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SPECTRAL PROPERTIES OF PRECONDITIONED RATIONAL
TOEPLITZ MATRICES: THE NONSYMMETRIC CASE*

TA-KANG KUi AND C.-C. JAY KUOi

Abstract. Various preconditioners for symmetric positive-definite (SPD) Toeplitz matrices in
circulant matrix form have recently been proposed. The spectral properties of the preconditioned
SPD Toeplitz matrices have also been studied. In this research, Strang’s preconditioner SN and
our preconditioner KN are applied to an N N nonsymmetric (or nonhermitian) Toeplitz system
TNX b. For a large class of Toeplitz matrices, it is proved that the singular values of SITN and

KvlTN are clustered around unity except for a fixed number independent of N. If TN is additionally
generated by a rational function, the eigenvalues of SITN and KITN can be characterized directly.
Let the eigenvalues of SITN and KITN be classified into the outliers and the clustered eigenvalues
depending on whether they converge to I asymptotically. Then, the number of outliers depends on the
order of the rational generating function, and the clustering radius is proportional to the magnitude
of the last elements in the generating sequence used to construct the preconditioner. Numerical
experiments are provided to illustrate our theoretical study.

Key words. Toeplitz matrix, preconditioned iterative method, rational generating function,
nonsymmetric matrices
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1. Introduction. Research on preconditioning symmetric positive-definite
(SPD) Woeplitz matrices with circulant matrices has been active recently [1], [61,
[8], [9], [17]. In this research, we generalize Strang’s preconditioner SN [17] and our
preconditioner KN [9] to nonsymmetric (or nonhermitian) Toeplitz matrices. Let TN
be an N N nonsymmetric Toeplitz matrix with elements ti,j t_j. The general-
ized Strang’s preconditioner SN is obtained by preserving N consecutive diagonals in
TN, i.e., diagonals with elements tn, 1 M <_ n <_ N- M, and using them to form
a circulant matrix. One simple rule to determine M is to choose its value such that
[tN--MI ’ [tl--MI. Note that half of the elements in TN are not used in constructing
SN. The generalized preconditioner KN is obtained from a 2N 2N circulant matrix
in such a way that all elements in TN are used, and is a circulant matrix itself (see 2).
Since SN and KN are circulant, the matrix-vector products Slv and Klv can be
conveniently computed via fast Fourier transform (FFT) with O(N log N) operations.
The system of equations associated with the preconditioned Toeplitz matrix is then
solved by iterative methods such as CGN (the conjugate gradient iteration applied to
the normal equations) [7], GMRES (the generalized minimal residual) [15], and CGS
(the conjugate gradient squared) [16].

The convergence rate of preconditioned iterative methods depends on the singu-
lar value or eigenvalue distribution of the preconditioned matrices [].3]. The spectral
properties of preconditioned SPD Toeplitz matrices have been widely studied. Chan
and Strang [1], [5] proved that, for a symmetric Toeplitz with a positive generat-
ing function in the Wiener class, the preconditioned matrix has eigenvalues clustered
around unity except a fixed number independent of N. If the Toeplitz is additionally
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522 T.-K. KU AND C.-C. J. KUO

generated by a rational function, even stronger results were proved by Trefethen [19]
and the authors [12]. In contrast, relatively few results for preconditioned nonsymmet-
ric Woeplitz have been obtained so far [4], [11], [14], [21]. One such preconditioner was
studied by R. Chan and Yeung [4], where they generalized T. Chan’s preconditioner
CN to nonsymmetric Toeplitz matrices.

In this research, we examine the spectral properties of SITN and KITN for
nonsymmetric TN in general, and nonsymmetric rational TN in particular. The main
results of our study are stated as follows. For a large class of general Toeplitz matrices,
we prove that the singular values of STN and KTN, or equivalently, the eigenval-
ues of (svlTN)H(SITN) and (KITN)H(KTN), are clustered around unity except
for a fixed number independent of N. If TN is additionally generated by a rational
function of order (c,/, , ), we are able to characterize the eigenvalues of STN and

KITN directly. We classify the eigenvalues of STN and KTN into two classes,
i.e. the outliers and the clustered eigenvalues, depending on whether they converge
to 1 asymptotically. Then, (i) the number of outliers is at most 2 min(r, s) where
r max(a,) and s max(% 5); and (ii) the clustered eigenvalues are confined in
a disk centered at 1 with radius e, where the clustering radius e is proportional to
the magnitude of the last elements in the generating sequence used to construct the
preconditioner.

