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MULTILEVEL FILTERING PRECONDITIONERS:
EXTENSIONS TO MORE GENERAL ELLIPTIC PROBLEMS*

CHARLES H. TONGt, TONY F. CHAN:, AND C. C. JAY KUO

Abstract. The concept of multilevel filtering (MF) preconditioning applied to second-order
selfadjoint elliptic problems is briefly reviewed. It is then shown how to effectively apply this concept
to other elliptic problems such as the second-order anisotropic problem, biharmonic equation, equa-
tions on locally refined grids and interface operators arising from domain decomposition methods.
Numerical results are given to show the effectiveness of the MF preconditioners on these problems.

Key words, multilevel preconditioners, elliptic problems, conjugate gradient method, domain
decomposition
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1. Introduction. Preconditioned conjugate gradient (PCG) methods have been
a very popular and successful class of methods for solving large systems of equations
arising from discretizations of elliptic partial differential equations. With the advent
of parallel computers in recent years, there has been increased research into effective
implementation of these methods on various parallel computers. Since effective pre-
conditioning plays a critical role in the competitiveness of the PCG methods, many
classical preconditioners have been proposed and studied, especially for second-order
elliptic problems. Among these are the Jacobi preconditioner (diagonal scaling), the
SSOR preconditioner, the incomplete factorization preconditioners (ILU and MILU),
and polynomial preconditioners. Many such preconditioners have been very successful
in giving high performance, especially when implemented on sequential computers.

In the parallel implementation of PCG methods, the major bottleneck is often
the parallelization of the preconditioner. The rest of the PCG methods can usually
be parallelized in a straightforward way (the inner product computation is also con-
sidered a bottleneck but its wide applicability in other methods has prompted many
parallel computer manufacturers to develop a highly optimized and efficient code for
it). Unfortunately, for many of the classical preconditioners, there is a fundamental
trade-off in the ease of parallelization and the rate of convergence. A principal ob-
stacle to parallelization of many preconditioners that are effective in improving the
convergence rate (e.g., SSOR, ILU, and MILU) is the sequential manner these pre-
conditioners use in traversing the computational grid--the data dependence implicitly
prescribed by the method limits the amount of parallelism available. Reordering the
grid traversal (e.g., from natural to red-black ordering) or inventing new methods
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228 C.H. TONG, T. F. CHAN, AND C. C. J. KUO

(e.g., polynomial preconditioners) to improve the parallelization alone often has an
adverse effect on the rate of convergence [8].

The fundamental difficulty can be traced to the global dependence of elliptic
problems. An effective preconditioner must account for the global coupling inherent in
the original elliptic problem. Preconditioners that use purely local information (such
as red-black orderings and polynomial preconditioners) are limited in their ability
to improve the convergence rate. On the other hand, global coupling through a
naturally ordered grid traversal is not highly parallelizable. The challenge is therefore
to construct effective global coupling that is highly parallelizable. We are thus led to
the consideration of preconditioners that share global information through a multilevel
grid structure (ensuring a good convergence rate) but perform only local operations on
each grid level (and are hence highly parallelizable). Preconditioners of the multilevel
type for second-order selfadjoint operators have been proposed recently by several
researchers, including Bramble, Pasciak, and Xu [6]; Axelsson [1]; Vassilevski [25];
Axelsson and Vassilevski [2]; [3]; Kuo, Chan, and Tong [13]; and Kuznetsov [14].

The main goal of our paper is to employ the main ideas in [6] and [13] to develop
algorithms for more general problems, such as second-order anisotropic problems,
the biharmonic equation, problems on locally refined grids, and interface operators
for domain decomposition methods. Our approach can be viewed as adapting the
projection operators and eigenvalue estimates in [6] to more general problems. On the
other hand, the filtering framework of [13] offers the flexibility in designing the filters
(or projection operators), which improves the performance substantially in several
cases (e.g., the anisotropic case). In particular, the second-order anisotropic problems
and problems on locally refined grids can be solved more efficiently by using different
types of filters, while the the biharmonic equation and interface operator can be solved
efficiently by using different eigenvalue estimates. To the best of our knowledge, two
of these extensions (i.e., the biharmonic and the domain decomposition.applications)
are novel. While a general theory is lacking at this point, we demonstrate numerically
that these algorithms perform very well, at least for model problems.

