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ABSTRACT

A new preconditioner is proposed for the solution of an N x N Toeplitz system Tnyx = b, where Ty
can be symmetric indefinite or nonsymmetric, by preconditioned iterative methods. The preconditioner Fy
is obtained based on factorizing the generating function 7'(2) into the product of two terms corresponding,
respectively, to minimum-phase causal and anticausal systems and therefore called the minimum-phase LU
(MPLU) factorization preconditioner. Due to the minimum-phase property, || F'|| is bounded. For rational
Toeplitz Ty with generating function T'(z) = A(271)/B(27!) + C(z)/D(z), where A(z), B(z), C(z) and
D(z) are polynomials of orders p;, ¢1, p; and g2, we show that the eigenvalues of F; ];ITN are repeated
exactly at 1 except at most ar outliers, where ar depends on py, ¢;, p2, g2 and the number w of the roots of

T(2) = A(z~1)D(z)+ B(2~1)C(2) outside the unit circle. A preconditioner K in circulant form generalized
from the symmetric case is also presented for comparison.

1. INTRODUCTION

Toeplitz matrices arise in many signal processing applications. To solve a general N x N Toeplitz
system of equations Tyx = b, direct inverse algorithms based on Levinson recurrence [23] with O(N?)

operations have been studied intensively in the past [11], [18], [31], [34]. Superfast algorithms with (N log? N)
complexity have also been proposed [1], [3], [4], [16]. Although the computational complexity of these
algorithms is lower than that of Gaussian elimination with pivoting, i.e. O(N3), their stability is still an
issue when applied to indefinite or nonsymmetric T . It has been shown that these algorithms may become
unstable if Ty is not symmetric positive definite (SPD) and well-conditioned [5], [10]. A stable extension
of Levinson’s algorithm to general Toeplitz matrices has recently been studied by Chan and Hansen [9]. In
this research, we consider the use of preconditioned iterative methods for solving a general Toeplitz system
Tnx = b to reduce the computational complexity as well as to avoid the numerical instability.

Various preconditioners in circulant form have been used in the the Preconditioned Conjugate Gradient
(PCG) algorithm [6], [8], [17], [19], [29] to solve SPD Toeplitz systems. All the preconditioners can be in-
verted via fast transform algorithms with O(N log N) operations. Besides, the spectra of the preconditioned
Toeplitz matrices have such a nice clustering property that the PCG method converges superlinearly for
Tn generated by a positive function in the Wiener class 7], [19]. Although it is possible to generalize this
preconditioning technique to general Toeplitz matrices in a straightforward way (see §4), the focus of this
paper is to develop a novel approach to construct a general Toeplitz preconditioner based on an approximate
LU factorization. The resulting preconditioned systems are then solved by various iterative methods such
as the Generalized Minimal Residual (GMRES) [27] and the Conjugate Gradient Squared (CGS) [28].

The idea of constructing the LU factorization preconditioner can be simply stated as follows. Consider
a banded Toeplitz matrix Ty with a finite-order generating function T'(z) = Y, __, t,z~". The T(z) can be

n=-—s

factorized into the product T'(z) = 22 L(271)U(z), where L(27!) and U(z) have all roots inside and outside
the unit circle, respectively. We associate 27, L(27!) and U(z) with a shift matrix Sy, a lower and an
upper triangular banded Toeplitz matrices Ly and Uy, correspondingly, and the product Fy = SyLyUn
is the desired preconditioner for T)y. The above factorization procedure has been used frequently in the
context of digital signal processing [25] to design the minimum-phase causal (or maximum-phase anticausal)
linear filter. The Fy is therefore called the minimum-phase LU (MPLU) factorization preconditioner. To
generalize the MPLU preconditioning technique to full Toeplitz matrices, we first obtain an approximating
rational generating function for the original one with the Laurent Padé approximation. Since a rational
Toeplitz matrix can be transformed to a banded matrix which is nearly Toeplitz, the appropriate MPLU
preconditioner can also be constructed. '
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The spectral clustering properties of the MPLU-preconditioned Toeplitz FﬁlTN are studied for both

banded and rational T)y. We prove that, for rational Ty with generating function 7(z) = A(z7!)/B(z"!) +
C(z)/D(z), where A(z), B(z), C(z) and D(z) are polynomials of orders py, q1, p2 and g, the eigenvalues

of Fy 1Tx are repeated exactly at 1 except ar outliers, where ar depends on py, ¢, p2, g2 and the number

w of the roots of T(z) = A(2~1)D(z) + B(z~1)C(z) outside the unit circle. A direct consequence of these
spectral properties is that the appropriate preconditioned iterative methods converge in at most ap + 1

iterations. This result should be compared to that of the circulant-preconditioned rational Toeplitz K X,ITN.

