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Design and Analysis of Toeplitz Preconditioners 
Ta-Kang Ku and C.-C. Jay Kuo, Member, ZEEE 

Abstract-The solution of symmetric positive definite Toeplitz 
systems Ax = b by the preconditioned conjugate gradient (PCG) 
method was recently proposed by Strang and analyzed by R. 
Chan and Strang. The convergence rate of the PCG method 
depends heavily on the choice of preconditioners for the given 
Toeplitz matrices. In this paper, we present a general approach 
to the design of Toeplitz preconditioners based on the idea to 
approximate a partially characterized linear deconvolution with 
circular deconvolutions. All resulting preconditioners can 
therefore be inverted via various fast transform algorithms with 
O(N log N )  operations. For a wide class of problems, the PCG 
method converges in a finite number of iterations independent 
of N so that the computational complexity for solving these Toe- 
plitz systems is O(N log N ) .  

1. INTRODUCTION 
HE solution of an N X N symmetric positive definite T (SPD) Toeplitz system Ax = b arises in many digital 

signal processing applications. Direct methods based on 
Levinson recursion formula [ 101, [ 161 with 0 ( N 2 )  com- 
plexity are well known. Superfast algorithms with O ( N  
log2 N )  complexity have also been investigated by re- 
searchers [ 11-[3], [ 141. More recently, Strang [22] pro- 
posed to use an iterative method, i.e., the preconditioned 
conjugate gradient (PCG) method, to solve the SPD Toe- 
plitz system. The PCG method has a computational com- 
plexity proportional to O ( N  log N )  for a large class of 
problems [22], and is therefore competitive with any di- 
rect method. Another advantage with the PCG method is 
that it is highly parallelizable whereas most direct meth- 
ods cannot be parallelized as easily. 

An iterative method for solving the SPD system Ax = 
b can be derived by minimizing the quadratic functional 
4xTAx - bTx with the conjugate gradient (CG) method, 
and the unique minimum gives the desired solution. The 
convergence rate of the CG method depends on the spec- 
trum of A .  Generally speaking, the CG method converges 
faster if A has a small condition number of clustered ei- 
genvalues. In order to accelerate its convergence rate, a 
preconditioning step is often introduced at each CG iter- 
ation, which leads to the.PCG method. A good precon- 
ditioner for A is a matrix P that approximates A well (in 
the sense that the spectrum of the preconditioned matrix 
P-’A  is clustered around 1 or has a small condition num- 
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ber), and for which the matrix-vector product P - ’ u  can 
be computed efficiently for a given vector U. With such a 
preconditioner, one the? solves in princi le the recon- 

P ‘ / 2 x  and b = P - 1 / 2 b ,  by the CG method [13]. The idea 
of preconditioning is a simple one but is now recognized 
as critical to the effectiveness of the PCG method. 

A Toeplitz preconditioner has been proposed by Strang 
[22], and analyzed by Chan and Strang [5], [7]. Strang’s 
preconditioner S is obtained by preserving the central half 
diagonals of A and using them to form a circulant matrix. 
Since S is circulant, the matrix-vector product S - ’ U  can 
be conveniently computed via fast Fourier transform 
(FFT) with O(N log N )  operations. It has been shown 
[5]-[7] that for a large class of matrices (called the Wie- 
ner class), the spectrum of S-IA is clustered around 1 
except a finite number of outliers. 

In constructing Strang’s preconditioner S ,  only half the 
elements of A is used. In order to use all elements of A ,  
Chan [8] proposed another Toeplitz preconditioner C .  It 
is, by definition, the circulant matrix which minimizes the 
Frobenius norm (IR - AllF over all circulant matrices R .  
This turns out to be a simple optimization problem, for 
which a closed-form solution exists. The elements of C 
can be computed directly from the elements of A by a 
simple formula. However, Chan’s preconditioner C does 
not necessarily improve the convergence performance of 
the PCG method in comparison with Strang’s precondi- 
tioner S [6]. 

This research was motivated by seeking another direc- 
tion to generalize Strang’s preconditioner so that all ele- 
ments of A can be effectively used. Our study leads to a 
general approach for constructing Toeplitz precondition- 
ers. Strang’s and Chan’s preconditioners can be viewed 
as special cases under this framework. We also obtain new 
preconditioners with better performance for Toeplitz ma- 
trices generated by rational functions. Our idea can be 
simply stated as follows. We formulate the inverse Toe- 
plitz matrix-vector product as a partially characterized 
linear deconvolution problem, which can be approxi- 
mated by a certain circular deconvolution. The precon- 
ditioning step corresponds to the implementation of the 
approximating circular deconvolution. Thus, all resulting 
preconditioners can be inverted with O(N log N )  opera- 
tions via various fast transform algorithms such as FFT, 
fast cosine transform, or fast sine transform. One inter- 
esting consequence of our approach is that it allows even 
noncirculant preconditioning matrix P ,  which is neverthe- 
less related to a circulant matrix of size 2N X 2N. 

ditioned sy!tem kt = b ,  where A” = P ’  s 2 A P - 1  P,= ’, 
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The outline of this paper is as follows. The PCG al- 
gorithm for solving a symmetric positive definite system 
of equations is briefly reviewed in Section 11. Then, we 
propose a general framework to construct Toeplitz pre- 
conditioners by exploiting the relationship between linear 
and circular deconvolutions in Section 111. In particular, 
a class of new preconditioners K, ,  i = 1, 2 ,  3, 4, which 
use all elements of A are described. In Section IV, we 
show the relationship among K,'s and prove the positive 
definite property of K,'s and the clustering effect of the 
spectrum of K,-'A. In Section V, we give some numerical 
results and compare the performance of different precon- 
ditioners. The efficiency of new preconditioners K, is 
demonstrated. 

11. THE PCG METHOD FOR TOEPLITZ SYSTEMS 
With the initialization 

arbitrary xo, ro = po  = b - Ax,, and PI = 0 

the kth iteration (k = 1, 2, - 
[13] consists of the following two steps: 

) of the PCG algorithm 

Step 1: Preconditioning. Solve 

pZk-1 = rk-1 
for zk - 

Step 2: CG iteration. Compute 

P k  = ( Z k - 1 ,  rk- l ) / (zk-2,  rk-2) 

Pk = zk-l + PkPk-1 

f f k  = (zk- I ,  rk- I) / (Pk,  Apk) 

xk = x k - l  -k akpk 

rk = rk-1 - ffkAPk. 

