analyzer (resp. synthesizer). 
Although thereexistsa numberoftechniquesfor designing 
filter banks(see[31],Chapter7),thefilter bankwhich isused 
for the MF preconditioning technique is obtained by cas- 
cading a sequence of lowpass operating on different dis- 
cretization grids, in combination with down- and up-sam- 
pling operations. 

To be more precise, consider the I D  Poisson equation on 
[0, I ]  with zero boundary conditions. After discretization on 
a uniform grid Ohwith spacing h = 2 -L,where L i s  a positive 
integer, we obtain 

(-:€ + 1 - : € - ' ) U ,  = f,,, 1 I II I N - 1 (7.16) 

with N = 2L. This system can be rewritten as 

A u  = f (7.17) 

where A i s  the tridiagonal matrix with diagonal elements 
-112, 1 and -112. A can be diagonalized as 

A = WTAAW (7.18) 

where 

AA = diag ( A l ,  . . . , hk, * . . , AN-,), 

hk = 1 - cos (k?rh) (7.19a) 

and W is a square matrix of size N - 1, whose kth row is 
1 I2 

w~ = (i) (sin (k?rh), . . , sin (krnh), . . . , 

sin (k?r(N - 1)h)). (7.19b) 

The diagonalization of the matrix A can be interpreted as 
a decomposition of the driving and solution functions into 
their Fourier components. Furthermore, hk i s  just the spec- 
trum A ( k )  of the ID Laplacian. 

In the wavenumber domain, the spectrum A ( k )  can be 
approximated by a piecewise constant function 

&k) = c,, k E B,, 1 I I 5 L (7.20a) 

where 

B , =  ( k ~ N : 2 ' -  1 5  k < 2') (7.20b) 

denotes the Ith wavenumber band. Let A p  be the diagonal 
matrix with &k) as kth diagonal element and P = WTApW. 

Then, the f-preconditioned Laplacian takes the form 

P- IA  = WTAP-~,W (7.21a) 

with 

AP-,A = &- 'AA = diag 

- h2'-' . . . - h2'-1 r t  . . . &). (7.21b) 
cj CI CL 

The question i s  how to choose the constants CI in order to 
reduce the condition number of f - 'A. If we select 

I -  - 4-'L-l) (7.22) 

it can be shown [71] that the eigenvalues of f - 'A satisfy 

7r2 
1 s A ( f - ' A )  < - = 4.93 

2 
(7.23) 

so that the condition number K(P- 'A)  i s  bounded by 4.93, 
a constant independent of the grid size h. In Figure 15, we 

105 , I 

!. ._. . . . _, 
.___....________ __, 8 lo' 

3 .  

I 

so 100 150 m 250 300 

WL-IJU 

Fig. 15. Spectra of A,  P-' and P-' A 

plot the spectraA(k), P - ' ( k )  and k ' ( k )  A (k )  for N = h - l  = 
256, when cf i s  given by (7.22). 

For P to be an effective preconditioner, P - ' r  has to be 
easily computable for any given vector r. It is clear that P - l  

= WTA;'W i s  a piecewise constant function in the wave- 
number domain. The preconditioning procedure 

P - ' r  = W'A;'Wr (7.24) 

consists therefore of three steps: decomposition, scaling, 
and synthesis, which are represented here by multiplica- 
tions by W, A;' and W', respectively. To clarify this com- 
ment, we can rewrite (7.24) as 

/ L  A \ 
P - ' r  = c - w:w,) \ f = 1  c, -I 

(7.25) 

where W,, 1 5 I S  L, are(N - 1)2square matriceswhich have 
the same 2f -1  to 2' - 1 rows as W and zero vectors for 
remaining rows. Then, the multiplications by W, and W: in 
the decomposition and synthesis steps of (7.25) can be 
implemented with FFTs and inverse FFTs. This is due to the 
factthat W,isamappingfrom thespacedomaintothewave- 
number domain, whereas W: is a mapping from the wave- 
number domain tothespacedomain. Usingthistechnique, 
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we obtain a preconditioner implementation similar to the 
fast Poisson solver of Section IV. 

Let Fid = W:WP Then, Fid i s  a mapping from the space 
domain to the space domain. In addition, we have 

Fid = WTAF;OW (7.26a) 

where AF;4s a diagonal matrix whose kth element is 

We see that the Fid functions as an ideal bandpass filter 
for the band B,. Although it i s  possible to implement the 
ideal bandpass characteristic (7.26b) with FFTs or band pass 
filters of size N, the resulting implementations either can- 
not be extended to more general PDEs, or are too expensive 
(i.e., or complexity O(N*)). This leads us to approximate the 
ideal bandpass filter Fid with a nonideal filter F/ with 

I, k E B/ 

[O, otherwise, 
(7.27) 

so that F, can be implemented cost effectively for general 
problems. 

