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SPECTRAL PROPERTIES OF PRECONDITIONED RATIONAL
TOEPLITZ MATRICES*

TAKANG KUt AND C.-C. JAY KUOt

Abstract. Various Toeplitz preconditioners PN have recently been proposed so that an N x N
symmetric positive definite Toeplitz system TN x b can be solved effectively by the preconditioned
conjugate gradient (PCG) method. It has been proven that if Tv is generated by a positive function
in the Wiener class, the eigenvalues of the preconditioned matrices P1TN are clustered between

(1 e, 1 + e) except for a fixed number independent of N. In this research, the spectra of P1TN
are characterized more precisely for rational Toeplitz matrices TN with preconditioners proposed by
Strand [Stud. Appl. Math., 74 (1986), pp. 171-176] and Ku and Kuo [IEEE Trans. Signal Process.,
40 (1992), pp. 129-141]. The eigenvalues ofP1Tv are classified into two classes, i.e., the outliers and
the clustered eigenvalues, depending on whether they converge to 1 asymptotically. It is proved that
the number of outliers depends on the order of the rational generating function, and the clustering
radius e is proportional to the magnitude of the last element in the generating sequence used to
construct these preconditioners. For the special case with TN generated by a eometric sequence,
this approach can be used to determine the exact eigenvalue distribution of PTN analytically.

Key words. Toeplitz matrix, preconditioned conjugate gradient method, rational generating
function

AMS(MOS) subject classifications. 65F10, 65F15

1. Introduction. The system of linear equations associated with a symmetric
positive definite (SPD) Toeplitz matrix arises in many applications, such as time series
analysis and digital signal processing. The N N symmetric Toeplitz system TNX b
is conventionally solved by algorithms based on the Levinson recursion formula [10],
[16] with O(N2) operations. Superfast algorithms with O(Nlog2N) complexity have
been studied intensively in the last ten years [1], [2], [3], [13]. More recently, Strand
[19] proposed using an iterative method, i.e., the preconditioned conjugate gradient
(PCG) method, to solve SPD Toeplitz systems and, as a consequence, the design of
effective Toeplitz preconditioners has received much attention.

Strand’s preconditioner SN [19] is obtained by preserving the central half-diagonals
of TN and using them to form a circulant matrix. Since SN is circulant, the matrix-
vector product Slv can be conveniently computed via fast Fourier transform (FFT)
with O(N log N) operations. It has been shown by R. than and Strand [5], [7] that
if TN is generated by a positive function in the Wiener class, the eigenvalues of the
preconditioned matrices PITN are clustered between (1 e, 1 + e) except for a fixed
number independent of N. Another preconditioner CN was lroposed by T. Chan
[8] and is defined to be the circulant matrix that minimizes the Frobenius norm

IRN TNIIF over all circulant matrices RN of size N N. This turns out to be a
simple optimization problem, and the elements of CN can be computed directly from
the elements of TN. The spectrum of CTN is asymptotically equivalent to that
of STN [6], and thus CN and SN have similar asymptotic behavior. In addition
to preconditioners in circulant matrix form, preconditioners in skew-circulant matrix
form [9] have been studied by nuckle [14]. We recently proposed a general approach

Received by the editors September 11, 1990; accepted for publication (in revised form) March
3, 1991. This work was supported by the University of Southern California Faculty Research and
Innovation Fund and by a National Science Foundation Research Initiation Award (ASC-9009323).

Signal and Image Processing Institute and Department of Electrical Engineering-Systems,
University of Southern California, Los Angeles, California 90089-2564 (tkku@sip+/-.usc.edu and
cckuo@s+/-p+/-, usc. edu).

146

D
ow

nl
oa

de
d 

01
/2

6/
14

 to
 1

32
.1

74
.2

55
.3

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



PRECONDITIONED RATIONAL TOEPLITZ 147

for constructing Toeplitz preconditioners [15]. Under this framework, preconditioners
in circulant and skew-circulant matrix forms can be viewed as special cases and, more
interestingly, preconditioners that are neither circulant nor skew-circulant can also be
derived.

In [15], four new preconditioners Ki,g, 1, 2, 3, 4 were constructed, and it was
demonstrated numerically that they have better convergence performances than other
preconditioners for rational Toeplitz matrices. It was also observed in [15] that for TN
generated by a positive rational function of order (p, q) in the Wiener class, the spectra
of the preconditioned matrix pITN with preconditioners SN and Ki,N, i 1, 2, 3, 4,
have strong regularities. These regularities are stated as follows. Let the eigenvalues
ofP1TN be classified into two classes, i.e., the outliers and the clustered eigenvalues,
depending on whether they converge to 1 asymptotically. Then, (1) the number of
outliers is at most 2max(p, q); and (2) the clustered eigenvalues are confined in an
interval (1- e, 1 / e) with the radius e proportional to the magnitude of the last
element in the generating sequence used to construct the preconditioner. The main
objective of this research is to prove these two spectral properties analytically.

With the above spectral regularities, the number of iterations required to reduce
the norm of the residual lib- TNXI by a constant factor does not increase with
the problem size N so that the solution of the system TNX b can be accomplished
with max(p, q) O(Nlog N) operations. In addition, the superior performance of
preconditioners Ki,N can be easily explained by these spectral regularities. That is, for
TN generated by a positive rational function in the Wiener class, the last elements used
to construct Ki,N and SN are, respectively, tN and t[N/2 SO that the corresponding
radii are 5K O(ItNI) and es O(It[N/2]l ). Since O(ItNI << O(It[N/2]l for
sufficiently large N, the PCG method with preconditioners Ki,N converges faster
than with preconditioner SN.

We should point out that the first spectral property was recently proved by Tre-
fethen. In [23], he used the theory of CF (Caratheodory and Fejr) approximation
[22] to show that SITN has at most 1 + 2max(p, q) distinct eigenvalues asymptot-
ically. A different approach is adopted in this paper to prove this property for both

SITN and K,vTN (see Lemmas 2 and 8). Besides, since the first property only
characterizes the spectrum of pITN for infinite N, whereas the second property
characterizes the spectrum of PTN for both finite and infinite N, our results have
a greater generality.