The multilevel preconditioners mentioned above are similar in spirit to the clas-
sical multigrid method. They are designed to capture the mesh-dependent spectral
property of a discretized elliptic operator. The variations in the coefficients are han-
dled in most cases by the conjugate gradient method, which also makes the iteration
more robust. In [13], we presented some experimental results comparing several mul-
tilevel preconditioners with a multigrid cycle as a preconditioner. However, further
tests are needed to decide whether this new class of multilevel preconditioners offers
practical advantages over the classical multigrid methods.

2. The concept of MF preconditioners. We shall motivate the construction
of the MF preconditioner by first considering the following one-dimensional Poisson
equation on F/= [0, 1]:
(1) f(x)
subject to zero Dirichlet boundary conditions. A standard second-order discretization
of the above equation on a uniform grid with grid size h 1/(n + 1) gives rise to
a linear system of equations denoted by Au f, where A, u, and f correspond to
the discrete Laplacian, the solution and the forcing functions, respectively, and A is a
tridiagonal matrix with diagonal elements -1/h2, 2/h2, -1/h2. It is well known that
the matrix A can be diagonalized as

A WAWT
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MULTILEVEL FILTERING PRECONDITIONERS: EXTENSIONS 229

where W is an orthogonal matrix with elements

(W)ij 2x/sin ijrh,

and

A diag(Ak),
4 kTrh

Ak - sin2
2

The main idea of the MF preconditioning is to approximate this eigendecompo-
sition of A. First, the eigenfunctions of A are grouped into subsets corresponding to
different frequency bands. In matrix form, for n 2L 1, we partition W into L
bands so that

where

Wl [w2-l,-",w2_l],

with wj being the jth column of the matrix W. Thus, for example, W1 and WL
correspond to the lowest and highest frequency bands, respectively.

Using the notations introduced above, we can rewrite

L

/=1

where

A diag(At), Ai diag()t2-,..., )2- ).

The first approximation comes in when we replace all the eigenvalues (At) within
each band by a constant ct. Thus, we have a preconditioner M such that

L Btv
/--1 l

where

B,

Note that we have the following property for Bt
V

Btv 0
if v E range {Wt}
if v range {Wt}+/-

Hence, Bt can be considered as an ideal spatial bandpass filter. Thus, applying the
preconditioner//to a vector (i.e., M-v) consists of three phases" projection of v into
the subspace corresponding to each band (operator Bt), scaling by the corresponding
approximate eigenvalues ct, and synthesizing the scaled components (summation).

Since the implementation of ideal filters is computationally expensive, requiring
many global operations (e.g., sine transforms), we seek the approximation of ideal
filters with nonideal ones that are computationally more efficient. For the construction
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230 C.H. TONG, T. F. CHAN, AND C. C. J. KUO

of efficient nonideal filters, we borrow ideas from standard digital filtering theory [13].
Typically, a bandpass filter is constructed by taking the difference of two lowpass
filters, one that filters out all frequencies higher than the highest ones in the band
and the other one that lets through all frequencies lower than all frequencies in the
band. In turn, the lowpass filters can be approximated by cascading a sequence of
elementary filters H’s, which are simple averaging operators over a small fixed number
of grid points separated by spacing proportional to the wavelength of the band W.