An implementation of the preconditioner (7.25) would 
then consist of using digital filters to realize F/ in thedecom- 
position step, followed by a simple addition for the syn- 
thesis step. However, the decomposition and synthesis 
steps would be asymmetric, which i s  an undesirable feature 
in the multigrid context. This motivates us to write (7.25) 
differently as 

(7.28) 

The block diagram of Fig. 16 describes a procedure for 
constructing the bandpass filters FI, with 1 5 I s L, in terms 
of a cascade of elementary low-pass filters H L ,  H L  - 1, 
. . . , H2. From Fig. 16, we see that Ff can be expressed in 
terms of the filters HI as 

FL = I - H L  (7.29a) 

I 

L L 

Fig. 16. Block diagram of the MF preconditioned with a singlediscretiz 

F/ = ( I  - HI) II Hp , 2 5 I 5 L - 1 (7.2913) [ ] 
L 

Fl = pII* Hp. (7.29~) 

Let the elementary filter HL be an FIR filter of the form 
I 

/ = 1  
H L  = a. + a, (€ /  + € - I )  (7.30) 

where the coefficients a, are selected so that the spectrum 
fiL(k) approximates an ideal lowpass filter, i.e., 

0 5 k < 2 L - 1  

I k I 2L. 2L-1 (7.31) 

Thecoefficientsalcan bedetermined by usinganystandard 
digital low-pass filterdesign technique. Onespecific choice 
i s  examined in [71]. The same coefficients are also used for 
constructing the Ith-level elementary filter 

HI = a. + c + (7.32) 

with 2 I I I L. Comparing (7.30) and (7.32), we see that the 
onlydifference between elementaryfilters H L  and HI is  that 
while HL constructs a weighted average of points separated 
by a distance of h, the Ith-level filter HI performs the same 
average over points separated by adistance of 2L-1h. Since 
some of the points needed to perform the above averages 
may be located outside the domain Q h ,  the system (7.16) is 
viewed as defined on an infinite grid with an odd-periodic 
extended driving function, i.e., 

/=1  

f-, = -fn and fn+2pN = f, (7.33) 

for p integer. The preconditioner shown in Fig. 16 is called 
the SGMF preconditioner. 

The SGMF preconditioner of Fig. 16 can be simplified fur- 
ther by deleting paths corresponding to / - HI. The result- 
ing modified SGMF preconditioner is shown in Fig. 17. It 
can be expressed as 

... q + 

+ 
Lation grid (SGMF). 
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... 

Fig. 17. Block diagram of the modified SGMF preconditioner. 

with 

GL = I, (7.35a) 
L 

and where the scaling constants dl are related to the con- 
stants cI via 

L 1  1 E - = - .  
/ = I  dj C/ 

(7.36) 

Note that unlike the preconditioner P, which relied on 
bandpass filters F/,  the modified preconditioner Q i s  imple- 
mented in termsof lowpass filters C,.Aconsequenceof this 
feature is that the wavenumber components of the residual 
r belonging to the band Bl are present at the first L - I + 
1 levels. Since according to Fig. 18, these components are 
multiplied by d;’, - . , d;’ respectively, the precondi- 
tioners Q and P will be equivalent only if the constants cl 
and d, satisfy the relation (7.36). 

The filtering operations that we have just described are 
performed at every grid point, for all levels 2 5 I I L. If the 
order 1 of filters HI is  finite, the number of operations 
required for such an implementation is proportional to O(N 
logN),where N isthetotal numberof unknowns. However, 
since waveforms consisting only of low wavenumber com- 
ponents can be represented accurately on coarser grids, we 
can incorporate the multigrid structure into the above 
framework. This is illustrated in Fig. 18, which we call the 
MGMF preconditioner. Note that the MGMF precondi- 
tioner is obtained by inserting 2: 1 down-samples ( I ; - ’ )  and 
1:2 up-samples ( I ( - ’ )  into the modified SGMF precondi- 
tioner. It i s  easy to see that the number of operations 
required by the MGMF preconditioner if proportional to 
O(N) instead of O(N log N) for the SGMF case. 