With these spectral regularities, we can find appropriate preconditioned iterative
methods to solve a nonsymmetric Toeplitz system efficiently. In particular, an N N
rational Toeplitz system TNx b can be solved with O(Nlog N) operations since
the number of iterations required for convergence is independent of the problem size
N. To compare the performance of SN and KN, the SITN and KITN have the
same number of outliers so that they converge in the same number of iterations
asymptotically. However, the performances of SN and KN for finite N are determined
by the clustering radii of the clustered eigenvalues as well. The magnitudes of the last
elements used to construct SN and gN are O(ItN_MI + Itl_MI) and O(Itgl T It-gl),
respectively. Since O(ItNI + It_NI) <_ O(ItN_M + It_MI) for large N, iterative
methods with preconditioner KN converges faster than with preconditioner SN for
solving rational Toeplitz systems. This is confirmed by numerical experiments. Bythe
parallelism provided by FFT, the iterative methods with preconditioners in circulant
matrix form is highly parallelizable, and the time complexity of the method can be
reduced to O(log N) if O(N) processors are used.

When TN is a symmetric rational Toeplitz, we have r s and tN t-g. Conse-
quently, the number of outliers of KTN is y 2r 2 max(s, ) and the clustering
radius is O(ItNI ). They reduce to the case given in [12]. Although the results derived
in this paper can be viewed as a generalization of the results in [12], we want to
point out that the approach adopted in this research is very different from that in

[12] and the proof techniques are much more involved. For example, in characterizing
the clustering radius of clustered eigenvalues of KITN (or SITN) for symmetric
TN, the intertwining theorem of eigenvalues was exploited in [12]. However, such a
theorem does not exist for nonsymmetric matrices so that we use perturbation theory
for eigenvalues instead.

It is worthwhile to mention that there exists a preconditioner based on the
minimum-phase LU factorization (MPLU) technique [11] which has a faster or compa-
rable convergence rate than preconditioners SN and gg. However, Toeplitz precondi-
tioners in circulant matrix form have two advantages over the MPLU preconditioner.
First, the circulant preconditioning technique can be easily generalized to multidi-
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PRECONDITIONERS FOR NONSYMMETRIC TOEPLITZ 523

mensional Toeplitz systems See [2], [3], and [10] for the two-dimensional case (block
Toeplitz matrices). Second, the resulting preconditioned iterative method with pre-
conditioners in circulant form is highly parallelizable while the MPLU preconditioner
has to be implemented sequentially.

This paper is organized as follows. The construction of preconditioners SN and
KN for nonsymmetric Toeplitz TN is discussed in 2. We describe the singular value
distribution of KITN and SITN for general Toeplitz in 3, and characterize the
eigenvalue distribution of KITN and STN for rational Toeplitz in 4 and 5,
respectively. Numerical experiments are given in 6 to illustrate the theoretical study.

2. Constructions of Toeplitz preconditioners. Let T, be a sequence of m
m nonsymmetric Toeplitz matrices with generating sequence tn. Then,

t0 t--1 t--(N--2) t--(N--l)
tl t0 t-i t-(N-2)

TN tl tO
iN-2 t-1
iN-1 tN-2 tl tO

Following the idea proposed by Strang [17], we construct the preconditioner SN by
preserving N consecutive diagonals in TN and bringing them around to form a circu-
lant matrix,

tO t-1 t2-M tl-M tN-M t2
tl tO t-1 t2-M tl-M tN-M t2

tl tO t--I t2-M tl-M tN-M
tN--M tl to t-1 t2-M 7l-M
tl-M tN-M tl tO t-1 t2-M

t-2 tl-M tN-M tl tO t-1
t-1 t-2 tl-M tN-M tl to

A simple rule of thumb to decide the value of M is to require [tN-MI [tl-M[.
Generalizing the idea in [9], the preconditioner KN is constructed based on a

2N x 2N circulant matrix R2N,

T /TN]R2N /TN TN

where/TN is determined by the elements of TN to make R2N circulant, i.e.,

0 iN-1 t2
t_(N_l) 0 tN-1 t2

t_(N_l) 0
t-2 iN-1
t--1 t--2 t--(N-l) 0

This construction is motivated by the observation that the augmented circulant sys-
tem,
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524 T.-K. KU AND C.-C. J. (Jt)

is equivalent to (TN/ATN)x b so that (TN/ATN)-1b can be computed efficiently
via FFT and

(2.1) KN TN + ATN
can be used as a preconditioner for T. Note, however, that KN itself is also circulant
and can be inverted directly via N-point FFT rather than 2N-point FFT.