There exist direct methods that solve rational Toeplitz systems with max(p, q)
O(i) operations [11], [24], [25]. However, the PCG method has three advantages
compared with these direct methods. First, to implement the PCG algorithm, we
only need a finite segment of the generating sequence tn, n 0, 1,..., N- 1, which
is provided by the problem, rather than the precise formula of the rational gen-
erating function. Second, the PCG method can be easily parallelized due to the
parallelism provided by FFT, and it is possible to reduce the time complexity to
max(p, q) O(log N). In contrast, these direct methods are sequential algorithms,
and the time complexity cannot be further reduced. Third, the PCG method is
more widely applicable. For example, it can also be applied to Toeplitz systems with
nonrational Toeplitz generating functions or those arising from the multidimensional
space.

This paper is organized as follows. In 2, we briefly review the construction of
preconditioners Ki,N and summarize some of their spectral properties studied in [15].
In 3 and 4, we prove the desired spectral properties of K,vTN described above. The

D
ow

nl
oa

de
d 

01
/2

6/
14

 to
 1

32
.1

74
.2

55
.3

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



148 T. KU AND C.-C. J. KUO

main idea is to transform the original generalized eigenvalue problem to an equivalent
problem with nearly banded Toeplitz matrices. A similar approach is used to study
the spectral properties of SITN, which is presented in 5. In 6, we use the analysis
in 3-5 to determine the analytical eigenvalue distributions of K,TN and SITN
for Toeplitz matrices with a geometric generating sequence.

2. Construction and spectral properties of Toeplitz preconditioners
K,N, i 1, 2, 3, 4. Let Tm be a sequence ofm m symmetric positive definite Toeplitz
matrices with generating sequence tn. Then,

to ];1 ];N-2
];1 ];0 ];1 iN-2

TN ];1 ];O
];N-2 ];1
];N-1 tN-2 ];1

Preconditioners gi,N, i 1, 2, 3, 4, for TN are constructed by relating TN to a 2N 2N
circulant matrix R2N,

R2N /XTN TN
where XTN is determined by the elements of TN to make R2N circulant, i.e.,

(2.1) /TN

C ];N-1 ];2
tN-1 C tN-1 t2

tN-1 C

];2
];i ];2 ];N- C

with a constant c. If the behavior of the sequence ];n is known, we choose c to be ];N.
Otherwise, c 0.

Consider the following augmented circulant system:

/XTN TN x b

The solution of the above circulant system can be computed efficiently via FFT with
O(Nlog N) operations. Since (2.2) is equivalent to

(TN +/kTg)x b,

this implies that (TN //kTN)-lb can be computed efficiently and that

K1,N TN +/TN
can be used as a preconditioner for TN. Three other preconditioners can be con-
structed in a similar way by assuming negative, even and odd periodicities for x and
b. We summarize the augmented systems and the corresponding preconditioners as
follows:

TN
/TN

/TN x

/T x b

TN --JNx --JN

and K2,N TN- /TN,

and K3,N TN + JNxTN,

and K4,N TN JN/TN,
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PRECONDITIONED RATIONAL TOEPLITZ 149

where JN is the N x N symmetric elementary matrix which has, by definition, ones
along the secondary diagonal and zeros elsewhere (JN,,j 1 if i + j N + 1 and
JN#,j 0 if +j N + 1).

Since preconditioners KS,N, i 1, 2, 3, 4, correspond to 2N-circulant systems, the
matrix-vector product K,v for an arbitrary v can be achieved via 2N-point FFT
with O(N log N) operations. However, we should point out that K1,N is circulant and
K2,N is skew-circulant so that g,vV and K,vV can be computed via N-point FFT.
Although preconditioners K3,N and K4,N are neither circulant nor skew-circulant,
K,v and g-1

4,gTM can be computed via N-point fast cosine and sine transforms,
respectively. The operation count for N-point fast cosine (or sine) transform is ap-
proximately equal to that of N-point FFT in both the order and the proportional
constant [17], [18], [27]. Therefore, the computational cost for the preconditioning
step K/v with 1, 2, 3, 4 is about the same. For more details in implementing the
PCG algorithm, we refer to [15].

To understand the relationship between the spectra of K-1i,NTN, i 1, 2, 3, 4, we
rewrite the eigenvalues of K,TN as

(2.3)
[A(K,TN)] -1  (T I(TN + Ki,N TN) A(I + T I(Ki,N TN)

1 + A(T I(Ki,N TN)),

and examine the relationship between the spectra of T (Ki,N TN). This is char-
acterized by the following theorem.

THEOREM 1. Let Qi be the set of the absolute values of the eigenvalues of
T;I(K,N TN), i.e.,

Q {[A[" (K,N- TN)X ATNx}, i- 1,2,3,4.

Then, Q Q2 Q3 Q4.
Proof. See [15] for the proof.
The above theorem can be stated alternatively as follows. Let be an arbitrary

eigenvalue of T (K,N TN); then there exists an eigenvalue of T (Kj,N TN),
where j # i, with magnitude I1. From (2.3), spectra of T (K,N TN) clustered
around zero are equivalent to those of K[f,TN clustered around unity. Since spectra
of TI(K,N TN) are clustered in a very similar pattern, so are those of K,TN.

