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ABSTRACT

A new preconditioner is proposed for the solution of an N x N Toeplitz system TNX = b, where TN
can be symmetric indefinite or nonsymmetric, by preconditioned iterative methods. The preconditioner FN
is obtained based on factorizing the generating function T(z) into the product of two terms corresponding,
respectively, to minimum-phase causal and anticausal systems and therefore called the minimum-phase LU
(MPLU) factorization preconditioner. Due to the minimum-phase property, IIFJ1II is bounded. For rational
Toeplitz TN with generating function T(z) = A(z1)/B(z1) + C(z)/D(z), where A(z), B(z), C(z) and
D(z) are polynomials of orders p , q , P2 and q , we show that the eigenvalues of FJ1 TN are repeated
exactly at 1 except at most cF outliers, where cF depends on Pi ,qi , P2 , q2 and the number w of the roots of
T(z) = A(z1 )D(z) + B(z1 )C(z) outside the unit circle. A preconditioner IN in circulant form generalized
from the symmetric case is also presented for comparison.

1. INTRODUCTION

Toeplitz matrices arise in many signal processing applications. To solve a general N x N Toeplitz
system of equations TNX = b, direct inverse algorithms based on Levinson recurrence [23] with 0(N2)
operations have been studied intensively in the past 11 , [18], [31], [34]. Superfast algorithms with (N log2 N)
complexity have also been proposed [1], [3], [4], 16 . Although the computational complexity of these
algorithms is lower than that of Gaussian elimination with pivoting, i.e. 0(N3), their stability is still an
issue when applied to indefinite or nonsymmetric TN. It has been shown that these algorithms may become
unstable if TN is not symmetric positive definite (SPD) and well-conditioned [5], [10]. A stable extension
of Levinson's algorithm to general Toeplitz matrices has recently been studied by Chan and Hansen [9]. In
this research, we consider the use of preconditioned iterative methods for solving a general Toeplitz system
TNX b to reduce the computational complexity as well as to avoid the numerical instability.

Various preconditioners in circulant form have been used in the the Preconditioned Conjugate Gradient
(PCG) algorithm [6], [8], [17], [19], [29] to solve SPD Toeplitz systems. All the preconditioners can be in-
verted via fast transform algorithms with 0(N log N) operations. Besides, the spectra of the preconditioned
Toeplitz matrices have such a nice clustering property that the PCG method converges superlinearly for
TN generated by a positive function in the Wiener class [7], [19]. Although it is possible to generalize this
preconditioning technique to general Toeplitz matrices in a straightforward way (see §4), the focus of this
paper is to develop a novel approach to construct a general Toeplitz preconditioner based on an approximate
LU factorization. The resulting preconditioned systems are then solved by various iterative methods such
as the Generalized Minimal Residual (GMRES) [27] and the Conjugate Gradient Squared (CGS) [28].

The idea of constructing the LU factorization preconditioner can be simply stated as follows. Consider
a banded Toeplitz matrix TN with a finite-order generating function T(z) = The T(z) can be
factorized into the product T(z) = zL(z1)U(z), where L(z1) and U(z) have all roots inside and outside
the unit circle, respectively. We associate z2, L(z1) and U(z) with a shift matrix SN, a lower and an
upper triangular banded Toeplitz matrices LN and UN, correspondingly, and the product FN = SNLNUN
is the desired preconditioner for TN. The above factorization procedure has been used frequently in the
context of digital signal processing [25] to design the minimum-phase causal (or maximum-phase anticausal)
linear filter. The FN 5 therefore called the minimum-phase LU (MPLU) factorization preconditioner. To
generalize the MPLU preconditioning technique to full Toeplitz matrices, we first obtain an approximating
rational generating function for the original one with the Laurent Padé approximation. Since a rational
Toeplitz matrix can be transformed to a banded matrix which is nearly Toeplitz, the appropriate MPLU
preconditioner can also be constructed.
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The spectral clustering properties of the MPLU-preconditioned Toeplitz F1 TN are studied for both
banded and rational TN. We prove that, for rational TN with generating function T(z) = A(z1)/B(z1)+
C(z)/D(z), where A(z), B(z), C(z) and D(z) are polynomials of orders Pi , qi , P2 and q , the eigenvalues
of F1 TN are repeated exactly at 1 except F outliers, where cF depends on Pi , qi , P2, q2 and the number
w of the roots of t(z) = A(z1 )D(z) + B(z1 )C(z) outside the unit circle. A direct consequence of these
spectral properties is that the appropriate preconditioned iterative methods converge in at most cF + 1
iterations. This result should be compared to that of the circulant-preconditioned rational Toeplitz K1TN.
In [22], we prove that the eigenvalues of I(1TN, except outliers, are clustered in the disk centered
at 1 with radius K , where the clustering radius K is proportional to the magnitude of the last elements
used to construct the circulant preconditioner. It is clear that K � F = 0, but the relation between K
and cF can be arbitrary. However, when w = max(p2, q), it can be shown that = 2cF and thus, the
MPLU preconditioner provides better spectral clustering properties for a faster convergence rate. When
w max(p2, q), it is possible to have aK < aF and K 0 so that the circulant preconditioner KN
provides a faster convergence rate. However, the MPLU preconditioner FN has a better or a comparable
convergence rate compared to the circulant preconditioner KN, unless TN is circulant itself.