In [22], we prove that the eigenvalues of Ky'Tn, except ak outliers, are clustered in the disk centered
at 1 with radius ex, where the clustering radius €K is proportional to the magnitude of the last elements
used to construct the circulant preconditioner. It is clear that ex > e = 0, but the relation between ag
and ap can be arbitrary. However, when w = max(pz, q2), it can be shown that ag = 2ap and thus, the
MPLU precond)tloner provides better spectral clustering properties for a faster convergence rate. When
w # max(ps,¢q2), it is possible to have ax < af and e€x = 0 so that the circulant preconditioner Ky
provides a faster convergence rate. However, the MPLU preconditioner Fy has a better or a comparable
convergence rate compared to the circulant preconditioner Ky, unless T is circulant itself.

For well-conditioned Toeplitz T, we show that the preconditioner Fy is well-conditioned due to the
. . . -1 . e
minimum-phase factorization property. Then, the Ay = Fy Ty is also well-conditioned so that the system

Anx = F ,Ql b can be stably solved by iterative algorithms. One obvious choice is to form the well-conditioned

SPD normal system AR Anyx = A% Fy'b and solve the resulting system by the CG method (known as the
CGN method [15]). Thus, for well-conditioned nonsymmetric Toeplitz systems, numerical stability is easily
obtained by using preconditioned iterative methods. The MPLU preconditioner Fy is a product of the shift
matrix Sy and triangular banded Toeplitz matrices Ly and Uy, the preconditioning step z = F; ﬁlr can be
achieved with a computational complexity proportional to O(N) only. The total computational complexity
for solving a rational Toeplitz system by MPLU-preconditioned iterative methods is O(N), which is lower
than the O(N log N) operations required by the circulant-preconditioned iterative methods and is in the
same order as that required by several direct methods [12], [13], [32], [33]. However, there is a drawback of
the MPLU preconditioner in the context of parallel processing. That is, the MPLU preconditioning has to
be performed sequentially whereas the circulant preconditioning can be ea.sxly parallelized.

The outline of this paper is as follows. In §2, the procedure to construct the MPLU preconditioner for
banded Toeplitz matrices is described, and the spectral properties of the preconditioned banded Toeplitz are
examined. In §3, the MPLU preconditioning technique is generalized to full Toeplitz matrices, including both
rational and nonrational cases, and the spectral properties of the MPLU-preconditioned rational Toeplitz
are studied. In §4, we compare the MPLU preconditioner with the circulant preconditioner K. Finally,
numerical results are given in §5 to access the efficiency of the MPLU preconditioner.

2. MPLU PRECONDITIONER FOR BANDED TOEPLITZ

Consider a sequence of m x m Toeplitz matrices T,,, m = 1,2,---, with a generating sequence t,,
—00 < n < 00, such that

to t1 - toN-2) t-(N-1)
15} o 14 . l_(N-2)
TN = . t to .
tN_2 . . . t_y
tn-1 IN-2 . t to

The Laurent series
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is known as the generating function of the matrix sequence T;,. We assume that the generating sequence i,
satisfies the following two conditions:

[e o]

IT(e®) = |d tae™™|>6>0, V6, (1)
—00
3 |tal € B < c0. (2)
—00

Since T(e*) = 3% t,e~*" describes the asymptotic eigenvalue distribution of T;,, conditions (1) and (2)
imply that ||Twn]|| and ||T%"|| are bounded and, consequently, that Tx is well-conditioned.
The system of equations
Tnx=Db (3)
can be solved by various iterative methods. To accelerate the convergence rate, a preconditioner Py is
introduced to solve the preconditioned system of equations
Py'Tnx = PR'D, (4)

where Py is the preconditioner used to approximate Tn. In this section, we focus on the case where Ty
is banded with lower bandwidth 7 and upper bandwidth s, i.e. t, =0if n < —sorn > r, t_,t, # 0, and
r+s=d<N.

2.1. Construction of the preconditioner

We can use a direct method to factorize T,
Tn = LnUN, (5)

where Ly and Uy are lower and upper triangular matrices, respectively. The exact factorization (5) with
the Levinson-type algorithms requires O(dN) operations for banded Tn [12], [32]. If Tv is not symmetric
positive definite, the numerical stability of these algorithms cannot be guaranteed. Instead of performing
the exact factorization, we propose to factorize Ty approximately as

Tn ~ SNLNUn = Fn, (6)

where Sy is a shift matrix and Ly and Uy are, respectively, lower and upper triangular banded Toeplitz
matrices. Our objectives include that the approximate factorization (6) can be achieved by a stable algorithm

with operations independent of N, that Fy approximates T well, and that ||F5}|| is bounded. Then, the
Fx can be used as a preconditioner in preconditioned iterative methods.