It is easy to see that each computational unit above (the 
scalar-vector and vector-vector products and vector ad- 
dition), except the Toeplitz matrix-vector product Apk and 
the preconditioning P -Irk - I ,  requires O ( N )  operations. 
Since we can view Apk as a circular convolution between 
two extended periodic sequences, the Toeplitz matrix- 
vector product can be computed via FFT with O(N log 
N) operations. We will show that the preconditioning 
P - l r k -  I can also be achieved by various fast transform 
algorithms with O(N log N) operations in Section 111. 
Consequently, each PCG iteration requires O(N log N) 
operations. Since fast transform algorithms are highly 
parallelizable, the above PCG method can be parallelized 
in a straightforward way. The parallel time complexity 
can be reduced to O(1og N) whetl O ( N )  processors are 
used. 

For the PCG method to be attractive, it must converge 
fast. The convergence rate of the PCG method depends 
on the eigenvalue distribution of the preconditioned ma- 
trix p - ' ~ .  Suppose that we measure the error xk - x*, 
where x* is the exact solution of Ax = b, with 

R(xk) = (xk - X*)TP-lA(Xk - x*) (1) 

which is the square of a matrix norm. It can be shown that 
the reduction of R (xk) [ 171 by the PCG method is 

R(xk+ 1) 5 min max (1 + A, Gk(X,))2R(xo)  (2) 

where the minimum is taken over any polynominal of de- 
gree k, and the maximum is taken over all eigenvalue A, 
of P-IA .  

It is typical that the eigenvalues of the preconditioned 
Toeplitz matrices are clustered in a small interval (1 - E,  

1 + E) ,  where E is called the clustering radius, except a! 

outliers X I ,  A2, - , A,. For such a case, we are able to 
characterize the convergence rate more precisely. Let us 
choose G, + (X) such that 

Gk A, 

1 + W Y + , ( W  

(3) 

The inequality (2) can be simplified as 

R(Xk) 5 C€2'k-u)R(X~) ,  for k > ff (4) 
where 

In deriving (4), we assume that a outliers are annihilated 
by the first a iterations and the reduction of R(xk)  simply 
depends on eigenvalues clustered around one. It implies 
that, when k > a, R(xk) can be reduced at least by a 
factor c2 per iteration in average. Thus, the number of 
outliers a and the clustering radius E provide some char- 
acterization for the convergence rate of the PCG method. 
For rationally generated Toeplitz matrices, we find that 
there exist strong regularities on the values of a and E so 
that they can be predicted quite accurately. These will be 
detailed in Section V. 

111. DESIGN OF TOEPLITZ PRECONDITIONERS 
A good preconditioner P for an N X N symmetric Toe- 

plitz matrix A should satisfy the following two criteria: i) 
P can be inverted effectively; and ii) P approximates A 
well in the sense that P - ' A  has a small condition number 
or that the spectrum of P - ' A  has a certain clustering fea- 
ture. In this section, we present a systematic approach to 
the design of a class of preconditioners P ,  which can be 
inverted directly via various fast transform algorithms 
with O(N log N) operations. The spectral property of 
P - ' A  will then be discussed in Section IV. 

A. Motivation: A Convolutional Interpretation 

. . .  , U,-  I )T  be arbitrary N-dimensional vectors, and T N  

and RN be N X N Toeplitz and circulant matrices, respec- 
tively. By definition, the i, j entry of T N  is t i P j  and the 
i ,  j entry of R, is ri - j ,  where r, = r,,,d,. We will inter- 

Let U N  = ( u O ,  u I ,  * * * , u N - d T  and uN = ( U O ,  u l ,  
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pret the matrix-vector products T N u N ,  R N u N ,  T"vN and 
RNIvN, from a convolutional point of view, since our ap- 
proach to the design of Toeplitz preconditioners can be 
well motivated by this viewpoint. 

First, consider vN = T N u N .  The element vi, 0 I i 5 
N - 1, can be written as 

N -  1 

U ,  = Jzo t , - j  uj. (6) 

More generally, (6) with any integers i and j defines a 
linear convolution 

where ~ 

v = t * u  (7) 

t = * * * 7 0, t - (N- l ) ,  . * t-1, to, t l ,  * ' 3  

t N - 1 ,  0 ,  - , and 

U = . . *  , O , U O , U l ,  - . .  > u N - 1 9  0, * * e . 
Note that U ,  t, and U in (7) are infinite sequences of du- 
ration 3N - 2, 2N - 1, and N, respectively. In linear 
system theory, U and v are usually known as the input and 
output, and t the impulse response of the system [20]. 
Since the output v contains elements vi of vN, the Toeplitz 
matrix-vector product vN = T N u N  is embedded in the lin- 
ear convolution (7). For (7), we can define a linear de- 
convolution problem, namely, to determine the input U 
from the output v and the impulse response t. 

Next, consider vN = R N u N .  The element vi, 0 I i s 
N - 1, can be written as 

N -  1 

U. = r. r - J ~ J ,  . i = 0 ,  1, * , N - 1. (8) 
j = O  

Equation (8) with any integers i and j defines a circular 
convolution 

8 = i @ U  (9) 
where the output fi, input U and impulse response f are all 
N-periodic sequences with periods 

v s  = (%, ' * * 9 V N - I ) ,  

U; = (MO, * * , U N - , ) ,  and ( r o ,  * . , r N - ] ) .  

Hence, we can embed the circulant matrix-vector product 
vN = R N u N  in the circular convolution (9). The circular 
deconvolution problem is to determine the input U based 
on the output ir and the impulse response f .  