Mathematically, the effect of using nonideal filters can be summarized by replacing
B with approximations/ in the definition of to get our final preconditioner M

L lVM-IV Z
l--1 Cl

In the rest of the paper, we use the following two filters
The first order filter defined by

1
(vy_- + 2vy + v+:-)(Hl,1)j -where (.)j denotes the jth element of the argument, and v is extended peri-

odically by

v_j ---v, and vn+ ----Vn..t-2--j

The filter Hi,2 obtained by applying Ht,1 twice"

(H,2)j 6 (vj_2L-z+l + 4vj_2L-,. / 6vj / 4vj+2- / vj+2-+l).

We call the method introduced above the single grid multilevel filtering (SGMF)
preconditioner, which involves computation on the same number of grid points n at all
levels (corresponding to the frequency bands). Since there are L log2(n + 1) levels
and O(n) operations are required per level, the total number of operations required
per iteration is thus O(nL).

To further improve the efficiency, we introduce a multigrid version of our precon-
ditioner, which we called the multigrid multilevel filtering (MGMF) preconditioner.
This is motivated by the fact that waveforms consisting only of low wavenumber
components can be well represented on coarser grids. To incorporate the multigrid
structure, the operators I+1 and I_1, which are the down-sampling and up-sampling
operators, respectively, are introduced. Note that in the multigrid literatures these op-
erators are commonly known as restriction and interpolation operators. Using the con-
cept of MGMF, we construct a sequence of grids t of sizes ht 0(2i-t h), 1

_ _
L,

to represent the decomposed components. With MGMF, the total number of opera-
tions per iteration is O(n), a reduction by a factor of log2 n compared to SGMF.

We allow variations in designing the filtering scheme. Several preconditioners,
which will be used in the later sections, are defined specifically as follows:

MGMFI the MGMF preconditioner with 9-point (27-point) filter for two-dimensional
(three-dimensional) problems (i.e.,

MGMF2 a modified version of MGMF in which the 9-point (27-point) filter is
applied twice (i.e., Hi,2).
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MULTILEVEL FILTERING PRECONDITIONERS: EXTENSIONS 231

MGMF3, another modified version of MGMF in which the 9-point (27-point) filter
is applied once at the finest grid level (to give a smaller amount of work
compared to MGMF2) and twice at other grid levels (to achieve a convergence
rate between MGMF1 and MGMF2 but close to MGMF2).

We summarize the MGMF1 preconditioning algorithm as follows:

Algorithm MGMF1 input r, output z M-lr
Decomposition

VL :--r
for L- 1,...,1

vt "= I[+lHt+l,lVt+l
end for

Scaling
for 1- 1,...,L

Wl :-- Vl -i- Cl
end for

Synthesis
Zl :-- Wl
for 2,...,L

Zl := Wl nt- Hl,lI[_lZl-1
end for
Z---ZL

end MGMF1

As it stands, this definition of the preconditioner can be extended to higher di-
mensions, more general elliptic operators and finite element meshes, as long as we
have appropriate definitions for the elementary filters Ht’s, the restriction and in-
terpolation operators I+1 and i+1, and the cl’s. For example, filters for the high
dimensional cases can be constructed from the tensor product of one-dimensional fil-
ters. Moreover, it is well known that the eigenvalues k in the wavenumber band Bt
behave like O(h-2) for general second-order elliptic problems, where ht denotes the
grid spacing for level [21]. Therefore, a general rule for selecting the scaling constant
ct at grid level is ct O(h-2). For quasiuniform meshes with a refinement factor of
2 (so that ht 2hi+l), this leads to the recurrence relation Cl+l 4Cl.

By appealing to the framework in [6], it is also possible to construct filters for
quasi-uniform structured finite element meshes. This relationship was briefly dis-
cussed in [13]. Basically, the projection operator from the fine grid onto a coarser
grid used in [6] can be interpreted as a low-pass filter on the fine grid. Therefore, on
the one hand the elementary filters Ht’s can be derived from the basis functions on
the grid hierarchy. On the other hand, the projection operators in [6] can be adapted
to special features of a particular problem, with the insight provided by the filtering
framework (e.g., for anisotropic problems).