To derive the approximate factorization, it is convenient to consider the problem in the Z-transform
domain and ignore the boundary effect arising in a Toeplitz system. When Tx is banded with lower
bandwidth r and upper bandwidth s, its generating function can be expressed as

T d
T(z)= Z thz " =t_,2° H(l —zz7h), (7

n=-s =1

where d = r + s and 2; is a root of T'(z). From (1), we know that |z;]| # 1. If T(z) has w roots outside the
unit circle, we can factorize T'(2) as

T(z) = z’”wL(z'l)U(z), (8)

where

Lz = [ 1 -zz1), U(z) =t_s ] (2~ 2).

|zil<1 |zi|>1
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Note that the above factorization has a special feature, namely, all zeros of L(z71) (or U(2)) are inside (or
outside) the unit circle. The following example is used to illustrate the factorization procedure (8).

FEzample 1: Let Ay be an N x N tridiagonal Toeplitz matrix with ¢; = 1.5, {o = —6.5 and ¢_; = 2. Then,

we have
T(2) = 15271 —6.54 22 = 22(1 - 0.25271)(1 = 3271) = L(z"1)U(2),
where
L(z7)) =1-0.25271, U(z) = 22— 6.
Since r = s = w = 1 in this example, the term z°~* in (8) is equal to 1. O

Let us associate the right-hand-side of the factorization (8) with the following matrices
L(z7YY e Ly, U(2) = Uy, 2°7¥ e Sn=E}", (9)

where Ly and Uy are N x N lower and upper triangular Toeplitz matrices with generating functions L(271)
and U(z), respectively, and En is the N X N unit row-shift matrix,

En = [eNv €1,€2," " ',eN—l]a
and where e, is the N X1 unit vector with the nth element equal to 1 and zeros elsewhere. It is straightforward

to verify that
E]TII = [621631 v ',6]\],61],

and that Ef is the product of En (or E;,l) |k| times for positive (or negative) integer k. The premultipli-

cation of En (or Ex') with a N x N matrix is equivalent to the circular up-shift (or down-shift) of its rows
by one. Then, the product of Sy, Ly and Uy is used as the desired preconditioner

Fny = SNLyUN = Eﬁ;wLNUN. (10)

It inverse
Fﬁl — UﬁlL;{lS;ll — U]—\}lL]—Vl EN—s

can be performed effectively with O(N) operations due to the special structures of Sy, Ly and Uy. The
factorization (8) has been frequently used in the context of digital signal processing [25] to design the
minimum-phase causal (or maximum-phase anti-causal) linear filter, which is by definition a system char-
acterized by a lower (or upper) triangular matrix with a stable inverse. Thus, we call Fiy defined by (10)
the minimum-phase LU (MPLU) factorization preconditioner.

2.2. Spectral properties

The minimum-phase factorization procedure guarantees that ||F'|| is bounded, which is proved in the
following theorem.

Theorem 1 Let Tx be a banded Toeplitz matriz with lower bandwidth v and upper bandwidth s satisfying
conditions (1) and (2), and Ln and Uy be obtained from the minimum-phase factorization (8)-(10). Then,

the 1-, 2- and oo-norms of Fﬁl and Fn are bounded for asymptotically large N .

Proof. It is well known that there exists an isomorphism between the ring of the power series G(z™Y) =
3o 0gnz~" and the ring of semi-infinite lower triangular Toeplitz matrices with go,g1,--,gn, - - as the

first column, and the power series multiplication is isomorphic to matrix multiplication [13]. With this

isomorphism, we know that Lﬂlf,l is a lower triangular Toeplitz matrix whose first column 7o, 71, -+, Tn, " "
ci

can be obtained from the coefficients of the power series, i.e.

1 1 -n
L(z-1) = H (1= 22z"1) - Zrnz )

|zil<1 n=0
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It is clear that 3°%,|7,| is bounded if and only if all poles of 1/L(2~1) are inside the unit circle, which is

n=0 . .
guaranteed by the minimum-phase factorization (8).

Condition (1) implies that all zeros z; of T'(z) do not lie on or arbitrarily close to the unit circle, i.e.
|z:] <1-8 and 148 <|z| < oo,
where 8 is a small positive number independent of N. Since

1

< g-(d-w)
<P

N-1 [*)
LR = 1R le = 3 Il € Y kmal < T

n=0 n=0 |zi|<1
the 2-norm of Ly is bounded by
N-1 J
LRz < (IERMRIER o) 2 = 3 |7al € B0,
n=0

A similar arguments can be used to prove that ||[Uy'||2 < 8. Since ||En||2 = ||EN'||2 = 1, we have

NER 2 < HERM2IUR 2 < 874,

which is independent of N. Besides, since ||Ln||1 = ||LN||co < 00, we have

NNz < (IENI LN oo)? < 0.