The generalization of the MF preconditioner to multi- 
dimensional problems on regular domains i s  straightfor- 
ward. For example, the 2-D elementary filter HI can be 

Fig. 18. Block diagram of the M G M F  preconditioner. 
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obtained as the tensor product of I -D  elementary filters 
along the x- and y-directions. It has been shown by Fourier 
analysis that the condition number of the MF-precondi- 
tioned Laplacian implemented with nonideal filters i s  pro- 
portional to O(1)for the I-D, 2-D and 3-Dcases. This implies 
thattheMF-CG methodconverges inafinite numberof iter- 
ations independently of h, which has been confirmed by 
numerical experiments 1711, [95]. 

D. Historical Notes 

Theconjugategradient method for solving linear systems 
of equations was developed in late 1940s and early 1950s 
by Hestenes, Stiefel, and others. For a history of the con- 
jugate gradient algorithm and the closely related Lanczos 
algorithm, the readers are referred to a recent survey by 
Golub and O’Leary [49], which contains an annotated bib- 
Iiographyfor the period 1948-1976. A detailed presentation 
of the SSOR, ILU, and MlLU preconditioners can be found 
in the book by Axelsson and Barker [;7. The Fourier analysis 
of the ILU, MlLU and SSOR preconditioners for the natu- 
rally ordered Poisson problem with periodic boundarycon- 
ditions was performed by Chan and Elman [24]. They also 
observed strong similarities in the eigenvalue distribution 
of incomplete factorization preconditioners for the 
Dirichlet and periodic problems. Kuo and Chan [70] used 
two-color Fourier analysis to study the eigenvalue distri- 
bution of the ILU, MILU, and SSOR preconditioned La- 
placian with the red-black ordering. In the last few years, 
a growing amount of work has focused on the design of 
multilevel preconditioners. A brief survey of recent 
advances in this area can be found in the papers by Kuo, 
Chan, and Tong [71] and by Axelsson and Vassilevski [ I l l .  

VIII. DOMAIN DECOMPOSITION METHOD 

Domain decomposition methods rely on a partition of 
the domain of definition Q of a given PDE into subdomains 
Q i  with or without overlapping regions. The original prob- 
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lem is then decomposed into smaller problems defined over 
each subdomain, which can be solved independently, pro- 
vided that a strategy i s  developed for evaluating the vari- 
ables corresponding to overlapping regions, or to inter- 
faces between subdomains. Domain decomposition 
technique present several advantages. First, it i s  often pos- 
sible to select the subdomain 62; in such a way that special 
solvers, such as fast direct solvers or MG methods, can be 
applied to the subproblems, even though they are not 
applicable to the problem defined over the entire domain 
62. This i s  the case for example when 62 i s  irregular, but can 
be represented as the union of regular subdomains Qi, or 
when the PDE has constant parameters over each subdo- 
main, but not over the entire domain, such as for interface 
problems between different materials. Domain decom- 
position methods are also attractive from the point of view 
of parallel computation, since all subproblems can be 
solved in parallel. 

Domain decomposition algorithms can be divided into 
two categories, depending on whether the subdomains 
overlap or not. Algorithms with overlapping subdomains 
fall into the category of Schwartz alternating methods [89], 
whereas those with nonoverlapping subdomains are called 
iterative substructuring or capacitance matrix methods. We 
restrict our attention here to capacitance matrix methods, 
where the domain i s  decomposed into regular subdo- 
mains, and the capacitance system governing the variables 
on the interfaces between subdomains is solved by an iter- 
ative method, such as the PCG algorithm. Since each iter- 
ation requires the solution of problems over each sub- 
domain, it i s  important to find good preconditioners forthe 
capacitance system. To do so, we use Fourier analysis to 
study the capacitance system corresponding to a simple 
model problem consisting of Poisson’s equation defined 
over a rectangle divided horizontally into two subrectan- 
gles. This analysis leads to FFT-based preconditioners, 
which are then shown to be effective for more complex 
domain geometries. 

A. Capacitance Matrix Formulation 

ary conditions, 
Consider a discretized elliptic PDE with Dirichlet bound- 

A u  = f (8.1) 
whose domain 62 is partitioned into two nonoverlapping 
subdomains 62, and 62, with an interface region r 3 ,  as shown 
in Fig. 19. Bypartitioningthesolution uanddrivingfunction 
f into subvectors ui and fi, with i = 1, 2, 3, corresponding 
to the unknowns and driving terms indexed by points of 
62,, 62,, and r 3 ,  respectively, (8.1) can be expressed in block 

Fig. 19. A general domain and its partitioning. 
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form as 

[“’ A,, (E;) = (i). (8.2) 