The MF preconditioner is designed to capture the mesh-dependent spectral prop-
erty of a discretized elliptic operator, but not the variation of its coefficients. In order
to take badly scaled variable coefficients into account, we use diagonal scaling [10].
Suppose that the coefficient matrix can be written as

A D1/2D1/2

where we choose D to be a diagonal matrix with positive elements in such a way that
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232 C.H. TONG, T. F. CHAN, AND C. C. J. KUO

the diagonal elements of A are of the same order. Then in order to solve Au f, we
can solve an equivalent problem ], where t D1/2u and ]- D-i/2f, with the
MF preconditioner.

The SGMF preconditioner on uniform meshes can be easily analyzed exactly using
Fourier analysis, and the predictions agree quite well with experimental results [13],
[23]. However, the Fourier analysis is only meant to be used as a tool for deriving and
gaining insights into the algorithms and cannnot be extended as a basis for a general
convergence theory. While the Fourier analysis is rigorously applicable only for model
problems, the derived algorithms are applicable in a more general setting. Fourier
analysis does provide precise convergence rate estimates and eigenvalue distributions,
which supplements the more general theory. For this reason, it has been used by many
authors in studying iterative methods [27], [11], [26]. The MGMF preconditioner on
uniform and quasi-uniform grids can be analyzed using the same finite element analysis
framework used in [6], although we will not pursue that in this paper.

On a uniform mesh there is an obvious connection between our multilevel filter-
ing idea and wavelets [20], [12]. Wavelets are orthonormal basis functions for square-
integrable functions and are defined on a multilevel structure. These basis functions
have compact support in space and almost compact support in the Fourier domain.
Thus, wavelets can be considered as efficient bandpass filters. We are currently ex-
ploring the use of wavelets in our multilevel filtering preconditioner framework.

3. MF preconditioners for anisotropic problems. In this section, we extend
the concept of multilevel filtering to the second-order anisotropic problems. To achieve
a high degree of efficiency, the preconditioning step requires some modifications in
the design of filters (or the use of a different multilevel nodal basis). We first provide
justification for such modifications and then show the condition number as computed
by Fourier analysis. Numerical experiments are also included.

Consider the following two-dimensional second-order anisotropic problem:

(2) auxx uyy f(x, y) in t [0, 1] 2,

where a > 1, with zero Dirichlet boundary conditions. The discretization of the
equation using a uniform square mesh with h 1/(n + 1) gives a block-tridiagonal
matrix A with an equation of the form Au f. In the Fourier domain, we can express
this as

(3) t(j,k)ftj,k ]j,k, j,k-- 1,2,...,n- 1

where

(4)
n/ y. U,m sin(jrlh) sin(krmh), -- l=l m=l

and

(5)

such that

(6) (j, k) (2 + 2a) 2(a cos jrh + cos krh).
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MULTILEVEL FILTERING PRECONDITIONERS" EXTENSIONS 233

We can observe from the eigenvalue spectrum of that for a >> 1 the variation
in magnitudes of the eigenvalues in the k-direction is relatively small compared to
that in the j-direction. To maintain uniform variation of eigenvalues within each
band, we divide more wavenumber bands in the j-direction than in the k-direction.
We call this technique directionally adaptive filtering. This can be done in practice
by first performing one-dimensionM filtering in the j-direction for a number of levels
(say, the number of levels -y), then resuming two dimensional filtering. This is
in contrast to performing two-dimensional filtering for all the levels for the nearly
isotropic problems described in the last section. Here q, depends on c as well as the
problem to be solved. For second-order elliptic problems with quasi-uniform grid and
ht 2h/+1, it is sufficient to use /- round(log4 (). Suppose a 4. Then -y 1 and
the modified Hi,1 for the finest grid level takes the following stencil form

1

while the filters for the other coarse grid levels have a two-dimensional stencil (tensor
product of one-dimensional filter, i.e., Hi,1 Ht,).

