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ON THE SPECTRUM OF A FAMILY OF PRECONDITIONED
BLOCK TOEPLITZ MATRICES*

TAKANG KUt AND C.-C. JAY KUOt

Abstract. Research on preconditioning Toeplitz matrices with circulant matrices has been
active recently. The preconditioning technique can be easily generalized to block Toeplitz matrices.
That is, for a block Toeplitz matrix T consisting of N N blocks with M M elements per block,
a block circulant matrix R is used with the same block structure as its preconditioner. In this
research, the spectral clustering property of the preconditioned matrix R-1T with T generated by
two-dimensional rational functions T(z,,zy) of order (p:r,q:,pu,qv) is examined. It is shown that
the eigenvalues of R-1T are clustered around unity except at most O(M/u + N"/) outliers, where

max(p, q) and max(p, qy). Furthermore, if T is separable, the outliers are clustered
together such that R-1T has at most (2/x +1)(2+ 1) asymptotic distinct eigenvalues. The superior
convergence behavior of the preconditioned conjugate gradient (PCG) method over the conjugate
gradient (CG) method is explained by a smaller condition number and a better clustering property
of the spectrum of the preconditioned matrix R-1T.

Key words, block Toeplitz matrix, preconditioned conjugate gradient method
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1. Introduction. The systems of linear equations associated with block Toeplitz
matrices arise in many two-dimensional digital signal processing applications, such as
linear prediction and estimation [9], [12], [13], image restoration [7], and the discretiza-
tion of constant-coefficient partial differential equations. To solve the block Toeplitz
system Tu b, where T is an N N matrix with M M blocks, by direct methods,
such as Levinson-type algorithms, requires O(M3N2) operations [2], [14], [17]. Re-
cently, there has been active research on the application of iterative methods such as
the preconditioned conjugate gradient (PCG) method to the solution of Toeplitz sys-
tems. To accelerate the convergence rate, various preconditioners have been proposed
for symmetric positive definite (SPD) Woeplitz matrices [6], [8], [10], [15]. The pro-
posed preconditioning techniques can be easily generalized to block Toeplitz matrices.
Simply speaking, we construct the preconditioner with a block circulant matrix R that
has the same block structure as T. Since both R-lw and Tw, where w denotes an
arbitrary vector of length MN, can be performed with O(MNlog MN) operations
via two-dimensional fast Fourier transform, the computational complexity per PCG
iteration is O(MNlog MN) only. The PCG method can be much more attractive
than direct methods for solving block Toeplitz systems if it converges fast.

The convergence rate of the PCG method depends on the eigenvalue distribu-
tion of the preconditioned matrix R-IT [1]. Generally speaking, the PCG method
converges faster if R-1T has clustered eigenvalues and/or a small condition num-
ber. The spectral properties of preconditioned point Toeplitz matrices have been
extensively studied. Chan and Strang [3], [5] have proved that, for a Toeplitz ma-
trix with a positive generating function in the Wiener class, the spectrum of the
preconditioned matrix has eigenvalues clustered around unity except for a finite num-
ber of outliers. If the Toeplitz matrix is generated by a positive rational function
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BLOCK TOEPLITZ PRECONDITIONER 949

A(z)/B(z) + A(z-1)/B(z-1) in the Wiener class, an even stronger result has been
derived by Trefethen [16] and Ku and Kuo [11]. That is, if A(z) and B(z) are poly-
nominals in z of orders p and q without common roots, the number of outliers is
equal to 2 max(p, q) and the PCG method converges in at most max(p, q)+ 1 itera-
tions asymptotically (see [11] and the discussion in 4 below). Therefore, an N N
preconditioned rational Toeplitz system can be solved with max(p, q) x O(Nlog N)
operations.

The spectral properties of preconditioned block Toeplitz matrices have not yet
been very well understood. In this research, we analyze the spectral clustering prop-
erty for a class of preconditioned block Toeplitz matrices. The block Toeplitz ma-
trix under consideration has a two-dimensional quadrantally-symmetric generating
sequence generated by a rational function in the Wiener class (see the definition in
3). We divide our discussion into two cases depending on whether or not the generat-
ing sequence is separable. When the block Toeplitz matrix has a separable generating
sequence, the spectrum of the preconditioned block Toeplitz can be easily derived by
using the preconditioned point Toeplitz result as given in [11]. However, we derive
the preconditioned point Toeplitz result from a new viewpoint in this paper so that
the same approach can be used for both separable and nonseparable cases. With this
viewpoint, we interpret the operation Tw, where T is an MN MN block Toeplitz
matrix, as a two-dimensional constant-coefficient mask operating on a certain two-
dimensional sequence construction based on w.