For well-conditioned Toeplitz TN, we show that the preconditioner FN is well-conditioned due to the
minimum-phase factorization property. Then, the AN = F1TN is also well-conditioned so that the system
ANX F1 b can be stably solved by iterative algorithms. One obvious choice is to form the well-conditioned
SPD normal system 4ANX = AFJ1b and solve the resulting system by the CG method (known as the
CGN method [15]). Thus, for well-conditioned nonsymmetric Toeplitz systems, numerical stability is easily
obtained by using preconditioned iterative methods. The MPLU preconditioner FN is a product of the shift
matrix SN and triangular banded Toeplitz matrices LN and UN, the preconditioning step z =F1r can be
achieved with a computational complexity proportional to 0(N) only. The total computational complexity
for solving a rational Toeplitz system by MPLU-preconditioned iterative methods is 0(N), which is lower
than the O(N log N) operations required by the circulant-preconditioned iterative methods and is in the
same order as that required by several direct methods [12], [13], [32], [33]. However, there is a drawback of
the MPLU preconditioner in the context of parallel processing. That is, the MPLU preconditioning has to
be performed sequentially whereas the circulant preconditioning can be easily parallelized.

The outline of this paper is as follows. In §2, the procedure to construct the MPLU preconditioner for
banded Toeplitz matrices is described, and the spectral properties of the preconditioned banded Toeplitz are
examined. In §3, the MPLU preconditioning technique is generalized to full Toeplitz matrices, including both
rational and nonrational cases, and the spectral properties of the MPLU-preconditioned rational Toeplitz
are studied. In §4, we compare the MPLU preconditioner with the circulant preconditioner 'N. Finally,
numerical results are given in §5 to access the efficiency of the MPLU preconditioner.

2. MPLU PRECONDITIONER FOR BANDED TOEPLITZ

Consider a sequence of m x m Toeplitz matrices Tm, m = with a generating sequence t,
— < n < oo, such that

t t_1 . t...(pT_) t_(N_1)
t1 t0 t_1 t(r_)

TN= . t1 t0 .

tN_2 t_1
tN_i tN_2 . t1 tØ

The Laurent series

T(z) = >J tz
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is known as the generating function of the matrix sequence Tm . We assume that the generating sequence i
satisfies the following two conditions:

IT(etO)I = tne_in9 � > 0, VO, (1)

>ItnI�B<oo. (2)

Since T(e10) = te_2O describes the asymptotic eigenvalue distribution of Tm, conditions (1) and (2)

imply that IITNII and IITJ1 fl are bounded and, consequently, that TN is well-conditioned.

The system of equations
TNx=b (3)

can be solved by various iterative methods. To accelerate the convergence rate, a preconditioner PN is
introduced to solve the preconditioned system of equations

P11TNX=P1b, (4)

where PN 5 the preconditioner used to approximate TN. In this section, we focus on the case where TN
is banded with lower bandwidth r and upper bandwidth s, i.e. t = 0 if n < —s or n > r, L3t,. 0, and
r+s=d< N.
2.1. Construction of the preconditioner

We can use a direct method to factorize TN,

TN=LNUN, (5)

where and UN are lower and upper triangular matrices, respectively. The exact factorization (5) with
the Levinson-type algorithms requires O(dN) operations for banded TN [12], [32]. If TN is not symmetric
positive definite, the numerical stability of these algorithms cannot be guaranteed. Instead of performing
the exact factorization, we propose to factorize TN approximately as

TNSNLNUN=FN, (6)

where SN is a shift matrix and LN and UN are, respectively, lower and upper triangular banded Toeplitz
matrices. Our objectives include that the approximate factorization (6) can be achieved by a stable algorithm
with operations independent of N, that FN approximates TN well, and that IFj1 is bounded. Then, the
FN can be used as a preconditioner in preconditioned iterative methods.

