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A DOMAIN DECOMPOSITION PRECONDITIONER BASED ON A
CHANGE TO A MULTILEVEL NODAL BASIS*

CHARLES H. TONGt, TONY F. CHAN$, AND C.C. JAY KUO

Abstract. A domain decomposition method based on a simple change of basis on the interfaces
and vertices is presented. It is shown that this leads to an effective preconditioner compared to
the ones previously considered, such as the preconditioner by Bramble, Pasciak, and Schatz (BPS)
[Math. Comp., 47 (1986), pp. 103-134], and the hierarchical basis domain decomposition (HBDD)
preconditioner by Smith and Widlund [SIAM J. Sci. Statist. Comput., 11 (1990), pp. 1212-1226].
This domain-decomposed preconditioner is based on Bramble, Pasciak, and Xu’s multilevel nodal
basis preconditioner [Math. Comp., to appear]. It is shown that analytically this method and the
HBDD method give the same order of condition number, namely, O(log2(H/h)) for problems with
smooth coefficients. Numerically this method appears to be more effective with little additional cost
and for the model Poisson problem, the condition numbers appear to be O(1).

Key words, domain decomposition, hierarchical basis, multilevel nodal basis, preconditioned
conjugate gradient methods, Schur complement
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1. Introduction. We consider second-order, selfadjoint, uniformly elliptic par-
tial differential equations on a two-dimensional polygonal domain 12. The problems
are solved numerically by using piecewise linear finite elements. The domain is first
divided into nonoverlapping subregions 12i’s, which are further divided into triangular
finite elements. We use H to denote the diameter of a typical subregion and h to
denote the diameter of its elements.

We begin with the linear system arising from a discretization of the problem and
we first eliminate the variables interior to the subregions . The resulting reduced
system, the Schur complement, involves only the variables associated with F, the set
of edges, and vertices of the subregions. This system is then solved by a precon-
ditioned conjugate gradient method, where the preconditioner is constructed from
certain problems associated with the interfaces Fj 0 N 0j and vertices and a
global coarse problem associated with the vertices.

Many preconditioners have been proposed for the subproblems associated with the
edges F. For example, the method by Bramble, Pasciak, and Schatz (BPS) [2] uses
an operator similar to the square root of the Laplacian operator as the subproblem.
Recently Smith and Widlund [8] proposed a computationally more efficient hybrid
preconditioning method which involves only a simple change of basis (between nodal
and hierarchical basis) with the unknowns on the edges Fi. They show that the new
method has a condition number which grows no faster than C(1 / log(H/h))2, which
is comparable to that of the BPS method.
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TIMELY COMMUNICATION 1487

The domain-decomposed preconditioner we consider in this paper is inspired by
the work of Smith and Widlund [8]. In the same way that [8] uses the hierarchical
basis on the edges to obtain a domain decomposition method, we use the multi-
level nodal basis of Bramble, Pasciak, and Xu [3] applied to the reduced system on
the interfaces (i.e., the edges and the vertices) to obtain our domain decomposition
method. We call this preconditioner the multilevel nodal basis domain decomposi-
tion (MNBDD) preconditioner. We derive a proof, similar to the proof by Smith and
Widlund [8], such that the condition number is bounded by O(log2(H/h)) for smooth
coefficient problems. Numerical results are included to confirm the theoretical results.
In particular, numerical experiments show that the condition number appears to be
O(1) for the model Poisson problem. We show that the MNBDD preconditioner also
achieves convergence for variable and discontinuous problems in fewer iterations than
the HBDD precondtioner, and with little extra cost.

2. The multilevel nodal basis algorithm and domain decomposition
methods. In this section we provide the necessary background to define the MNBDD
algorithm. We consider a second-order, selfadjoint, uniformly elliptic, bilinear form
a(u, v) on with Dirichlet condition on 0:

a(u,v) (f,v) Vv e H(), u e H().
Let vH() and vh() be the spaces of continuous, piecewise linear functions, on
the two triangulations, which vanish on 0. We use elements which obey certain
regularity assumptions, and obtain the following discrete variational problem:

a(u , e e

By introducing the standard nodal basis (i} for the space Vh, the above finite
dimensional variational problem is reduced to a linear system:

Kx =b.

