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Abstract. Various Toeplitz preconditioners Py have recently been proposed so that an N x N
symmetric positive definite Toeplitz system Ty x = b can be solved effectively by the preconditioned
conjugate gradient (PCG) method. It has been proven that if Ty is generated by a positive function
in the Wiener class, the eigenvalues of the preconditioned matrices PEITN are clustered between

(1 — €,1 + €) except for a fixed number independent of N. In this research, the spectra of PIQITN
are characterized more precisely for rational Toeplitz matrices Ty with preconditioners proposed by
Strang [Stud. Appl. Math., 74 (1986), pp. 171-176] and Ku and Kuo [IEEE Trans. Signal Process.,
40 (1992), pp. 129-141]. The eigenvalues of PIQITN are classified into two classes, i.e., the outliers and
the clustered eigenvalues, depending on whether they converge to 1 asymptotically. It is proved that
the number of outliers depends on the order of the rational generating function, and the clustering
radius € is proportional to the magnitude of the last element in the generating sequence used to
construct these preconditioners. For the special case with Ty generated by a geometric sequence,
this approach can be used to determine the exact eigenvalue distribution of Py Ty analytically.

Key words. Toeplitz matrix, preconditioned conjugate gradient method, rational generating
function
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1. Introduction. The system of linear equations associated with a symmetric
positive definite (SPD) Toeplitz matrix arises in many applications, such as time series
analysis and digital signal processing. The N x N symmetric Toeplitz system Tnyx = b
is conventionally solved by algorithms based on the Levinson recursion formula [10],
[16] with O(N?) operations. Superfast algorithms with O(N log?N) complexity have
been studied intensively in the last ten years [1], [2], [3], [13]. More recently, Strang
[19] proposed using an iterative method, i.e., the preconditioned conjugate gradient
(PCG) method, to solve SPD Toeplitz systems and, as a consequence, the design of
effective Toeplitz preconditioners has received much attention.

Strang’s preconditioner Sy [19] is obtained by preserving the central half-diagonals
of Ty and using them to form a circulant matrix. Since Sy is circulant, the matrix-
vector product S;,lv can be conveniently computed via fast Fourier transform (FFT)
with O(N log N) operations. It has been shown by R. Chan and Strang [5], 7] that
if Ty is generated by a positive function in the Wiener class, the eigenvalues of the
preconditioned matrices PI\_,ITN are clustered between (1 —¢,1 + €) except for a fixed
number independent of N. Another preconditioner Cy was proposed by T. Chan
[8] and is defined to be the circulant matrix that minimizes the Frobenius norm
||BRny — Tv||F over all circulant matrices Ry of size N x N. This turns out to be a
simple optimization problem, and the elements of C can be computed directly from
the elements of T. The spectrum of C;,lTN is asymptotically equivalent to that
of SK,ITN [6], and thus Cy and Sy have similar asymptotic behavior. In addition
to preconditioners in circulant matrix form, preconditioners in skew-circulant matrix
form [9] have been studied by Huckle [14]. We recently proposed a general approach
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for constructing Toeplitz preconditioners [15]. Under this framework, preconditioners
in circulant and skew-circulant matrix forms can be viewed as special cases and, more
interestingly, preconditioners that are neither circulant nor skew-circulant can also be
derived.

In [15], four new preconditioners K; n, ¢ = 1,2,3,4 were constructed, and it was
demonstrated numerically that they have better convergence performances than other
preconditioners for rational Toeplitz matrices. It was also observed in [15] that for Ty
generated by a positive rational function of order (p, ¢) in the Wiener class, the spectra
of the preconditioned matrix P,GITN with preconditioners Sy and K; v, =1,2,3,4,
have strong regularities. These regularities are stated as follows. Let the eigenvalues
of PA_,ITN be classified into two classes, i.e., the outliers and the clustered eigenvalues,
depending on whether they converge to 1 asymptotically. Then, (1) the number of
outliers is at most 2max(p,q); and (2) the clustered eigenvalues are confined in an
interval (1 — ¢,1 + €) with the radius € proportional to the magnitude of the last
element in the generating sequence used to construct the preconditioner. The main
objective of this research is to prove these two spectral properties analytically.

With the above spectral regularities, the number of iterations required to reduce
the norm of the residual ||b — Tyxj|| by a constant factor does not increase with
the problem size N so that the solution of the system Tyx = b can be accomplished
with max(p,q) X O(N log N) operations. In addition, the superior performance of
preconditioners K; n can be easily explained by these spectral regularities. That is, for
TN generated by a positive rational function in the Wiener class, the last elements used
to construct K; xy and Sy are, respectively, ty and t[x/2) so that the corresponding
radii are ex = O(Jtny|) and eg = 0(|t|'N/2‘|‘). Since O(|tn]) << O(lt[N/g] |) for
sufficiently large N, the PCG method with preconditioners K; n converges faster
than with preconditioner Sy .

We should point out that the first spectral property was recently proved by Tre-
fethen. In [23], he used the theory of CF (Carathéodory and Fejér) approximation
[22] to show that Sy'Ty has at most 1 + 2max(p,q) distinct eigenvalues asymptot-
ically. A different approach is adopted in this paper to prove this property for both
STy and K, ~Tn (see Lemmas 2 and 8). Besides, since the first property only
characterizes the spectrum of PIQITN for infinite N, whereas the second property
characterizes the spectrum of PA_,ITN for both finite and infinite N, our results have
a greater generality.

There exist direct methods that solve rational Toeplitz systems with max(p, q) x
O(N) operations [11], [24], [25]. However, the PCG method has three advantages
compared with these direct methods. First, to implement the PCG algorithm, we
only need a finite segment of the generating sequence t,, n = 0,1,..., N — 1, which
is provided by the problem, rather than the precise formula of the rational gen-
erating function. Second, the PCG method can be easily parallelized due to the
parallelism provided by FFT, and it is possible to reduce the time complexity to
max(p, q) x O(log N). In contrast, these direct methods are sequential algorithms,
and the time complexity cannot be further reduced. Third, the PCG method is
more widely applicable. For example, it can also be applied to Toeplitz systems with
nonrational Toeplitz generating functions or those arising from the multidimensional
space.