3. Spectral properties of preconditioned Toeplitz. We assume that the
generating sequence tn satisfies the following two conditions:

(3.1)

(3.2) IT()l ne--inO

According to the construction of preconditioners KN and S, the function T(ei)
describes the asymptotic eigenvalue distribution of preconditioners KN and SN but
not necessarily the asymptotic eigenvalue distribution of Toeplitz matrix TN (see Test

1Problem 5 in 6). Thus, the matrix-vector product K v (or S v) can be completed
successfully via FFT since magnitudes of eigenvalues ofK (or S are bounded due
to (3.2). With conditions (3.1) and (3.2), the condition numbers of preconditioners
KN and SN are bounded independent of N due to the following theorem.

THEOREM 1. Let TN be an N x N Toeplitz matrix with the corresponding gener-
ating sequence satisfying (3.1) and (3.2). The [l(ggg)-ll[2 and I[(SNSNH)-I[] 2 are
bounded for suciently large N.

Proof Since gg is circulant, we have

KN FDNFN and KwH FHNDFN,
where FN is the N N unitary Fourier matrix with N-1/2e-i2r(m-1)(n-1)/N as the
(m, n) element and DN a diagonal matrix formed by the eigenvalues of KN. Thus,
K, KNH, and KNKNH share the same eigenvectors, and the eigenvalues of KNK are

A(KNK) A(KN)A*(KN)= IA(KN)I u.
Any eigenvalue of KN belongs to the set of eigenvalues of R2N, which are

N-1

Pn An(R2N) 2 kei2rkn/2N, 1 <__ n <_ 2N.
k----(N--1)

It is clear that Pn is a partial sum of the infinite series -]-o tke-iko with 0 -nr/N.
With (3.2), [Pnl >- #T Iz, where # can be made arbitrarily small by choosing suffi-
ciently large N so that

1

Similar arguments can be used to prove the boundness of [](SNNH)-II2, and the
proof is completed. D
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PRECONDITIONERS FOR NONSYMMETRIC TOEPLITZ 525

The next theorem describes the clustering property of the singular values of
KITN and srlTN.

THEOREM 2. Let TN be an N x N Toeplitz matrix with the generating sequence
satisfying (3.1) and (3.2). For sufficiently large N, the singular values of the precon-
ditioned matrices KTN and STN are clustered around unity except .for a fixed
number independent of N.

Proof. Note that the singular value of KTN is equal to the square root of
the corresponding eigenvalue of (KTN)H(KITN). Since (KITN)H(KTN) and
(KNK)-(TNT) are similar, the eigenvalues of (KNK)-(TNT)are examined
to understand the singular values of KTN. With the relation gg TN A-/XTN,
we have

A[(KNKHN)-I(TNT)] 1 A[(KNK)-(KNATHN + ATNK ATNAT)].
Let us define

Wg KNATHN / ATNK ATNAT.
For an arbitrary positive integer q, we denote the corresponding central (N- 2q) x
(N- 2q) diagonal block of (KNKHN)- and WN by/C_2q and Wg-2q, respectively.
By the separation theorem (or intertwining theorem) of generalized eigenvalues [18],
[20], there are at least N-4q eigenvalues of (KNKg)-WN bounded by the minimum
and the maximum eigenvalues of 1Cv_2qVN_2q.

Since/CI_2q is a submatrix of the symmetric circulant matrix (KNKg)-1,

[[K:l_2q[ [2 <_

According to the definition of WN-2q,

WN-2q ATH + ATH ATATH,
where and AT are (N- 2q) x N matrices formed by the central (N- 2q) rows of
KN and ATN, respectively. It is ey to verify that, for p 1, ,

Illp 2 [tn[ 2 [tnl 2ST < ,
n=-(N--1) n=--

and

n:q+l n--q+l

Since IIAll2 (llAlllllAIl)/2 for n arbitrary matrix A, the above bounds also hold
for p 2. Similarly, we can argue that [[/cH]I2 _< 2ST < cx3 and [IATH[12 _< a(q).
Thus,

<_ 4BTa(q) + a2(q).