A:3 Ai3 A:3 

Using block Gaussian elimination, the system (8.2) can be 
solved as follows: 

Step 7: Determine u3 by solving the capacitance system 

cu3 = g3 (8.3) 

where the capacitance matrix 

C = A33 - AT3AG1A13 - A13AG1A23 (8.4) 

is the Schur complement of diag (A,,, A,,) inside A, and 

g3 = f3 - A :3Ai1 fl - A i3Ag1 f2. (8.5) 

Step 2: Compute U ,  and 0, from 

u1 = A,’gl u2 = Ag1g2 (8.6a) 

with 

g, = f, - and g, = f2 - A23~3. (8.6b) 

In (8.5) and (8.6), we need to invert the matrices All and 
A,, which describe the coupling among variables of sub- 
domains 62, and 62,, respectively. The operation AG’w (or 
AG’w), where w is an appropriate vector, i s  called a sub- 
problem solve. It can often be implemented by using fast 
direct or MG methods. The solution of the capacitance sys- 
tem (8.3) i s  more difficult. It i s  usually not desirable to form 
the capacitance matrix C explicitly, since the direct com- 
putation of the elements of C is  very expensive. Instead, 
when (8.3) i s  solved by iterative methods such as the PCG 
algorithm, only the computation of Cw is required, which 
involves two subproblem solves. Due to the high cost of 
computing Cw, it is important that iterative methods should 
converge very fast. Consequently, the design of good pre- 
conditioners for the capacitance matrix C is the key to the 
development of efficient nonoverlapping domain decom- 
position algorithms. 

B. Fourier Analysis of the Capacitance System 

As a first step, we consider the case where the matrix A 
in (8.1) represents the 5-point discretized Laplacian with 
local operator (3.7), defined over a rectangular domain 62. 
We also assume that 62 i s  decomposed horizontally into two 
rectangular strips 62, and 62,, as shown in Fig. 20. In the 

Y 

Fig. 20. A rectangular domain and its partitioning. 

1835 



x-direction, 0 is discretized uniformly with mesh size h = 
N -’, where N - 1 is the number of internal discretization 
points. In the y-direction, we assume that the widths L1 and 
L 2  of 0, and Q 2  satisfy 

L1 = Mlh and L 2  = M2h (8.7) 

where M1 and M2 are positive integers. 
A consequence of this simple decomposition geometry 

is that Fourier analysis can be employed to study the capac- 
itance system (8.3). Specifically, we show below that the 
matri~esA~~,A~,A;~A~~ andAi3A;’A2,appearing in thedef- 
inition (8.4) of C al l  have for eigenvectors the sine vectors 

w: = &h(sin (krh), - * , sin (kmh), , 

sin (kx(N - 1)h)) (8.8) 

First, the local operator corresponding to A,, can be 
with 1 I k I N - 1. 

expressed as 

1 - $(E,  + €;’). 
Consequently, by operating with A3, on Wk, we obtain 

A33Wk = [I - 4 COS (k*h)]Wk = $(2 (Ik)wk (8.9) 

with 

10-3 

(Ik = 4 sin2 (F). 

i 

(8.10) 

Thus, wk is an eigenvector of A33. 

so that 
Next, we examine -A:,Ai’A,,. Let Ai’A13Wk I Vk, 

Allvk = A13Wk* (8.11) 

The equation (8.11) can be viewed as obtained by discre- 
tizing Laplace‘s equation (the driving function is zero) on 
0, with zero boundary values along the east, north and west 
boundaries and wk along the south boundary. It turns out 
that i ts  solution vk admits the closed-form expression 

Vk(nx, / I y )  = d% Sin (kn,rh)dk,l(/I,) (8.12) 

where dk,l(ny) satisfies the difference equation 

dk,l(ny - 1) - (2 + ck) dk,l(ny) + dk,l(ny -t 1) = 0, 

1 I ny I M1- 1 (8.13) 

with boundary conditions dk,l(o) = 1 and dk,l(Ml) = 0. We 
are interested here in the quantity 

-A:&’Al,Wk = -A:3Vk = iVk (nx ,  nY = 1) = $ dk,l(l)Wk. 