This paper is organized as follows. In §2, we briefly review the construction of
preconditioners K; y and summarize some of their spectral properties studied in [15].
In §8§3 and 4, we prove the desired spectral properties of K ﬁ,TN described above. The
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main idea is to transform the original generalized eigenvalue problem to an equivalent
problem with nearly banded Toeplitz matrices. A similar approach is used to study
the spectral properties of S;,lTN, which is presented in §5. In §6, we use the analysis
in §83-5 to determine the analytical eigenvalue distributions of K; ,{,TN and S;,lTN
for Toeplitz matrices with a geometric generating sequence.

2. Construction and spectral properties of Toeplitz preconditioners
K; n,i=1,2,3,4. Let T,, be a sequence of m xm symmetric positive definite Toeplitz
matrices with generating sequence t,,. Then,

to t1 © tn—2 TN
t1 to ty . IN—2
Tn = t1 to . .
tN—2 . . . t
tN-1 tN-—2 - ty to

Preconditioners K; n, ¢ = 1,2, 3, 4, for Ty are constructed by relating T to a 2N x2N
circulant matrix Rap,

Ron — Tn ATn
2N — ATN TN )

where ATy is determined by the elements of Ty to make Ray circulant, i.e.,

¢ tn-a to ty
tN-1 ¢ tn— : t2
(2. 1) ATN = . tN—l c . . )
to . . . tN-1
tl tz tN—l C

with a constant ¢. If the behavior of the sequence t,, is known, we choose c to be ty.
Otherwise, ¢ = 0.
Consider the following augmented circulant system:

@2) e HEHE
The solution of the above circulant system can be computed efficiently via FFT with
O(N log N) operations. Since (2.2) is equivalent to
(Tn + ATn)x = b,
this implies that (Ty + ATx)"'b can be computed efficiently and that
Kin=Tn+ AN

can be used as a preconditioner for Ty. Three other preconditioners can be con-
structed in a similar way by assuming negative, even and odd periodicities for x and
b. We summarize the augmented systems and the corresponding preconditioners as
follows:

v OTn ][ x ] _[ b _
_ATN TN ] ]—[ ] and KZ,N——TN—ATN,

Ty ATy ][ b
AT TNN] x ]:[Jb] and Ksy =Ty + JvATy,

[T AT, r b
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where Jy is the N x N symmetric elementary matrix which has, by definition, ones
along the secondary diagonal and zeros elsewhere (Jy;; = 1ifi¢+j = N+ 1 and
In,ij=0ifi+j#N+1).

Since preconditioners K; n, ¢ = 1,2, 3,4, correspond to 2N-circulant systems, the
matrix-vector product K, ,{,v for an arbitrary v can be achieved via 2N-point FFT
with O(NN log N) operations. However, we should point out that K7 n is circulant and
K3, is skew-circulant so that K yV and K. 2, NV can be computed via N-point FFT.
Although preconditioners K3 y and Ky n are neither circulant nor skew-circulant,
K3 &V and K 4 AV can be computed via N-point fast cosine and sine transforms,
respectively. The operation count for N-point fast cosine (or sine) transform is ap-
proximately equal to that of N-point FFT in both the order and the proportional
constant [17], [18], [27]. Therefore, the computational cost for the preconditioning
step K i Ibv with ¢ = 1,2, 3,4 is about the same. For more details in implementing the
PCG algorithm, we refer to [15].

To understand the relationship between the spectra of K Y IbTN, 1=1,2,3,4, we

rewrite the eigenvalues of K ~Tn as

AE AT = MTR (TN + Kin — Tn)) = A+ Ty ' (Kin — Tx))
(2.3) =1+ MTR (Kin — Tn)),

and examine the relationship between the spectra of Ty I(Ki, ~ — Tn). This is char-
acterized by the following theorem.

THEOREM 1. Let Q; be the set of the absolute values of the eigenvalues of
TEI(K,;,N — TN), i.e.,

Qi = {lAl . (K,;’N - TN)X = ATNX}, 1= 1,2,3, 4.

Then, Q1 = Q2 = Q3 = Q4.

Proof. See [15] for the proof. 0

The above theorem can be stated alternatively as follows. Let A be an arbitrary
eigenvalue of Tﬁl(Ki, N — Tn); then there exists an eigenvalue of T&l(K i~ —Tn),
where j # i, with magnitude |\|. From (2.3), spectra of Ty (K;n — Ti) clustered
around zero are equivalent to those of K | If,TN clustered around unity. Since spectra
of T&l(Ki, ~ — Tn) are clustered in a very similar pattern, so are those of K i 1{,TN.

We assume that the generating sequence t,, for the sequence of Toeplitz matrices
T, satisfies the following two conditions:

(2.4) > ltal < oo,
—00
(2.5) T(e¥) = tae ™ >6>0 V0,

and the resulting matrices are said to be generated by a positive function in the
Wiener class. Since T(e®®) describes the asymptotic eigenvalue distribution of T,
the above conditions assume that the eigenvalues of T;, are bounded and uniformly
positive, asymptotically. With (2.4) and (2.5), two spectral properties of K ~T are
derived.
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THEOREM 2. Preconditioners K; n, ¢ = 1,2,3,4, for symmetric positive defi-
nite Toeplitz matrices Ty with the generating sequence satisfying (2.4) and (2.5) are
uniformly positive definite and bounded for sufficiently large N.

Proof. See [15] for the proof. 0O

THEOREM 3. Let Ty be the N x N matriz in a sequence of m X m symmetric
positive definite Toeplitz matrices T,, with the generating sequence satisfying (2.4) and
(2.5). The eigenvalues of the matriz Ty'(K; N — Tn) are clustered between (—e, -+€)
except for a finite number of outliers for sufficiently large N(€).