Similarly, ||Un||2 is bounded and ||Fn||2 < ||Ln|l2||Un||2 < oo. o

A direct consequence of the above theorem is that preconditioner Fy is well-conditioned. If L(z71)
(or U(z)) is not chosen according to (8) so that there exist roots of the polynomial L(271) (or U(2)) with
magnitude greater (or less) than one, i.e. nonminimum-phase factorization, one can easily check that || L3}||2
(or JIlUNY|]2) is unbounded for asymptotically large N. For example, if we choose

L(z"Y)=1-3271, U(z) =2z - 0.5,

for Ly and Uy in Example 1, the product LyUp leads to an ill-conditioned matrix whose smallest eigenvalue
converges to zero for asymptotically large N. Thus, the minimum phase factorization is crucial for the
stability of the preconditioning procedure z = FA",Ir. Next, we study the spectral properties of F}QI Twn. For
Fy to be a good preconditioner, it is desirable that Fiy! T has clustered eigenvalues. In Theorem 2 we will
lprove that it has only a finite number of eigenvalues different from 1. To derive this theorem, we need two
emmas.

Lemma 1 Let Ty be a banded Toeplitz matriz with lower bandwidth r and upper bandwidth s, where r +s =
d < N, generated by T(z) which has w roots outside the unit circle. Then, for Ly and Uy obtained by the
minimum-phase factorization (8) and (9), LnUn is a banded Toeplitz matriz generated by z¥~°T(z) with
lower bandwidth d — w and upper bandwidth w except its northwest (d — w) X w block.

Proof. This lemma can be proved with definitions and direct matrix multiplication. O
Lemma 1 basically says that the product LyUp is a nearly banded Toeplitz matrix. Despite that Tn and

LnUp have the same total bandwidth d, they do not have the same lower bandwidth and upper bandwidth
unless w = s. By shifting the rows of LyUn circularly, we are able to construct another nearly banded

Toeplitz Fy = E{ " LNUn which has the same lower and upper bandwidthes as Tn.
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Lemma 2 Let Tn be a banded Toeplitz matriz with lower bandwidth r and upper bandwidth s, where r+s =
d < N, generated by T(z) which has w roots outside the unit circle. Then, the matriz Fy = Ey"LnUn

?eﬁnegi in (10) is a nearly banded Toeplitz matriz. Elements of matrices Ty and Fn are identical except the
ollowing:

1) the n%rthwest T X s block when s = w;

2) the northwest r X w block and the northeast (w — s) X r block when s < w;

3) the northwest r x w block, the southwest (s —w) x s block and the southeast (s — w) X (d — w) block when
s> w.

Proof. When s = w, it can be directly verified that Fy = LyUp is a banded Toeplitz generated by 7T'(z)
with lower bandwidth r and upper bandwidth s except the northwest r x s block. When s < w, recall that
the rows of Fy = Ey Y LyUn are obtained from those of LyUy with circularly downward-shift w — s rows
so that the last w — s rows in LyUxn become the the first w — s rows of Fjy and the first N — (w — s) rows
in LyUx become the last N — (w — s) rows of Fy. By using Lemma 1, we can clearly see that Fy is a
banded Toeplitz with lower bandwidth r and upper bandwidth s generated by T'(z) except the northwest
r X w block and the northeast (w — s) X r block. Similarly, one can prove the case s > w. O

Lemma 2 tells us that AEy = Fy — T is a zero matrix except at most three small blocks. Based on
this lemma, we characterize the spectral properties of F]'\}lTN in Theorem 2.

Theorem 2 Let Ty be a banded Toeplitz matriz with lower bandwidth r and upper bandwidth s, where
r+ s =d < N, generated by T(z) which has w roots outside the unit circle. Then, there are at most ar

eigenvalues of F]\',ITN not equal to 1, where

min(r, s), s =w,
ap = ¢ min(r,2w-3s), s<w, (11)
min(d — w,s), s> w.