(8.14) 

Thus, wk is  an eigenfunction of -A: ,Ai1Al3 with eigen- 
value dj,1(1)/4. The same procedure can be used to analyze 
the matrix -Ag3AG’A2,. This gives 

with boundaryconditions dk,2(0) = 1 and dk,2(M2) = 0. Com- 
bining (8.9), (8.14), and (8.15) yields 

cwk = $(2 + (Ik + dk,J(l) + dk,2(1))Wk E hkwk (8.17) 

for 1 I k I N - 1, so that wk i s  an eigenvector of C, as 
claimed. Further analysis shows [23] that the eigenvalue h k  

associated to wk can be expressed as 

h k  = g(k, Mi, M2) (8.18) 

where (Ik i s  given by (8.10), and 

with 

Yk = (1 + f(Ik - (8.1 9 b) 

Note that (rk i s  the spectrum of the I-D Laplacian operator 
L = 2 - (E, + E; ’ )  defined on r,. The respective spectra Ak 

and (Ik of the capacitance matrix Cand Laplacian L, and the 
function g(k, M1, M2), are plotted in Fig. 21 for M1 = M2 = 
40and h-’ = 256. 

The geometric parameters M1 and M2 which specify the 
sizes of subdomains a, and Q 2  affect only the function g(k, 
M1, M2). From Fig. 21, we see that this function has values 

lo-’ V 

-” 0 50 100 150 200 250 300 

wavenumbel 

Fig. 21. Plots of hk, L7k and g ( k ,  M,, M z )  as functions of the 
wavenumber k. 

of O(1). For large M1 and M2with fixed k,g(k, M1, M2) reaches 
i ts  asymptotic value0.5 rapidly. Therefore, (8.18) can be sim- 
plified as 

hk 0 . 5 m .  (8.20) 

Since ai  << (Ik for small k and ;(I; = (Ik for large k, an even 
rougher estimate for h k  i s  

h k  = 0.5&. (8.21) 

In summary, we have shown in this section that i f  W i s  
the orthonormal matrix of size N - 1 whose columns are 
the sine vectors wk, the capacitance matrix C associated to 
the partition of a rectangular domain into two horizontal 

1836 

. _ _ _  

PROCEEDINGS OF THE IEEE, VOL. 78, NO. 12, DECEMBER 1990 

- ~~ -~ ~- - 



strips admits the eigenvalue/eigenvector decomposition 

C = WAWT with 

A = diag {A,, * * ' , A k ,  * ' * , A N - , } .  (8.22) 

C. Preconditioners for the Capacitance Matrix 

From (8.22) and (8.18), it i s  easy to check that, for h suf- 
ficiently small, the condition number of the capacitance 
matrix C i s  given by 

with 

2 1 - e - 2 r L ,  1 - e - 2 r L 2  . 1 1 1 + e -2aL1 + 1 + e - 2 d 2  

S = - (  

It i s  therefore of interest to design preconditioners M such 
that K ( M  -'C) = O(1). Several such preconditioners have 
been proposed in the literature. These preconditioners are 
all of the form 

M = WDWT (8.24) 

and differ only by the choice of diagonal matrix D. Dryja 
[33], and Colub and Mayers [48] proposed preconditioners 
with 

DD = 0.5 diag { & }  and 

DG = 0.5 diag { m} (8.25a) 

respectively. These preconditioners can be motivated by 
the eigenvalue decomposition (8.22) for C, and approxi- 
mations (8.21) and (8.20), respectively, for the eigenvalues 
hk of C. More recently, Chan [23] proposed the selection 
of 

Dc = A (8.25 b) 

where X is given by (8.22). The preconditioner M given by 
(8.24), (8.25b) is exact for Poisson's equation and the domain 
decomposition geometry of Fig. 20. Finally, observe that all 
preconditioners of the form (8.24) admit FFT implementa- 
tions. 

An interesting feature of the above preconditioners i s  
that, although they were designed for the case where Q i s  
a rectangle divided horizontally into two subrectangles, 
they are applicable to complex domain geometries where 
D i s  the union of an arbitrary number of rectangles. Con- 
sider for example the Poisson equation defined on the L- 
or C-shaped regionsof Figs. 22(a)and 22(b). For the L-shaped 
domain of Fig. 22(a), Q can be viewed as obtained by assem- 
bling the three elementary rectangles 0, with i = 1,2,3. The 
corresponding interfaces are r4 and rs. Consider now a 
decomposition of Q into two rectangles Q ,  and Q 2 ,  = Q 2  U 
Q,.  The corresponding capacitance system defined over 
interface r4 i s  

c4u4 = g4. (8.26) 

To precondition this system, we can ignore the presence 
of D3, and let M4 be the preconditioner given by (8.24), (8.25b) 
whenwepartitionn,, = Q, U Q2intohl,andQ2with interface 
r4. It was shown by Chan and Resasco [27l that with this 
choice, the condition number K(M;, C4) is O(1). A similar 
result holds for the C-shaped domain geometry of Fig. 22(b) 
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Fig. 22. (a) L-shaped and (b) C-shaped domains and their 
partitioning.. 