Here x is the vector of unknowns xi, b is the vector of components (f, i), and K is
the stiffness matrix where Kj a(, Cj).

level---2

level=l

level--0

FIG. 1. Multilevel nodal basis functions.

2.1. The multilevel nodal basis algorithm. The multilevel nodal basis method
[3] is given in terms of a set of nested sequence of finite element spaces,

Voh C Vh C C Vgh =- yh, J og2 H/h)>_1,
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1488 TIMELY COMMUNICATION

which are successive refinements by a factor of two of Voh VH. Here V/h is the set of
piecewise linear finite element functions after i levels of refinement from the original
coarse triangulation. In other words, Vh is the set of piecewise linear functions (}jn=
(hi dim V/h) in V2J-’h that satisfies

where {y 1,.-., n} is the set of all interior nodal points of the triangulation on
which V/h is defined. In short, {}=1 is the standard nodal basis for the space V/h.
Figure 1 shows the multilevel nodal basis functions in one dimension. The multilevel
nodal basis preconditioner M of Bramble, Pasciak, and Xu [3], [6] applied to v E Vh

takes the following form:

J n!

(1) M-iv AlQv +EE(v, ct)t,
/=1 i=1

where the operator A0 is a discretization of the elliptic operator -A on V0h and Q0 is
the standard orthogonal L2 projection from Vjh to V0h. The parameter is not present
in the original formulation of this preconditioner. Its inclusion here is inspired by the
work of Smith and Widlund [8]. It can be shown that this modified version has the
same order of condition number bound as the unmodified one (i.e., c 1), provided
that ( is independent of h and H.

The operator M-1 involves transformations between standard nodal basis and
multilevel nodal basis (the second term in the above equation), as well as the solution
of the problem corresponding to the original coarse triangulation (the first term in
the equation). In matrix form, this preconditioner can be written as:

where G and GT represent the transformation matrices from multilevel nodal basis
to nodal basis and vice versa, respectively; and D-1 blockdiag[I,j, Inj_l,’", I1,
A-] solves the elliptic problem on the coarse level while leaving the other levels
unchanged. It was proved in [3] that for smooth coefficient problems, the condition
number of the preconditioned system a(2t-lK) _< CJ2, where C is a constant in-
dependent of h and H. In addition, this algorithm requires only O(nj) operations,
where ng is the dimension of the finite element space Vh.

The matrix G transforms the input vector from multilevel nodal basis to nodal
basis. The dimension of the multilevel nodal basis is m =_ ng + nj-1 +... + nl + no,
whereas that of the standard nodal basis is n =ng. Thus, G is a rectangular matrix
of size n m (which is unlike the square transformation matrices for the hierarchical
basis). Let v {v, i- 1,..., nt}g=0 E RM, where v is the value at the nodal point
y corresponding to level l, then

J nl

Vl ql
l--O =-1

where , i 1, 2,..., nt is the set of basis functions in V/h.
The algorithm for G as applied to a vector v (of dimension m) is as follows:
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TIMELY COMMUNICATION 1489

Algorithm G vi - u, i 0,..., J
for 0,...,J- 1

Vl+l Vl+l I+lvl
end for
I Vj

end G

Here the I+1 matrix is obtained from the choice of i’s. On a two-dimensional uni-
form domain using triangular elements, it corresponds to a seven-point interpolation
operator.

2.2. Domain decomposition methods. Domain decomposition methods gen-
erally split the space Vh into N + 1 subspaces

Vh Vhhar ( v0h("l) (... ( Voh(-N).
For each subregion Qi, we thus have a subspace Voh(fi) VhNH(fi). The elements
of Vhha,. are piecewise, discrete harmonic functions, i.e., they are orthogonal, in the
sense of the bilinear form a(., .), to all the other subspaces.