The circular convolution and deconvolution can be per- 
formed effectively by using FFT. That is, by applying the 
discrete Fourier transform, defined as 

It is also possible to compute the linear convolution (7) 
and the corresponding linear deconvolution with FFT. For 
example, we may view U ,  t, and U of (7) as if they were 
all (3N - 2)-periodic sequences, and treat the linear con- 
volution (deconvolution) problem as a (3N - 2)-point cir- 
cular convolution (deconvolution) problem. Since vN = 
T N u N  can be embedded in (7) and since we know all non- 
trivial 2N - 1 and N values of t and U ,  we can compute 
v as well as vN effectively. However, the computation of 
U N  = T N I  vN is not as easy. Since only  values (i.e., v N )  
of the output v are given, we do not have sufficient infor- 
mation to perform the linear deconvolution (but sufficient 
for solving the Toeplitz system). Thus, the inverse Toe- 
plitz matrix-vector product only partially characterizes a 
linear deconvolution problem. 

In order to exploit the low computational complexity 
provided by FFT, we seek some circular deconvolution 
to approximate the partially characterized linear decon- 
volution problem. For example, we can cut the length of 
t,'s and use 

( t - ( N - l ) / 2 ?  * , t-1, to, 4 ,  - * - ? t ( N - 1 ) / 2 )  

for odd N 

( t - N / Z ,  * * , I - I ,  to, 11, * * 9 t N / 2 - I )  
rN = [ 

for even N 

(1 1) 

to define a periodic sequence i of period N. Although the 
N-point circular deconvolution of i and 6 does not embed 
the desired computation TN1vN,  it can be viewed as its 
approximation, and used in the preconditioning step of 
the PCG method. This was originally suggested by Strang 
[22]. One shortcoming of Strang's idea is that half of the 
elements contained in TN is lost. To use all elements of 
TN, we may choose to extend v periodically with vN as 
the basic unit, which will be detailed below. 

B. Construction of Toeplitz Preconditioners 
Let A be an N X N SPD Toeplitz matrix, and TN, be 

an N X N symmetric Toeplitz matrix approximating A.  
For example, we can choose T N ,  = A or TN, which min- 
imizes the difference TN,i - A with respect to a certain 
norm. We define a 2N X 2N symmetric circulant matrix 
as 

N -  1 where ak = C une-(i2rkfllW 

1 t0 tl t N - 2  t N - l  

tl t0 tl t N - 2  

. n = O  

to periodic sequences D, i, and 12 in (9), we obtain 

in the transform domain. Thus, the circular convolution 
(deconvolution) or the embedded vN = R N u N  ( U N  = 
R N 1 v N )  can be obtained with O(N1og N)  operations. 
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and where TN,2 is determined by elements of TN, 

with a constant c. 
Now, let us consider the following augmented system: 

From the discussion in Section 111-A, we know that (15) 
can be embedded by a circular convolution between two 
2N-periodic sequences, whose periods are 

t l ,  * ' tN-2, tN- 1 ,  c,  tN- 1, tN-2, 9 tl (16) 

and 

x 2 ,  ' . x N - l ,  X N ,  X I ,  x2, . . 3 X N -  1, X N -  (17) 
The output sequence is also 2N-periodic, whose period is 

bi, b2, * '  , ~ N - I ,  b ~ ,  bi, b2, * , ~ N - I ,  bN. (18) 
The solution of (15) for x corresponds to a circular de- 
convolution problem and can be computed via FFT with 
O ( N  log N )  operations. Since the system (15) is equiva- 
lent to 

(TN,I + TN,2)x = b 

we can compute (TN, + TN,2)-1 b efficiently and use 

= TN, l  + TN,2  (19) 
as a preconditioner for A. 

Various preconditioners can be constructed in a similar 
way by assuming different periodicities for x and b, such 
as negative periodicity, even periodicity, and odd peri- 
odicity. The corresponding augmented systems and pre- 
conditioners can be written as follows: 

["'I TN'2] EA = [:J and P3 = TN.1 + JTN,2 
TN,2 TN, I 

(22) 
where J is the N X N symmetric elementary matrix which 
has, by definition, ones along the secondary diagonal and 

zeros elsewhere (equivalently, Ji, j  = 1 if i + j = N + 1 
andJi j  = O i f i  + j  # N +  1). 

To choose the appropriate constant c, several factors 
should be considered. First, we know from the above de- 
rivation that if X is an eigenvalue of preconditioner Pi,  i 
= 1, 2, 3, 4, it is also an eigenvalue of the matrix R2N. 
To guarantee the positive definiteness of Pi,  we require 
that 

N -  1 

C tnePiTkn" + (-l)% > 0. (23) 
n =  - ( N -  1 )  

Second, since we want the norm of Pi - A to be as small 
as possible, c should be a small number. For sufficiently 
large N ,  we can adopt the simple rule of thumb, namely, 
if the behavior of the sequence tn is known, c = tN. Oth- 
erwise, c = 0. 

Since preconditioners Pi,  i = 1, 2, 3, 4, correspond to 
2N-circulant systems, they can be inverted via fast trans- 
form algorithms with 0 (N log N) operations. The imple- 
mentation of P;' will be detailed in Section 111-D. The 
subscript N of matrices is omitted hereinafter whenever 
there is no confusion. 

C. Examples of Toeplitz Preconditioners 

matrix 
We describe various preconditioners for the Toeplitz 

32 16 8 4 2 

to illustrate the construction procedure given in Section 
111-B . 

Example 1: (Strang's preconditioner) [22] 
By choosing TI to be the central half-band of A and c 

= 0, we obtain 

32 16 8 0 0 

r 0  0 0 8 1 6 1  

1 6 8 0 0  0 
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The resulting preconditioner 

32 16 8 8 16 

16 8 8 16 32 

is the same as Strang’s preconditioner S. 
Example 2: (Chan’s preconditioner) [8]: Chan’s pre- 

conditioner C is the circulant matrix which minimizes the 
Frobenius norm of A - R over all circulant matrices R. 
It turns out that the elements of C can be computed as 

1 
N 

ci = - (i X a ( N - , )  + (N - i) x a , )  

i = o ,  1,2, * * -  , N - 1. 