Our main results can be summarized as follows. Let T be an MN MN
doubly symmetric block Toeplitz matrix generated by a rational function of order
(Px, qx, py, qy), /x max(p, q) and y max(py, qy). For the separable generat-
ing sequence case, the eigenvalues of R-IT are clustered together such that it has
asymptotically (2% + 1)(2y + 1) distinct eigenvalues. The PCG method converges
asymptotically in at mosty+ 1 iterations, and the complexity of the PCG method
is therefore O(MNlog MN). For the nonseparable generating sequence case, the
eigenvalues of R-T are clustered around unity except for at most O(Mg/y + N/x)
outliers. Since the number of outliers is proportional to M and N, rather than being
O(1) as in the point Toeplitz case, the convergence rate of the PCG method cannot be
completely characterized by the number of outliers. The condition number (R-T)
should also be taken into account. For this case, the superior performance of the PCG
method over the CG method is explained by a better spectral clustering property as
well as a smaller condition number of the preconditioned matrix R-T.

The outline of this paper is as follows. The construction of the block circulant
preconditioner R for block Toeplitz matrices T is presented in 2. In 3, we study the
spectral clustering property of preconditioned block Toeplitz matrices R-1T. Toeplitz
matrices with separable and nonseparable generating sequences are examined, respec-
tively, in 3.1 and 3.2. Numerical results are given in 4 to assess the performance
of the PCG method.

2. Construction of block Toeplitz preconditioners. Let T be a block Toep-
litz matrix consisting of N N blocks with M M elements per block, which can be
expressed as

(2.1) TD
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950 TAKANG KU AND C.-C. JAY KUO

where Tn with Inl _< N- 1 are M x M Toeplitz matrices with elements

[Tn]i,j ti-j,n where 1 <_ i, j <_ M.

Note that T is also known as the doubly Toeplitz matrix. The MN MN block
Toeplitz matrix T is completely characterized by the two-dimensional sequence

known as the generating sequence of T. To construct the preconditioner for T, we
generalize the idea in [5], [10], and [15], and consider an MN MN block circulant
matrix of the form

(e.a) R

Ro RN-1 R2
R1 Ro RN-1 R2

R Ro
RN-2 RN-1
RN-1 RN-2 R1 Ro

where R, with 0 <_ n <_ N- 1 are M M circulant matrices with elements

[Rn]i,j -r(i-j) mod M,n where 1 _< i,j <_ M.

Thus, the block circulant matrix R is completely characterized by the two-dimensional
sequence

(2.4) rm,n where 0_<m_<M-1, 0_<n_<N-1.

The construction of R based on T is described below.
In (2.1) and (2.3), linear operators T and R are expressed in matrix form. Block

Toeplitz (or circulant) systems are in fact just one way to describe linear (or circular)
convolutions between two two-dimensional sequences. In the current context, it is
more convenient to characterize T (or R) in terms of the relationship between input
and output vectors. Consider two arbitrary MN-dimensional vectors w and v related
via v Tw. By using the natural rowwise ordering, we can rearrange elements of
these vectors into two-dimensional sequences

(2.5) w,, and Vm,n where 0 _< m _< M- 1, 0 <_ n <_ N- 1.

Then, the block Toeplitz system v Tw can be interpreted as a linear operator
characterized by the two-dimensional mask

(2.6)
tM-1,-N-I tM-2,-N+I t0,-N+l t-MT2,-N+I t-MW1,-N+I
tM-1,-N+2 tM-2,-N+2 t0,-N+2 t-M+2,-N+2 t-M+I,-N+2

tM-1,0 tM-2,0 t0,0 t-M+2,0 t-M+l,0

tM-1,N-2 M--2,N-2 t0,N--2 $-M-2,N-2 t-M-I,N-2
$M-1,N-1 tM-2,N-1 t0,N-1 $--M+2,N--1 t-M+I,N--1
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BLOCK TOEPLITZ PRECONDITIONER 951

operating on an extended sequence

Wm,n, ONmNM--1, ONnNN--1,(2.7) )m,n O, otherwise.

To compute the output element V,o,no, 0 <_ m0 <_ M- 1, 0 <_ no _< N- 1, we put
the center of the mask (i.e., t0,0) on mo,no, multiply ,,, with the corresponding
coefficients tmo-m,no-n, and sum the resulting products. Now let us use the mask
(2.6) to operate on a periodic sequence

(2.8) m, ---Wm mod M,n mod N, --(:K:) < m < OC, --Cx) < n < oc.

This defines a block circulant matrix-vector product Rw, which is close to the opera-
tion Tw. Since R-iv can be computed efficiently with two-dimensional fast Fourier
transform, it is natural to use R as a preconditioner for T.