First we partition the stiffness matrix K and vector x into those corresponding
to the interior of the subregions and the edges and vertices. We then have

Kx KB KB XB bB

If we apply block Gaussian elimination to eliminate the interior points, we obtain the
following reduced system or Schur complement for the edges and interfaces

SBXB (Ks KBK[IKIB)XB bs gfsg-lbI S.
The Schur complement matrix SB is generally dense. However, it is not neces-

sary to generate this matrix since, in the conjugate gradient iteration, this matrix is
needed only in terms of matrix-vector products which can be computed by solving
each subregion once and collecting the solution on the interfaces and vertices.

2.3. Multilevel nodal basis domain decomposition preconditioner. In
this section, we combine the ideas from previous sections to derive a new domain
decomposition algorithm. The symmetric form of the preconditioned system using
the multilevel nodal basis preconditioner can be written as:

D-1/2 GTKGD-1/2 c ,
where GD-1/2"Ec x and - D-1/2GTb. Let us partition the unknowns corresponding
to the multilevel nodal basis into those on the subregion interior 21 and those on
the interface B and we eliminate the subregion interior variables &x, we obtain the
reduced system:

where B is the Schur complement of D-1/2 GTKGD-1/2 after eliminating xI. Here we
can also decompose G according to the interior and interface unknowns so that

[ GI GIB ]G GBI GB
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1490 TIMELY COMMUNICATION

where GI and GB are the transformation (rectangular) matrices involving subregion
interior points and interface points, respectively.

The above formulation requires many arithmetic operations when the Schur com-
plement is applied to a vector during the conjugate gradient iterations. By using the
following lemmas, the above system can be reduced to a simpler form.

LEMMA 2.1. G represents a change of basis which leaves the space of variables
on F invariant (i.e., GBI 0).

Proof. GB! represents the contribution of the multilevel nodal bases in the sub-
domain interior to the nodal basis on the interfaces during the transformation. Recall
from previous sections that

J nj

/--0 i--1

where {, i 1, 2,..., nt} is the set of basis functions in Vh, and v, i 1,..., nt is
the set of values defined on the nodal points x. Let u (ui, Us)T and v (vi, vs)
be the partitionings according to subdomain interior and interfaces, where u 6 R’
and v Rm. If we evaluate the above expression at node y on the interface F, we
obtain

"{ }tiB --(GBVB)i--(GBIVI)i’- E E(vB)jl (Jl )i -]- E(vI)Jl (Jl )i
=0 jet jet

where ()i is the value of the basis function at node j evaluated at node i on level 1.
It can be verified that

()i=0 VjtkandiF,

since all multilevel nodal basis functions at the nodes interior to the subregions vanish
on the interface. In other words, the second term in the summation of (2) is identically
equal to 0. Thus GBI 0 and u (GBVB)i.

The following lemma is based on a similar one from Smith and Widlund’s paper
[8]. The proof can be obtained by a straightforward matrix manipulation.

LEMMA 2.2. Let GBI 0 and D blockdiag(Di, DB), then

B D1/2 GSBGBD 1/2.

The above two lemmas imply that if we first eliminate the interior variables and
then transform to the multilevel nodal basis, we will be solving the same linear system
as before (transformation to multilevel nodal basis and then do the elimination). As
a result, we are solving the following simpler and smaller system:

D1/2 GSBGBD1/2 &S S,

which is equivalent to solving the Schur complement system SBXB bB with the
preconditioner M-1 GBDIG. We call the preconditioner using this new for-
mulation the multilevel nodal basis domain decomposition (MNBDD) preconditioner.
This method offers several possible advantages over the standard multilevel nodal
basis method by Bramble, Pasciak, and Xu [3]. The conjugate gradient iteration is
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TIMELY COMMUNICATION 1491

carried out over a much smaller set of unknowns and we will show that the condi-
tion number is smaller. The solution of the subproblems on the interfaces is easily
parallelizable since they are independent. One possible drawback, however, is that
now it is necessary to solve each subregion exactly in each iteration which adds more
computational overhead.

Here the algorithm for GB is similar to the one for G shown before, except now
the basis functions used in the evaluation are restricted only to those on the interfaces.
The operation of GB on a vector Vs is defined by:

J mj

E .,
j=0 i=1

where ., i 1, 2,...mj is the set of basis functions on F.