We assume that the generating sequence t, for the sequence of Toeplitz matrices

Tm satisfies the following two conditions:

(2.4) Itnl < ,

(2.5) T(ei) E tne--int > > 0 VO,

and the resulting matrices are said to be generated by a positive function in the
Wiener class. Since T(ei) describes the asymptotic eigenvalue distribution of T,,
the above conditions assume that the eigenvalues of Tm are bounded and uniformly
positive, asymptotically. With (2.4) and (2.5), two spectral properties of K[f,TN are
derived.
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150 T. KU AND C.-C. J. KUO

THEOREM 2. Preconditioners Ki,N, i 1, 2, 3, 4, for symmetric positive defi-
nite Toeplitz matrices TN with the generating sequence satisfying (2.4) and (2.5) are

uniformly positive definite and bounded for sulCJiciently large N.
Proof. See [15] for the proof. [-1

THEOREM 3. Let TN be the N N matrix in a sequence of m m symmetric
positive definite Toeplitz matrices Tm with the generating sequence satisfying (2.4) and
(2.5). The eigenvalues of the matrix TI(Ki,N- TN) are clustered between
except for a finite number of outliers for sufficiently large N(e).

Proof. See [15] for the proof. []

Theorems 2 and 3 hold for both rational and nonrational Toeplitz matrices satis-
fying (2.4) and (2.5). However, when TN is additionally rational, we are able to obtain
stronger results and characterize the spectra of K,TN more precisely. In 3 and 4,

--1we focus on the spectrum of KI,NTN, from which the spectra of K,TN, 2, 3, 4,
can be estimated based on Theorem 1.

3. Rational generating functions for ATN. Due to (2.3), the spectral prop-
erties of K,NTN can be determined by examining those of T/kTN, where ATN is

given in (2.1) with c tN. Let tn, -oo < n < oc, be the generating sequence of a
sequence of m m Toeplitz matrices Tm. The Laurent series

T(z) E tnz--n

is known as the generating function of these matrices. If matrices Tm are symmetric,
we decompose T(z) into

T+(z + T+(z),

where

(3.2) T+(z-1)- -- + E tnz-n"
n=l

Thus T(z) is completely characterized by T+(z-). Additionally, if

A(z- ao + az- +... + %,z-’(3.3) T+(z-) B(z-) bo + biz- +’" + bqz-q

where b0 1, apbq # O, and polynomials A(z-) and B(z-1) have no common factor,
we call Tm the rational Toeplitz matrices generated by a rational function of order
(p,q). From (3.1) and (3.3), we have

A(z-1) A(z)(3.4) T(z) B(z_) + B(z)"
It is well known [12] that there exists an isomorphism between the ring of the

power series P(z-1) EnCX=opnz-n (or P(z)) and the ring of the semi-infinite lower
(or upper) triangular Toeplitz matrices with PO,Pl,’",Pn,"" as the first column (or
row). The power series multiplication is isomorphic to matrix multiplication. By
applying the isomorphism to (3.4) and focusing on the leading N N blocks of the
corresponding matrices, we derive the following relationship [12]:

(3.5) TN LaL- + UaU
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PRECONDITIONED RATIONAL TOEPLITZ 151

where La (or U) is an N x N lower (or upper) triangular Toeplitz matrix with first
N coefficients in A(z-1) as its first column (or row). Matrices Lb and Ub are defined
similarly with respect to B(z-). We can also establish an expression similar to (3.5)
for ATN. To do so, we first note that the sequence tn is recursively defined for large
n. This is stated as follows.

LEMMA 1. The sequence tn generated by (3.2) and (3.3) follows the recursion,

(3.6) tn+ -(btn + b2t,-i +"" + bath_q+1), n >_ max(p, q).

Proof. From (3.2) and (3.3), we have

+ E tnz-n (bO - blz-1 -"" -- bqz-q) aO -- alz-1 --"" - apz-p"
n--1

The proof is completed by comparing the coefficients of the above equation.
With Lemma 1, the number of outliers ofT ATN is determined by the following

lemma.
LEMMA 2. Let TN be an N N symmetric Toeplitz matrix generated by T(z) with

T+(z-) given by (3.3), and the corresponding generating sequence satisfies (2.4) and
(2.5). T ATN has asymptotically at most 2 max(p, q) nonzero eigenvalues (outliers).

Proof. Let us define a matrix

/kEN AFN + AFI
where

/kFN

tN tN-1 t2 tl
tN+l tN tN-1 t2

tN+ tN
t2N-2 tN-1
t2N-1 t2N-2 tN+l tN

Since elements t in AFN satisfy (3.6), there are at most max(p, q) independent rows
in/’XFN and therefore, the rank of/EN is at most 2 max(p, q).

Let /PN AEN ATN; it is easy to verify that the l and l norms of/kPN
are both less than

2N-1

TK=-2 E Itnl"
n--N

Consequently, we have

[IAPNII (IIAPNIIIlIAPNII)1/ TK.

Since TK goes to zero as N goes to infinity due to (2.4), and since the eigenvalues of

T are bounded due to (2.5), the spectra of T1ATN and T1/kEN are asymptoti-
cally equivalent. It follows that both T1/kEN and T ATN have at most 2 max(p, q)
nonzero eigenvalues asymptotically. [:]

As a consequence of Lemma 2, T ATN has at least N- 2 max(p, q) eigenvalues
converging to zero as the problem size N becomes large. For the rest of this section and
in 4, we study the clustering property of these eigenvalues. Our approach is outlined
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152 T. KU AND C.-C. J. KUO

as follows. First, we associate ATN with some appropriate rational generating func-
tion 2(z) +(z-1) + 2+(z). The forms of +(z-1) for p <_ q and p > q are given in
Lemmas 3 and 4, respectively. We then transform the generalized eigenvalue problem
involving TI/kTN into another generalized eigenvalue problem involving Qvl/kQg.
We show that QN and /kQN are nearly banded Toeplitz matrices in Lemma 5 and
examine the spectral property of QI/kQN in Lemma 6.

Since TN is a symmetric rational Toeplitz matrix, and the elements of/kTN are
those of TN with reverse ordering, it is not surprising that /kTg is also generated by
a certain rational function, which is determined below. Let us use the elements tn of
a given TN with N > max(p, q) to construct a new sequence {n. The cases p <_ q and
p > q are considered separately.

Case 1. p <_ q. We choose

tN_n,
q

O<_n<_q--1,(3.7) ’n --(Ek--1 b-k-k)/b, q < n.