Proof. Since we have
FN'Tn = Fy'(Fy — AEN) = In — Fy' AEN,

where Iy denotes the N x N identity matrix, the eigenvalue 1 of F,QITN corresponds to the eigenvalue 0

of FIGIAEN, and the number of eigenvalues of Fy!Txn not equal to 1 is determined by the rank of AE.
Notice that the rank of a matrix is bounded by the number of nonzero rows or columns, and the rank of
the sum of two matrices is bounded by the sum of their individual ranks. All nonzero elements in AEy are
inside the blocks given by Lemma 2. When s = w, since all nonzero elements of AEy are in the first 7 rows
or the first s columns, the rank of AEy is bounded by min(r,s). When s < w, we have w —s <d—-s=r.
Since all nonzero elements of AEy are either in the first 7 rows or in the union of the first w columns and
the first w — s rows, the rank of AEy is bounded by min(r,2w — s). When s > w, since all nonzero elements
of AEy are either in the union of the first 7 and the last s — w rows or in the union of the first w columns
and the last s — w rows, the rank of AEy is bounded by min(d — w, s). The proof is completed. O

We use an example to illustrate the above theorem.

Ezample 2: Consider the following N x N banded Toeplitz matrices with N > 4,

Tna [(’I’,S) = (3,0)] : t3=2, to=-5, t =6, o =-2,
TN'2 [(’I‘,S) = (2, 1)] . to = 2, t] = —5, to = 6, t_1 = —-2,
TN'3 [(7‘,8) = (1,2)] : t, = 2, to = -—-5, t1 = 6, t_o = —2,
TN'4 [(’I‘,S) = (0, 3)] . to = 2, t1 = -—5, t_o = 6, t_3 = —2.

T(z) has roots 0.5 +0.5i,0.5 — 0.5i and 2 so that w = 1. For these matrices, the MPLU factorization results
in the same Ly and Uy defined by the generating sequences

lo=1, 11=—1, 12=0.5, ln=0 n;£0,1,2,
ug =4, u_y=-2, u, =0 n#0,-1.
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Table 1: An example to illustrate Theorem 2.

L ld[r]s[w]or]
Tn.[3]3]0]1] 2
Tno | 3]2[1[1] 1
Tna |3 |1]2|1] 2
Tna|3|0|3[1] 2

To illustrate Theorem 2, we list values of d, s, 7, w and af in Table 1. Since Fy! Ty has only at most ap +1
distinct eigenvalues, appropriate preconditioned iterative methods, such as RES and CGS, converge in
at most ar + 1 iterations with exact arithmetic (see Test Problems 1 and 4 in §5).

3. PRECONDITIONING FULL TOEPLITZ MATRICES

In this section, we generalize the MPLU preconditioning technique to full Toeplitz matrices. The basic
idea is to approximate the full Toeplitz with a rational Toeplitz, transform the rational Toeplitz to a nearly
banded Toeplitz, and then construct the MPLU preconditioner for the nearly banded Toeplitz.

3.1. Rational Toeplitz

Toeplitz matrices with a rational generating function can be transformed to banded ones [13]. We
describe the transformation briefly as follows. Let the generating function of T be of the form

T(2) = 5o + B (12

where A(z), B(z), C(z) and D(z) are polynomials in z with orders p;, ¢, p2 and ¢, respectively. Note
that a special case of (12) is A(z) = C(2) and B(z) = D(z), which leads to a symmetric rational Toeplitz of
order (p,q) with p; = p, = p and ¢; = q2 = ¢. By applying the isomorphism between the ring of the power
series and the ring of semi-infinite triangular Toeplitz matrices, we have the following relationship

Tn = L L;' + U.US T,
where L, (or L;) is an N X N lower triangular Toeplitz matrix with the first N coefficients in A(z) (or B(z))

as its first column and U, (or Uy) is an N X N upper triangular Toeplitz matrix with the first N coefficients
in C(z) (or D(z)) as its first row. Since power series multiplication is commutative, we have

TN = LyTnUyg = LUy + LyU.. (13)
where Ty is banded and nearly Toeplitz characterized by the following lemma.

Lemma 3 Let Ty be the N x N Toeplitz matriz generated by T(z) in (12), the corresponding Tn obtained
from (13) is a banded Toeplitz with lower bandwidth r = max(p1,q;) and upper bandwidth s = max(p,, q;)
generated by

T(z) = A(="")D(2) + B(z"1)C(2), (14)
except the northwest r X s block.
Proof. Consider N x N Toeplitz matrices L, and Uy, where L, is lower triangular with lower bandwidth

p1 generated by A(z~1), U, is upper triangular with upper bandwidth ¢, generated by D(z). One can verify
that the product L,Uy is banded Toeplitz generated by A(z~!)D(z), except its northwest p; x g, block.
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This result can be easily generalized to the sum of two such products, i.e. Tn = LUy + LyU,, and the proof
is completed. m]

Through (13), the system Thx = b is transformed to an equivalent system

Tn% = b,
where x = UyX and b = Lyb. We then use the procedure described in §2.1 to construct the MPLU

preconditioner Fy for TN as if it were an exact banded Toeplitz. The following theorem characterizes the
spectral properties of Fig N 1Ty,

Theorem 3 Let Ty be the N x N rational Toeplitz matriz generated by T(z) in (12), and Fy the MPLU
preconditioner constructed with respect to T(z) in (14). In addition, r = max(p1,q1), s = max(pz,qz2) and
w denotes the number of roots of T(z) outside the unit circle. Then, when r+ s =d < N, there are at most
af etgenvalues of F‘]\',ITN not equal to 1, where

min(r, s), s=w,
afp = { min(r, 2w — s), s < w,
min(d — w,2s — w), s> w.