By using Theorem 1 and the fact that a(q) is smaller as q becomes larger due to (3.1),
we conclude that for given e there exist q and N such that for all N _> N,D
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526 T.-K. KU AND C.-C. J. KUO

Hence, the eigenvalues of (KNK)-I(TNTHN) are confined in the interval (1-e, 1
except at most 4q outlying eigenvalues. Similar arguments can be used to prove the
spectral clustering property of the singular values of SITN.

The solution of a Toeplitz system Tgx b can be determined by applying the
CGN method to the preconditioned system KITNx Kib (or SiTNx Slb).
With the clustering property on singular values of KITN (or SiTN), the CGN
method converges superlinearly. A more detailed discussion about the convergence
rate of the CGN method for solving Toeplitz systems were studied by Chan and
Yeung [4]. When the generating function is additionally rational, we characterize the
eigenvalues of the preconditioned matrices KITN and SITN directly. It will be
detailed in the following sections.

4. Spectral properties of preconditioned rational Toeplitz KTN. The
generating function of a sequence of Toeplitz matrices Tm is defined as

T(z)-- tnz-n.

Let the generating function of TN be of the form

A(z-1) C(z)(4.1) T(z)- B(z_) D(z)’

where

A(z-) ao + az- +... + a,z- C(z) co + cxz +... + c..fz
l + bz-l + + bzz-a l + dlz + + dazB(z-) D(z)

Note that a,bc.d =/: 0 and polynomials A(z-) and B(z-) (or C(z) and D(z))
have no common factor. We call T(z) a rational function of order (a, , V, 5) and TN
a rational Toeplitz matrix. To simplify the notation, we define r max(a, ) and
s max(V, ).

The spectral properties of K]TN can be determined from that of T/kTN via

[A(KITN)] -1 A(TI(TN q-/kTN)) 1 + A(TATN).

The eigenvalues of KITN clustered around 1 correspond to those of T1ATN clus-
tered around 0. We summarize the procedures in examining the spectral properties
of T ATN as follows:

Step 1. Show that the ATN is asymptotically equivalent to a low-rank Toeplitz
matrix AFN (Lemma 2).

Step 2. Study the rank of AFN by transforming it to a matrix QF which has at
most d r + s nonzero columns (Lemma 3).

Step 3. Show that the QF is asymptotically equivalent to a matrix QF which has
at most 2 min(r, s) nonzero eigenvalues (Lemma 4).

Step 4. Use perturbation theory to determine the radius of the clustered eigen-
values of T/1/kTN and KciTN (Lemmas 5 and 6 and Theorem 3).

The number of outliers of KciTN, i.e., 2 min(r, s), is determined from Steps 1-3,
and the clustering radius is determined from Step 4.
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PRECONDITIONERS FOR NONSYMMETRIC TOEPLITZ 527

4.1. The number of outliers of K;1TN Note that the sequence tn can be
recursively calculated for large Inl. This is stated as follows.

LEMMA 1. The sequence tn generated by (4.1) follows the recursions,

(4.3) tn+l -(bltn + b2tn-1 -}-... + b[tn-/+l), n >_ r max(,/),
tn-1 :-(dltn +d2tn+l +’"+dstn+-l), n <_ -s:- max(7, ).

Proof. The proof is similar to the proof of Lemma 1 in [12]. D
Since elements tn satisfy the recursion given in Lemma 1, we construct a low-rank

Toeplitz matrix AFN as

(4.4)

where

AFN F1,N - F2,N,

tN tN-1 t2

tN+l tN
t2N-2 tN-1
t2N-1 t2N-2 tN+l

t-N t-(N+l) t-(2N-2) t_(2N_l)
t-(N--l) t-N t_(N+l) t-(2N-2)

F2,N t-(N-l) t-N
t--2 t_(g+l
t-1 t-2 t-(N-l)

and where t, n _> r or n <_ -s, are recursively defined by (4.3). Due to the recursion
given by (4.3), the ranks of Fl,N and F2,N are bounded by r and s, respectively. Thus,
the rank of AF is bounded by d r / s. The following lemma shows that ATN and
AFN are, in fact, asymptotically equivalent.