Note that elements {n above with n :> q are obtained based on the recursion (3.6)
examined from the reverse direction.

Case 2. p > q. We decompose T+ (z-1) into

T+(z-1) g+(z-1) - TI,+(z-1),

where

(3.8a) g+(Z-l) fo t_ flZ-1 t_...

__
L_qz-(p-q)

and

(3.8b) Tl,+(z-1) A’(z-1) ao -- aIz-1 _ -- atsz-s
bo + blZ-1 +’" + bqz-q

with s < q. Let tl,n be the generating sequence of T,+(z-). There exists a simple
relationship between the elements of generating sequences for T+ (z- and TI,+ (z- ),
i.e.,

f tl,n+fn, O<_n<_p--q,
tn tl,n, p--q < n.

With respect to T,+(z-) and F+(z-), we choose the corresponding {1,n and {2,n,
respectively, as

{ tl,N-qn,tl,n --(-:k=l bq-kl,-k)/bq,

and

t2,n O,
N-p+q <_ n <_ N,
elsewhere.

Finally, we define

(3.9) ’n l,n
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PRECONDITIONED RATIONAL TOEPLITZ 153

We associate the sequence n given by (3.7) or (3.9) with a sequence of symmetric
Toeplitz matrices Tin. It is straightforward to verify that for N > max(p, q), TN
ATN. The generating function for matrices m is

(z) +(z-1) + +(), where + z-1) + EnZ
-n

n=l

The forms of +(z-1) with p < q and p > q are described, respectively, in Lemmas 3
and 4.

LEMMA 3. If TN is generated by T(z) with T+(z-1) given by (3.3), and p < q <
N, then/XTN is generated by T(z) with

C(z-1) co -4- el z-1 --... - eqZ-q(3.10) T+(z-)
n(z-) do + dz- +’." + dqz-q’

where

bIbq_i, 0 < < q, j=o dj_j,(3.10a) di O, q < i, c O,
O<i<q,
qKi,

and where

, ,, #o,
(3.10b) t

7, n=0,

with t given by (3.7).
Proof. By (3.7), the sequence n satisfies the recursion

(3.11) t-k --(dlk- + d2k-2 +"" + dqk-q), for k > q,

with d given by (3.10a). Let us define Gk(z-k), k > q, as

Gk(z-k) (k + dik_ + d2-2 +’-" + dqk-q)Z-k.

It is evident from (3.11) that G(z-k) 0 for k > q. Therefore, we have

(1 + dz- +... + dqz-q)r+(z-1) E djti-jT! z-i t_ E Gk(z-k)
i-0 j-0 k=q-t-1

CO "- 1Z-1 --’’"-- Cqz-q,

with ci and t defined in (3.10a) and (3.10b), respectively. This completes the
proof. [3

LEMMA 4. If TN is generated by T(z) with T+(z-1) given by (3.3), and q < p <
N, then/NTN is generated by (z) with

C(z-) z_N(3.12) T+(z-) D(z_l)
-4- F+(z)

where

{ {b-lbq_i, 0 < i < q, -j=0 < q,djti_j 0 i<(3.12a) di= 0, q<i, ci=
0, q<i,
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154 T. KU AND C.-C. J. KUO

and where

, , n0,
(3.125) tn t’o-, n=O,

with n given by (3.9).
Proof. Due to (3.8), we express +(z-1) as +(z-1) /+ (z-) + ,+(z-),

where

N cx)

+(z_l) s_z_, ,/(z_) ,0-y+ ,.z-.
n=N-p+q n--1

It is clear from Lemma 3 and (3.8a) that

+(-) F+(z)z-, l,+(z-) C(z-1)
D(z-1)"

(3.14) /NTN LcL + UcU.
4. Spectral properties ofTI/TN. With the results given by (3.5) and (3.14),

we then transform the generalized eigenvalue problem,

(4.1) /TNx ATNx,

to an equivalent generalized eigenvalue problem,

(4.2) /QNY AQNY,

where

(4.2a) QN LbTNUb LaUb + LbUa

and

(4.2b) /QN Lb/TNUb LbLcLIub + LbUcUIUb
It is clear that (4.1) and (4.2) have identical eigenvalues and their eigenvectors are
related via x Uby. The reason for (4.2) is that QN and /QN are nearly banded

Thus the proof is completed. [:]

We rewrite (3.12) as

(3 13) +(Z-1) 61(2;--1)
with el(z-1) C(z-1) - D(z-1)F+(z)z-ND(z_l)

Applying the isomorphism to (3.10) or (3.13) and focusing on the leading N x N
blocks of the corresponding matrices, we obtain

g LL +UU1,

where L (or U) is an g N lower (or upper) triangular Woeplitz matrix with the
first g coefficients of C(z-1) (p _< q) or C1 (z-1) (p > q) as its first column (or row).
Matrices Ld and Ud are similarly defined with respect to D(z-1). Since/NTN N,
we obtain
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PRECONDITIONED RATIONAL TOEPLITZ 155

Toeplitz matrices which can be more easily analyzed. The properties of matrices QN
and/kQN are characterized below.

LEMMA 5. Let Tm be a sequence of m m symmetric Toeplitz matrices gener-
ated by T(z) with T+(z-1) given by (3.3), and the corresponding generating sequence
satisfies (2.4) and (2.5). The southeast (N- max(p,q)) (N- max(p,q)) blocks of
QN and/kQN are symmetric banded Toeplitz matrices with generating functions

(4.3) Q(z) A(z-)s(z) + S(z-)A(z)
and

(4.4) AQ(z) bqzqC(z-1)B(Z-1) -+- bqz-qC(z)B(z),
respectively.