To derive the approximate factorization, it is convenient to consider the problem in the Z-transform
domain and ignore the boundary effect arising in a Toeplitz system. When TN is banded with lower
bandwidth r and upper bandwidth s, its generating function can be expressed as

r d
T(z) = tnz—fl = t_3z8 fl(i — zz1), (7)

where d = i. + s and z is a root of T(z). From (1), we know that 1z11 1. If T(z) has w roots outside the
unit circle, we can factorize T(z) as

T(z) = zs_wL(z)U(z), (8)
where

L(z1) fl (1 — zz1), U(z) = t8 [f (z — z2).

fzj,<1
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Note that the above factorization has a special feature, namely, all zeros of L(z1 ) (or U(z)) are inside (or
outside) the unit circle. The following example is used to illustrate the factorization procedure (8).

Example 1: Let AN be an N x N tridiagonal Toeplitz matrix with t1 = 1.5, to = —6.5 and t_1 = 2. Then,
we have

T(z) = 1.5z1 — 6.5 + 2z = 2z(1 — O.25z1)(1 — 3z1) = L(z1)U(z),
where

L(z1) 1 — O.25z1, U(z) = 2z — 6.

Since r = S = w = 1 in this example, the term ZS_W in (8) is equal to 1. 0

Let us associate the right-hand-side of the factorization (8) with the following matrices

L(z1) " LN, U(z) #— UN, z3"' SN EW, (9)

where LN and UN are N x N lower and upper triangular Toeplitz matrices with generating functions L(z1)
and U(z), respectively, and EN is the N x N unit row-shift matrix,

EN [eN,e1,e2, •
and where e is the N x 1 unit vector with the nth element equal to 1 and zeros elsewhere. It is straightforward
to verify that

E1 = {e2, e3, • , e,
and that E is the product of EN (or E1) IkI times for positive (or negative) integer k. The premultipli-
cation of EN (or E1) with a N x N matrix is equivalent to the circular up-shift (or down-shift) of its rows
by one. Then, the product of SN, LN and UN is used as the desired preconditioner

1' C T TT 1'S—W r TTN NJINUN = "N NVN.

It inverse
F1 — U1L1S1 — U_1L_1EW_8N N NN N N N

can be performed effectively with 0(N) operations due to the special structures of 5N, LN and UN. The
factorization (8) has been frequently used in the context of digital signal processing [25] to design the
minimum-phase causal (or maximum-phase anti-causal) linear filter, which is by definition a system char-
acterized by a lower (or upper) triangular matrix with a stable inverse. Thus, we call FN defined by (10)
the minimum-phase L U (MPLU) factorization preconditioner.

2.2. Spectral properties

The minimum-phase factorization procedure guarantees that IF1fl is bounded, which is proved in the
following theorem.

Theorem 1 Let TN be a banded Toeplitz matrix with lower bandwidth r and upper bandwidth s satisfying
conditions (1) and ('2,), and LN and UN be obtained from the minimum-phase factorization (8)-(1O). Then,
the 1-, 2- and -norrns ofF1 and FN are boundedfor asymptotically large N.

Proof. It is well known that there exists an isomorphism between the ring of the power series G(z1) =
E:::o gNz and the ring of semi-infinite lower triangular Toeplitz matrices with go, gi , • , g, . . . as the
first column, and the power series multiplication is isomorphic to matrix multiplication [13]. With this
isomorphism, we know that L1 is a lower triangular Toeplitz matrix whose first column r0, ri, . . • , i, •..
can be obtained from the coefficients of the power series, i.e.

L(z1) z1 (1 — zz-1) TnZ
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It is clear that E=0 mi is bounded if and only if all poles of 1/L(z1) are inside the unit circle, which is
guaranteed by the minimum-phase factorization (8).

Condition (1) implies that all zeros z of T(z) do not lie on or arbitrarily close to the unit circle, i.e.

Izil�1—$ and

where f3 is a small positive number independent of N. Since

IIL1IIi = (iL1tI = IrnI � ITnI H
n=O n=O z<1

the 2-norm of LN 5 bounded by

N-i
i-—i < I i—i i-—i \1/2 < a—(d—w)N 2_ N 1 N 00) L.s fl—p'

n=o

A similar arguments can be used to prove that IIU1II2 � /3W Since IIENII2 = IIE1II2 = 1, we have

IIF1II2 ILII2tIUII2 � -d,
which is independent of N. Besides, since IILNII1 = fILNII< we have

1LNII2 � (IlLNIIlIILNII12 < 00.