The MNBDD algorithm can be summarized as follows:

Algorithm MNBDD input r, output z Mlr
Perform partial change of basis to the MN basis v Gr
solve the coarse grid problem y DIv
Perform change of basis back to the nodal basis z GBy

end MNBDD

We need one more lemma from [8].
LEMMA 2.3. Let K be symmetric and positive definite.

numbers of K and its Schur complement satisfy
Then the condition

(Schur(K)) <_ (K).

Using Lemma 2.3, as well as the condition number bounds from [3], we arrive at
the following main theorem.

THEOREM 2.4. (MiSB) <_ O(log2(H/h)) for smooth coefficient problems.
Proof. By using Lemma 2.1 and 2.2 we obtain

_1/2B DB GSBGBD.
By using Lemma 2.3, we obtain

a(D 1/2 GSBGBD1/2)
<_ a(D-1/2 GTKGD-1/2 ),

which is bounded by O(log2(H/h)), see [3].
It is also proved in [3] that the condition number bound in Theorem 2.4 de-

pends also on the elliptic regularity of the problem. For example, for smooth co-
efficient problems on convex polygonal domains, the condition number is bounded
by O(log(H/h)); and for certain discontinuous problems, the condition number is
bounded by O(log3(H/h)).

The hierarchical basis domain-decomposed (HBDD) [8] algorithm is similar to
the BPS algorithm by Bramble, Pasciak, and Schatz [2]. The only difference is that
the HBDD uses the hierarchical basis preconditioner for the edges while the BPS
uses variants of Dryja’s preconditioner [5]. The MNBDD algorithm, however, has
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1492 TIMELY COMMUNICATION

one important difference; namely, in addition to the use of multilevel nodal basis as
preconditioners on the edges, the MNBDD algorithm also implements the multilevel
nodal basis on the vertices. This introduces some redundancy on the vertices. This
redundancy may be the reason for its improved performance (see next section).

3. Numerical results.
3.1. Two-subdomain example. For the two-subdomain case, since there is

one edge and no vertex, it is not necessary to solve a coarse problem. We use the
two-subdomain example of [8] with a different right-hand side, and we compare our

results with those reported in [8]. We also include results from using the Dryja (//2)
[5] preconditioner. We use the domain 1 U 2, where 1 and 2 are unit
squares aligned along an edge F 1 N 2. We use the standard uniform mesh,
and the usual five-point discretization for the Laplacian and the iteration counts are
listed in Table 1 (where n is the number of unknowns on the interface). The right-
hand side is such that the solution is x(x- 1)y(y- 1) and the stopping criterion is
when the relative 2-norm of the residual falls below 10-6. The initial guess used is
u() 1.0. We observe that while the iteration count for the HBDD continues to
grow with larger n, the other preconditioners seem to be bounded independent of n.
While the iteration counts using the HBDD preconditioners grow with n, we see that
the iteration counts using MNBDD seem to gradually level off. Overall, we see that
the MNBDD preconditioner performs relatively well compared to the others.

TABLE 1
Iteration count versus n.

II No precond Dryja MNBDD HBDD
S 4 4 4 4
16 8 6 7 7
32 16 6 9 8’
64 27 6 9 10
128 39 6 9 i2

3.2. Many-subdomain example. Next we consider the case of many subdo-
mains. The unit square is subdivided uniformly into k k square subdomains and
the same model problem is solved using uniform meshes. We compare our results with
a set of experiments reported in [8]. We also compare the condition numbers as well
as iteration counts between our method, Smith and Widlund’s method, and Bramble,
Pasciak, and Schatz’s method (BPS).

3.2.1. Two-dimensional Poisson equation. A two-dimensional Poisson equa-
tion is solved in this case. The right-hand side f is constructed such that the solution
is u(x, y) x(x- 1)y(y- 1) and the stopping criterion is 10-5. Again, the initial
guess is u() 1.0. The results are shown in Table 2.