The characterization of a block Toeplitz or circulant matrix by a two-dimensional
operator mask is not new. It is basically the same as the stencil form used in the finite-
difference discretization of the constant-coefficient partial differential operator. For
example, the five-point stencil discretization of the Poisson equation can be interpreted
as the mask

0 1 0]1 -4 1
0 1 0

operating on a two-dimensional sequence. By assuming the Dirichlet and periodic
boundary conditions, we obtain block Toeplitz and circulant matrices, respectively.

The preconditioner constructed above can be described in matrix notation. First,
for every point Toeplitz matrix Tn, Inl _< N-1, we construct a circulant preconditioner
T with

(2.9) t0,n, t--l,n -[- tM--l,n, t-2,n -+- tM--2,n, "’’, tl--M,n tl,n

as the first row [10].
combination

Then, we use ’n to construct Rn according to the linear

(2.10) Rn n, n O,

’n + "]N 1 <_ n <_ N- 1,

which is used in (2.3) to define the block circulant preconditioner R.
It is worthwhile to point out that it is possible to design different preconditioners

by considering different periodic extensions to form ?Om,n. For readers interested in
the design of preconditioners, we refer to [10].

3. The spectral clustering property of preconditioned block Toeplitz
matrices. Let us consider a family of block Toeplitz matrices T whose generating
sequences tm,n are quadrantally-symmetric,

(3.1) tm,n t]m],]nl, [m[ _< M- 1, In[ _< N- 1,

and absolutely summable (i.e., T is in the Wiener class),

(3.2) [tm,n[ <_ g < oc,
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952 TAKANG KU AND C.-C. JAY KUO

and whose generating functions are of the form

A(zx, zy)(3.3a) +B(zx, B(z;1,z )
where

p pu

(3.3b) A(z,zu) ai,dz-iz;d,
i=0 j=o

q

i=o

Note that the quadrantally-symmetric property of tm,n implies that T is doubly sym-
metric, i.e., Tn TnT and Tn T_,. We also assume that T has a nonsingular
preconditioner R so that R-iT is also nonsingular. We call T satisfying (3.1)-(3.3)
the MN MN block Toeplitz matrix generated by a quadrantally-symmetric rational
function of order (p, q, pu, qy). For convenience, we use the notation

% max(px, qx), % max(pv, qv).

The following discussion focuses on the spectral clustering property of the precon-
ditioned matrix R-1T, namely, a bound on the number of eigenvalues clustered around
unity. Note that the following spectral analysis does not depend on the positive-
definiteness of T or R.

3.1. Separable generating sequences. One special case of block Toeplitz ma-
trices described by (3.1)-(3.3) is that T(z, zy) is separable, i.e.,

T(z=,zy) Tx(z=)Ty(zu),

where

and where

(3.4c)

Ax(zx) aizx i,
i--O

Note that the separability of T(z, Zy) implies the separability of the generating se-
quence ’m,n, i.e.,

tm,n tx,mty,n.

Based on tx,, (or t,n), we can construct Toeplitz matrix Tx (or Ty) and the corre-
sponding preconditioner Rz (or Rv), where Tz and R (or Tv and Rv) are of dimension
M M (or N N). It is easy to see that the preconditioner R is also separable, and
the eigenvalues of R-iT are the products of the eigenvalues of R-IT and RITy.
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BLOCK TOEPLITZ PRECONDITIONER 953

Thus, to understand the spectral properties of R-1T, we only have to examine those
of preconditioned (point) Toeplitz matrices R-1T and R Ty.

According to the construction (2.9) and the symmetric property of tx,m, we know
that R is a circulant matrix with the first row

tx,o, tx,1 - tx,M-1, tx,2 -1
t- tx,M-2, "’’, tx,M-1 t_ tx,1"

When Bx(z) 1 (i.e., q 0), Tx is banded with bandwidth px, and R is almost
the same as T except for the addition of elements in the northeast and southwest
corners to make Rx circulant. Thus, the elements of/kT R-Tx are all zeros except
the first and the last px rows. Consequently,/kT has at least M- 2p (= M
eigenvalues at zero and R-1Tx (T +/kT)-1T has at least M 2p eigenvalues
at one. This result can also be obtained by using the operator-mask interpretation.
That is, the products Txw and Rw, for arbitrary w (wo,." ",Wm,’" ",WM--1)T,
can be viewed as a linear operator characterized by the mask

[t, t,_l t,l t,0 t,l t,_l t,]
operating, respectively, on two extended sequences

win, 0<_m_<M-1,
andm 0, otherwise, Wm mod M.

It is clear that Tw and Rw give the same output elements if the center of the mask
is located at p _< m _< M-p- 1. There are M- 2p such elements and, as a conse-
quence, the dimension of the null space of/T is at least M-2p. The operator-mask
viewpoint will be generalized to the case of higher-dimensional generating sequences
(see 3.2).

When B(z) 7 1, we approximate the block matrix /kT R- T with an
asymptotically equivalent block matrix/kE, and then use the recursive property of
tx,m to show that /kE has eigenvalues repeated at zero. The recursive property of
tx,m is stated in the following lemma.