Similarly, IIUNII2 is bounded and IIFNII2 � IILN1I2IIUNII2 < 00. 0

A direct consequence of the above theorem is that preconditioner FN is well-conditioned. If L(z1)
(or U(z)) is not chosen according to (8) so that there exist roots of the polynomial L(z1) (or U(z)) with
magnitude greater (or less) than one, i.e. nonminimum-phase factorization, one can easily check that IL1II2
(or IU 112) is unbounded for asymptotically large N. For example, if we choose

L(z1) = 1 — 3z1, U(z) = 2z — 0.5,

for LN and UN in Example 1, the product LNUN leads to an ill-conditioned matrix whose smallest eigenvalue
converges to zero for asymptotically large N. Thus, the minimum phase factorization is crucial for the
stability of the preconditioning procedure z = F1r. Next, we study the spectral properties of F1TN. For
FN to be a good preconditioner, it is desirable that F'TN has clustered eigenvalues. In Theorem 2 we will
prove that it has only a finite number of eigenvalues different from 1 . To derive this theorem, we need two
lemmas.

Lemma 1 Let TN be a banded Toeplitz matrix with lower bandwidth r and upper bandwidth s, where r + s =
d < N, generated by T(z) which has w roots outside the unit circle. Then, for LN and UN obtained by the
niinimurn-phase factorization (8) and (9), LNUN is a banded Toeplitz matrix generated by zuT(z) with
lower bandwidth d — w and upper bandwidth w except its northwest (d — w) x w block.

Proof. This lemma can be proved with definitions and direct matrix multiplication. 0

Lemma 1 basically says that the product LNUN is a nearly banded Toeplitz matrix. Despite that TN and
LNUN have the same total bandwidth d, they do not have the same lower bandwidth and upper bandwidth
unless w = s. By shifting the rows of LNUN circularly, we are able to construct another nearly banded
Toeplitz FN E.7LLNUN which has the same lower and upper bandwidthes as TN.
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Lemma 2 Let TN 1 a banded Toeplitz matrix with lower bandwidth r and upper bandwidth s, where r + s =
d < N, generated by T(z) which has w roots outside the unit circle. Then, the matrix FN = ELNUN
defined in (10) is a nearly banded Toeplitz matrix. Elements of matrices TN and FN are identical except the
following:
1) the northwest r x s block when s =
2) the northwest r x w block and the northeast (w — s) x r block when s < w;
3) the northwest r x w block, the southwest (s —w) x s block and the southeast (s — w) x (d — w) block when
S > W.

Proof. When s = w, it can be directly verified that FN = LNUN is a banded Toeplitz generated by T(z)
with lower bandwidth r and upper bandwidth s except the northwest r x s block. When s < w, recall that
the rows of FN E.jWLNUN are obtained from those of LNUN with circularly downward-shift w —s rows
so that the last w —s rows in LNUN become the the first w — s rows of FN and the first N — (w — s) rows
in LNUN becOme the last N — (w — s) rows of FN. By using Lemma 1, we can clearly see that FN is a
banded Toeplitz with lower bandwidth r and upper bandwidth s generated by T(z) except the northwest
r X w block and the northeast (w — s) x r block. Similarly, one can prove the case s > w. 0

Lemma 2 tells us that /EN = FN — TN is a zero matrix except at most three small blocks. Based on
this lemma, we characterize the spectral properties of F1TN in Theorem 2.

Theorem 2 Let TN be a banded Toeplitz matrix with lower bandwidth r and upper bandwidth s, where
r + s = d < N, generated by T(z) which has w roots outside the unit circle. Then, there are at most
eigenvalues of F1TN not equal to 1, where

I min(r,s), S =

aF ' min(r,2w—s), s < w, (11)
t min(d— w,s), s >

Proof. Since we have
FJ1TN FJ1(FN LEN) = 'N F1/2EN,

where 'N denotes the N x N identity matrix, the eigenvalue 1 of F1 TN corresponds to the eigenvalue 0
of FJ1 /2EN , and the number of eigenvalues of F1 TN not equal to 1 is determined by the rank of LEN.
Notice that the rank of a matrix is bounded by the number of nonzero rows or columns, and the rank of
the sum of two matrices is bounded by the sum of their individual ranks. All nonzero elements in LEN are
inside the blocks given by Lemma 2. When s = w, since all nonzero elements of /EN are in the first r rows
or the first s columns, the rank of LEN is bounded by min(r, s). When s < w, we have w —s d — s = r.
Since all nonzero elements of /EN are either in the first r rows or in the union of the first w columns and
the first w — S rows, the rank of /2EN is bounded by min(r, 2w — s). When s > w, since all nonzero elements
of /EN are either in the union of the first r and the last s — w rows or in the union of the first w columns
and the last s — w rows, the rank of /2EN is bounded by min(d —w, s). The proof is completed. 0

We use an example to illustrate the above theorem.