Proof. See [15] for the proof. 0

Theorems 2 and 3 hold for both rational and nonrational Toeplitz matrices satis-
fying (2.4) and (2.5). However, when Ty is additionally rational, we are able to obtain
stronger results and characterize the spectra of K; —1 NI~ more precisely. In §§3 and 4,

we focus on the spectrum of K’ ~Tn, from which the spectra of K, NTN, i=2,3,4,
can be estimated based on Theorem 1.

3. Rational generating functions for ATx. Due to (2.3), the spectral prop-
erties of K NTN can be determined by examining those of TNIATN, where ATy is
given in (2. 1) with ¢ = ty. Let t,, —00 < n < 00, be the generating sequence of a
sequence of m x m Toeplitz matrices T;,. The Laurent series

T(z) = i tn2™ "

n=-—00

is known as the generating function of these matrices. If matrices T, are symmetric,
we decompose T'(z) into

3.1) T(z) = Ty (z71) + T4 (2),
where
(3.2) Tp(z ) = 529 +3 b,

Thus T'(z) is completely characterized by T (2~!). Additionally, if

_ A(z™Y)  ao+aizt4--Fapz?
3.3 T 1y = — P
(3.3) +(z7) B(z71)  bo+biz7l 4 +bgz9’

where by = 1, a,b, # 0, and polynomials A(z~!) and B(z~!) have no common factor,
we call T, the rational Toeplitz matrices generated by a rational function of order
(p,q). From (3.1) and (3.3), we have

A(z7Y)
B(z1)

A(z)

+B(z)'

(3.4) T(z) =

It is well known [12] that there exists an isomorphism between the ring of the
power series P(z71) = "> /p,z~™ (or P(z)) and the ring of the semi-infinite lower
(or upper) triangular Toeplitz matrices with pg, p1,- -, Pn, - - as the first column (or
row). The power series multiplication is isomorphic to matrix multiplication. By
applying the isomorphism to (3.4) and focusing on the leading N x N blocks of the
corresponding matrices, we derive the following relationship [12]:

(3.5) Ty = L, L; ' + U, U; Y,
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where L, (or U,) is an N x N lower (or upper) triangular Toeplitz matrix with first
N coefficients in A(z7!) as its first column (or row). Matrices L, and U, are defined
similarly with respect to B(z~!). We can also establish an expression similar to (3.5)
for ATx. To do so, we first note that the sequence t,, is recursively defined for large
n. This is stated as follows.

LEMMA 1. The sequence t,, generated by (3.2) and (3.3) follows the recursion,

(3.6) tnt1 = —(bitn +batn_1 + -+ + bgtn_g+1), n > max(p, q).
Proof. From (3.2) and (3.3), we have
tO > —n -1 —q -1 —p
§+Ztnz (bo+brz7 4+ bz ) =ap+a1z7 +---+apzP.
n=1

The proof is completed by comparing the coefficients of the above equation. 0
With Lemma 1, the number of outliers of TglATN is determined by the following
lemma.
LEMMA 2. Let Ty be an N x N symmetric Toeplitz matriz generated by T'(z) with
T4 (271) given by (3.3), and the corresponding generating sequence satisfies (2.4) and
(2.5). Ty ATN has asymptotically at most 2 max(p, q) nonzero eigenvalues (outliers).
Proof. Let us define a matrix

AEN = AFy + AFE,

where
tn tn-1 . to ty
tny1 tn  tn-1 . ta
AFy = . iNny1 In
ton—2 : tN-1
tan—1 tan-—2 : tnt1  EN

Since elements ¢, in AFy satisfy (3.6), there are at most max(p, ¢) independent rows
in AFyn and therefore, the rank of AEy is at most 2 max(p, q).

Let APy = AEN — ATN; it is easy to verify that the l; and ., norms of APy
are both less than

2N-1

TRk =2 Y |tn]-
n=N

Consequently, we have
IAPN|l; < (IAPNIILIAPN]] )Y < 7k

Since Tk goes to zero as N goes to infinity due to (2.4), and since the eigenvalues of
Tx' are bounded due to (2.5), the spectra of Ty ATy and Ty'AEy are asymptoti-
cally equivalent. It follows that both Ty ' AEx and Tx' ATy have at most 2 max(p, q)
nonzero eigenvalues asymptotically. il

As a consequence of Lemma 2, TJQIATN has at least N — 2max(p, q) eigenvalues
converging to zero as the problem size N becomes large. For the rest of this section and
in §4, we study the clustering property of these eigenvalues. Our approach is outlined
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as follows. First, we associate ATy with some appropriate rational generating func-
tion T(2) = Ty (27 1) + T+ (2). The forms of T’y (27 1) for p < q and p > q are given in
Lemmas 3 and 4, respectively. We then transform the generalized eigenvalue problem
involving TIQIATN into another generalized eigenvalue problem involving Q;,l AQN.
We show that Qx and AQn are nearly banded Toeplitz matrices in Lemma 5 and
examine the spectral property of QEIAQ ~ in Lemma 6.

Since Ty is a symmetric rational Toeplitz matrix, and the elements of ATy are
those of Ty with reverse ordering, it is not surprising that ATy is also generated by
a certain rational function, which is determined below. Let us use the elements %, of
a given Ty with N > max(p, q) to construct a new sequence #,,. The cases p < ¢ and
p > q are considered separately.

Case 1. p < q. We choose

~ tN—'n’ OSnSq_l’
3.7 t = _
( ) " { _(21=1 bq—ktn—k)/bq, q<n.

Note that elements #, above with n > ¢ are obtained based on the recursion (3.6)
examined from the reverse direction.
Case 2. p > q. We decompose T, (27!) into

(38) Ty(z7h) = Fe(z7 ) + T4 (271),
where

(3.8a) Frz Y =fot fiz b4t fpqz P9
and

A(zY)  ah+alzl 4 +alz?

=1y _
(38b) T1,+(z ) - B(z——l) - bo+biz7t 4+ -+ qu—q ’

with s < g. Let t; , be the generating sequence of T} 1 (z71). There exists a simple
relationship between the elements of generating sequences for T’y (z71) and T} 4 (271),
ie.,

t, = tl,n+f'na OS"’LSP"%
" t1,n, p—gq<n.