LEMMA 1. The sequence t,m generated by Tx(z) in (3.4b) follows the recursion,

tx,m+l -(bltx,m + b2tx,m-1 -t-"" + bqtx,m-q+l)/bo, m _> Vx max(px, qx).

Proof. The generating sequence associated with A(z)/B(z) given by (3.4c) is

ltx,o tx,1 tx,2 tx2 ,m,

Thus, we have

z tx,mz-m (bo - blz-1 + + bqz-q) ao + alz-1 + + ap
m=l

The proof is completed by comparing the coefficients of the above equation. S
Consider the approximation of AT R T with AE Fx + F, where

tM tM-1 t2 tl
tM+l tM tM-1 t2

tM+l tM
tM-1

t2M-2 tM+l tM tM-1
t2M-1 t2M-2 tM+l tM
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954 TAKANG KU AND C.-C. JAY KUO

and where the subscript x is omitted for simplicity and tm with m > - is recursively
constructed from (3.5). Since elements tx,, in F satisfy (3.5), the rank of Fx or FT
is at most x. Consequently,/E has at least M-2 eigenvalues at zero.

Then, we examine the difference between/Tx and/E. Consider

(3.6) v (AT AE)w,

for nonzero w. The mth, 1

_
m

_
M, elements of/Txw and/Exw can be written,

respectively, as

M m-1

(3.7) [/Txwlm [Rxw], -[Txw]m Z tz,M+m-iWi + Z tz,M-m+iWi,
i--m+l i--1

and

M M

+ +
i--1 i--1

Therefore, v is bounded above by

2M-1

m--M

ma
l<m<M

m M

i=1 i--m

where the c-norm of the vector v (or w) is the maximum absolute value of elements
Vm (or Wm), 1 <_ m <_ M. We have

2M-1

(3.9) [I&T -/EJI mwaX ilwll m-M

which converges to zero as M goes to infinity, since m__0 It,.l converges and Sm=
-mm,=0 Itx,m, is a Cauchy sequence. The matrix/Tx -/E is symmetric so that

ASCII, --IIAT AE lloo
and

Thus, AT is asymptotically equivalent to AE. It also follows that AT has at least
M 2/x eigenvalues asymptotically converging to 0, or R-1T (Tx +/T)-1Tx
has at least M-2 eigenvalues asymptotically converging to 1.

The/Tx and/Ex above are amenable to the operator-mask interpretation (see
Fig. 1 with M 8). One can easily verify that /Txw and /Ew correspond,
respectively, to the use of the two masks

/Tx" [tx,M-1 tx,M-2 tx,1 tx,O tx,1 tx,M-2 tx,M-1],
/Ex [’" tx,M ;x,M-1 tx,1 ;x,O tx,1 tx,M-1 tx,M "],
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BLOCK TOEPLITZ PRECONDITIONER 955

Wo to to to3

2

t6 t5 t4 t31
0 0 0 0

Wo Wl w2 w3
()

W0 Wl W2 W3

t3 t4 t5

Wo Wl w2 w3

t6 t4 4 t. O O 0 0 0 0 O
W0 Wl W2 W3 W0 Wl W2 W3

()

FIG. 1. Operator-mask interpretations of (a) /kTxw, (b) /kExw, and (c) (/Ex -/kTx)w.

operating on the same sequence

iVm Wm mod M, -M <_ m _< -1 or M <_ m _< 2M- 1,
0, elsewhere.

Note that the mask for AEx is of infinite length. The corresponding mask for AEx
AT is

AE- ATe" [... tx,M+l tx,M 0 0 0 0 0 tx,M tx,M+l "’’].

It is easy to derive (3.9) from the operator-mask viewpoint. Note that, for larger
M, although there are more terms contributing to the oo-norm of/kEx -/kTx, the
weighting coefficient tx,m, m >_ M, decays more rapidly. The resulting oc-norm of
/kEx -/kTx asymptotically converges to zero. We conclude the above discussion as
follows.

(a) When B(z, zy) 1, T (or Ty) is banded and RIT (or RITy) has at most
2px + 1 (or 2py + 1) distinct eigenvalues, so that R-T has at most (2p + 1)(2py + 1)
distinct eigenvalues.

(b) When B(zx, zy) 7 1, RTx (or RTy) has at most 2/ (or 2,y) outliers not
converging to unity and other eigenvalues are clustered between (1- ex, 1 + e) (or
(1 -ey, 1 + ey)). Thus, the eigenvalues of R-T can be grouped into several clusters.
The centers and clustering radii of these clusters and the numbers of eigenvalues
contained are listed in Table 1, where Ax,i (or Ay,j) denotes a typical outlier for
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956 TAKANG KU AND C.-C. JAY KUO

Center
Radius

Number

TABLE 1
Eigenvalues of R-1T.