Note that if the finest level is defined on a (n + 2) (n + 2) grid, then for 7 >_ 1
the next coarse level is defined on a ((n + 1)/2 + 1) (n + 2) grid instead of a
((n + 1)/2 + 1) ((n + 1)/2 + 1) grid for 7 0. It should also be noted that this
modified filtering scheme is analogous to the idea of semi coarsening in the multigrid
literature.

We performed Fourier analysis of the single grid version of this scheme (called
SGMFla) on the two-dimensional anisotropic problem with different a and h. The
condition numbers of the preconditioned system are given in Table 1. For comparison
purposes, the condition numbers of the preconditioned system using the unmodified
SGMF1 preconditioner are also included. Table 1 shows that this modified scheme is
quite effective. For example, for a 1000 the condition number grows slowly with n,
while this is not true for the unmodified SGMF1 preconditioner.

TABLE 1
Condition number for different ( and n.

a I0 a 100 c 1000
SGMFla SGMF1

3.8 13
4.3 21
5.4 28
6.6 34
8.2 40
9.7 46

103
414
1659
6639
26560

SGMFla SGMF1

3.8 38
4:7 117
5.8 233
6.8 328
7.9 395
9.0 454

103
414

i659
6639
26560

SGMFla SGMF1

’3.8 47
4.7 216
5.9 849
6.9 2142
8.0 3480
9.0 4396

The MGMF1 preconditioning algorithm for the above anisotropic problems can
be summarized as follows"
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234 C.H. TONG, T. F. CHAN, AND C. C. J. KUO

Algorithm MGMFla input r, output z M-lr
VL :--r

Decomposition
count
for L- 1,..., 1

if (count 0) then
t := x-filterl (v+l)
v := y-filterl(tl)

else

end if

Scaling

count count- 1
v :- x-filterl(v+)

end for

for 1- 1,...,L
Vl :-- Vl -- Cl

end for
Synthesis

tl :: Vl
for 2,...,L

tl :-- vl + Hl,iI[_ltl-1
end for
z :-- tL

end MGMFla

Next we show numerical results using the multigrid MF (MGMFla) precondi-
tioner in conjunction with the conjugate gradient method. Again, we use the standard
5-point discretization on a uniform square mesh with h 1/(n + 1) and the forcing
function f(x, y) is such that the solution is u x(x- 1)y(y- 1)exy. The stopping
criterion used is [I rk [I/II rO II < 10-5 and the initial guess is 0. The iteration counts
for different h and a are shown in Table 2.

TABLE 2
Iteration counts for different c and n

7 23
15 48
31 97
63 197
127 405
255 839

a=10
MGMFla MGMF1

11 18
13 26
15 32
16 36
19 41
20 45

41
90
187
388
812

100
MGMFla MGMF1

7 19
10 41
12 64
13 83
15 95
17 106

a 1000
A MGMFla MGMF1

13
27
63
126
258
608

2O
9 44
12 84
13 140
15 193
17 224

The numerical results show that this scheme works very well for a wide range of. A similar scheme can be applied to the case when < 1. It should be noted that
the algorithm can also be applied to.more general anisotropic problems (e.g., variable
coefficients) in the same way that the semicoarsening technique in MG is used (e.g.,
by averaging coefficients) [18].
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MULTILEVEL FILTERING PRECONDITIONERS: EXTENSIONS 235

4. MF preconditioners for the biharmonic equation. Consider the follow-
ing biharmonic equation in two dimensions:

(7) -A2u=f in t [0,1] 2

with first boundary conditions:

(8) u(x, y)Ir g(x, y)

OU
(9)

We discretize this equation using a 13-point second-order centered finite difference
approximation with h 1/(n + 1):

20u,j 8(u+ ,j + u_ ,j + u,j+ + u,y
+ 2(u+,j+ + u_l,j+ + u+,_ + u_,_l)
+ u+2,j + u-25 + u,j+2 + u,j-2 h4f, j

for i, j 2, n- 1. The difference equation for i 1, and j 3,..., n- 2 is:

21u,j 8(u2,j + u,j+ + u,j_l) + 2(u25+1 + u2,j-) + u3,j + u5+2 + u,j-2

h4(j,j + 8g0, 2(g05+ + g0,j-1) 2hb0,)

since

Ou Ou
onx=0.