Proof. Consider two Toeplitz matrices FN and GN of size N N, where FN is a
lower triangular Toeplitz matrix with lower bandwidth r and the generating function
F(z-), GN an upper triangular Toeplitz matrix with upper bandwidth s and the
generating function G(z). It is easy to verify that the product FNGN, except for its
northwest r s block, is a banded Toeplitz matrix with the lower bandwidth r, upper
bandwidth s, and generating function F(z-)G(z). We generalize the above result to
QN naUb q- LbUa and find that the southeast (N- max(p, q)) (g- max(p, q))
block of QN is a symmetric banded Toeplitz matrix with the generating function

Q(z) A(z-1)B(z) + B(z-1)A(z).
Since the product of lower (or upper) triangular Toeplitz matrices is commutative,

we rewrite (4.2b) as

/QN /Q1,N q-/kQg, where /QI,N LbLcLIUb
When p < q, the product LbLcL- results in a lower triangular Toeplitz matrix with
the generating function B(z-)C(z-)D-(z-). The matrix/kQI,N, except for the
first q columns, is a Toeplitz matrix with the generating function

/kQl,N(Z-1) S(z-1)C(z-1)D-l(z-1)B(z).
We use (3.10a) to relate D(z-) with B(z), i.e.,

q q

D(z-1) dnz-n b-lz-q bq-nZq-n blz-qB(z).
n:0 n:0

Thus /Ql,y(z-1) bqzqS(z-)V(z-1) Similarly, T/QI,N, except for the first q
rows, is a Toeplitz matrix with the generating function /kQl,g(Z). Therefore, the
southeast (N- q) (N- q) block of/QN is a symmetric banded Toeplitz matrix
with the generating function

AQ(z) AQ,N(Z-) + AQI,N(Z) bq (zqS(z-1)C(z-1) + z-qB(z)C(z)),

where the coefficients of C(z-) are given in Lemma 3.
When p > q, the generating function of matrix Lc is C (z-1) in (3.13). Conse-

quently,/kQl,N except for the first q columns, is a Toeplitz matrix with the generating
function

/kQ1,N(Z-1) B(z-1)CI(z-1)D-I(z-1)B(z)
B(z-1)C(z-1)D-(z-1)B(z)+ z-gB(z-1)F+(z)B(z).
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156 T. KU AND C.-C. J. KUO

Recall that the orders of polynomials B(z) and F+(z) are q and p- q, respectively.
The lowest order in z of the polynomial z-NB(z-1)F+(z)B(z) is -(N-p), and the
elements of the leading N N Toeplitz matrix generated by z-NB(z-)F+(z)B(z)
are zeros except for the southwest p diagonals. Therefore, the matrix/kQ,N, except
for the first q columns and the southwest p diagonals, is a Toeplitz matrix with the
generating function

/kQ1,N(Z-1) B(z-1)C(z-1)D-l(z-1)B(z).

Then it follows that the southeast (N- p) (N- p) block of/kQN is a symmetric
banded Toeplitz matrix with the generating function

+

where the coefficients of C(z-) are given in Lemma 4. The proof is completed.
The following lemma gives the bound of the clustered eigenvalues of Qv/kQN.
LEMMA 6. Let Tm be a sequence ofm m symmetric Toeplitz matrices generated

by T(z) with T+(z-) given by (3.3), and let the corresponding generating sequence
satisfy (2.4) and (2.5). Then Qvl/QN has at least N- 2max(p, q) eigenvalues with
magnitude bounded by

a.oJ e max
Q(z)

Proof. Let us denote the southeast (N-max(p, q)) (N-max(p, q)) blocks of QN
and AQN by g-max(p,q) and/N-max(p,q), respectively. By the minimax theorem
(or Courant-Fisher theorem)of eigenvalues [20], [26], there are at least N-2 max(p, q)
eigenvalues of QI/kQN bounded by the maximum and the minimum eigenvalues of
--1 //VN-max(p,q) -max(p,q)

It is clear from Lemma 5 that N-max(p,q) and /kN_max(p,q) are symmetric
banded Toeplitz matrices with bandwidth _< max(p, q). We construct two N N sym-
metric circulant matrices 7N andN with N--max(p,q) and N_max(p,q) aS their
leading principal submatrices, respectively. By the separation theorem (or intertwin-
ing theorem) of eigenvalues [20], [26], the eigenvalues of Q-N_max(p,q) QN-max(p,q)
are bounded by the mimum and the minimum eigenvalues of N. It is well
known that the eigenvalues ofNare

AQ(e-ie/N /Q(e-iE/N), n-O, 1,...,N- 1.

Thus the proof is completed.
We then focus on the bound of (4.5). By using (3.1) and (3.3), AQ(z)/Q(z) can

be further simplified as

(4.6)
AQ(z)/Q(z) [bqzqB(z-)C(z-) + bqz-qB(z)C(z)]/[B(z-)B(z)T(z)]

[bqzqC(z-)]/[B(z)T(z)] + [bqz-qC(z)]/[B(z-)T(z)].

Since T(e) A(e-i)/B(e-i) + A(ei)/B(ei), and IT(ei)l is finite from (2.4),
IB(ei)l is uniformly positive, i.e.,

(4.7) IB(e)l >_ > O.
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PRECONDITIONED RATIONAL TOEPLITZ 157

Combining (2.5), (4.6), and (4.7), we obtain

(4.8)
/XQ(e-) 2bqC(e-iO)

f16
with arbitrary 0.