0 o(e) 0() 0(. + ),
1 N- 2-yy M- 27x (M- 2,)(N,,- 2u

R;ITx (or RIT). Since ex and ey converge to zero as M and N become large,
R-T has asymptotically at most (27 + 1)(27y + 1) distinct eigenvalues.

As a consequence, the PC(] method converges in at most (29’ + 1)(2-yy + 1)
iterations for positive definite T with sufficiently large M and N in both cases
and (b). This is confirmed numerically in 4.

3.2. Nonseparable generating sequences. For nonseparable generating func-
tions T(z,zy) given by (3.3), we examine two typical cases, i.e., B(z,zy) 1 and
B(zx, z) 1 with q > 0 and qy > O.

When B(zx, zy) 1, we have a corresponding generating sequence of finite dura-
tion. As described in 2, the products Tw and Rw correspond to a linear operator
characterized by the mask

tp ,p tp ,py t0,py tp ,py tp ,py

tpx,py--1 tp--l,py--1 t0,p--i tp--l,p--I tp,py--1

tp,O tp-l,O to,o tpx-l,O tp,O

tp,pv_l tp_l,pu_l tO,p-i tp_l,pu_l tp,p_l
tp,p tp-l,p to,p tp-l,p tp,p

operating, respectively, on m,n and ,,n given by (2.7) and (2.8). The output
elements of Tw and Rw are identical if the center of the mask is located at

px <_ m <_ M-px -1, py <_ n <_ N-py 1.

The dimension of the null space of AT R- T is at least (M- 2p)(N- 2py).
Consequently, R-1T has at least (M 2px)(N 2py) eigenvalues repeated at 1 or,
equivalently, there are at most 2(Mpy + Np) -4pxpy outliers. This result is sum-
marized in the following theorem.

THEOREM 1. Let T be an MN MN block Toeplitz matrix characterized by
(3.1)-(3.3) with B(z,zy) 1. The preconditioned matrix R-T has at least MN-
2(Mpy + Npx) + 4pxpy eigenvalues repeated at one.

When B(zx, zy) 1 with q > 0 and qy > 0, the products Tw and Rw correspond
to a linear operator characterized by the mask

tM-1,N-1 tM-2,N-1 tO,N-1 tM-2,N- tM--1,N--1
tM-1,N-2 tM-2,N-2 tO,N-2 tM-2,N-2 tM-1,N-2

tM-l,0 tM-2,0 to,o tM-2,0 tM-l,0

tM-1,N-2 tM-2,N-2 tO,N-2 tM-2,N-2 tM-,N-2
tM-I,N- tM-2,N- tO,N- tM-2,N- tM-I,N-1
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BLOCK TOEPLITZ PRECONDITIONER 957

operating on ,,n and (Ore,n, respectively. Let us exploit the quadrantally-symmetric
property (3.1) and decompose tm,n into four sequences

4

tm,n tk,m,n
k--1

where tk,m,n is called the kth quadrant-support sequence and defined as

(3.11a) tl,m,n

t0,0/4, m n 0,
t,,0/2, l<_m_<M-1, n=0,
t0,n/2, m=0, l_<n_<N-1,
t,,,, l_<m<_M-1 and l_<n_<N-1,
0, m<0 or n<0,

(3.11b) t2,m,n tl,--m,n, t3,m,n tl,--m,-n, t4,m,n tl,m,--n.

The following lemma is on the recursive property of tl,m,n.
LEMMA 2. Let tm,n be a quadrantally-symmetric sequence generated by the two-

dimensional rational function T(zx, zy) given in (3.3), and tl,m, is the first quadrant-
support sequence defined by (3.11a). Then,

=0
i=0 j=0

for m > x or

Proof. It is clear that A(z,zy)/B(z,zu) is the generating function for tl,,,,.
Therefore,

B(z, z) i=0 =0

We multiply both sides of the above equation with B(zx, zy), substitute (3.3b) for
A(z, zy) and B(zx, zu), and compare the corresponding coefficients. This gives the
desired equation (3.12).

Thus, we can use (3.12) to recursively define t,m,n with m > " or n > "y in
the first quadrant, and the corresponding tk,m,n with k 2, 3, 4 can be obtained from
t,m,n through the symmetry (3.11b).

As a generalization of the one-dimensional case, we define

Wm mod M,n mod N, (re, n) e [U-<i,j<Qi,j]- Q0,0,
elsewhere,

where

Qi,j ((m,n) iM <_ m <_ (i + l)M-1, jN <_ n <_ (j + I)N-1).