Our first observation is that our condition number results for the HBDD method
agree very well with those reported in [8]. We also observe that the condition numbers
using the MNBDD method are much lower than the BPS and HBDD methods. The
condition numbers grow very slowly with n; this is not the case with the BPS and
HBDD methods.
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TIMELY COMMUNICATION 1493

TABLE 2
Condition numbers and iteration counts for the Poisson problem.

Grid

32x32 2x2
32x32 4x4
32x32 8x8
64x64 2x2
64x64 4x4
64x64 8x8
64x64 16x16
128x128 4x4
128x128 8x8
128x128 16x16
128x128 32x32
256x256 4x4
256x256 8x8
256x256 16x16
256x256 32x32
256x256 64x64

Number of II HBDD(a=3.6) BPS MNBDD
subdomains II iter iter iter.

9.62 11 11.85 11 2.24 7
7.96 11 8.75 14 2.19 8
5.30 10 6.08 12 2.10 7
12.68 13 16.47 12 2.32 8
11.84 13 13.03 15 2.28 8
8.52 12 9.79 15 2.21 8
5.41 10 6.32 13 2.11 7
16.49 15 17.92 18 2.35 8
12.54 15 14.18 16 2.35 8
8.69 13 10.21 15 2.24 8
5.42 10 6.36 13 2.11 7
21.90 17 23.45 19 2.39 8
17.30 17 19.33 18 2.43 8
12.72 15 14.79 17 2.36 8
8.69 13 10.27 15 2.24 8
5.37 10 6.37 12 2.09 7

3.2.2. Two-dimensional variable coefficient problem. Next, we use the fol-
lowing variable coefficient boundary value problem:

OX
e--xY N exY--Y --f(x,y) in [0, 1] 2

In order to account for the variation of coefficients in this case, we use a simple
diagonal scaling in the HBDD, MNBDD, and BPS preconditioners. The right-hand
side is constructed such that the solution is u(x, y) x(x- 1)y(y- 1), and the stopping
criterion is achieved when the relative 2-norm of the residual drops below 10-5. The
number of iterations are shown in Table 3. Here we observe a small deterioration in
convergence rates. With the use of strongly varying coefficients, all the methods used
show rapidly decaying convergence rates.

TABLE 3
Iteration counts for variable coefficient case.

Grid
32x32
32x32
32x32
64x64

No. subdomains
2x2
4x4
8x8
4x4

64x64 8x8
64x64 16x16
128x128
128xi28
128x128
128x128

4x4
8x8
16x16
32x32

HBDD BPS MNBDD
14 13 9
16 17 10
15 15 11
19 19 10
18 19 11
16 16 12
21 21 11
21 21 12
19 20 12
16 17 13

3.2.3. Two-dimensional discontinuous coefficient problem. The discon-
tinuous coefficient example used in this experiment is as follows:

in f--[0,1]2
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1494 TIMELY COMMUNICATION

where is a constant within each subdomain. In the following, we show the numerical
results for the 16-subdomain case with # in each subdomain as shown in Fig. 2.

10-1 103 10-2 102

10-2 102 10-3 10

10-3 10 10-4 1

10-4 1 104 10-1

FIG. 2. Discontinuous coefficients used.

Again, diagonal scaling is used to account for the variation of coefficients in all
preconditioners used. The right-hand side is constructed such that the solution is

u(x, y) x(x- 1)y(y- 1), and the stopping criterion is the same as in the previous
cases. The number of iterations are shown in Table 4, which shows that all the
methods used are effective in solving the above discontinuous coefficient problem,
with the MNBDD preconditioner slightly better.

TABLE 4
Iteration counts for discontinuous coejCficient case.

Grid No. subdomains
32x32 4x4
64x64 4x4
128x128 4x4
256x256 4x4

HBDD BPS MNBDD
15 14 12
18 16 15
22 18 18
25 20 21

Through the numerical experiments, we have shown that the MNBDD precondi-
tioner offers good convergence rates (better than BPS and HBDD for the problems
used in our experiment), as well as low computational cost (O(n) for MNBDD and
HBDD and O(n log n) for BPS).
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