We then focus our discussion on the bound of IbqC(e-ie)]. First, we have

j=0

bq-jtN-i+j
j=0

where the last equality is due to (3.7), (3.10a), and (3.10b). Since tn satisfies the
recursion (3.6), we use the equality

q

bq-jtN-i+j 0
j=0

with N > max(p, q) to simplify (4.9), i.e.,

q q q q

i=0 j=i+ i=0 j=i+

q q

(4.10) <_ max Itnl y Ibq_jl.
NKn<N+q

i=0 j=i+

Furthermore, the term q qY’i=0 Ibq_j bounded byj=iq-1 is

q q q q q

(4.11) Ibq_jl < yy Ibq_jl < (q + 1) Ibjl < (q + 1)2q,
i=0 j=i+ i=0 j j=0

where the last inequality is due to the following lemma.
LEMMA 7. Let Tm be a sequence ofm x m symmetric Toeplitz matrices generated

by T(z) with T+(z-1) given by (3.3), and let the corresponding generating sequence
satisfy (2.4) and (2.5); then

q

lbjl < 2q.
j=0

Proof. Since B(z-1) is a polynomial in z or order q, B(z-1) can be factorized as

(4.12)
q

B(z-1) biz-i (1 rlz-1)(1 r2z-1) (1 rqZ-1),
i=0

where ri, 1 <_ i <_ q, are poles of r+(z-1). A direct consequence of (2.4) is that all
poles of T+(z-1) should lie inside the unit circle, i.e., Irl < 1, 1 _< i _< q. It is clear
from (4.12) that

Ibkl<-- ( qk ) (maxlril)k< ( .qk )’ ( ) q’
where --- (q k) k!"
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158 T. KU AND C.-C. J. KUO

Therefore, we have

q
2q

j=o j=o

and the proof is completed. [:1

Combining (4.8), (4.10), and (4.11), we have

2q+l(q + I)
max I/kQ(e-i2rn/N)/Q(e-i2rn/N)l <

N<n<N+q

Since Iril < 1, 1 < i < q, tn is monotonically decreasing and

max It=l ItNI,
N<n<N+q

for sufficiently large N. Thus

2q+X(q + 1)ltNI(4.13) max < eK.

By Lemma 6, there are at least N- 2max(p, q) eigenvalues of QvlAQN with
magnitude bounded by eK in (4.13). Since eigenvalues of TI/TN are equivalent
to those of Qvl/XQN, there are at least N- 2max(p,q) eigenvalues of TI/TN
with magnitude bounded by eK as well. When eK is small enough, there are at least
N- 2 max(p, q) eigenvalues of K,TN, i 1, 2, 3, 4, clustered between (1--eK, 1 +eK)
for sufficiently large N. We summarize the analysis in this section into the following
theorem.

THEOREM 4. Let Tm be a sequence of m rn symmetric Toeplitz matrices gen-
erated by T(z) with T+(z-1) given by (3.3), and let the corresponding generating
sequence satisfy (2.4) and (2.5). For sufficiently large N, the spectra of the precondi-
tioned Toeplitz matrices K-1i,NTN, 1, 2, 3, 4, have the following two properties:

P1. The number of outliers is at most 2 max(p, q).
P2. There are at least N-2 max(p, q) eigenvalues that lie between (1 K, 1 -4- K),

where eg i8 given by (4.13).
5. Discussion on Strang’s preconditioners. We adopt a procedure similar

to that described in 3 and 4 to examine the spectral properties of SITN, where SN
is Strang’s preconditioner. Only the cases where p < q and N 2M are discussed.
Since the analysis for the cases where p > q or N is odd can be performed in a
straightforward way, it is omitted to avoid unnecessary repetition.

Recall that Strang’s preconditioner SN is obtained by preserving the central half-
diagonals of TN and using them to form a circulant matrix. That is, when N 2M,
SN is defined as a symmetric Toeplitz matrix with the first row

SN [to, tl,’’’,tM-l,tM,tM-l,’’’,tl].

Let us denote the difference between SN and TN by/SN, i.e., ,/SN SN- TN. The
number of outliers of SITN is determined by the following lemma.

LEMMA 8. Let TN be an N N symmetric Toeplitz matrix generated by T(z)
with T+(z-1) given by (3.3), and let the corresponding generating sequence satisfy
(2.4) and (2.5). T1/XSN has asymptotically at most 2max(p, q) nonzero eigenvalues
outliers ).
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PRECONDITIONED RATIONAL TOEPLITZ 159

Proof. The proof is similar to that of Lemma 2. We use

AFM ]/kEN AOFI 0

to approximate /SN, where

/XFM

tM tM-1 tM-2 t3 t2 tl

tM+2 tM+l tM t3

tN-3 tM tM-1 tM-2
iN--2 iN-3 tM+I tM tM-I
tN-I iN-2 N-3 tM+2 $M-4-1 tM

Since elements tn in /XFM satisfy the recursion described in Lemma 1, there are at
most max(p, q) independent rows in /XFM. Therefore, the rank of/kEN is at most
2 max(p, q). Let us define APN /kEN --/XSN. Then we find that

0 AGM ]APN AGTM 0

where /GM is an M x M symmetric Toeplitz matrix with the first row

ACM [tM, tM+l, tM+2, tN-3, tN-2, tN-1].

It is easy to verify that, for sufficiently large N, the 11 and loo norms of/XPN are both
less than

N-1

n--M

Consequently, we have

Since TS goes to zero as M goes to infinity due to (2.4), and since the eigenvalues ofT
are bounded due to (2.5), the spectra of T/SN and TI/XEN are asymptotically
equivalent. It follows that both TI/kEN and TIASN have at most 2 max(p, q)
nonzero eigenvalues, asymptotically.

The matrix ZkSN can be expressed as /XSN ASI,N AS2,N, where

0 F1,M and AS2,N F,TAS1,N F.T 0 01,M 2,M

and where F1,M and F2,M are M M upper triangular Toeplitz matrices with the
following first rows:

F1,M [tM, tM-1, tM--2,’’’, t2, tl],
F2,M [tM, tM+l, tM+2," tN-2, tN-1].
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160 T. KU AND C.-C. J. KUO

We use tn, which satisfies (3.6), to construct two new sequences:

O, O<_n_<M-1,
l,n tN-n, M <_ n <_ M + q- 1,

(5.1)
--(=lbq-kn-k)/bq, M + q <_ n,

O, O<_n<_M-1,
2,n= t, M<_n,

and associate l,n and 2,n with two sequences of symmetric Toeplitz matrices l,m
and 2,m, m 1, 2,..., whose generating functions are defined as

+ where Sl,+(z-1) -- - E 81,nz-n’
n=l

and

+ where 2,0
c

-V +
n--1

respectively. We can easily verify that for N > 2 max(p, q),

I,N /S1,N and 2,N /S2,N.