[27. This indicates that preconditioners designed for rect- 
angular domains remain effective for morecomplexdomain 
geometries. More generally, for an arbitrary problem such 
as the one depicted in Fig. 19, one may fit the domain with 
two subrectangles in such a way the geometric parameters 
M1 and M2 can be estimated, and then used to design a pre- 
conditioner of the form (8.24)-(8.25). 

D. Historical Notes 

The first domain decomposition technique for solving 
elliptic problems was introduced by Schwartz in 1869, who 
proposed an alternating procedure, where the problem is  
solved by going in alternance from one subdomain to 
another. A short history of the early work on domain 
decomposition methods can be found in [98]. The recent 
interest in domain decomposition techniques is  due to the 
fact that these methods are intrinsically parallel, and are 
therefore well adapted to parallel computers. A recent paper 
by Keyes and Cropp [68] provides a good introduction to 
domain decomposition methods for readers unfamiliar with 
this topic. It gives an overview of various domain decom- 
position techniques, compares their performance, and dis- 
cusses their parallel implementation. The Fourier analysis 
of the capacitance matrix for a rectangular domain divided 
into two subrectangles was first proposed by Chan [23]. The 
extension of this analysis to the case of a rectangle divided 
into an arbitrary number of rectangular strips i s  described 
in [26]. In [27, [28], Chan and Resasco presented a general 
framework for the analysis and construction of domain 
decomposition preconditioners over irregular regions. For 
a more general perspective on domain decomposition 
methods, and on their application to a wide variety of PDEs, 
readers may wish to consult the preceedings of two con- 
ferences on domain decomposition methods held in 1987 
and 1988 [47l, [25]. 

IX. PARALLEL COMPUTATION 

There has been much progress during the last 20 years 
in developing vector and parallel computer architectures 
[61], [62] and algorithms for solving elliptic PDEs. In this sec- 



tion, we focus on algorithmsfor parallel computers and will 
give a brief account of the main achievements in this area. 
For a more thorough review, we refer readers to the work 
of Ortega and Voigt [86], [87l. 

As indicated in Section Ill, one way to parallelize PDE 
algorithms is  to reorder the sequence of grid points to be 
processed in such a way that a large number of operations 
can be performed in parallel. For example, the red-black 
ordering i s  more attractive than the natural ordering for 
solving 5-point discretized elliptic PDEs, as far as parallel 
implementation i s  concerned. One interesting question 
that arises in this context is whether the convergence rate 
of iterative algorithms is affected by the reordering scheme. 
This problem has been studied in [I], [381, [701, [751,[77l. In 
particular, the effect of the red-black ordering on SOR and 
PCG algorithms is discussed in detail in [70]. Briefly speak- 
ing, the convergence rate of the SOR algorithm is  inde- 
pendent of ordering schemes, but the convergence rate of 
PCG algorithms depends on the choice of ordering. For the 
CG method preconditioned by the MlLU or SSOR method, 
the convergence rate of the red-black ordering i s  one order 
of magnitude slower than that of the natural ordering [38], 
[70]. For PCG methods, there exists therefore a tradeoff 
between the rate of convergence and the degree of par- 
allelism that can be achieved. 

No such tradeoff exists for the SOR method, but another 
difficulty arises when one seeks to implement it in parallel. 
Specifically, when the coefficients of the PDE are space- 
dependent, the optimal relaxation parameter depends in 
general on global information and must be estimated adap- 
tively [57l. The estimation of the relaxation parameter 
requires global communication between all processors, a 
feature that slows down the SOR algorithm significantly. To 
overcome this difficulty, a local relaxation procedure was 
proposed in [16], [37, [75] where different relaxation param- 
eters are used at every grid point, and are determined on 
the basis of local information. Since, unlike the conven- 
tional SOR algorithm, no global information i s  needed for 
determining the optimal local relaxation parameters, the 
communication time between multiple processors i s  sig- 
nificantly reduced. Another extension of the red-black SOR 
algorithm involves the use of more than two colors for 
ordering the grid points. The motivation for considering 
multiple coloring schemes is  that when elliptic PDEs are 
discretized on high-order stencils, morethan twocolorsare 
necessary to decouple all grid points of the same color. For 
the case of a 9-point stencil discretization, four colors are 
needed. The extension of the red-black SOR algorithm to 
multiple coloring schemes can take different forms. For the 
9-point discretized Poisson problem, two such extensions 
have been proposed by Adams, Leveque, and Young [2], 
and by Kuo and Levy [73], which rely respectively on a sin- 
gle- or two-level relaxation scheme. Both of these methods 
are easily parallelizable on mesh-connected processor 
arrays. 