Example 2: Consider the following N x N banded Toeplitz matrices with N � 4,

TN,1 [(r, s) = (3, 0)] : t3 = 2, 2 = —5, t1 6, to —2,

TN,2 [(r,s) = (2,1)] : t2 = 2, t1 = —5, to = 6, L..1 = —2,
TN,3 [(r,s) = (1,2)] : t1 = 2, to = —5, t_1 = 6, t_2 = —2,
TN,4 [(r, s) = (0, 3)] : to = 2, t_1 = —5, t_2 = 6, t_3 = —2.

T(z) has roots 0.5 + 0.5i, 0.5 — 0.5i and 2 so that w = 1. For these matrices, the MPLU factorization results
in the same LN and UN defined by the generating sequences

lol, 11=—i, 12=0.5, lnO
4, u_i = —2, = 0 n 0, —1.
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Table 1: An example to illustrate Theorem 2.

I ii[ii ii
TN,1 3 3 0 1 2

TN,2 3 2 1 1 1

TN,3 3 1 2 1 2
TN,4 3 0 3 1 2

To illustrate Theorem 2, we list values of d, s, r, w and cF in Table 1. Since F1TN has only at most cF +1
distinct eigenvalues, appropriate preconditioned iterative methods, such as MRES and CGS, converge in
at most F + 1 iterations with exact arithmetic (see Test Problems 1 and 4 in §5).

3. PRECONDITIONING FULL TOEPLITZ MATRICES

In this section, we generalize the MPLU preconditioning technique to full Toeplitz matrices. The basic
idea is to approximate the full Toeplitz with a rational Toeplitz, transform the rational Toeplitz to a nearly
banded Toeplitz, and then construct the MPLU preconditioner for the nearly banded Toeplitz.

3.1. Rational Toeplitz

Toeplitz matrices with a rational generating function can be transformed to banded ones [13]. We
describe the transformation briefly as follows. Let the generating function of TN be of the form

A(z1) C(z)T(z) = B(z1) D(z)' (12)

where A(z), B(z), C(z) and D(z) are polynomials in z with orders Pi, qi , P2 and q , respectively. Note
that a special case of (12) is A(z) = C(z) and B(z) = D(z), which leads to a symmetric rational Toeplitz of
order (p, q) with Pi = P2 P and qi = q = q. By applying the isomorphism between the ring of the power
series and the ring of semi-infinite triangular Toeplitz matrices, we have the following relationship

TN LaL1 + UcU1,

where La (or Lb) is an N xN lower triangular Toeplitz matrix with the first N coefficients in A(z) (or B(z))
as its first column and U (or Ud) is an N x N upper triangular Toeplitz matrix with the first N coefficients
in C(z) (or D(z)) as its first row. Since power series multiplication is commutative, we have

TN LbTNUd LaUd + LbU. (13)

where TN iS banded and nearly Toeplitz characterized by the following lemma.

Lemma 3 Let TN b the N x N Toeplitz matrix generated by T(z) in (12), the corresponding Djsj obtained
from (13) is a banded Toeplitz with lower bandwidth r = max(pi ,q) and upper bandwidth s = max(p2, q)
generated by

T(z) = A(z1)D(z) + B(z1)C(z), (14)
except the northwest r x s block.

Proof. Consider N x N Toeplitz matrices La and Ud, where La 5 lower triangular with lower bandwidth
Pi generated by A(z1 ), Ud S upper triangular with upper bandwidth q generated by D(z). One can verify
that the product LaUd S banded Toeplitz generated by A(z1)D(z), except its northwest Pi X q block.
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This result can be easily generalized to the sum of two such products, i.e. TN = LaUd + LbU, and the proof
is completed. 0

Through (13), the system TNX = b is transformed to an equivalent system

TNXb,
where x = Ud and b = Lbb. We then use the procedure described in §2.1 to construct the MPLIJ
preconditioner FN for TN as if it were an exact banded Toeplitz. The following theorem characterizes the
spectral properties of F1TN.