Proof. By Lemma 3, Ty is a banded Toeplitz matrix with generating function T(z) except the northwest
r X s block. The Fi is a banded Toeplitz matrix with generating function 7T'(z) except the blocks described
in Lemma 2. Define ATy = Fy — Tn. We can use arguments similar to those in provmg Theorem 2 to

determine the bound of the rank of ATx and, hence, the number of eigenvalues of F3 N 1Tn not equal to 1.
]

Since F ,'\}1 Tn has only at most ar + 1 distinct eigenvalues, appropriate preconditioned iterative methods
converge in at most ar + 1 iterations with exact arithmetic (see Test Problems 2 and 5 in §5). Note that

Fy is a preconditioner for Ty rather than Txn. However, since Tn is related to Ty via (13), the equivalent
preconditioner for matrix T is

Fy = LJYENUTY = LY ES P LnONUSY,

where 3, W, Ly and Uy are obtained with respect to T(z) (= A(z71)D(z) + B(2~1)C(z)). Thus, the
preconditioning step can be implemented as

Fy'r = UyUG L EX 3 Ly,
for arbitrary r with O(NN) operations.
3.2.Nonrational Toeplitz

When Ty is generated by a nonrational function T'(z), we use the Laurent Padé approximation [4], [14],
to approximate T'(z) with a certain rational function

AT | ()
B T D)

where A’(z), B'(z), C'(z) and D'(z) are polynomials in z with orders p;i, qi, p2 and gz, respectively. The
coefficients of A’(z), B'(z), C'(z) and D’(z) are chosen such that

T'(2) =

Ty(z"N)B(z71) = A(z7") = O(z~(PrHaith),
T_(2)D(z) - C(z) = O(zP¥e2+l)
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where

(o}
Te(z7Y) = cto+ Z thz7 ",

n=1

T_(z) 1-oto+ Z t_p2",
n=1

with given c. We then construct the preconditioner F N With respect to
T'(2) = A'(z"1)D'(2) + B'(z7")C'(2),

or equivalently, use Fy (= (L})~1F4(U4)™!) as preconditioner for Tn. Since T(z) # T'(z), the eigenvalues
of (Fjy)™!Tn are not repeated at but clustered around 1 (see Test Problems 3 and 6 in 85).

4. COMPARISON OF MPLU AND CIRCULANT PRECONDITIONERS

Various preconditioners in circulant form have been proposed for symmetric Toeplitz matrices [6], [8],
(17], [19], [29]. All these preconditioners can be inverted effectively via fast transform algorithms with
O(N log N) operations. This preconditioning technique can be easily generalized to nonsymmetric Toeplitz
matrices. In the following, we discuss the generalization of the preconditioner K 1,N [19] proposed by the
authors to the nonsymmetric case. Let Ty be an N x N Toeplitz matrix,

to t_q o v—2) to(v-p
3] to t . l_(N-2)
Ty = . t to . .
tN_2 . . . t_q
IN-1 tN—2 - t to

We define a 2N x 2N circulant matrix using elements of T as

rv=] e o0, -
where
In tN-1 . ta 4
t_(N-1) N tN-1 . 1)
ATy = : t_(N-1) N
t_2 . . tN-1
t t_o - t(N-1) IN

Since the augmented circulant system
Tn ATn x| _|b
ATy Twn x| [ b’

(TN + ATN)X = b,
the (Tn + ATn)~'b can be computed efficiently via FFT so that
Ky =Tn + ATNn

is equivalent to

can be used as a preconditioner for T. Note that K is also a circulant matrix.
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When T is a symmetric Toeplitz matrix generated by a positive function in the Wiener class, it can be
proved [7], [19] that the eigenvalues of the circulant-preconditioned Toeplitz are clustered around 1 except
a finite number of outliers. When T is additionally rational of order (p,q), the eigenvalues of KX,ITN
are clustered between (1 — ex,1 + €x) except ax = 2max(p,q) outliers, where ex = O([tn|) [21], [30].
A special case of Theorem 3 is that when Tn is a symmetric rational matrix, we have r = s = w and
ar = max(p,q) = 1ak. By generalizing the proofs in [21], we are able to obtain the following more general
result applicable to the nonsymmetric case.