Then, by using the same approach for proving Lemma 3, we obtain the following
lemma.

LEMMA 9. If TN is generated by T(z) with T+(z-1) given by (3.3), then

z-M(z-l) 0 -- 1z-1 -+-’’" + qz-q
(5.2a) 1,+ (z-1) D(z-1) do + dlz-1 +"" + dqz-q

and

(5.2b) 2,+(z-1) z-M(Z-l) 0 -- 1z-1 --’’" "- qz-q

bo + blz-1 -- -- bqz-qB(z-1)

where the coefficients bi and di are given by (3.3) and (3.8), and

-j=o bjtM+i-j, 0

_ _
q,

5i -=o djl,M+i-j,
ai

0, q < i, 0,

with 1, given by (5.1).
Thus /SN can be decomposed into

/kSN /kS1,N --/kS2,N LaL- + UU1 LaL-1 UaU-1,

where Le (or Ue) is an N N lower (or upper) triangular Toeplitz matrix with the
first N coefficients of z-U(z-1) as its first column (or row), and matrices La, Lb,
and Ld (or Ua, Ub, and Ud) are similarly defined with respect to z-Uft(z-i), B(z-1),
and D(z-1), respectively.

By using the decomposition formulas (3.5) and (5.3), we transform the generalized
eigenvalue problem

(5.4) /kSNX ATNx
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PRECONDITIONED RATIONAL TOEPLITZ 161

into another generalized eigenvalue problem

(5.5) /XQs,NY-- AQNY,

where

QN LbTNUb LaVb + LbUa,
AQs,N LbASNUb (LbLeLIUb / LbUeUIUb) (LaUb / LbUa).

The systems (5.4) and (5.5) have the same eigenvalues and their eigenvectors are
related via x Uby. The matrix/XQs,N is a nearly banded Toeplitz matrix charac-
terized by the following lemma.

LEMMA 10. Let Tm be a sequence of m m symmetric Toeplitz matrices gener-
ated by T(z) with T+(z-) given by (3.3), and the corresponding generating sequence
satisfies (2.4) and (2.5). The southeast (N- max(p,q)) (N- max(p,q)) block of
/XQs,N is a symmetric banded Toeplitz matrix with the generating function

(5.6) AQs(z) B(z-1)S(z)S(z) /kQs, (z)- AQs,2(z),

where

Qs,I(Z) bqz-(M-q)B(z-)(z-) + bqzM-qB(z)(z),
AQs,2(z) z-Mt(Z-1)B(z) + zMB(z-i)t(z).

Since the generating sequence tn of TN satisfies conditions (2.4) and (2.5), we can
use arguments given in the previous section and obtain

2q+l(q + 1)ltMI e’<

and

AQs,e(e-)
Q(e-)

2q+l(q + 1)ltMI e,<

for arbitrary 0. By using arguments similar to those in Lemma 6, it can be derived
that T ASN has at least N- 2 max(p, q) eigenvalues bounded by

(5.7) es 2e’=
2q+e(q + 1)ltN/21

for sufficiently large N. The analysis in this section is concluded by the following
theorem.

THEOREM 5. Let Tm be a sequence ofm m symmetric Toeplitz matrices gener-
ated by T(z) with T+(z-) given by (3.3), and the corresponding generating sequence

satisfies (2.4) and (2.5). For sufficiently large N, the spectrum of the preconditioned
Toeplitz matrix STN has the following two properties:

P1. The number of outliers is at most 2 max(p, q).
P2. There are at least N-2 max(p, q) eigenvalues that lie between (1 as, 1 + as),

where es is given by (5.7).
Let us compare the preconditioners Ki,N and SN. From Theorems 4 and 5,

the spectra of K[(,TN and STN have the same number of outliers, and the other
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162 T. KU AND C.-C. J. KUO

eigenvalues are clustered around 1 within radii eg and es given by (4.13) and (5.7),
respectively. It is clear that the parameters q, f, and 5 are independent of the problem
size N, and that the terms ItNI and ItN/21 determine the convergence rate of the PCG
method. For sufficiently large N, we have O(eg) O(e2S). This implies that, after the
first several iterations which eliminate the effects of the outliers, the residual reduced
by one iteration of the PCG method with preconditioners Ki,N is about the same as
that reduced by two iterations of the PCG method with preconditioner SN. This has
been confirmed by numerical experiments reported in [15].

6. The special case with geometric generating sequences. It has been
observed from numerical experiments [15], [21], that the eigenvalues of K,NTN and

SITN with TN generated by the geometric sequence tn tn, It < 1, are very regular.
The observations are summarized as follows.

R1. The eigenvalues of K,NTN are (1 + t) -1, (1- t) -1, and (1- tN)- with
multiplicities 1, 1, and N- 2, respectively.

R2. When N is even (N 2M), the eigenvalues of SITN are (l+t)-, (l-t)-,
1, (l+tM)-, and (1--tM) -1 with multiplicities 1, 1, 2, M-2, and M-2, respectively.

In this section, we provide an analytical approach to explain these two regularities.
First, we examine the preconditioner K1,N. For the generating sequence t, tn,

its generating function is

T(z) T+(z-) + T+(z), where T+(z-1) A(z-t) 0.5 + 0.htz-1- tz-1

so that the order (p, q) of T+(z-) is (1, 1). From Lemma 3, we obtain

C(zT+(z-1) D(z_)
tN (0.5 q- 0.ht-lz-1)

l_t-lz-

which is related to/TN K,N TN. By using (4.3) and (4.4), we have

(6.1) Q(z) A(z-t)B(z) + B(z-)A(z) 1 t2

and

(6.2) AQ(z) -t[zB(z-1)C(z-) + z-tB(z)C(z)] --tN(1 --t2).