With respect to 71 4(27!) and Fy(27!), we choose the corresponding t; , and %3 n,
respectively, as

i z{hw%, ) 0<n<qg-1,
" _(le bq—ktl,n—k)/bq, q S n,
and
i’ — fN—'nv N_p+anSN,
Zm 0, elsewhere.

Finally, we define

(3.9) tn =t1n +ton.
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We associate the sequence t, given by (3.7) or (3.9) with a sequence of symmetric
Toeplitz matrices T;,,. It is straightforward to verify that for N > max(p,q), Tn =
ATy . The generating function for matrices T, is

ing oo
T(z) =T (z7Y) + Ty (2), where Ty (z71) = % + E th2 ™.
n=1

The forms of T+(z‘1) with p < ¢q and p > ¢ are described, respectively, in Lemmas 3
and 4.

LEMMA 3. If Tn is generated by T(z) with Ty (z™') given by (3.3), and p < ¢ <
N, then ATy is generated by T(z) with

C(z™!)  cot+ezt+--+cz7?

3.1 T (z7Y) = =
(3.10) +(z) D(z71)  do+diz7l 4 +dgz?’
where
bylbg—i, 0<i<gq S oditi_;, 0<i<g
.= q "9V =7 =" = =0 %jbY—j> >1>~4q,
(3.10a) d; { 0 g<i, c; { 0,3 g<i
and where
- t n#0
3.10b =3 7 ’
( ) " { '22’ n=0,

with t, given by (3.7). )
Proof. By (3.7), the sequence t,, satisfies the recursion

(3.11) fk = _(dlfk—l + dgfk__z + -4 dqfk_q), for k > g,
with d; given by (3.10a). Let us define Gx(27%), k > ¢, as
G’k(z‘k) = ({k + d1t~k_1 + dsz_z + -+ dqfk_q)z'k.

It is evident from (3.11) that Gx(2~*) = 0 for k > q. Therefore, we have

q i oo
(A+diz™ + o+ dgz )Ty (271 = Z( dﬂé_f‘) T Y Gh(eTH)

i=0 k=q+1

=CO+Clz—1+"‘+qu_q,

with ¢; and #; defined in (3.10a) and (3.10b), respectively. This completes the
proof. 0

LEMMA 4. If Ty is generated by T(z) with Ty (z™") given by (3.3), and ¢ < p <
N, then ATy is generated by T'(z) with

C(z™Y)

(3.12) T (z7Y) = D)

+ Fy(2)z7N,

where

(3120) d={ baben 0Si<e [ 3 diE g, 0<i<q,
0, q<i, 0, q<i,
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and where

.12b t =
(3 ) n %o, n= 0’

. {t n#0,

with t, given by (3.9). 5 5 3 5
Proof. Due to (3.8), we express T (z71) as T4 (271) = Fy(27t) + T 4+ (271),
where

N oo
Fy(zh) = Z In-n2™", Ty (z7h = —159 + Ztl,nz_n-
n=N—p+q n=1

It is clear from Lemma 3 and (3.8a) that

. _ - _ C(z™1)
N
Fy(z7h) = Fi(2)27V, Ty 4(z7h) = DG1)
Thus the proof is completed. 0
We rewrite (3.12) as
313) o) = L) Gith 01271 = C(a1) + D(x-1)Fy (2)5=N
(3.13) Ti(z )—"D—(z‘:l—)> with C1(277) = C(27°) + D(27 ") Fi.(2)z™ .

Applying the isomorphism to (3.10) or (3.13) and focusing on the leading N x N
blocks of the corresponding matrices, we obtain

Tn = L.L7' +UUSY,

where L. (or U.) is an N x N lower (or upper) triangular Toeplitz matrix with the
first N coefficients of C(z71) (p < q) or C1(271) (p > q) as its first column (or row).
Matrices Ly and Uy are similarly defined with respect to D(2~1). Since ATy = Ty,
we obtain

(3.14) ATy = L.L7;' +UUS .

4. Spectral properties of Ty' ATy. With the results given by (3.5) and (3.14),
we then transform the generalized eigenvalue problem,

(4. 1) ATNX = /\TNX,

to an equivalent generalized eigenvalue problem,

(4.2) AQNY = AQNY,

where

(4.2a) Qn = LyTnUs = LoUs + LpU,

and

(4.2b) AQN = LATNUy = LyLeL7 ' Us + LyUcUy U

It is clear that (4.1) and (4.2) have identical eigenvalues and their eigenvectors are
related via x = Upy. The reason for (4.2) is that Qn and AQn are nearly banded
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Toeplitz matrices which can be more easily analyzed. The properties of matrices Qn
and AQ N are characterized below.

LEMMA 5. Let T,, be a sequence of m x m symmetric Toeplitz matrices gener-
ated by T(z) with T+ (z71) given by (3.3), and the corresponding generating sequence
satisfies (2.4) and (2.5). The southeast (N — max(p,q)) x (N — max(p, q)) blocks of
Qn and AQN are symmetric banded Toeplitz matrices with generating functions

(4.3) Q(z) = A(z"")B(2) + B(z7")A(2)

and

(4.4) AQ(z) = b,27C(271)B(271) + b,279C(2) B(2),
respectively.

Proof. Consider two Toeplitz matrices Fiy and Gy of size N x N, where Fy is a
lower triangular Toeplitz matrix with lower bandwidth r and the generating function
F(z7'), Gn an upper triangular Toeplitz matrix with upper bandwidth s and the
generating function G(z). It is easy to verify that the product FnG y, except for its
northwest r x s block, is a banded Toeplitz matrix with the lower bandwidth r, upper
bandwidth s, and generating function F(z71)G(z). We generalize the above result to
QN = LoUy + LyU, and find that the southeast (N — max(p,q)) x (N — max(p, q))
block of Qp is a symmetric banded Toeplitz matrix with the generating function

Q(2) = A(z7")B(2) + B(z™)A(2).