In parallel implementations of the PCG algorithm, the 
major bottleneck i s  usually the parallelization of the pre- 
conditioner (7.41, since the remaining steps of the PCG algo- 
rithm can be parallelized in a straightforward way. The main 
difficulty lies in the fact that elliptic PDE problems involve 
a global coupling of all grid points. In order to be effective, 
preconditioners must take into account this global cou- 

pling by including a mechanism for transmitting infor- 
mation from one point of the problem domain to another. 
Consequently, preconditioners that use purely local infor- 
mation, such as the red-black ordered MlLU and SSORand 
polynomial preconditioners, are fundamentally limited in 
theirabilityto improve theconvergence rateof theCGalgo- 
rithm. On theother hand, global couplingthrough a natural 
ordering grid traversal i s  not highly parallelizable. To con- 
struct highly parallelizable and effective preconditioners, 
we are therefore led to consider preconditioners which 
share global information through a multilevel grid struc- 
ture, thus ensuring a good convergence rate, but perform 
only local operations on each grid level, and hence are 
highly parallelizable. Preconditioners that have this feature 
include the multigrid method when used as a precondi- 
tioner [66], [67l, and the hierarchical basis basis precon- 
ditioner [104], [IOS]. More recently, new multilevel precon- 
ditioners have been proposed by Bramble, Pasciak, and Xu 
[17, [99] and Kuo, Chan, and Tong [71]. These precondi- 
tioners differ from multgrid methods by the fact that the 
smoothing operation in multigrid methods is  replaced by 
a simple scaling operation, as was shown in Section VII-B. 
Other types multilevel preconditioners have been exam- 
ined in [6], [9], [IO], [76], [97. A detailed comparison of sev- 
eral multilevel elliptic preconditioners can be found in [71]. 

The parallelization of multigrid methods or multilevel 
preconditioners on multiprocessor machines i s  one of the 
most challenging areas in parallel computing for elliptic 
PDEs. A significant amount of work has focused on par- 
allelizing standard multigrid algorithms on mesh-con- 
nected arrays [19], [44] and hypercubes [29]. Variants of stan- 
dard multigrid algorithms aiming at achieving more 
parallelism on massively parallel computers have also been 
proposed. These parallel multigrid algorithms include the 
concurrent multigrid method [44] and the superconvergent 
multigrid method [43]. A survey of developments in this field 
up to 1987 is  presented in [30]. More recent contributions 
can be found in [79]. Roughly speaking, two fundamental 
issues arise in parallelizing multigrid methods. One i s  to 
find an appropriate mapping which assigns adjacent grid 
points to neighboring processors so that only local com- 
munication i s  required. Since the hierarchy of grids in the 
multigrid algorithm complicates the flow of data, this is in 
general not easy. However, for the hypercube machine this 
mapping problem has been solved by Chan and Saad [29]. 
The second problem is  usually known as that of load bal- 
ancing. To get maximal parallelism, we need as many pro- 
cessors as there are points at the fine grid level. However, 
when relaxation i s  performed on the coarse grid, the major- 
ity of the processors become idle. Thus, the problem i s  to 
reduce the number of idle processors as much as possible 
so that the efficiency of the entire multiprocessor system 
is  maximized. One promising way to solve this problem is 
to perform concurrent iterations at different grid levels. For 
example,we may use filtering to split the problem into mul- 
tiple subproblems defined on different grids, where each 
subproblem corresponds to a different spectral compo- 
nentoftheoriginal problem.These subproblemscould then 
be solved simultaneously by performing concurrent relax- 
ations on all grids. However this approach raises many 
questions: what i s  theoptimal splitting scheme? What isthe 
best filter for dividing a given problem into subproblems? 
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How is the convergence and efficiency of standard multi- 
grid algorithms affected by this decomposition procedure? 

Domain decomposition providesa natural waytoachieve 
parallel computation. This approach is particularly suitable 
for a coarse grain parallel computing environment where 
there are considerably fewer processors than grid points. 
One important issue in domain decomposition is  the selec- 
tion of the numberof subdomains. On one hand, more sub- 
domains imply more parallelism. On the other hand, the 
communication cost per iteration and the overall number 
of iterations tend to increase with the number of subdo- 
mains.Thus, the answer isgenerally architecture- and prob- 
lem-dependent. The complexity of parallel implementa- 
tionsof domain decomposition techniqueson a ring, a two- 
dimensional mesh, and an n-cube has been studied by 
Gropp and Keyes [52]. Some performance analysis results 
and numerical experiments have also been reported in [21], 
1531, Wl. 