Theorem 3 Let TN be the N x N rational Toeplitz matrix generated by T(z) in (12), and FN th€ MPLU
preconditioner constructed with respect to T(z) in (Lf). In addition, r =max(pi,qi), s = max(p2, q) and
w denotes the number of roots of T(z) outside the unit circle. Then, when r + s = d < N, there are at most
aF eigenvalues of FN1TN not equal to 1, where

I min(r,s), S =
F min(r, 2w — s), s < w,

1% min(d—w,2s—w),

Proof. By Lemma 3, TN is a banded Toeplitz matrix with generating function i'(z) except the northwest
r X s block. The FN is abanded Toeplitz matrix with generating function T(z) except the blocks described
in Lemma 2. Define LTN = FN — TN. We can use arguments similar to those in proving Theorem 2 to
determine the bound of the rank of /TN and, hence, the number of eigenvalues of F1TN not equal to 1.
0

Since FN11'N has only at most + 1 distinct eigenvalues, appropriate preconditioned iterative methods
converge in at most F + 1 iterations with exact arithmetic (see Test Problems 2 and 5 in §5). Note that
FN 5 a preconditioner for TN rather than TN. However, since TN is related to TN via (13), the equivalent
preconditioner for matrix TN is

F, r—1 rr—1 r—1 r'i—tZ iTTN Lb TNUd "b "N JNUNUd

where ., ii,, LN and UN are obtained with respect to t(z) (= A(z1)D(z) + B(z1)C(z)). Thus, the
preconditioning step can be implemented as

F1r = UdU4lL/E8Lbr,
for arbitrary r with 0(N) operations.

3.2.Nonrational Toeplitz

When TN is generated by a nonrational function T(z), we use the Laurent Padé approximation [4], [14],
to approximate T(z) with a certain rational function

T' — A'(z) G'(z)
(z) B'(z) +

D'(z)'
where A'(z), B'(z), C'(z) and D'(z) are polynomials in z with orders P1, qi, P2 and q, respectively. The
coefficients of A'(z), B'(z), C'(z) and D'(z) are chosen such that

T(z)B(z) — A(z) =

T_(z)D(z)—C(z) =

66 / SPIE Vol. 1566 Advanced Signal Processing Algorithms, Architectures, and Implementations 11(1991)

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 01/26/2014 Terms of Use: http://spiedl.org/terms



where

T(z1)

T_(z) = (1—c)to+t_z,

with given c. We then construct the preconditioner F with respect to

t'(z) = A'(z1)D'(z) + B'(z1)C'(z),

or equivalently, use Fk (= (L)iP'(U)1) preconditioner for TN. Since T(z) T'(z), the eigenvalues
of (FJ)1TN are not repeated at but clustered around 1 (see Test Problems 3 and 6 in §5).

4. COMPARISON OF MPLU AND CIRCULANT PRECONDITIONER5

Various preconditioners in circulant form have been proposed for symmetric Toeplitz matrices [6], [8],
[17], [19], [29]. All these preconditioners can be inverted effectively via fast transform algorithms with
O(N log N) operations. This preconditioning technique can be easily generalized to nonsymmetric Toeplitz
matrices. In the following, we discuss the generalization of the preconditioner K1,N [19] proposed by the
authors to the nonsymmetric case. Let TN be an N x N Toeplitz matrix,

t0 t_1 t_(_) t_(N_1)
t1 t0 t_1 t(T_)

TN= . t1 t0
tN.2 t.1
tN_i tN_2 . t1 t0

We define a 2N x 2N circulant matrix using elements of TN as

TN LTNR2N= 1TN TN (15)

where
tN tN_i . t2 t1

t_(N_1) tN tN_i t2
LTN= t() tN .

tN1
t_1 t_2 t_(_) tN

Since the augmented circulant system

TN LTN X - b
LTN TN x — b'

is equivalent to
(TN + LTN)X = b,

the (TN + L�TN)1b can be computed efficiently via FFT so that

KN = TN + LTN

can be used as a preconditioner for TN. Note that KN is also a circulant matrix.
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When TN S a symmetric Toeplitz matrix generated by a positive function in the Wiener class, it can be
proved [7], [19] that the eigenvalues of the circulant-preconditioned Toeplitz are clustered around 1 except
a finite number of outliers. When TN is additionally rational of order (p, q), the eigenvalues of KJ1TN
are clustered between (1 — R-, 1 + j) except ajç 2 max(p, q) outliers, where K = O(ItNI) [21], [30].
A special case of Theorem 3 is that when TN is a symmetric rational matrix, we have r = s = w and

F max(p, q) = cxK. By generalizing the proofs in [21], we are able to obtain the following more general
result applicable to the nonsymmetric case.

Theorem 4 Let TN b a rational Toeplitz matrix satisfying (1) and (2) and generated by T(z) of order
(p1, ql,p2, q2) as given by (12). For sufficiently large N, the preconditioned Toeplitz matrix A1TN has the
following two properties:
P1: The number of outliers is at most cK = 2min(r, s).
P2: There are at least N —r eigenvalues confined in the disk centered at 1 with radius K = O(ftNf + It_N I).