Since the product of lower (or upper) triangular Toeplitz matrices is commutative,
we rewrite (4.2b) as

AQNn = AQin +AQTy, where AQi N = LyLeLy ' Us.

When p < ¢, the product LbLCL;1 results in a lower triangular Toeplitz matrix with
the generating function B(z71)C(271)D~1(27!). The matrix AQ1,n, except for the
first ¢ columns, is a Toeplitz matrix with the generating function

AQin(z7Y) = B(z7H)C (27 ) D™ (27 1) B(z).
We use (3.10a) to relate D(z~1) with B(z), i.e.,

q q
Dz =) dnz ™ =b;1271) a2 = b 2B (2).
n=0 n=0
Thus AQ:y N(z71) = b;29B(271)C(271). Similarly, AQT y, except for the first g
rows, is a Toeplitz matrix with the generating function AQq,n(z). Therefore, the
southeast (N — q) x (N — q) block of AQy is a symmetric banded Toeplitz matrix
with the generating function

AQ(2) = AQuN(27") + AQuN(2) = by (:7B(z7)C(27") + 27B(2)C(2)),

where the coefficients of C(z7!) are given in Lemma 3.

When p > g, the generating function of matrix L. is C1(z7!) in (3.13). Conse-
quently, AQ1,n, except for the first g columns, is a Toeplitz matrix with the generating
function

AQin(z7Y) = B(z7H)Ci(z7Y) D7 (27 1) B(2)
= B(z"H)C(z"Y) DY (27Y)B(2) + 2N B(2 1) F(2) B(2).
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Recall that the orders of polynomials B(z) and F,(z) are ¢ and p — g, respectively.
The lowest order in z of the polynomial 2~ B(21)F,(z)B(z) is —(N — p), and the
elements of the leading N x N Toeplitz matrix generated by 2~ B(2!)F, (2) B(2)
are zeros except for the southwest p diagonals. Therefore, the matrix AQq n, except
for the first ¢ columns and the southwest p diagonals, is a Toeplitz matrix with the
generating function

AQin(z7Y) = B(z"H)C(z"Y) D1 (27 1) B(2).

Then it follows that the southeast (N — p) x (N — p) block of AQy is a symmetric
banded Toeplitz matrix with the generating function

AQ(2) = by [2*B(z1)C(+7) + 279B(2)C(2)],

where the coefficients of C(27!) are given in Lemma 4. The proof is completed. O
The following lemma gives the bound of the clustered eigenvalues of QI_VIAQ N
LEMMA 6. Let T,, be a sequence of m x m symmetric Toeplitz matrices generated

by T(z) with T4 (27t) given by (3.3), and let the corresponding generating sequence

satisfy (2.4) and (2.5). Then Q' AQN has at least N — 2max(p, q) eigenvalues with
magnitude bounded by

AQ(2)

(4.5) €= 0

2—e—i27n/N

Proof. Let us denote the southeast (N —max(p, ¢)) X (N —max(p, q)) blocks of Qn
and AQN by QN _max(p,q) @0d AQN _max(p,q), respectively. By the minimax theorem
(or Courant-Fisher theorem) of eigenvalues [20], [26], there are at least N —2 max(p, q)
eigenvalues of QJ—\,1 AQn bounded by the maximum and the minimum eigenvalues of
QI_Vl—max(p,q) A QN—max(p,q) :

It is clear from Lemma 5 that Qn_max(p,q) and AQN_max(p,q) are symmetric
banded Toeplitz matrices with bandwidth < max(p, q). We construct two N x N sym-
metric circulant matrices Ry and ARy with Qn_max(p,q) a0d AQN _max(p,q) as their
leading principal submatrices, respectively. By the separation theorem (or intertwin-
ing theorem) of eigenvalues [20], [26], the eigenvalues of Q;,l_max(p’ q)AQN_max(p,q)
are bounded by the maximum and the minimum eigenvalues of Ry ARy . It is well
known that the eigenvalues of Ry' ARy are

AQ(e /Ny Qe /N), n=01,---,N —1.

Thus the proof is completed. O
We then focus on the bound of (4.5). By using (3.1) and (3.3), AQ(2)/Q(z) can
be further simplified as
AQ(2)/Q(z) = [b,2?B(21)C (27 1) + b,z 9B(2)C(2))/[B(z 1) B(2)T(2)]
(4.6) = [bz7C(2 ™))/ [B(2)T(2)] + [bgz~?C(2)]/[B(=~H)T(2)]-

Since T(e¥) = A(e™®)/B(e~®) + A(e'®)/B(e?), and |T(e*)] is finite from (2.4),
| B(e%)| is uniformly positive, i.e.,

(4.7) |B(e*%)| > 8 > 0.
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Combining (2.5), (4.6), and (4.7), we obtain

£Q(e) | _ |26,C(e=)

(48) Q) 36

with arbitrary 6.
We then focus our discussion on the bound of |b,C(e~*)|. First, we have

q q | i q | i
(4.9) Iqu(e_w)| < Z [bgei| = Z qudjfg—j = Z qu-—th—iH’ )

=0 =0 | j=0 =0 [j=0

where the last equality is due to (3.7), (3.10a), and (3.10b). Since t, satisfies the
recursion (3.6), we use the equality

q

Z bq_th_H.j =0
§=0

with N > max(p, q) to simplify (4.9), i.e.,

q q 4 g
|qu(e_i0)| SZ - Z bg—jtN—i+j| < Z Z |Bg—jlIEN—its]

i=0 | j=it1 i=0 j=it1
(4.10) <y e InIZ Z [bg—1-
1=0 j=i+1

Furthermore, the term }-{_ 3%, |bg—;| is bounded by

(4.11) Z Z |bg— J|<ZZ|bq J|<(‘I+1)Z|b|<(‘1+1)2q

=0 j=i+1 =0 j=1

where the last inequality is due to the following lemma.