LEMMA 2. Let TN be an N x N Toeplitz matrix generated by T(z) in (4.1) with
the corresponding generating sequence satisfying (3.1) and (3.2). The ATN and AFN
are asymptotically equivalent.

Proof. Let us denote the difference between AFN and ATN by

/kEN AFN ATN

tN -+- t-N t_(N+l) t_(2N_2) t_(2N_l
tN+l tN + t-N t_(N+l) t_(2N_2)

tN+l tN -- t-gt2N-2 t-(N+l)
t2N--1 t2N--2 tN+l tN t_ t--N

It can be easily verified that the and l norms of/kEN are both bounded by

2N-1 -(2N-l)

n--N n=-N

Consequently, we have

II/XENII= <_ (IIAENII II/XENII ) <_ TF .
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528 T.-K. KU AND C.-C. J. KUO

Since "rE goes to zero as N goes to infinity due to (3.1), the proof is completed. 0
Since ATN is asymptotically equivalent to AFN and the rank of/kFg is bounded

by d, the number of outliers of T1ATN (or KITN) is bounded by d, which is,
however, not tight. We are able to determine a tighter bound by introducing an-
other asymptotically equivalent matrix of ATN (or/kEN), which has only 2 min(r, s)
nonzero eigenvalues in the following. This turns out to be the exact number of outliers
actually observed in all our numerical experiments. To exploit the low-rank structure
of/NFN, we transform/kFN to

(4.7) QF /kFNUDLB,

where UD is an N x N upper triangular Toeplitz matrix with the first N coefficients
in D(z) as the first row, and LB is an N x N lower triangular Toeplitz matrix with
the first N coefficients in B(z-1) as the first column. Note that since UD and LB
are full-rank matrices, the QF and/kFN have the same rank. The structure of QF is
described in the following lemma.

LEMMA 3. Let TN be an N x N Toeplitz matrix generated by T(z) in (4.1) with
the corresponding generating sequence satisfying (3.1) and (3.2). The elements of QF
are zeros except for the first s and the last r columns.

Proof. Note that F1,N and F2,N are Toeplitz matrices with elements

(F,N),i tN+-i and (F2,N)i,j t-N+i-j.

The (i, j) elements of F1,NUDLB and F2,NUDLB are

N N N N

E E tN+i-mdn-mbn-j and E E t-N+i-mdn-mbn-j,
n:l m:l n:l m:l

where b0 1 (do 1) and bi 0 (di 0) if the subscript i is not in the range
0 < </9 (0 < i < 6). If s < j < N r, we can simplify the above summations as

E tN+i+m’-n’-jbn’ din, 0
m=-O n--O

and

E t-N+i+m’-n’-jdm’ bn, O,
n =0 m’=0

where m’ n m, n’ n j, and the equalities are due to the recursion defined in
(4.3). Thus, the elements of

QF :/NFNUDLB (F1,N J= F2,N)UDLB

are zeros except for the first s and the last r columns. [:l

Consequently, we decompose the complex N-tuple space CN into two orthogonal
complement subspaces,

(4.8)
n(QF) {v CN v, O, < i <_ N- r},
Af(QF) {v cN v{ o, 1 <_ <_ s or N- r < < N},
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PRECONDITIONERS FOR NONSYMMETRIC TOEPLITZ 529

with dimensions

dim T(QF) d and dim .hf(QF) g d.

The subspace .A/’(QF) is contained in the null space of QF. Let QNW denote the
northwest s s block in QF, and QNE, QSW, and QSE the corresponding corner
blocks in QF with sizes s r, r s, and r r, respectively. By using the subspace
decomposition (4.8), it is easy to see that the nonzero eigenvalues of QF only depend
on the corresponding four corner blocks of QF, and are also the eigenvalues of the
d d matrix,

[ QNw QNE ]PF-- Qsw QsE

In other words, the rank of QF is the same as that of PF.
The bounds for the elements of Qw, QE, Qsw, and QSE are summarized as

follows:

I(Qs),I _< TSE, TSE O(ItNI + It-NI),
(4.9)

I(QN),I < (F1,NUDLB)i,N-r+j + TNE, TNE O(It--UNI),
I(QsW)i,l < (F2,NUDLB)N-s+i5 + TSW, TSW O(It2NI).