Then, the operation/Tw (R- T)w corresponds to the mask (3.10) operating
on CVm,n. We choose the approximation/Ew to be an extended infinite mask, with
recursively defined tm,n via (3.12), operating on m,,. This is illustrated in Fig. 2,
where we only show the first quadrant of the mask for /E. For the rest of this
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958 TAKANG KU AND C.-C. JAY KUO

ATw

oooooo:ooooeeo
ooooooooiooooooo

:

FIG. 2. The matrix vector products/Tw and/xEw interpreted as (a) the operator-mask and
(b) the extended operator-mask operating on .
subsection, we are concerned with two issues: (i) the asymptotic equivalence of/T
and/E and (ii) the number of eigenvalues of/E repeated at zero.

The operation (/E-/T)w corresponds to the difference between the extended
mask and the original mask (3.10) operating on t,,n. The x>norm of the first
quadrant of the difference mask/E-/T operating on t,,n in regions Q1,0, Q0,1,
and Q, are bounded, respectively, by

2M-1 N--1 M-1 2N--1 2M--1 2N-1

m--M n--O m--O n--N m--M n---N

By exploiting the symmetry, we have the bound for/E-/T,

II/E-/TlJo < 4(Kz,z,0 + Kz,0,z + Kz,z,z) g.

With (3.2), we can order tm,n appropriately to be a Cauchy sequence and argue that K
converges to zero for asymptotically large M and N. This establishes the asymptotic
equivalence of/E and/T.

The operator/E can be expressed as a superposition of 12 operators,

/kE b-l,l,O + FI,I,1 + FI,O,1 + F2,0,1 + ’2,-1,1 + F2,-1,0,
(3.13) +F3,-1,0 -F- F3,-1,-1 -t- F3,0,-1 "-F- F4,0,-1 -’1"- F4,1,-1 -t- F4,1,0,

where Fk,i, denotes the kth quadrant of the extended mask operating on sequences
defined on Qi,. Consider operators F,l,0, F1,0,, and FI,I,. Their operations on w
can be written as

M-1N-1

J-1,1,0" Vl,i,j X,M-Fm-i,n-jWm,n,
m=0 n=j

M-1N-1

b-l,0,1 V2,i,j l,m-i,N+n--jWm,n,
m--i n--O
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BLOCK TOEPLITZ PRECONDITIONER 959

M-1N-1

FI,I,1 v3,i,j-" E E tl’M+m-i’N+n-jWm’n"
m=0 n=0

With (3.12), we have

io+qx jo q-qu

E E bi-io,J-joVl,i,J
i--io j--jo m--O n-j+jo L=O =o

=0,

for 0 <_ i0 _< M- 1

io+qx jo+qu

E E bi-io,J-joV2,i,J
i-.io j-jo

M-1 N-1 | qx qu

E E IE
m=i+io n=O Li=O j=o ,m-io-i,N+n-jo-j] Wm,n O,

for 0 <_ j0 _< N- 1 -7y; and

io+qz Jo+qv M-I N--1 qv

i=io j=jo m=O n=O Li= j=O

for 0 _< i0 _< M- 1 -7x or 0 < j0 < N- 1 -%.
By combining the above three equations, we have

io+q jo+qu

+ + 0,
i=io j=jo

for 0 < i0 <_ M-1-7 and 0_< j0 _< N-1-Ty. Therefore, the rank ofF1
Fl,,0 + F,0, + F,1,1 is at most M/y + N/z -/z/y. By using the symmetry, we can
argue that the rank of Fk -i,j Fk,i,j, k 2, 3, 4, is also at most M/y + N/-/xTy.
Consequently, the rank of/kE is at most 4(M/y + NT -’y/y) or, equivalently, /kE
has at least MN- 4(M/y + NT -/-yy) eigenvalues repeated at 0.

To conclude this section, we have the following theorem.
THEOREM 2. Let T be an MN MN block Toeplitz matrix satisfying (3.1), (3.2),

and (3.3) with qx > 0 and qy > O. Then, the preconditioned matrix R-IT has at least
MN- 4(M7 + N/y- /Ty) eigenvalues asymptotically converging to one.

4. Numerical experiments. Numerical experiments are performed to illus-
trate the spectra of T and R-T and the convergence behavior of the CG and PCG
methods. Note that the spectral clustering property derived in 3 does not require T
to be positive definite. However, we focus on positive-definite T in our experiments
so that the CG and PCG methods can be conveniently applied. For all test prob-
lems below, we choose M N and use (0,-.., 0)T and (1,..., 1)T as the initial and
right-hand-side vectors, respectively.

The first three test problems have positive rational generating functions in the
Wiener class.