LEMMA 7. Let T,, be a sequence of m x m symmetric Toeplitz matrices generated
by T(z) with Ty (271) given by (3.3), and let the corresponding generating sequence
satisfy (2.4) and (2.5); then

q
> bl < 20
Jj=0

Proof. Since B(z7!) is a polynomial in z of order q, B(2~!) can be factorized as

(4.12) B(z™Y) = Zbiz_i =1 -rz YA —rez7l) - (1 —rgz™h),
=0

where 7;, 1 < i < g, are poles of T (27!). A direct consequence of (2.4) is that all
poles of T, (27!) should lie inside the unit circle, i.e., |r;] < 1,1 < ¢ < q. It is clear
from (4.12) that

|bk|S(z)(maX|7”i|)k<(g)’ Where<q)5(q—q;;)TTJ
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Therefore, we have

Z|b|<z( )_2‘1

and the proof is completed. 0
Combining (4.8), (4.10), and (4.11), we have
: ; 20t1(g+1)
—i2mn/N —i2nn/N

Since |r;| < 1, 1 <i < g, t, is monotonically decreasing and

NN +q Itn] = Itwl,
for sufficiently large N. Thus
. X q+1
(4.13) max|AQ(e—ﬂwn/N)/Q(e—zmrn/N)I < 2 (ql[;(; l)ltNl —

By Lemma 6, there are at least N — 2max(p, q) elgenvalues of Q' AQN with
magnitude bounded by ex in (4.13). Since eigenvalues of Ty' ATy are equivalent
to those of Q' AQn, there are at least N — 2max(p, q) elgenvalues of Ty ATN
with magnitude bounded by ex as well. When ek is small enough, there are a.t least
N —2max(p, q) eigenvalues of KJ,TN, i =1,2,3,4, clustered between (1—e€x,1+¢€x)
for sufficiently large N. We summarize the analysis in this section into the following
theorem.

THEOREM 4. Let T,, be a sequence of m x m symmetric Toeplitz matrices gen-
erated by T(z) with T, (27') given by (3.3), and let the corresponding generating
sequence satisfy (2.4) and (2 5). For sufficiently large N, the spectra of the precondi-
tioned Toeplitz matrices K; NTN, i =1,2,3,4, have the following two properties:

P1. The number of outlzers is at most 2 max(p, q).

P2. There are at least N—2 max(p, q) eigenvalues that lie between (1 — ek, 1 + €x),
where ex is given by (4.13).

5. Discussion on Strang’s preconditioners. We adopt a procedure similar
to that described in §§3 and 4 to examine the spectral properties of S;,lTN, where Sy
is Strang’s preconditioner. Only the cases where p < ¢ and N = 2M are discussed.
Since the analysis for the cases where p > q or N is odd can be performed in a
straightforward way, it is omitted to avoid unnecessary repetition.

Recall that Strang’s preconditioner Sy is obtained by preserving the central half-
diagonals of Ty and using them to form a circulant matrix. That is, when N = 2M,
Sy is defined as a symmetric Toeplitz matrix with the first row

SNt [tosti, s tm—1,tMytm—1,c ).

Let us denote the difference between Sy and Ty by ASy, i.e., ASy = Sy —Tn. The
number of outliers of S;,lTN is determined by the following lemma.

LEMMA 8. Let Ty be an N x N symmetric Toeplitz matriz generated by T(z)
with Ty (27 1) given by (3.3), and let the corresponding generating sequence satisfy
(2.4) and (2.5). Ty'ASN has asymptotically at most 2 max(p, g) nonzero eigenvalues
(outliers).
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Proof. The proof is similar to that of Lemma 2. We use

0 AFy
amw=| apg 0" |
to approximate ASy, where
tM  tm-1 tMm—2 t3 t2 t1 W
tM+1  tm tm-1 : t3 t2
tmM+2 tmM+1  tm : t3
AFy = . . .

tN_3 tM  tmM-1 tm-—2
tN-2 tN-3 tM+1  tm tm-1

| In-1 tn-2 tN-3 tMy2 tmM+1  tm

Since elements ¢, in AFy; satisfy the recursion described in Lemma 1, there are at
most max(p, q) independent rows in AFps. Therefore, the rank of AEy is at most
2max(p,q). Let us define APy = AEy — ASy. Then we find that

APNz[ 0 AGM]’

AGY, 0
where AGyy is an M x M symmetric Toeplitz matrix with the first row
AGur s [tm,tmyt,trmye, - tN—3,tN—2,tN—_1]-

It is easy to verify that, for sufficiently large N, the [; and [, norms of APy are both
less than

N-1
Ts=2 Y |tal.
n=M
Consequently, we have

1APNl; < (IAPNILIAPN|) 2 < 7s.

Since 75 goes to zero as M goes to infinity due to (2.4), and since the eigenvalues of T'
are bounded due to (2.5), the spectra of T&lAS ~ and Ty' AEyN are asymptotically
equivalent. It follows that both Ty'AEN and T'ASy have at most 2max(p, q)
nonzero eigenvalues, asymptotically. 0

The matrix ASy can be expressed as ASy = ASy ny — AS; N, where

0 F 0 F
ASin = [ T, 6 ] and  ASy = [ Fr, 0 ]

and where Fy ps and Fp pr are M x M upper triangular Toeplitz matrices with the
following first rows:

Fim: [tmrtm—1,tm—2,- -, t2, t1],
Fonr: [EMmstm+1,tms2, - tN—2,tN-1]-
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We use t,,, which satisfies (3.6), to construct two new sequences:

0, 0<n<M-1,
S1m =% tN-n, _ M<n<M+q-1,
—(Ez;-l bq_kt'n—k)/bq, M + q S n,

(5.1)
_{ 0, 0<n<M-1,

S =
2im tn, M<n,

and associate 81, and 82, with two sequences of symmetric Toeplitz matrices Sy,
and Sz, m = 1,2, -, whose generating functions are defined as