To derive (4.9), recall that the (i, j) element of QF is

N N N N

n=l m=l n=l m=l

which is bounded by

m =0 n =0 m’=0 n =0

Since the elements of QNW are the same those of QF with subscript (i, j), i, j s,
they are bounded by

m I+.l + m It-+-I).
i=0 j=0

To determine the bound for i=0
B(-’) ( lZ-)( r:z-)... (1 z-’).

A direct consequence of (3.1) is that all poles of A(z-)/B(z-) should lie inside the
unit circle, i.e., ri] < 1, 1 i , so that

Ibk, ()(mlrl) N (), where () (-k)k"
Therefore, we obtain

k=O k=O

D
ow

nl
oa

de
d 

01
/2

6/
14

 to
 1

32
.1

74
.2

55
.3

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



530 T.-K. KU AND C.-C. J. KUO

Similarly, =0 Idol 2 and thus, the elements of QNW are bounded by

where the last equality is due to the fact that, for large n, tn can be approximated by

(4.10) tn cr’, where Il m.ax Irl,

and where c is a constant. Similarly, we can prove that the elements of QSE axe
bounded by

The (i,j), 1 <_ i <_ s, 1 <_ j <_ r, element ofQN is the sum ofthe (i,N-r+j) elements
of F1,NUDLB and F2,NUDLB. It is straightforward to verify that the (i, N- r + j)
element of F1,NUDLB remains unchanged while that of F2,NUDLB is bounded by
TNE 2(f+)[t-2N+d+l O(It-2NI) for sufficiently laxge N. Similarly, we can
derive the bound for the elements in Qsw as given by (4.9).

Thus, when N becomes asymptotically large, the PF converges to

0 QwPF -sw 0

where QNE is the converged northeast s r block in F1,NUDLB and Qsw is the
converged southwest r s block in F2,NUDLB. Since the ranks of Q,NE and Qsw are
both bounded by min(r, s), the rank of PF is bounded by r/- 2 min(r, s).

Let us define a matrix QF by replacing the four corner blocks in QF with the
corresponding blocks in PF. Then, we have

TQ --IIQF- QFIIp- IIPF- PFIIp
<_ STNW + rTSE + max(r, S)(TNE + ’SW)
O(lNI + I-NI),

for p 1 and cx). The above bounds also hold for p 2 because

IIAII2 <_ (IIA IllAIIo)/2

for an arbitrary matrix A. Since TQ goes to zero as N goes to infinity due to (3.1), the
asymptotic equivalence between QF and QF is established. This result is summarized
in the following lemma.

LEMMA 4. Let TN be an N N Toeplitz matrix generated by T(z) in (4.1) with
the corresponding generating sequence satisfying (3.1) and (3.2). The QF and QF are
asymptotically equivalent.

Based on Lemmas 2-4, (4.2) and (4.7), T/T is asymptotically equivalent to

TI-FLU whose rank is bounded by /= 2min(r, s) and KcITN has at most /
asymptotic eigenvalues not converging to one (outliers).

4.2. The clustering radius ofKITN. We use perturbation theory to estimate
the clustering radius of the N-r/clustered eigenvalues. Instead of examining the
eigenvalues of T ATN directly, we study those of the similar matrix

GN LUT/kTNUDLB LIUITQT,
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PRECONDITIONERS FOR NONSYMMETRIC TOEPLITZ 531

where QT --/kTNUDLB. Let us define

HN LIuD1TI-F
It is clear that HN has only d nonzero columns as QF (or QF). The GN can be
viewed as a matrix obtained from HN by adding the perturbation matrix

(4.11) AGN GN HN LIUDT(QT --F)"

A bound of II/kGNII2 is given below so that we can estimate the clustering radius of
the clustered eigenvalues by using perturbation theory for eigenvalues.

LEMMA 5. Let TN be an N N Toeplitz matrix generated by T(z) in (4.1) with
the corresponding generating sequence satisfying (3.1) and (3.2). Then, .for sufficiently
large N, the II/kGNII2 is bounded by e O(ItN -}-It_NI).