Example 1. Rational separable Toeplitz with (Px, qx, Py, qy) (0, 2, 0, 2). The
T(z, zy) is of the form (3.4) with A(z) Ay(zy) 1,

Bx(z) (1 + 0.8z-)(1 0.7z-) and By(zy) (1 + 0.9z-1)(1 0.6z-).
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960 TAKANG KU AND C.-C. JAY KUO

A(R-’T)

A(T)

M N 24, (R-’T) 2.6

M N 16, (R-’T) 2.6

M IV 8, (R-tT) 2.7

M N 24, (T) 6.4

M N 16, (T) 6.0

M=/V=S, (T)=4.S

0 2 4 6 I0 12

(a)

10-

10.n

&

10-8

10-

=16

=128
0 2 4 6 I0 12 14 16 18

No. of iterations

(b)

FIG. 3. (a) Eigenvalue distribution of T and R-1T and (b) convergence history for Example 1.

Example 2. Rational Toeplitz with (p, q, py, qy) (2, 0, 2, 0). The T(z, zy) is
of the form (3.3) with B(z, zy)= 1 and

A(z,Zy) 0.25 0.02(z-t + z 1) _{_ 0.015(z-2 + z2) + O.03z;lzy
-O.02z;tz(z;1 + z1) 0.01z;2z2.

Example 3. Rational Toeplitz with (p, q, py, qy) (0, 2, 0, 1). The T(z, zy) is
of the form (3.3) with A(z, Zy) 1 and

ZyB(zx, zy) 1 + 0.hz-1 0.3z-1 0.2z-2 0.1z-1 + 0.2z-2z-1.
We plot the corresponding spectra of T and R-1T, their condition numbers, and

the convergence history of the CG (dashed lines) and PCG (solid lines) methods in
Figs. 3(a),(b)-5(a),(b). Since the eigenvalues of T for Examples 1-3 all satisfy

0 < _< A(T) _< 62 < oc,
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BLOCK TOEPLITZ PRECONDITIONER 961

(R-1T)

A(T)

M N 24, a(T) 2.0

103

10-a

10-

10-Is

(a)

"N=15,128
--16

0 2 4 10 12 14 16 18

No. of iterations

(b)

FIG. 4. (a) Eigenvalue distribution of T and R-1T and (b) convergence history for Example 2.

where (1 and 52 are constants independent of the dimensions M and N of the given
block matrix, the condition number a(T) is bounded by 52/51 O(1). Clearly, R-1T
has a smaller condition number and a better clustering feature than T. Consequently,
the PCG method performs better than the CG method.

One important difference between the separable and nonseparable cases is that,
as N becomes larger, the PCG method converges faster for the separable case but
more slowly for the nonseparable case. This can be easily explained by the analysis
given in 3. When T is separable, the number of clusters is fixed and the cluster-
ing radius e becomes smaller as N becomes larger. According to the analysis, R-1T
has asymptotically 25 (= (2x + 1)(2-),y + 1)) distinct eigenvalues, including isolated
outliers, clustered outliers, and clustered eigenvalues converging to 1. However, the
2-norm of the residual decreases rapidly in five iterations as given in Fig. 3(b). We ob-
serve an empirical formula for the separable case, namely, the PCG method converges
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A(R-IT)

A(T)

M N 24, (R-T) 3.4

16, (R-T) 3.4

M N 8, (R-1T) 4.7

M=/V=24, a(T)=

M N 16, (T) 5.4

M N 8, (T) 4.4

l0

10

10

10-z

10-o.
0

(a)

FIG. 5. (a) Eigenvalue distribution of T and R-1T and (b) convergence history for Example 3.

asymptotically in xy + 1 iterations. This phenomenon is closely related to the point
Toeplitz result [10], where we found that although there are asymptotically 2x + 1
distinct eigenvalues, the PCG method converges asymptotically in 7x + 1 iterations.
When T is nonseparable, the number of outliers increases with N. Although the PCG
method converges more slowly for larger N, the effect is not obvious until the 2-norm
of the residual is very small. Besides, the convergence curves are getting closer for
larger N. This indicates that the number of PCG (or CG) iterations required is O(1),
which is determined by the condition number rather than the number of outliers.

A block Toeplitz with a nonrational generating function is given in Example 4.
Example 4. Nonrational Toeplitz. The block Toeplitz matrix is generated by a

spherically-symmetric sequence

tm,n 0.7/m+n q- 0.5v/m2+n -- 0.3v’m+’
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BLOCK TOEPLITZ PRECONDITIONER 963

A(R-’T)

(T)

M N 24, (R-tT) 10.8

M N I6, (R-T) iO.i

M N 8, (R-’T) 15.4

M N 16, (T) .53.3

M N 8, (T) 34.4

0 10 20 30 40 50 60

(a)

10

10-2

10

I0-14

10 15 20 25 30

No. of itevatiom

(b)

FIG. 6. (a) Eigenvalue distribution of T and R-1T and (b) convergence history for Example 4.