Theorem 4 Let Tx be a rational Toeplitz matriz satisfying (1) and (2) and generated by T(z) of order
(p1,q1, P2, 92) as given by (12). For sufficiently large N, the preconditioned Toeplitz matriz K N Tn has the
following two properties:

P1: The number of outliers is at most ax = 2min(r, s).

P2: There are at least N — 1 eigenvalues confined in the disk centered at 1 with radius ex = O(|tn| +[t-n|).

Proof. See [22] o

The spectral properties of F) ]QITN and KX,ITN for rational Ty are compared as follows. One main
difference is that the eigenvalues except outliers are exactly repeated at 1 for F) A‘,lTN but only clustered

around 1 for K ;,1 T, i.e. €x > €r = 0. Another difference is the number of outliers which are by definition

the eigenvalues not converging to 1 for asymptotically large N. Asymptotically, ex < 0 and the CGS (or
GMRES) method with preconditioners Fy and Kx converges in at most ar + 1 and ax + 1 iterations,
respectively. For finite N, ex # 0 and the performance of Ky are determined by both the number of the
outliers ax and the clustering radius ex. Although it happens that ax < ar, the MPLU preconditioner in
general provides a faster or a comparable convergence rate since €x > €p = 0.

The preconditioning step F, A‘,lr can be accomplished with O(N) operations by permutation, forward-
and back-substitution, since Fy is a product of a shift matrix, lower- and upper-triangular banded Toeplitz
matrices. In comparison, the preconditioning step K ;,lr requires O(N log N) operations via FFT. Hence,
in terms of computational complexity per iteration, preconditioner Fy is slightly better. However, note

that.F 1\',11' has to be implemented sequentially whereas Ky'r can be easily parallelized via the parallelism
provided by FFT.

5. NUMERICAL RESULTS

Our numerical experiments include both symmetric positive-definite (SPD) and nonsymmetric Toeplitz
with banded, rational and nonrational generating sequences. The SPD problems are solved by the PCG
method. For nonsymmetric systems, there exist numerous iterative algorithms for their solution [2], [26].
As suggested by [24], we applied the preconditioned version of three iterative methods, i.e. CGN, GMRES
and CGS, for our numerical experiments. We observed that GMRES and CGS converge faster than CGN
and that CGS outperform GMRES by a factor of 1 to 2 for all test problems. Since our focus is on the
preconditioners rather than the iterative methods, only results solved by the CGS iteration are reported.

All experiments are performed with N =32, b =(1,---, 1)T, and zero initial guess.

Test Problem 1: symmetric banded Toeplitz.
The generating function is

T(z)=z2z4+323+4:"2 4 727 + 11+ T2 + 427 + 323 + 24

The convergence history of the PCG method with preconditioners F and Ky is plotted in Figure 1. We
clearly see that the 2-norm of the residual is significantly reduced in 4 iterations for both Fiy and Ky and

that Fy performs slightly better than Kn. We want to point out that FJQITN and K;,’TN have 4 and 8
outliers, respectively. However, for this test problem, the outliers of K;,l Tn are related in pairs and it takes
only %aK iterations to eliminate these ax outliers. A similar kind of convergence behavior for K;,lTN was
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reported in [19]. In general, preconditioners Fy and Kx have a similar performance for symmetric banded
Toeplitz matrices.

Test Problem 2: symmetric rational Toeplitz.
The generating function is

_(1-0.2271)(140.3271)(1 - 0.527") (1 =0.22)(1 +0.32)(1 — 0.52)
T (1-0.32z"1)(140.5271)(1 - 0.7271) "~ (1-0.3z)(1+0.52)(1—0.72)

T(z)

Since Ty is symmetric (r = s = w = 3), the eigenvalues of FIQITN are repeated at 1 except 3 outliers (see
Theorem 3), and the eigenvalues of K5'Tn are clustered around 1 except 6 outliers (see Theorem 4). The

convergence history of the PCG method with preconditioners Fy and Ky is plotted in Figure 2. Since F;,l Tn
has 4 distinct eigenvalues, the PCG method with preconditioner- Fy converges in 4 iterations. However,

although K ;,1 Tn has 6 outliers, it only requires 3 iterations to eliminate the outliers. The convergence rate
after the first 3 iterations depends on the clustering radius ex. It is clear that preconditioner Fy performs
better than preconditioner K.