Proof. See [22] 0

The spectral properties of F1TN and I(71TN for rational TN are compared as follows. One main
difference is that the eigenvalues except outliers are exactly repeated at 1 for F1TN but only clustered
around 1 for K1TN, i.e. EK � EF 0. Another difference is the number of outliers which are by definition
the eigenvaiues not converging to 1 for asymptotically large N. Asymptotically, K 0 and the CGS (or
GMRES) method with preconditioners FN and AN converges in at most cF + 1 and 0K + 1 iterations,
respectively. For finite N, K 0 and the performance of RN are determined by both the number of the
outliers K and the clustering radius K. Although it happens that cK < cF, the MPLU preconditioner in
general provides a faster or a comparable convergence rate since K � F = 0.

The preconditioning step F1r can be accomplished with 0(N) operations by permutation, forward-
and back-substitution, since FN is a product of a shift matrix, lower- and upper-triangular banded Toeplitz
matrices. In comparison, the preconditioning step K1r requires O(N log N) operations via FFT. Hence,
in terms of computational complexity per iteration, preconditioner FN is slightly better. However, note
that F1r has to be implemented sequentially whereas K1r can be easily parallelized via the parallelism
provided by FFT.

5. NUMERICAL RESULTS

Our numerical experiments include both symmetric positive-definite (SPD) and nonsymmetric Toeplitz
with banded, rational and nonrational generating sequences. The SPD problems are solved by the PCG
method. For nonsymmetric systems, there exist numerous iterative algorithms for their solution [2], [26].
As suggested by [24], we applied the preconditioned version of three iterative methods, i.e. CGN, GMRES
and CGS, for our numerical experiments. We observed that GMRES and CGS converge faster than CGN
and that CGS outperform GMRES by a factor of 1 to 2 for all test problems. Since our focus is on the
preconditioners rather than the iterative methods, only results solved by the CGS iteration are reported.
All experiments are performed with N = 32, b = (1, . . . , i)T, and zero initial guess.

Test Problem 1: symmetric banded Toeplitz.
The generating function is

T(z) = z4 + 3z3 + 4z2 + 7z1 + 11 + 7z + 4z2 + 3z3 + z4.

The convergence history of the PCG method with preconditioners FN and 'N is plotted in Figure 1. We
clearly see that the 2-norm of the residual is significantly reduced in 4 iterations for both FN and KN and
that FN performs slightly better than KN. We want to point out that F1TN and A'1TN have 4 and 8
outliers, respectively. However, for this test problem, the outliers of K1TN are related in pairs and it takes
only OK iterations to eliminate these K outliers. A similar kind of convergence behavior for K1TN was
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reported in [19]. In general, preconditioners FN and KN have a similar performance for symmetric banded
Toeplitz matrices.

Test Problem 2: symmetric rational Toeplitz.
The generating function is

T — (1 — O.2z1)(1 + O.3z1)(1 — O.5z1) (1 _ O.2z)(1 + O.3z)(1 — O.5z)
(z) —

(1 — O.3z1)(1 + O.5z1)(1 — O.7z1) (1 — O.3z)(1 + O.5z)(1 — O.7z)

Since TN i5 symmetric (r = s = w = 3), the eigenvalues of FJ1TN are repeated at 1 except 3 outliers (see
Theorem 3), and the eigenvalues of A71TN are clustered around 1 except 6 outliers (see Theorem 4). The
convergence history ofthe PCG method with preconditioners FN and KN is plotted in Figure 2. Since F1TN
has 4 distinct eigenvalues, the PCG method with preconditioner .FN converges in 4 iterations. However,
although K1TN has 6 outliers, it only requires 3 iterations to eliminate the outliers. The convergence rate
after the first 3 iterations depends on the clustering radius K. It is clear that preconditioner FN performs
better than preconditioner KN.

Test Problem 3: symmetric nonrational Toeplitz.
The generating sequence is

t f2, n=O,
n_i 1/(1+n),

and the corresponding generating function is

T(z) = T(z1)+ T(z),
where

T(z1) = .
Consider the Padé approximant of order (p, q), i.e. A(z1)/B(z1), to T+(z1). Preconditioner Fp,q,N are
then constructed with respect to

T' (z) — (z_1) ÷ A,(z)
p,q B(z1) B(z)'

In our experiment, (p, q) is chosen to be (3, 3) and (4, 4). The convergence history of the PCG method with
preconditioners F3,3,N, F4,4,N and AN is plotted in Figure 3. All these preconditioners converge in a similar
rate.