On Ox

Using central differencing, we get

(Ul,j U--I,j)
2h

Also, at i j 1, we have

22U1,1 8(U2,1 - Ul,2) -- 2(U2,2) " U3,j -- Ul,3

h4(f,j + 8(g05 + g,0) 2(g0,j+ + g0,y- + g2,0) 2h(b0, + 51,0)).

The difference equations for other near boundary grid points can be derived similarly.
To derive MF preconditioners, we have to estimate the eigenvalues of the bihar-

monic operator. To do so, we apply Fourier analysis to the operator with modified
boundary conditions, namely,

02U
u(x,y)]r O and

On2 =0.

Based on analyzing this problem, we can estimate the eigenvalues of by

(10) .(j, k) 4- 2(cos(irh) + cos(jrh))2

which is the square of that for the Poisson equation.
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236 C.H. TONG, T. F. CHAN, AND C. C. J. KUO

TABLE 3
Condition number for SGMF preconditioning for the biharmonic equation.

n I[ No preconditioning

7 690
15 1.1 x 104
31 1.7 x 105
63 2.8 10
127 4.4 x I0
255 7.0 x 10s

SGMFlb SGMF2b SGMF3b

25 5.3 17
108 5.6 66
438 7.2 256
1814 8.7 1017
7367 10.2 4061

29705 11.7 16238

Since the eigenvalues in Bl for this equation behave like O(h/-4), a natural ex-
tension of the MF preconditioner involves changing the scaling recurrence cl+l 4c
to ct+l 16ct (again, ht 2hl+l is assumed). In Table 3, we show the result
of the Fourier analysis on the MF-preconditioned biharmonic equation. In the ta-
ble, SGMFlb, SGMF2b, and SGMF3b represent the original SGMF1, SGMF2, and
SGMF3 preconditioners with the new scaling.

We see that the condition number of A grows about 16 times with each halving
of h. The use of SGMFlb has effectively helped to reduce the condition number.
Nevertheless, SGMF2b helps to reduce the condition number even more dramatically.

To verify the Fourier results, we implement the SGMFlb, SGMF2b and SGMF3b
preconditioners for the biharmonic equation where the f(x, y), g(x, y) and b(x, y) are
such that the solution is u x(x- 1)y(y- 1)sin(rx)sin(ry). The stopping criterion
is. rk I[/II r < 10-6 and the initial guess is zero. The iteration counts are shown
in Table 4.

TABLE 4
Iteration counts for SGMF-preconditioned PCG for the biharmonic equation.

n No preconditioning

7 10
15 42
31 160
63 586
127 2218
255 8587

SGMFlb SGMF2b SGMF3b

9 10 9
17 12 16
36 14 3O
82 17 57
177 23 113
366 33 220

Next we show (in Table 5) the iteration counts when the multigrid formulation
of SGMFlb, SGMF2b, and SGMF3b (i.e., MGMFlb, MGMF2b, and MGMF3b) are
applied to the same problem.