Note that q-- 1 and bq -t are used in deriving (6.2). Due to (6.1) and (6.2), the
southeast (N- 1) (N- 1) blocks of QN and AQN are identity matrices multiplied
by the constants 1 t2 and --tN(1 t2), respectively. Consider the following linear
combination of QN and/kQg"

VN --/kQN + tNQN.

It is clear that the southeast (N- 1) (N- 1) block of VN is a zero matrix. Since
the first two columns are linearly independent, and any two columns of the last N- 1
columns of VN are linearly dependent, VN has a null space of dimension N- 2.
This implies that Qv/kQg, or equivalently, T ATN, has the eigenvalue -tg with
multiplicity N 2. Therefore, (TN + ATN)-ITN g,vTg has the eigenvalue

(1 tN) -1 with multiplicity N- 2.
To determine the remaining two eigenvalues, i.e., the outliers, we use the tech-

nique described in [4] to transform the problem ATNx ATNx to another equivalent

D
ow

nl
oa

de
d 

01
/2

6/
14

 to
 1

32
.1

74
.2

55
.3

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



PRECONDITIONED RATIONAL TOEPLITZ 163

problem. Consider the case with even N (N 2M). Since ATN and TN are both
symmetric Toeplitz matrices, they can be expressed in the following block matrix
form:

/TN /T2,M /T1,M
and TN T2,M T1,M

Let WN be the orthonormal matrix

WN--- --JM JM

where IM and JM are M x M identity and symmetric elementary matrices, respec-
tively. By using the transformation

W1/kTNWNy AWITNWNy,

we obtain two decoupled subproblems,

(6.3) /T1,M JM/T2 M y ) T1,M JMT2 M Y

(6.4) (/T1,M + JM/T2,M)Y+ +(T1,M + JMT2,M)Y+,

where A_ and + are also eiger,values of the original problem ATNx ATNx. Since
the first rows of matrices on both sides of (6.3) are proportional by a constant -t,
A_ -t with y_ el (the unit vector with 1 at the first element) satisfies (6.3).
Similarly, we can argue that + t with y+ e: is an eigenvalue-eigenvector pair for
(6.4). Thus 1/(1 t) and 1/(1 + t) are two outliers of (TN +/TN)-:TN K,NTN.
When N is odd, the same result can be derived with a slightly modified WN given
in [4].

By using the relationship among preconditioners Ki,g, i 1, 2, 3, 4, we can deter-
mine all eigenvalues of K,TN. They all have three distinct eigenvalues (two outliers
and N- 2 clustered eigenvalues) summarized in Table 1.

TABLE 1
Eigenvalues of -1Ki,NTN.

1 (1 -t- t) -1

A2 (l--t)-1

A3 (1 tN)-1

-1K2,NTN
(1 + $)-1

(1 + iN)-I

-iK3,NTN K4,NTN
(l+t)-1 (1-)-I

(1 + N)-I (1 -- tN) -1(I --/N) -I (1-- N)-I

Next, we examine Strang’s preconditioner SN with even N. When N 2M, the
two central rows of SN TN are zeros. This implies that S:TN has the eigenvalue
1 with multiplicity 2. By using (5.2a) and (5.2b), we have

-MO(z-1 z-MrM&,+(z-:) D(z-:) 1-t-:z-:’

z-M(z-1) z-M,M

B(z-:) 1- tz-l’
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respectively. By substituting (z-1), B(z-), (z-), and D(z-) into (5.6) and
using (6.1), we obtain

AQs(z) --tM(z-M + zM)(1 t2).

Then, the nonzero elements of/k QS,N-1, which is the southeast (N 1) x (N 1) block
of/kQs,N only occur along the +/-Mth diagonals and take the same value -tM (l-t2).
Consider the linear combination of/kQs,N and QN,

V1,N AQs,N + tMQN

By adding the k/ lth column to the M/k/ lth column of V1,N, for k 1, 2,... (M
1), we find that the southeast (N- 1) (M- 1) block of the resulting matrix is the
zero matrix. Consequently, VI,N has a null space of dimension M- 2 and Ql/kQs,g
has the eigenvalue -tM with multiplicity M- 2. Similarly, we can show that

V2,N /kQs,N tMQN

has a null space of dimension M- 2 by subtracting the k / 1 column from the
M + k + lth column of V2,N, for k 1, 2,... (M 1). Therefore, Qv/kQS,N has the
eigenvalue tM with the same multiplicity M 2. As a consequence, SITN has the
eigenvalues (1 + tM)- and (1 tM)- with multiplicity M 2.

To determine the remaining two eigenvalues of SITN, we use the same transfor-
mation discussed earlier and consider the eigenvalues of the following two subproblems:

(T1,M JMT2,M)Y- -(S1,M JM2,M)Y-,

(6.6) (T1,M -- JMT2,M)Y+ +(I,M -- JN2,M)Y+,where S1,M and S2,M are the northwest and southwest M M blocks of SN, respec-
tively. Since the first rows of matrices on both sides of (6.5) are proportional by a
constant 1- t, A_ 1/(1- t) with y_ e satisfies (6.5). Similarly, + 1/(1 + t)
with y+ -el satisfies (6.6).

7. Conclusion. In this paper, we have proved the spectral properties of the pre-
conditioned rational Toeplitz matrices PTN with the preconditioner SN proposed
by Strang [19] and the preconditioners Ki,g proposed by the authors [15]. The eigen-
values of PTN are classified into two classes, i.e., the outliers and the clustered
eigenvalues. The number of outliers depends on the order of the rational generating
function. The clustered eigenvalues are confined in the interval (1- e, 1 + e) with the
radii eK O(ItNI) and es O(ItN/21) for K,TN and SITN, respectively. When
the symmetric Toeplitz matrix TN is generated by the geometric sequence tn with

Itl < 1, the precise eigenvalue distributions of K,TN and ST2M have been deter-

mined analytically. Since the eigenvalues of K,TN are more closely clustered than

those of SITN, preconditioners Ki,N are more efficient for solving rational Toeplitz
systems.
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