X. CONCLUSION AND EXTENSIONS 

Digital signal processing (DSP) and the numerical solu- 
tion of PDEs have been traditionally considered as separate 
research areas. However, during the last 30 years Fourier 
analysis has been used increasingly by numerical analysts 
to analyze and design numerical PDE algorithms. Without 
surprise, results obtained by Fourier analysis can be refor- 
mulated within the DSP framework. Recently research work 
[69], [71], [72], [73], [75] has focused on bridging the gap 
between these two separate research areas, and a number 
of interesting new results have been obtained as a con- 
sequence of this effort. In this paper, we have described in 
detail the link existing between DSP and the numerical 
solution of PDEs, so that numerical PDE algorithms can be 
understood by electrical engineers in a more familiar set- 
ting. In addition, a number of recent developments on iter- 
ative solution techniques for elliptic PDEs have been 
reviewed so as to provide readers with the most up-to-date 
knowledge in this area. 

The effort to bridge the gap between DSP and numerical 
differential equations will benefit researchers in both areas. 
From the electrical engineering side, researchers will be 
able to study existing numerical algorithms for different 
equations more easily. They will also find numerous inter- 
esting and challenging problems in the solution of differ- 
ential equations, for example, the solution of PDEs con- 
sistingof both space and timevariables. From the numerical 
analysis side, researchers will have new set of tools to ana- 
lyze and design numerical algorithms. Further advances 
based on this connection can be expected in the future. 

It isworthwhiletoemphasizethattheDSPapproach relies 
on tools that are usually not used in the matrix context: the 
theory of multidimensional signals and systems [34] and fre- 
quency-domain analysis. To form a matrix equation, a I -D 
ordering is required and, therefore, the proximity of grid 
points in multidimensional meshes is disguised. This phe- 
nomenon does not occur for multidimensional DSP tech- 
niques, since they are fully adapted to the spatial nature of 
the signals being studied. The discretized system of equa- 
tionsfortheelliptic problem i s  looselycoupled in the space 
domain, but totally decoupled in the frequency domain. In 

other words, transforming the system from the space 
domain to the frequency domain corresponds to a di- 
agonalization procedure whereby a sparse matrix i s  trans- 
formed into a diagonal matrix, thus leading to a much sim- 
pler analysis. Due to its simplicity, the DSP approach pro- 
vides some valuable insight into the choice of solution 
method, as well as some guidelines towards the develop- 
ment of more versatile and efficient solution techniques. 
This point has been demonstrated in the application of dig- 
ital filtering theory to the design of elliptic preconditioner 
as discussed in Section VII. Thus, we conclude that the DSP 
approach can serve as complement to the classical matrix 
analysis, which is more generally applicable but less trans- 
parent. 

In this tutorial paper, we have examined discretization 
schemes and solution methods for solving elliptic PDEs 
from the DSP viewpoint. We studied mode-dependent 
finite-difference schemesforthree model elliptic PDE prob- 
lems, i.e., the Poisson, Helmholtz, and convection-diff u- 
sion equations. The extension of mode-dependent discre- 
tization schemes tocoupled differential equationsand time- 
dependent problems, such as hyperbolic and parabolic 
PDEs, is currently being investigated. We also reviewed var- 
ious methods for solving self-adjoint positive definite ellip- 
tic PDEs modeled by the Poisson equation, including direct 
methods, elementary and accelerated relaxation methods, 
multigrid methods, preconditioned conjugate gradient 
methods, and the domain decomposition technique. 

A limitation of the DSPlFourier point of view that we have 
adopted here is that it i s  restricted primarily to finite-dif- 
ference discretization methods. Although the rigorous 
applicability of Fourier analysis to finite-element methods 
remains in doubt, it was shown by Strang and Fix [40], [91] 
that the Fourier approach can provide useful insights into 
the accuracy and stability of finite-element schemes. We 
hope that these early results will ultimately lead to a com- 
plete frequency-domain theory of finite-element methods. 
Finally, we expect that the DSP viewpoint will also be help- 
ful to develop new efficient algorithms for solving more dif- 
ficult elliptic PDEs such as indefinite and nonself-adjoint 
problems modeled by the Helmholtz and convection-dif- 
fusion equations. 
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