$12) = 514 + S14(), where 814z =22+ 51007
and
- - - - 3 ad
82(2) = Sae(27) + Bo1(2), where S (27l =204+ 5 0,
respectively. We can easily verify that for N > 2 max(p, q),
gl,N = ASI,N and S’z,N = ASz,N.
Then, by using the same approach for proving Lemma 3, we obtain the following

lemma.
LEMMA 9. If Ty is generated by T(z) with T (271) given by (3.3), then

M (z71) G+ &z 482

© _
(5.23) S1,+('z ) - D(Z-l) dO + dlz_l T+ dqz_q
and

(5.2b) Spr(e) = ZHAGTY G0 +ansTl 4+

B(z1)  bo+biz7l 44 bgz7e’
where the coefficients b; and d; are given by (3.3) and (3.8), and

G = Y obitmrij, 0<i<g, G- Y odifimeiog, 0<i<g,
) 0, q<i, ' 0, q<i,

with 81, given by (5.1).
Thus ASy can be decomposed into

(5.3) ASy = ASy,n — ASe n = LeL7' + U:U! — La Lyt — UsUp Y,

where Lz (or Uz) is an N x N lower (or upper) triangular Toeplitz matrix with the
first N coefficients of 2~ C(z7') as its first column (or row), and matrices Lz, Ly,
and Ly (or Uz, Uy, and Uy) are similarly defined with respect to 2~ A(2~1), B(z71),
and D(z71), respectively.

By using the decomposition formulas (3.5) and (5.3), we transform the generalized
eigenvalue problem

(5.4) ASnx = ATnx
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into another generalized eigenvalue problem

(5.5) AQs,Ny = AQNY,

where

Qn = LyTnUp = LoUp + LoUa,
AQS,N = LyASNUy, = (LbLeLglUb + LbUEUd_lUb) - (Lan + LbUa).
The systems (5.4) and (5.5) have the same eigenvalues and their eigenvectors are
related via x = Upy. The matrix AQg, n is a nearly banded Toeplitz matrix charac-
terized by the following lemma.
LEMMA 10. Let T,, be a sequence of m x m symmetric Toeplitz matrices gener-
ated by T(z) with T (2z71) given by (3.3), and the corresponding generating sequence

satisfies (2.4) and (2.5). The southeast (N — max(p,q)) x (N — max(p,q)) block of
AQg,n is a symmetric banded Toeplitz matriz with the generating function

(5.6) AQs(z) = B(z71)8(2) B(2) = AQs.1(2) — AQs,2(2),
where

AQs1(2) = bgz~M=DB(2 1) (271) + bz 9B(2)C(2),
AQs2(z) = 27 MA(z"Y)B(2) + 2M B(z"1) A(2).

Since the generating sequence t,, of Ty satisfies conditions (2.4) and (2.5), we can
use arguments given in the previous section and obtain

AQsa(e )| L 27 (g + Ditm| _
Qe~®) |~ pé

and

AQsa(e )| _ 2 (g + Ditm| _
Q(e™®) |~ B8

for arbitrary 6. By using arguments similar to those in Lemma 6, it can be derived
that Ty 1ASy has at least N — 2max(p, q) eigenvalues bounded by

' 2972 (g 4+ 1) [Ny 2|
86

for sufficiently large N. The analysis in this section is concluded by the following
theorem.

THEOREM 5. Let T, be a sequence of m x m symmetric Toeplitz matrices gener-
ated by T(z) with T (271) given by (3.3), and the corresponding generating sequence
satisfies (2.4) and (2.5). For sufficiently large N, the spectrum of the preconditioned
Toeplitz matriz .S';,lTN has the following two properties:

P1. The number of outliers is at most 2 max(p,q).

P2. There are at least N—2 max(p, q) eigenvalues that lie between (1 — €g,1 + €g),
where €g is given by (5.7).

Let us compare the preconditioners K; y and Sy. From Theorems 4 and 5,
the spectra of K, I%JTN and S;,lTN have the same number of outliers, and the other

(6.7) €s = 2¢
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eigenvalues are clustered around 1 within radii ex and eg given by (4.13) and (5.7),
respectively. It is clear that the parameters g, 3, and 6 are independent of the problem
size N, and that the terms |tx| and |tx/2| determine the convergence rate of the PCG
method. For sufficiently large N, we have O(ex) = O(e%). This implies that, after the
first several iterations which eliminate the effects of the outliers, the residual reduced
by one iteration of the PCG method with preconditioners K; y is about the same as
that reduced by two iterations of the PCG method with preconditioner Sy. This has
been confirmed by numerical experiments reported in [15].

6. The special case with geometric generating sequences. It has been
observed from numerical experiments [15], [21], that the eigenvalues of K ~Tn and
S;,l T with Ty generated by the geometric sequence ¢, = t™, |t| < 1, are very regular.
The observations are summarized as follows.

R1. The eigenvalues of K; yTn are (1+1t)7%, (1 —t)7!, and (1 —¢")~! with
multiplicities 1, 1, and N — 2, respectively.

R2. When N is even (N = 2M), the eigenvalues of Sy Ty are (1+¢)~1, (1—t)~1,
1, (14t™)~1 and (1-tM)~! with multiplicities 1, 1, 2, M —2, and M —2, respectively.

In this section, we provide an analytical approach to explain these two regularities.

First, we examine the preconditioner K1 n. For the generating sequence t,, = t",
its generating function is

A(z"Y) 0.5+ 0.5tz

T(2) = Ty (z7') + Ty (2), where Ty.(z71) = B(z"1) = 1—tz"1

so that the order (p, q) of Ty (271) is (1,1). From Lemma 3, we obtain

C(z™Y) _ tN(0.5+0.5t71271)
D(z71) 1—t-1z-1 ’

Ti(z7h) =

which is related to ATy = Ky v — Tn. By using (4.3) and (4.4), we have

(6.1) Q) =AE"YHB(2)+ Bz HA(z)=1-¢2
and
(6.2) AQ(z) = —t[zB(z71)C(z7Y) + 271 B(2)C(2)] = -tV (1 — ¢?).

Note that ¢ = 1 and b, = —t are used in deriving (6.2). Due to (6.1) and (6.2), the
southeast (N — 1) x (N — 1) blocks of Qn and AQy are identity matrices multiplied
by the constants 1 — ¢ and —t" (1 — ¢2), respectively. Consider the following linear
combination of Qn and AQy:

Vn = AQn +tVQn.