By choosing 

32 13.2 6.4 0 0 

13.2 32 13.2 6.4 0 

0 0 0 6.4 13.2 

T2 = 

6.4 0 0 0 0 

13.2 6.4 0 0 0 

The resulting preconditioner 

13.2 6.4 6.4 13.2 

13.2 32 13.2 6.4 6.4 

r . 4  6.4 13.2 32 1 3 . 1  

Pi = TI + T2 = 6.4 13.2 32 13.2 6.4 

13.2 6.4 6.4 13.2 32 

is the same as Chan’s preconditioner C. It is straightfor- 
ward to generalize the above examples to prove that, for 
any give SPD Toeplitz matrix A, Strang’s preconditioner 
S and Chan’s preconditioner Care special cases of P I  with 
appropriately chosen TN,I and c = 0. 

Example 3: (Preconditioners K,): We use (19)-(22) to 
construct preconditioners. Although there exist many 
choices to select TI for the design of preconditioners P,, 
the choice TI = A seems natural. For this choice, all ele- 
ments of A are used in a straightforward way, and we call 
the resulting preconditioners Ki. The corresponding T2 be- 

comes 

1 2 4 8 16- 

2 1 2 4  8 L 16 8 4 2 1- 

T2= 4 2 1 2  4 

8 4 2 1  2 

where c = 1. From (19)-(22), we have 

33 18 12 12 18 

18 33 18 12 12 

12 12 18 33 18 

18 12 12 18 33 

31 14 4 -4 - 

14 31 14 4 

4 14 31 14 

-4 4 14 31 

-14 -4 1 14 

K2= [ 
24 36 18 9 6 

6 9 18 36 24 

3 6 12 24 48- 

- 14 

14 

31 

We want to point out that a preconditioner which is 
very similar to KI except c = 0 was described in [ 5 ] .  Note 
also that preconditioners S, C ,  and KI ,  which are special 
cases of P I ,  are all circulant. If B is a symmetric Toeplitz 
matrix with the first row 

(ao, a l ,  , ak, -ak, * , -ad  * . 

for odd N and k = (N - 1)/2 

or 

(a09 a1, - , a k - l ,  0, - a k - l ,  - * - , - a l )  

for even N and k = N / 2  

we say that B is skew circulant [9]. It is clear that K2 is 
skew-circulant. In fact, one can verify that the circulant 
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and skew-circulant properties hold for general PI and P2 
given by (19) and (20), respectively. However, new pre- 
conditioners K3 and K4 are neither circulant nor Toeplitz. 

D .  Comparison of Computational Cost 
We compare the computational cost for the precondi- 

tioning step P - I  r with different preconditioners at each 
PCG iteration as follows. Preconditioners C ,  S, and K l  
are all N X N circulant matrices and the preconditioning 
can be done via N-point FFT with approximately 1.5N log 
N real multiplications and 4.5N log N real additions when 
N = 2' [21]. Preconditioner K2 is skew circulant and can 
be transformed into a circulant matrix through D H K 2 D ,  
where D is a diagonal matrix [9]. Consequently, the im- 
plementation of K c ' r  is almost as easy as that of K y ' r .  
Although preconditioners K3 and K4 are noncirculant, 
K3-'r and K i ' r  can be performed via N-point fast cosine 
and sine transforms, respectively. The operation counts 
for N-point fast cosine (or sine) transform are approxi- 
mately equal to that of N-point FFT in both the order and 
the proportional constant [19], [26]. Therefore, they are 
as competitive as C ,  S, and K; ,  i = 1, 2. 

IV. SPECTRAL PROPERTIES OF THE PRECONDITIONED 
TOEPLITZ MATRIX 

We let TI : A and denote the corresponding T2 with c 
= aN by A A  so that preconditioners Ki can be expressed 
as 

K1 = A + A A ,  

K3 = A + JAA,  

K2 = A - A A  

K4 = A - JAA.  (24) 

To study the spectral properties of KII'A,  we view the 
matrix A to be a member in a sequence of m X m sym- 
metric Toeplitz matrices { A , } Z ,  where the first row of 
A,  are elements from the infinite sequence {a,,},m=o up to 
element a,  - and { a ,  },"=o is known as the generating se- 
quence of A,. We assume that the sequence a,, satisfies 
the following two conditions: 

W 

f ( e )  = C a,e-ine 2 6 > 0,  ve (25) 
-m  

W 

c Ian1 03 (26) 
- m  

and the resulting Toeplitz matrices are said to be gener- 
ated by a positive function in the Wiener class [7]. Since 
f (e) describes the asymptotic eigenvalue distribution of 
A,, the above conditions imply that eigenvalues of A,  are 
bounded and uniformly positive asymptotically. With 
conditions (25) and (26), we will establish three main re- 
sults for the spectra of K,-'A. 1) There exists a simple 
relationship between eigenvalues of K Y ' A ,  i = 1, 2, 3, 
4. 2) The eigenvalues are all real and positive for suffi- 
ciently large N. 3) The eigenvalues of K;' A are clustered 
around 1 except a finite number of outliers. 

To relate the eigenvalues of KIT' A ,  we introduce some 

definitions and related concepts. An N-dimensional vector 
v is called symmetric if Jv = v or skew-symmetric if Jv 
= -v, where J is the symmetric elementary matrix. An 
N X N matrix Q is called doubly symmetric (or symmetric 
centrosymmetric) if 

Q = Q' and (JQ)' = (JQ) .  (27) 

Note that if Q is doubly symmetric, matrices Q and J 
commute. 

When A and A A  are symmetric Toeplitz matrices, A ,  
A A ,  and J A A  are all doubly symmetric. Since any linear 
combination of doubly symmetric matrices results in a 
doubly symmetric matrix, preconditioners K,  given by (24) 
are doubly symmetric. The eigenvectors of Kl- 'A can be 
characterized by the following lemma, which will be 
needed in proving Theorem 1. 

Lemma I: If matrices A and B are both doubly sym- 
metric, there exists a set of rN/21 symmetric eigenvec- 
tors and LN/2 J skew-symmetric eigenvectors for  B- 'A.  