TABLE 5
Iteration counts for MGMF-preconditioned PCG for the biharmonic equation.

n No preconditioning

7 10
15 42
31 160
63 586
127 2218
255 8587

MGMFlb MGMF2b MGMF3b

10 10 10
27 22 24
4O 29 32
56 30 37
80 35 40
120 43 48

We observe a close correlation between the numerical and Fourier results for the
SGMF preconditioners. Indeed, SGMF2b improves significantly over SGMFlb with

D
ow

nl
oa

de
d 

01
/2

6/
14

 to
 1

32
.1

74
.2

55
.3

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



MULTILEVEL FILTERING PRECONDITIONERS: EXTENSIONS 237

only a little increase in cost per iteration. SGMF3b improves somewhat over SGMFlb
but is still not good enough compared to SGMF2b. Therefore, SGMF2b requires the
fewest operation counts out of the three. Looking into the numerical results for the
MGMF preconditioners, we first observe that both MGMFlb and MGMF3b give
better convergence rates than their SGMF counterparts. We cannot explain why this
is the case, nor can we explain why MGMF3b performs much better than predicted
by the corresponding Fourier results. Finally, with a little arithmetic, it is not difficult
to show that MGMF3b gives the fewest overall operation counts.

5. MF preconditioners for problems with locally refined grids. In this
section, we shall consider the application of the MF preconditioners to second-order
elliptic problems with local mesh refinement. Such mesh refinements are necessary for
accurate modeling of problems with various types of singular behavior. We consider
the discretization scheme for locally mesh refined grids by McCormick and Thomas
[16]. This discretization scheme was motivated by the desire to preserve the highly
regular grid structure (to maintain efficiency on parallel computer architectures), as
well as to satisfy the need for local resolution in many physical models. For example,
the mesh in Fig. 1 would be effective if the forcing function f(x, y) behaves like a 5
function distribution at the points (1, 1) and (n, n) (both lower left and upper right
corners).

FIG. 1. Locally refined grids--an example.

The Fourier analysis cannot be applied here because of the presence of nonuni-
form grids. However, as was shown in our previous paper [13], the parallel multilevel
preconditioner proposed by Bramble, Pasciak, and Xu [6] can be considered as a spe-
cial case of MF preconditioners with appropriately chosen filters. We can borrow the
finite element analysis result from them and we would expect the MGMF precon-
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ditioners to be effective also for meshes with local refinement. Below we show the
MGMF algorithm for this problem. Here i and/:/ are restriction (or interpolation)
and elementary filtering operators restricted to the locally refined grids only. More-
over, we can use the same recurrence relation c 4c+1 and we have the following
algorithm:

Algorithm MGMFlc input r, output z M-ir
Decomposition

VL :--r

(* filtering at refined levels *)
for L-1,...,J- k

vl i[+,Hi+,,,vi+,
end for
(* filtering on uniform grid levels *)
for 1- L-k- 1,..., 1

vl "= I[+IH+,ivg+i
end for

Scaling
for 1- 1,...,L

Vl :-- Vl "- C1
end for

Synthesis
Z :-- Vl
for 2,...,L- k

zg := v + Hl,I[_ zl_

end for
for L- k + l,...,L

+
end for
Z--ZL

end MGMFlc

We solve a Poisson equation on the grid

shown in Fig. 1 but with refinement only at the upper right corner and the
forcing function is f(x, y) 2-t(1 h, 1 h), and
shown in Fig. 1 and the forcing function f(x, y) 2-((h,h)-(1-h, l-h)),
where is the number of level of refinements used and h is the grid size for
the nonrefined grid.

We use the discretization scheme for the domain and the interfaces proposed by
McCormick and Thomas [16] for aligned grids. The stopping criterion and initial
guess are the same as before. The iteration counts for different number of levels and
different h are given in Tables 6 and 7. The iteration counts for the unpreconditioned
conjugate-gradient (CG) method and the parallel multilevel preconditioner (BPX) [6]
are also included for comparison purposes.

The tables show the effectiveness of the MF preconditioner compared to the un-
preconditioned CG method and the PCG method with parallel multilevel precondi-
tioner (BPX). The convergence rates seem to be quite insensitive to the number of
refinement levels used.
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TABLE 6
Iteration counts for the Poisson equation with refinements at upper right corner only.