Test Problem 3: symmetric nonrational Toeplitz.
The generating sequence is
¢ = 2, n =0,
" 1/(1+ [n]), n#0,
and the corresponding generating function is
T(2) = Ty (z7") + T4 (2),

where

T, () =3 2
+Z = .
n=01+n

Consider the Padé approximant of order (p, q),i.e. Aj(271)/Bj(z7"), to T4(27"). Preconditioner Fy, v are
then constructed with respect to
A(271) | An(2)

By(271) © Bi(2)’

In our experiment, (p, q) is chosen to be (3,3) and (4,4). The convergence history of the PCG method with
preconditioners F33 N, F4 4~ and Ky is plotted in Figure 3. All these preconditioners converge in a similar
rate.

T;'q(z) =

Test Problem 4: nonsymmetric banded Toeplitz.
The generating function is

T(2)=—-2"3422"2492"14+4-22-32242°,
so that Ty is a banded Toeplitz with lower bandwidth 7 = 3 and upper bandwidth s = 3. Note also that T'(z)

has w = 4 roots outside the unit circle. The convergence history of the CGS method with preconditioners

Fx and K is plotted in Figure 4. According to Theorem 2, F, I'QITN has 3 eigenvalues different from 1 and,
consequently, the CGS method with preconditioner F converges in 4 iterations. According to Theorem 4,

KI‘\',ITN has 6 eigenvalues not equal to 1 so that the CGS method with preconditioner K converges in 7
iterations. We see clearly that the CGS method with preconditioner F converges faster.

Test Problem 5: nonsymmetric rational Toeplitz.
The generating function is
(1-0.22"1)(14+0.32"1)(1 - 0.5271) 1+ 22

T = (o1 + 050 (15-2)2+2)(2-2)
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Table 2: The numbers of iterations required for the CGS method.

[ N || Foon | F3an | Faan | Kn |

32 6 5 5 11
64 8 7 6 11
128 9 8 7 13

We can transform T into a banded matrix with » = s = w = 3. From Theorems 3 and 4, we know that
F A',ITN has only 3 eigenvalues not equal to 1 and the eigenvalues of K ;,1 TN are clustered around 1 except 6
outliers. The convergence history of the CGS method with preconditioners Fjy and K is plotted in Figure
5. The CGS method with preconditioner Fxn performs better.

Test Problem 6: nonsymmetric nonrational Toeplitz.
Let Tn be a nonsymmetric Toeplitz matrix with generating sequence

1/log(2 — n), n < -1,
t, =4 1/log(2—-n)+1/(1+ n), n =0,
1/(1+4 n), n>1.

The corresponding causal and anti-causal generating functions can be written as

-1 _ z™n
T+(Z ) - 1;1-}-72,
() = Y
= log(2+mn)

Let the Padé approximants of order (p,q), to T4(27!) and T_(z) be A}(27')/B}(z7") and C,(z)/D)(2),
respectively. We construct preconditioner F;,q, n for

1) = ) + 2o,

' By (271) * Dj(2)

with p = ¢ = 2,3,4. The convergence history of the CGS method with preconditioners F}, ; ;v and Ky is
plotted in Figure 6. In order to understand the asymptotical behavior of the preconditioned CGS method,
we also perform experiments for this test problem with N = 64,128. The numbers of iterations required
with preconditioners F,, N, p = ¢ = 2,3,4, and Ky satisfying ||b — Tyx||; < 107'® are summarized in
Table 2 for different N. Note that the numbers of iterations required for all preconditioners increase slightly
as N becomes larger. However, preconditioners Fy, , N, p = ¢ = 2,3,4, perform better than preconditioner

Kn.
6. CONCLUSION

In this paper, we applied the minimum-phase factorization technique to Toeplitz generating functions
and obtain a new Toeplitz preconditioner called the MPLU preconditioner. This preconditioning technique
is applicable to both banded and full Toeplitz matrices. We characterized the spectral properties of the
MPLU preconditioned Toeplitz matrices and showed that most of their eigenvalues are repeated exactly
at unity for rational Toeplitz. Thus, an N x N rational Toeplitz system can be solved by preconditioned
iterative methods with O(N) complexity. We also demonstrate the superior performance of the MPLU
preconditioner over another Toeplitz preconditioner in circulant form with several numerical examples,
including both rational and nonrational cases.
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Although our discussion on the MPLU factorization preconditioner has primarily focused on real non-
symmetric Toeplitz systems, its application to complex nonhermitian Toeplitz systems can be generalized
in a straightforward way. However, the MPLU factorization preconditioning technique cannot be easily
extended to higher-dimensional Toeplitz systems such as block Toeplitz matrices. This is due to the ab-
sence of the fundamental theorem of algebra for multivariate polynomials. In contrast, higher-dimensional
Toeplitz matrices can be preconditioned with higher-dimensional circulant matrices. See [20] for the two-
dimensional case. Another limitation of the MPLU preconditioner is that it is not as easily parallelizable as
the preconditioners in circulant form.
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