Let us rewrite the spectra of K,- 'A,  1 I i 5 4,  as 
Proof: See Appendix A. 0 

[X(K,- 'A)]- '  = X(A-' (A + K, - A ) )  

= X(Z + A - ' ( K ,  - A ) )  = 1 + h ( A - ' ( K ,  - A ) ) .  (28) 

The following theorem characterizes the relation between 
the eigenvalues of A-'  (K ,  - A ) .  

Theorem I :  Let Q, be the set of the absolute values of 
the eigenvalues of A-' (K, - A ) ,  i . e . ,  

Q, = (1x1: A-' (K,  - A)x = Ax}, i = 1, 2, 3, 4. 

Then, Ql  = Q2 = Q3 = Q 4 .  
Proof: See Appendix B. U 

The above theorem can be stated alternatively as fol- 
lows. For an arbitrary eigenvalue X of A-' (K,  - A ) ,  there 
exists an eigenvalue of A-'  (4 - A ) ,  j # i ,  with magni- 
tude 1x1. Note that the spectra of A - ' ( K ,  - A )  clustered 
around zero is equivalent to those of Kl-' A clustered 
around unity. Since the spectra of A-'  (K,  - A )  are clus- 
tered in a very similar pattern, so are those of K ; ' A .  This 
theorem implies that the PCG method with precondition- 
ers K, ,  i = 1, 2, 3, 4,  should converge in a similar rate. 

When preconditioners K are positive definite, the pre- 
conditioned matrices K;'f2 A K ;  ' I 2  are symmetric posi- 
tive definite. Therefore, the PCG method can be conve- 
niently applied and it converges to the unique solution. 
The positive definiteness of K,  is given in the following 
theorem. Its proof is similar to that of Theorem 1 in [7]. 

Theorem 2: Preconditioners K, ,  i = I ,  2, 3 ,  4 ,  for  
symmetric positive deJinite Toeplitz matrices with the gen- 
erating sequence satisfying (25) and (26) are uniformly 
positive and bounded for  suflciently large N. 

Proof: See Appendix C. 0 
In the next theorem, we describe the clustering feature 

of the spectra of A - ' ( K ,  - A )  and, hence, that of K Y ' A .  
The proof is similar to that given by Chan in [5]. 

Theorem 3: Let A be the N x N matrix of a sequence 
of symmetric positive dejinite Toeplitz matrices A,,, with 
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the generating sequence satisfying (25) and (26). The ei- 
genvalues of matrices A-' (Ki - A )  are clustered between 
( - E ,  + E )  except a jn i te  number of outliers for  sujiciently 
large N ( E ) .  

Proof: See Appendix D. 0 

V. NUMERICAL RESULTS 
We compare Strang's preconditioner S ,  Chan's precon- 

ditioner C, and our preconditioners K, for different nu- 
merical test problems in this section. We will show the 
clustering properties of the spectra of P - ' A  with P = C, 
S, Ki as well as the convergence history of the PCG 
method. 

For a sequence of Toeplitz matrices A, generated by 
sequence a,,  we can define their generating function as 
the Z transform of a,  

m 

~ ( z )  = C a,zPn.  
n =  -m 

If A is symmetric, A ( z )  can be decomposed into 

A ( z )  = A + ( z )  + A + ( z - ' )  

where 

is the Z transform of a causal sequence. Thus, A ( z )  is 
completely characterized by A + ( z ) .  If 

P c C,Z+ 
n = O  A+(z) = , where cpdodq # 0 
c d,z-" 
n = O  

we call A, (z) a rational function of order (p ,  q ) .  In the 
digital signal processing context, Toeplitz matrices with 
rational generating functions are particularly of interest, 
since the covariance matrices of stationary autoregressive 
(AR), moving average (MA), and ARMA random pro- 
cesses can be expressed in this form. 

We choose A +  ( z )  to be rational for problems 1-5 and 
nonrational for problems 6-8. All numerical experiments 
are performed with respect to 32 x 32 Toeplitz matrices 
A with right-hand-side b = (1, * - * , l ) T  and initial con- 
dition xo = 0. We can roughly classify the eigenvalues of 
P - 'A  into two categories: the outliers and the clustered 
eigenvalues between (1 - E ,  1 + E) for general A ( z ) .  
However, a more precise distinction can be made for ra- 
tional A ( z ) .  That is, the clustered eigenvalues are those 
contained in the interval (1 - E,  1 + E), where the clus- 
tering radius E converges to zero when N goes to infinity, 
and the outliers are the eigenvalues not converging to one. 

Problem 1: a ,  = 0.5" for n 5 3 and a,  = 0 for n > 
3 (banded Toeplitz matrix with p = 3, q = 0). 

For a banded Toeplitz matrix with bandwidth p 5 
LN/2 _I , K1 and S are the same. Since Kl's and A have N 
- 2p identical rows, K ; ' ( K ,  - A) = I - K,'A has a null 
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2 
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lo-" ' 

No. of iterations 
(b) 

Fig. 1. (a) Eigenvalue distribution of P - ' A  and (b) convergence history 
for problem 1. 

space of dimension N - 2p. This implies that K,- 'A has 
the eigenvalue one with multiplicity N - 2p, which cor- 
respond to the clustered eigenvalues defined above. The 
other 2p eigenvalues are outliers. The spectra of P - ' A  are 
plotted in Fig. l(a). For K,-'A,  i = 1, 2, 3, 4, there are 
6 ( p  = 3) outliers and N - 6 eigenvalues repeated at one. 
For K,-'A, i = 3 ,  4, each pair of outliers are closely lo- 
cated so that only three distinct dots appear in the figure. 
The eigenvalues of C I A  are not clustered as well for this 
problem. 

According to the discussion in Section 11, the PCG 
method with K,  should converge in at most 2p + 1 itera- 
tions with exact arithmetic since K;' A has 2p + 1 distinct 
eigenvalues. However, it is worthwhile to point out that 
(4) only provides an upper bound estimate of the conver- 
gence rate. From our experience, this estimate seems pes- 
simistic. We observe the PCG method with Ki converges 
in p + 1 iterations for banded Toeplitz matrices with dif- 
ferent values o fp .  In Fig. l(b), we plot the 2-norm of the 
residual b - Ax as a function of the number of PCG it- 
erations. It is clear from the figure that the PCG method 
converges in 4 (= p + 1) iterations for all K,'s .  
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TABLE I 
EIGENVALUES OF K ; ' A  

K ; [ A  K; 'A  K ;  I A  K ;  ' A  

I . . . . . . . .  