,n [I No. of levels cG’ MGMFlc I’BPX
15
15
15
15

31
31
31
31

63
63
63
63
127
127
127
127

0 26
1 37
2 45
3 53

9 12
10 14
1i 16
i2 17

0 48 9 13
1 ’70’ I0 ’15
2 88 11 17
3 109’ ’i2 i8

0 84 10 14
1 126 11 15
2 166 11 17
’3 ".’2’10 1 i9

0 133 10 14
1 ’219 1i 1’5’
2 3’09 12 i7
3 395 13 i9

TABLE 7
Iteration counts for the Poisson equation with refinements at both corners.

I, 11 No. of levels co,,l MGMFlc BPx,,
15 0 26 9 12
15 1 54 11 15
15 2 63 12 17
15 ’3 75 16 18
31

31.
31

0 48 9 13
1 86 1i i6
2 "1i7 1 17
3 140 13 19

63 0 84 10
63 1 126 12
63 2 190 12
63 3 235 14

14
16
18
19

127 0 133 10 14
"’127 1 204 12 16’
127 2 297 13 18
127 3 391 14’ 20

6. MF preconditioners for Schur complement systems. Consider solving
a two-dimensional second-order elliptic problem on a domain divided into two sub-
domains by an interface. If we use a 5-point discretization and order unknowns in
the subdomains D1 and -2 first followed by those on the interface F3, we obtain the
following linear system:

Au 0 A2 A23 u2 f2
A31 A32 A3 u3 f3

By applying block Gaussian elimination to eliminate the unknowns ul and u2, we
obtain the following system for the interface unknowns u3:

SU3 13
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where

S A3 A31AIA13 A32AlA23
and

]3 f3 A31Alf1 A32AIf2
A standard approac_h in domain decomposition methods is to solve the Schur com-

plement system Su3 f3 with the preconditioned conjugate gradient method. Many
preconditioners have been proposed in the literature [7]. A typical one is Dryja’s pre-
conditioner [9], which is defined to be the square root of the negative one-dimensional
Laplacian and which can be inverted by the use of FFTs in O(n log n) time, where
n is the number of unknowns on the interface. Recently, Smith and Widlund [19]
proposed a hierarchical basis preconditioner for S which is cheaper than Dryja’s pre-
conditioner, requiring only O(n) work per iteration. Here we propose to use the MF
preconditioner for S. To do this, we can retain the multilevel filtering framework and
we only need to modify the scaling constants ct’s. We know that the eigenvalues for
the Schur complement in the frequency band Bt behaves like O(h1) [9]. Therefore,
it is sufficient to use the recurrence Ct+l 2ct. In Table 8 we compare the num-
ber of iterations to obtain convergence for different n for the Poisson equation on a
rectangular 2n n grid decomposed into two equal subdomains.

TABLE 8
Iteration count versus n.

n II Noprecond. Dryja MGMF1

7 4 4 4
15 8 6 7
31 16 6 9
63 27 6 9
127 39 6 9

MGMF2 HB
4 4
6 7

7 10
7 12

We observe that MGMF2 performs better than MGMF1 and the hierarchical
basis (HB) preconditioner. All but the HB preconditioner seem to show convergence
rates independent of n. Although we cannot prove spectral equivalence for the MGMF
preconditioners, an O(log n) upper bound for the condition number for the MGMF1
preconditioned system can be proved and details of such a proof can be found in [24].
We also observe that the MGMF2 preconditioner performs almost as well as Dryja’s
preconditioner. The MGMF appears to offer convergence rates comparable to Dryja’s
preconditioner and at the same time is relatively easy to use and costs about the same
as the HB preconditioner.

7. Conclusion. In our previous paper [13] and the first part of the present paper
we show the competitiveness of the MF preconditioners compared with some other
preconditioners such as the hierarchical basis preconditioner, multigrid preconditioner
and others. In this paper we have further demonstrated the ease with which we
can extend the MF preconditioners to effectively solve other more general elliptic
problems. The flexibility of filter and scaling block design offers different ways of
achieving a high degree of efficiency for these problems.
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