It is clear that the southeast (N — 1) x (N — 1) block of Vy is a zero matrix. Since
the first two columns are linearly independent, and any two columns of the last N —1
columns of Vy are linearly dependent, Vy has a null space of dimension N — 2.
This implies that QI_VIAQ N, Or equivalently, TIQIATN, has the eigenvalue —t"V with
multiplicity N — 2. Therefore, (T + ATN) TN = K ~Tn has the eigenvalue
(1 = V)~ with multiplicity N — 2.

To determine the remaining two eigenvalues, i.e., the outliers, we use the tech-
nique described in [4] to transform the problem ATnx = ATnx to another equivalent
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problem. Consider the case with even N (N = 2M). Since ATy and Ty are both
symmetric Toeplitz matrices, they can be expressed in the following block matrix
form:

ATy = [ ATI,M A1-.’2’1:M Tl,M T2T,‘M ] .

d Ty=
ATy m ATl,M] an N [T2,M Ti,m

Let Wy be the orthonormal matrix

_ 10 Iy Im
W”‘ﬁ[—JM JM]’

where Ips and Jys are M x M identity and symmetric elementary matrices, respec-
tively. By using the transformation

WRIATNWNyY = \WWR TN Wy,
we obtain two decoupled subproblems,

(6.3) (ATLM - JMATg,M)yd = A_ (Tl,M - JMT2,M)y_,

(6.4) (ATLM + JMAT2,M)y+ = /\+(T1,M + JMTZ,M)Y+’

where A_ and A, are also eigenvalues of the original problem ATyx = ATnx. Since
the first rows of matrices on both sides of (6.3) are proportional by a constant —t,
A_ = —t with y_ = e; (the unit vector with 1 at the first element) satisfies (6.3).
Similarly, we can argue that Ay =t with y; = e; is an eigenvalue-eigenvector pair for
(6.4). Thus 1/(1 —t) and 1/(1 + t) are two outliers of (Ty + ATN) ™ Tn = K; yTn-
When N is odd, the same result can be derived with a slightly modified W given
in [4)].

By using the relationship among preconditioners K; n, ¢ = 1,2, 3,4, we can deter-
mine all eigenvalues of K Py I%JTN. They all have three distinct eigenvalues (two outliers
and N — 2 clustered eigenvalues) summarized in Table 1.

TABLE 1
Eigenvalues of K l—’ ;,TN.

HEST ST ESTE Y
A1 (1+¢)! 1+~ (1+¢)~1 11—t
A2 1-¢t)-1 1—-t)~t | @4+t~ | 14¢tV)!
A || @=tV)"1 | A4+t | QA=) | (1—¢N)L

Next, we examine Strang’s preconditioner Sy with even N. When N = 2M, the
two central rows of Sy — Ty are zeros. This implies that S;,lTN has the eigenvalue
1 with multiplicity 2. By using (5.2a) and (5.2b), we have

-M (-1 MM
% oy 20T 2
S14(27) = D(z~1)  1-t1z71
. -M f(,—1 —-MM
Sy (1) = 2 MA(z™1) _ oz

B(z~1) 1—tz1’
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respectively. By substituting A(z!), B(z™!), €(z~1), and D(z™!) into (5.6) and
using (6.1), we obtain

AQs(2) = —tM(z™M 4 2M)(1 - 1?).

Then, the nonzero elements of AQg x_1, which is the southeast (N —1) x (N —1) block
of AQg,n, only occur along the +Mth diagonals and take the same value —tM (1—12).
Consider the linear combination of AQg n and Qn,

Vin = AQs,y +tMQn.

By adding the k+ 1th column to the M +k+ 1th column of V; n, for k =1,2,--- (M —
1), we find that the southeast (N — 1) x (M — 1) block of the resulting matrix is the
zero matrix. Consequently, V; n has a null space of dimension M —2 and Q}_\,l AQs,N
has the eigenvalue —t™ with multiplicity M — 2. Similarly, we can show that

Von = AQs,n —tMQn

has a null space of dimension M — 2 by subtracting the k£ + 1 column from the
M + k + 1th column of V, v, for k = 1,2,--- (M — 1). Therefore, Q,T,IAQS,N has the
eigenvalue tM with the same multiplicity M — 2. As a consequence, S;,lTN has the
eigenvalues (1 +t™)~! and (1 — tM)~! with multiplicity M — 2.

To determine the remaining two eigenvalues of S;,l Tn, we use the same transfor-
mation discussed earlier and consider the eigenvalues of the following two subproblems:

(6.5) (T, — IMTo,m)y— = A (S1,m — JmS2,m)y -,

(6.6) (Ty,m + IMT2, M)y + = A (S1,m + INS2,M)Y +,

where Sq,as and Sy ps are the northwest and southwest M x M blocks of Sy, respec-
tively. Since the first rows of matrices on both sides of (6.5) are proportional by a
constant 1 — ¢, A\_ = 1/(1 —t) with y_ = e; satisfies (6.5). Similarly, Ay = 1/(1+¢)
with y; = e; satisfies (6.6).

7. Conclusion. In this paper, we have proved the spectral properties of the pre-
conditioned rational Toeplitz matrices PEITN with the preconditioner Sy proposed
by Strang [19] and the preconditioners K; y proposed by the authors [15]. The eigen-
values of Py Ty are classified into two classes, i.e., the outliers and the clustered
eigenvalues. The number of outliers depends on the order of the rational generating
function. The clustered eigenvalues are confined in the interval (1 — ¢, 1+ €) with the
radii ex = O(|tn]) and €5 = O(|tn/2|) for K;I{,TN and Sy'Tw, respectively. When
the symmetric Toeplitz matrix T is generated by the geometric sequence t" with
[t| < 1, the precise eigenvalue distributions of K Py 1},TN and S, A},Tg » have been deter-
mined analytically. Since the eigenvalues of K ﬁ,TN are more closely clustered than

those of SX,ITN, preconditioners K; y are more efficient for solving rational Toeplitz
systems.
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