C 
- -  

S 
- ... 

K4 

K3 

0 1 2  3 4 5 6 7 8 9 10 

Eigenvalue distribution 
(a) 

0 2 4 6 8 10 12 

Eigenvalue distribution 
(a) 

10' i 

2 4 6 8 12 10 

10' 

1W 

No. of iterations 
(b) 

Fig. 3 .  (a) Eigenvalue distribution of P - ' A  and (b) convergence history 
for problem 3 .  

No. of iterations 
(b) 

Fig. 2. (a) Eigenvalue diskbution of P - ' A  and (b) convergence history 
for problem 2. 

Problem 2:  a, = t" ,  (q  = 1, a single pole at t) .  
For this generating sequence, it has been observed by 

Strang [24], that the spectrum of S - ' A  has two outliers at 
(1 + t ) - '  and (1 - t ) - ' ,  two eigenvalues repeated at 1, 
and other eigenvalues at (1 + tN/2)-' and (1  - tN/')-'  
with multiplicity (N - 4)/2 when N is even. Neverthe- 
less, the same regularity does not hold for odd N .  For the 
same generating sequence, the spectra of Kl- 'A ,  i = 1 ,  
2, 3 ,4 ,  have only three distinct eigenvalues for both even 
and odd N .  We summarize these values in Table I and 
plot the spectra of P - ' A  with t = 0.9 in Fig. 2(a). For 
preconditioners K,,  the two outliers are located at (1 + 
t ) - '  or (1 - t ) - '  and other N - 2 clustered eigenvalues 

are repeated at (1 - t N ) - '  or (1 + t N ) - ' .  The outliers of 
Kl- 'A ,  i = 3, 4 are repeated with multiplicity 2. 

The convergence history of the PCG method with t = 
0.9 is given in Fig. 2(b). Since Kl- 'A  has only 3 distinct 
eigenvalues, the PCG method converges in at most 3 it- 
erations independent of N .  From this figure, we see that 
the PCG method converges with 2 (or 3) iterations with 
preconditioners K, (or S). 

Problem 3: a, = (n + l)t", (q = 2, a double pole at 
t ) .  

We plot the eigenvalues of P - l A  with t = 0.4 in Fig. 
3(a). The spectra of P - ' A  consists of 4 outliers and N - 
4 clustered eigenvalues between (1 - E ,  1 + E).  Similar 
to problem 1, each pair of outliers of K ; ' A ,  i = 3 ,4 ,  are 
closely located so that only two distinct dots appear. The 
corresponding convergence history is plotted in Fig. 3(b). 
We see that preconditioners K, converge faster in com- 
parison with S and C. It takes approximately 5 (or 7) it- 
erations for preconditioners K, (or S) to converge. Note 
that K3 and K4 behave better than K I  and K2, when the 
number of iteration becomes large. 
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TABLE I11 

t e ( S - ' A )  I I 6  / a O  I e (K,- 'A)  Ia3daol 

0.3 2.0 x io-' 7 . 3  x 3.6 x 1 0 - l ~  6.1 x 1 0 - 1 ~  

0.5 4 . 6  x 2 . 6  x  IO-^ 4.4 x io-' 7.7 x 1 0 - ~  
0 . 4  1.3 x 7.3  x 1.2 x lo -"  6.1 x l o - ' *  

When A +  (z) is a rational function of order ( p ,  q ) ,  we 
observe two important regularities for the spectra of 
K ; ' A  and S - ' A :  

R1) The number CY of outliers is equal to 2 X max 
(P, d .  

R2) The order of E is proportional to IaN/aol (or 
1aN/2/aol) for Ki's (or S). 

The values of CY, max ( p ,  q),  € @ - ' A ) ,  ) u N / ~ / u o ~ ,  
E ( K , ~ ' A )  and IaN/aol for problems 1 and 2 are listed in 
Table 11. We can clearly see that they are consistent with 
the above two rules. 

For problem 3, CY = 4 and max ( p ,  q) = q = 2 and 
rule R1 holds. We list € ( K I A ) ,  la16/a01, e(K,: 'A)  and 
(a32/aoJ for t = 0.3,  0.4, 0.5 in Table I11 to verify rule 
R2. 

Rule R2 explains why our preconditioners Ki behave 
better than Strang's preconditioner S. From R2, we have 

Recall that the construction of preconditioner S uses only 
half the elements of A (up to the element aN12) whereas 
the construction of K,  uses all elements in A (up to the 
element aN) .  Thus, to use more elements of A by our ap- 
proach does improve the clustering radius e by a factor of 

Based on rule R2, the clustering radius E converges to 
0 as N goes to infinity for rational generating sequence a,, 
in the Wiener class. There are at most CY + 1 distinct ei- 
genvalues asymptotically. Therefore, the PCG method 
converges in a finite number of iterations for large N ,  and 
the total computational complexity is 0 ( N  log N ) .  

Problem 4: a,, = (n + l ) t :  + ty, (q  = 3 ,  a double 
pole at to and a single pole at t l ) .  

The spectra of P - ' A  with to = 0.3 and t l  = 0.8 are 
plotted in Fig. 4(a). There are 6 (max ( p ,  q) = 3) outliers 
for K,'A and K I A .  The outliers of K,- 'A,  i = 3 ,  4, are 
clustered into three distinct dots. The clustering radii E ,  

a l6 /a0  and a32/ao  with different to and t l  are given in Ta- 
ble IV to verify rule R2: 

The convergence history of the PCG method with to = 
0.3 and tl = 0.8 is given in Fig. 4(b). Preconditioners K,  

0 ( 1  aN/aN/2 I ). 

Eigenvalue distribution 

(a) 

2 4 6 8 10 12 
10-a 

No. of iterations 
(b) 

Fig. 4 .  (a) Eigenvalue distribution of P - ' A  and (b) convergence history 
for problem 4. 