The spectra of T and R-1T and the convergence history of the CG and PCG
methods are plotted in Fig. 6. Although our analysis in 3 is restricted to the rational
generating function case, it appears that this case does not differ much from the
rational case. The PCG method converges faster than the CG method due to a
smaller condition number and a better spectral clustering property of R-1T. The
condition numbers of T and R-1T are again O(1) so that the number of PCG (or
CG) iterations required is O(1), which is consistent with the observation that the
convergence history curves are getting closer for larger N.

For the above four problems, T is well conditioned, i.e., (T) O(1), so that the
condition number reduction through preconditioning is just a constant factor. To see
a more dramatic condition number improvement, let us consider an ill-conditioned
block Toeplitz below.

Example 5. Ill-conditioned Toeplitz with (Px, qx, Py, qy) (2, 0, 2, 0). The block
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964 TAKANG KU AND C.-C. JAY KUO

Toeplitz is characterized by the two-dimensional mask:

(-1)

0.01 0.02 0.04 0.02 0.01
0.02 0.04 0.12 0.04 0.02
0.04 0.12 -1 0.12 0.04
0.02 0.04 0.12 0.04 0.02
0.01 0.02 0.04 0.02 0.01

Note that the sum of the coefficients of the mask is zero. Masks of this nature
arise in the discretization of constant-coefficient elliptic partial differential equations.
However, the preconditioning block circulant matrix R is singular for this problem,
since Rw 0 for w (1, 1,..., 1, 1)T. In order to perform the preconditioning
properly, we modify the preconditioner R slightly by replacing the zero eigenvalue
with the smallest nonzero eigenvalue of R in our experiment.

The spectra of T and R-1T, the convergence history of the CG and PCG meth-
ods, and the number of iterations required for the 2-norm of the relative residual less
than 10-I2 are plotted in Fig. 7 (a)-(c). As shown in Fig. 7(a), the condition num-
bers of T and R-IT increase at the rates of O(N2) and O(N), respectively. Thus,
the preconditioning provides an order of condition number improvement. A detailed
analysis for the improvement of conditioned number from O(N2) to O(N) is given in
[4]. We see from Fig. 7(c) that PCG and CG methods converge in O(v/-) and O(N)
iterations, respectively.

As far as the computational complexity is concerned, both the PCG and CG
methods require O(N2 log N) operations for Examples 1-4, where the condition num-
.bers of T and R-1T are O(1). For Example 5, the PCG and CG methods require,
respectively, O(N5/2 log N) and O(N3 log N) operations. For all above test problems,
the PCG and CG methods require much lower computational complexity than the
direct method, which requires O(N5) operations.

5. Conclusion. In this research, we extended the preconditioning technique
from point Toeplitz matrices to block Toeplitz matrices. We interpreted the block
Toeplitz matrix-vector Tw in terms of a two-dimensional constant-coefficient mask
operating on a certain two-dimensional sequence construction based on w. This view-
point provides a natural way to analyze the spectral clustering property of R-1T. For
block Toeplitz matrices T generated by two-dimensional rational functions T(zx,
of order (px, q, py, qy), we showed that the eigenvalues of R-1T are clustered around
unity except at most O(M"/y + NT) outliers, where 7 max(p,qx) and y
max(py, qy). Furthermore, if T is separable, the outliers are clustered together such
that R-1T has at most (2 + 1)(27 + 1) asymptotic distinct eigenvalues. Thus,
R-IT has a better spectral clustering property than T. Additionally, it was shown
numerically that R-1T generally has a smaller condition number than T. These two
spectral properties explain the superior convergence behavior of the PCG method
over the CG method.

For point rational Toeplitz matrices, the number of outliers is often small (=
2max(p, q)) and independent of the size of the problem .so that it can be used to
characterize the convergence rate of the PCG method. However, for block rational
Toeplitz matrices, the number of outliers is proportional to the size of the problem, and
is often too large to be useful for characterizing the convergence behavior of the PCG
method. Hence, we have to examine both the condition number improvement and
the spectral clustering effect. More research on the adaptation of the preconditioning
technique to more general classes of block Toeplitz matrices, such as indefinite or
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(R-1T)

(T)

24, R-T) 12.9

M=/V=16, a(R-T)=

M N a, (R-T) 4.8

M N 24, (T) 65.8

M N 16, (T) 31.1

M N 8, (T) 9.4

10-2 10-t 10 10t

(a)

...................:":"-":::..........................................--:
10. .............. ......................N=:(....................N=32
10.t

c N=I6

10-55
=16

0 10 20 30 40 50 60

No. of iterations

(b)

103

10

CG

l0
101 102 103

N

FIG. 7. (a) Eigenvalue distribution ofT and R-1T and (b) convergence history and (c) con-

vergence rate oJ’ CG and PCG method for Example 5.
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966 TAKANG KU AND C.-C. JAY KUO

nonsymmetric problems and the spectral analysis of the preconditioned matrices, is
expected in the future.
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