Test Problem 4: nonsymmetric banded Toeplitz.
The generating function is

T(z) = —z3 + 2z2 + 9z1 + 4 — 2z — 3z2 + z3,

so that TN is a banded Toeplitz with lower bandwidth r = 3 and upper bandwidth s = 3. Note also that T(z)
has w = 4 roots outside the unit circle. The convergence history of the CGS method with preconditioners
FN and KN 5 plotted in Figure 4. According to Theorem 2, F1TN has 3 eigenvalues different from 1 and,
consequently, the CGS method with preconditioner FN converges in 4 iterations. According to Theorem 4,
K1TN has 6 eigenvalues not equal to 1 so that the CGS method with preconditioner KN converges in 7
iterations. We see clearly that the CGS method with preconditioner FN converges faster.

Test Problem 5: nonsymmetric rational Toeplitz.
The generating function is

T1z — (1 — O.2z'1)(1 + O.3z1)(1 — O.5z') +
1 + 2z' '

(1 — O.7z1)(1 + O.5z1) (1.5 — z)(2 + z)(2 —
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Table 2: The numbers of iterations required for the CGS method.

I N JJ F2,2,N F3,3,N I F4,4,N I [tN
32 6 5 11

64 -T T ii
128 -- T 13

We can transform TN into a banded matrix with r = s = w = 3. From Theorems 3 and 4, we know that
FJ1TN has only 3 eigenvalues not equal to 1 and the eigenvalues of K1TN are clustered around 1 except 6
outliers. The convergence history of the CGS method with preconditioners FN and 'N is plotted in Figure
5. The CGS method with preconditioner FN performs better.

Test Problem 6: nonsymmetric nonrational Toeplitz.
Let TN be a nonsymmetric Toeplitz matrix with generating sequence

I 1/log(2—n),
tn = ' 1/log(2 — n)+ 1/(1+ n), n = 0,

( 1/(1+n), n�1.

The corresponding causal and anti-causal generating functions can be written as

T+(z1)

T(z) =
0log(2±ny

Let the Padé approximants of order (p,q), to T(z1) and T_(z) be A(z1)/B(z1) and

respectively. We construct preconditioner Fq ,N for

T' — A,(z1) C(z)
p,qZ) B(z1) D(z)'

with p = q = 2, 3, 4. The convergence history of the CGS method with preconditioners Fp,q,N and AN is
plotted in Figure 6. In order to understand the asymptotical behavior of the preconditioned CGS method,
we also perform experiments for this test problem with N = 64, 128. The numbers of iterations required
with preconditioners Fp,q,N, P q = 2, 3, 4, and 'N satisfying lb — Tjs,rxII2 < 10_15 are summarized in
Table 2 for different N. Note that the numbers of iterations required for all preconditioners increase slightly
as N becomes larger. However, preconditioners Fp,q,N, P q 2, 3, 4, perform better than preconditioner
KN.

6. CONCLUSION

In this paper, we applied the minimum-phase factorization technique to Toeplitz generating functions
and obtain a new Toeplitz preconditioner called the MPLU preconditioner. This preconditioning technique
is applicable to both banded and full Toeplitz matrices. We characterized the spectral properties of the
MPLTJ preconditioned Toeplitz matrices and showed that most of their eigenvalues are repeated exactly
at unity for rational Toeplitz. Thus, an N x N rational Toeplitz system can be solved by preconditioned
iterative methods with 0(N) complexity. We also demonstrate the superior performance of the MPLU
preconditioner over another Toeplitz preconditioner in circulant form with several numerical examples,
including both rational and nonrational cases.
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Although our discussion on the MPLU factorization preconditioner has primarily focused on real non-
symmetric Toeplitz systems, its application to complex nonhermitian Toeplitz systems can be generalized
in a straightforward way. However, the MPLU factorization preconditioning technique cannot be easily
extended to higher-dimensional Toeplitz systems such as block Toeplitz matrices. This is due to the ab-
sence of the fundamental theorem of algebra for multivariate polynomials. In contrast, higher-dimensional
Toeplitz matrices can be preconditioned with higher-dimensional circulant matrices. See [20] for the two-
dimensional case. Another limitation of the MPLU preconditioner is that it is not as easily parallelizable as
the preconditioners in circulant form.
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Figure 2: The convergence history of the PCG
method for Test Problem 2.
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Figure 3: The convergence history of the PCG
method for Test Problem 3.
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Figure 6: The convergence history of the CGS
method for Test Problem 6.
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Figure 4: The convergence history of the CGS
method for Test Problem 4.
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