TABLE IV 

to t l  e ( S - ' A )  .,,/ao E ( K ; ' A )  a d a 0  

0.3  0 .5  9.9 x 7.7  x 1.5 x 1.2 x lo-'' 
0.5 0.3 1.9 x 1 0 - ~  1.3 x 5.8  x 3 . 8  x 1 0 - ~  
0 . 3  0.8 1.1 X lo-* 1.4 X 5.2  X 4.0 X 

behave better than C and S. It takes approximately 7 (or 
10) iterations for K j  or (or S )  to converge. 

Problem 5: a,, = t: + t ;  for n I 3 and a,, = t ;  for n 

In this example, the rational function A +  (z) has the or- 
der (4, 1). The spectra of P - ' A  with to = 0.8 and t ,  = 

> 3 ( p  = 4, q = 1). 
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Eigenvalue distribution 
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Fig. 5 .  (a) Eigenvalue distribution of P - ' A  and (b) convergence history 
for problem 5 .  

0.6 are plotted in Fig. 5(a). There are 8 (max ( p ,  q )  = 4) 
outliers for K, and S .  The outliers of K,:'A, i = 3, 4 are 
clustered into 4 distinguishable pairs. Rule R2 also holds 
for this problem. To avoid unnecessary repetition, we do 
not give a table to illustrate it. 

The convergence history of the PCG method with to = 
0.8 and tl = 0.6 is plotted in Fig. 5(b). It takes approxi- 
mately 8 (or 11) iterations for Ki (or S )  to converge. 

As discussed in problem 1 ,  the PCG method converges 
in at most 2p + 1 iterations (orp  + 1 empirically) forp- 
banded Toeplitz matrices with O ( p N  log N )  operations. 
It is worthwhile to point out that there exist direct meth- 
ods which solve the system with 0 ( p N )  operations [ 111. 
Additionally, if A ,  (2) is or order ( p ,  q) ,  q > 0, Dickin- 
son proposed a method to transform Ax = b into an equiv- 
alent symmetric banded system ik = 6 with upper band- 
width max ( p ,  q ) ,  whose solution can be obtained with 
max ( p ,  q )  X O ( N )  operations [12]. However, this trans- 
formation requires the knowledge of the exact form of 
A (2) .  

The PCG method has three advantages in comparison 
with Dickinson's method. First, to implement the PCG 

TABLE V 
~ ~ 

C S K, 

( n  + I)-* 8 7 6 
'cos  ( n r ) / ( n  + 1) 8 9 8 

(log (n  + 2))-'  8 10 9 

algorithm, we only need a finite segment of the generating 
sequence a,, n = 0, 1, , N - 1 ,  rather than the 
precise formula of A ( z ) .  Second, the PCG method can be 
easily parallelized due to the parallelism provided by FFT, 
and it is possible to reduce the time complexity to O(1og 
N ) .  In contrast, Dickinson's method is a sequential al- 
gorithm, and the time complexity can only be reduced to 
0 ( N ) .  Third, the PCG method is more widely applicable. 
For example, it can also be applied to Toeplitz matrices 
with nonrational generating functions. 

Numerical results for Toeplitz matrices with nonra- 
tional generating functions are presented below. We con- 
sider 3 test problems, i.e., 

Problem 6: a, = (n  + 1)-2. 
Problem 7: a, = cos ( n a ) / ( n  + 1). 
Problem 8: a, = (log (n  + 2))-l .  
Note that la, I in problems 6-8 decay more slowly than 

la, I in problems 1-5 asymptotically. The numbers of it- 
erations required to achieve Ilb - A x [ ] ,  I are sum- 
marized in Table V for problems 6-8. Since all Ki's give 
the same performance, they are not distinguished. It turns 
out that all preconditioners have similar performances. 

In order to understand their asymptotic behaviors, we 
consider a typical case P = K1 and perform experiments 
for problems with sizes 32, 64, and 128. We plot the 
spectra of K;'A and the corresponding convergence his- 
tory for problems 6-8 in Figs. 6(a) and (b). As seen in 
the figures, the change of the spectra and the convergence 
rates is not sensitive to the size of the problem. We con- 
clude that the PCG method converges in a finite number 
of iterations independent of N for problems 6-8 and the 
total computational complexity is 0 ( N  log N )  . 

Although the complexity of the PCG method is lower 
than that of fast or superfast direct methods for problems 
6-8, it is worthwhile to point out that other factors have 
to be taken into account in comparing different methods, 
such as the constant in O(N log N) ,  the necessity of N = 
2' for using FFT efficiently, and the convergence rate of 
the PCG method for any matrix A .  Besides, the Levinson 
algorithm with complexity O ( N 2 )  not only solves the 
Yule-Walker equations, which is a special case of Ax = 
b, but also gives A - ' .  

VI. CONCLUSIONS AND EXTENSIONS 
In this paper, we have presented a systematic approach 

to the design of Toeplitz preconditioners by approximat- 
ing a partially characterized linear deconvolution problem 
(the inverse Toeplitz-vector product) with some circular 
deconvolution problems. In particular, we show the de- 
sign of four new preconditioners K j ,  i = l ,  2 ,  3, 4, and 
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Fig. 6.  (a) Eigenvalue distribution of K ; ' A  with N = 32, 64, and 128, 
and (b) their corresponding convergence history for problems 6-8. 

analyze their spectral properties. This new class of pre- 
conditioners are very attractive for Toeplitz matrices with 
rational generating functions. 

The convolutional viewpoint not only provides ways to 
use all elements given by Toeplitz matrices so that pre- 
conditioned matrices may have better spectral properties. 
It also suggests naturally how to generalize the precon- 
ditioning technique to block Toeplitz matrices, which 
arise in many 2-D signal processing and estimation prob- 
lems. This subject is under our current investigation. It 
appears that, in comparison with direct methods, the re- 
duction of the computational complexity of the PCG 
method can be even more significant for 2-D problems 
than for 1-D problems. More research along this direction 
is expected in the near future. 

We also found from numerical experiments that, for 
Toeplitz matrices A with rational generating functions, 
there exist strong regularities in the number of outliers 
and the clustering radius for the spectra of preconditioned 
Toeplitz matrices with Strang's preconditioner S or the 
proposed preconditioners K,. These regularities have re- 
cently been analyzed and reported in [15]. One potential 

application of these regularities is to estimate the order of 
an ARMA model by examining the convergence history 
of the PCG method. 

APPENDIX A 
PROOF OF LEMMA 1 

For an N X N doubly symmetric matrix B ,  we can ex- 
press it in form [4] 

or 
B1 b JB2J 

B = [bT cb bTJ I, for odd N 

where B l ,  B2, and J a r e  LN/2] X LN/2] matrices with 
BT = Bl and BT = JB2J, b is a column vector of length 
LN/2 J , and cb is a constant. By defining the orthonor- 

mal matrix 

B2 J b  JBIJ 

or 
r r o  z i  

1 
Q = - 0 & 0 , foroddN 

\ l i [ - J  0 

we can decouple the eigenproblem of B into two separated 
subproblems, if e. , 

0 

B1 - JB2 

BI + O JB2 1 3  r Q-'BQ = Q ~ B Q  = 

for even N 
or 

0 Cb A b T  

0 A b  Bl + O JB2 I? BI - JB2 0 

Q - ~ B Q  = Q ~ B Q  = 

for odd N .  

For the generalized eigenvalue problem 

Ax = ABx 

with doubly symmetric A and B,  we can transform it to 
another generalized eigenvalue problem, 

Ay = My 

where A = Q-IAQ, B = Q-IBQ and x = Qy. 

genvectors of B-'A can be written as 
Now, A and B are block diagonal matrices and the ei- 

[:I or ip,1 for even N 
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and 

where y , ,  y 2 ,  (CY, yT)T are eigenvectors of the following 
generalized eigenvalue problems: 

(AI - JA2)YI = XI (Bl - JB2)YI 

(AI + JA2IY2 = X2(B1 + JB21Y2 
and 

whose first row is specified by (ao, a l ,  9 U N -  1 ,  U N ,  
aN - I ,  * * * , al).  It is clear that 

[tA ,""l[:] = X [I] e (A + AA)x  = AY. 

Therefore, if X is an eigenvalue of K 1  with eigenvector x, 
A is also an eigenvalue of R~~ with eigenvector (x T ,  x ' l T .  
Since R2N is symmetric circulant, the eigenvalue h can be 
written as 

N 
= C a n e - i 2 s k n / 2 N  

n = - ( N -  I )  
. -  

N -  I 

= a0 + c an2  cos (2;F) - + (-l)kaN 
n = l  

c, &aT 

which is real and equal to a partial sum of the infinite 
series ~ ~ ~ ~ ~ ~ - 1 " ~  from = 1 - N to N .  With conditions 
(25)  and (26 ) ,  we conclude that eigenvalues of K l  are uni- 
formly positive and bounded for large N .  Similarly, we 
can show that eigenvalues of K, ,  i = 2 ,  3, 4, are uni- 

Through the transformation x = QJ, the eigenvector of 
B-IA can be written as 

1 Y2 

i [ h -Jyl h JY2 formly positive and bounded for large N .  0 
1 or - [ ] for evenN 

and 
APPENDIX D 

PROOF OF THEOREM 3 
Let AM and AAM be the leading M x M submatrices of [ ] or 

[A] for odd N 
A and AA, respectively. For a constant M Jz Jz 

M 
-JYl JY 3 

N 

which are skew-symmetric and symmetric, respectively. 

0 

I ( A A , \ ~ ~  = max c l(AAw),,,l I n=NFl -M 21anl I ,y. 
It is clear that there are r N / 2 1  symmetric and L N / 2  J 
skew-symmetric eigenvectors for B -'A. 

, r = l  

(30) 

When AAw is symmetric, we have I I A A M ~ ~ ~  = I lAAwl l~  
[ 131. Thus 

APPENDIX B 
PROOF OF THEOREM 1 

using the property that the inverse of a doubly symmetric 
matrix is still doubly symmetric [18], we know that 
commutes with J .  Therefore, we have 

Let us define E, = A - ' ( K ,  - A ) ,  i = 1 ,  2 ,  3, 4. By I 1 u M 1 1 2  (IlAAMl)1111uMllm)1'2 5 7. (31) 

Since eigenvalues of AM are bounded by the maximum 
and the minimum eigenvalue of A [ 131. With the assump- 
tion that A is bounded and uniformly positive definite, 
2-norm of A is bounded by c = 1 / 6  and E2 = -El, E3 = JEl, E4 = -JEl. 

From above, it is clear that Q ,  = Q2 and Q3 = Q4. Due 
to Lemma 1, Ei, i = 1 ,  2 ,  3 ,  4, have a set of r N / 2 1  
symmetric eigenvectors and L N / 2 J  skew-symmetric ei- 
genvectors. Let x be a symmetric eigenvector of El  with 
eigenvalue X. Since 

E ~ x  = JEIx = EIJx = EIx = AY 
the vector x is also an eigenvector of E3 with the same 
eigenvalue A. Similar arguments apply to the skew-sym- 
metric eigenvector of E , .  Thus, Q l  = Q3 and the proof is 
completed. 0 

APPENDIX C 
PROOF OF THEOREM 2 

Let R2N be the 2N X 2N circulant matrix 

IIAiIII2 5 W 1  112 I C. 

By the minimax theorem (or the Courant-Fisher theorem) 
of eigenvalues [ 2 3 ] ,  [ 2 5 ] ,  A-IAA has at most 2(N - M )  
eigenvalues with magnitude larger than IIAil AAM 112. 

Since 

lIAi'AAMM)12 5 l1Ai1 \1211AAMM(12 I cy = E 

A - ' ( K 1  - A )  has at most 2 ( N  - M )  eigenvalues with 
magnitude larger than E. The same arguments can also be 
applied to preconditioners K2,  K3 and K4. This completes 

The above proof relies on arguments from matrix anal- 
ysis. However, we want to point out that Chan and Strang 
[7] used the theory of collectively compact operators to 
prove a clustering result under a weaker assumption where 
f(0) in (25 )  is continuous but not necessarily in the Wie- 
ner class. 

the proof. 0 
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