Proof. We first study the 2-norm of QT QF, which is bounded by

As shown in the proof of Lemma 4, the second term IIQF QFII2 is bounded by
TQ O(ItN + It_NI) while the first term IIQT QFII2 is bounded by

-2N-Recall from (4.6) that II/ENII2 < Z-,n=N (Itnl + It-hi) By using (4.10), we have

2N-1 o
n ItNI MBItNI where MB

1E Itnl <- E Iqjrj I= 1 --Irjl 1 --Irjl"
n=N n--N

Similarly, -,n=N’2N-1 It-,I < MDIt-vl. Besides, IILII < Ek--o Ibl < 2 and IIUDII= <
-o Idol _< Thus, we obtain a bound for the first term, i.e.,

IIQT QFIIU < 2(+)(MBItNI + MDIt--NI) O(Itl + It--l),

and conclude that

IIQT- QFIIu < O(Itvl + It-NI).

With (4.11), we have

I]/GN]I2 < IILIII21IUXII2]ITI]21I(QT- F)II2.

Under the assumption that ITfflll. is bounded by a constant CT independent of N,
we want to show that IIL1112 and IIU1112 are also bounded. Let us factorize B(z-1)

B(z-) (1 rlz-1)(1 r2z-1) (1 rfz-1),
where we assume that all roots ri are distinct for simplicity. By applying the iso-

morphism between the ring of the power series and the ring of semi-infinite lower (or
upper) triangular Toeplitz matrices, the LB and L can be decomposed into the
products

LB Lrx Lr...Lr, L31 L L-1L
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532 T.-K. KU AND C.-C. J. KUO

where Lr, 1 _< i _< is anNN lower triangular Toeplitz matrix with [1,-ri, 0,..., 0]T
as the first column. It can be easily verified that L-1 is a lower triangular Toeplitz
matrix with [1, ri, ri,.. as the first column. Therefore,

N-I c
1

ri

k=0 k--0

p 1, 2, x,

and

i=1 i=1

CB.

Similar arguments can be used to prove that [[UI[[2 CD. Finally, we have

(4.12) II,aNIl CBCDCTI}(Q,T --0F)II2 O(ItNI + I-NI).

The proof is completed.
Let us denote the rank of HN LIUD1TIF by . Clearly, _< r/

2min(r, s). We arrange the eigenvalues of HN in a descending order so that

IAn+ll (An 0 for < n <_ N), and denote the corresponding normalized right-hand
and left-hand eigenvectors by xl, x2,..., XN and Yl, Y2,..., YN, respectively. Besides,
vectors xn with < n _< N are chosen to be othorgonal. The complex N-tuple space
is decomposed into the row and the null spaces of HN,

Row(Hg)--span{Xn, n _< }, Null(HN) span{xn, < n <_ N}.

Since GN HN -}- /kGN and [I/GNI[2 <_ , the eigenvalues and the right-hand
eigenvectors of GN are denoted by An(e) and xn(e), respectively. By using results
from perturbation theory for repeated eigenvalues [20], the eigenvectors xn(e) with
< n <_ N must take the form

l mn N

(4.13) xn(e) E (An Am)S,,
x, + E gmnXm + O(e2),

m=l m=+l

Hwhere mn yHmAGNXn, An O, 8m YmXm and gnu 1. Due to the construction,
we know that

(4.14) IIx.()ll IIx.ll 1.

The factor Imnl is bounded by

The 18n1[, 1

__
m <_ , is also bounded as given in the following lemma.

LEMMA 6. Let TN be an N x N Toeplitz matrix generated by T(z) in (4.1) with
the corresponding generating sequence satisfying (3.1) and (3.2). Then, the [snl[, 1 <_
m <_ , of HN is bounded by a constant independent of N.

Proof. The eigenvalues A and the right-hand eigenvectors x of HN satisfy

LBQFx ALBTNUDLBX.

D
ow

nl
oa

de
d 

01
/2

6/
14

 to
 1

32
.1

74
.2

55
.3

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



PRECONDITIONERS FOR NONSYMMETRIC TOEPLITZ 533

Since the elements of QF are zeros except the first s and the last r columns, so are
the elements of LBQF. Thus, the nonzero eigenvalues of HN only depend on the
northwest s s, northeast s r, southwest r s, and southeast r r blocks of LBQF
and LsTNUDL. The boundness of Isnll, 1 <_ m <_ , is guaranteed if the elements
of the four corner blocks of LsQF and LsTNUDLB remain unchanged for sufficiently
large N.

By using the band structure of Ls and the special structure of QF, it is straight-
forward to verify that the four blocks of LsQF remain unchanged for large N. Next,
we examine the matrix LTNUDLB. By using (4.1) and the isomorphism between the
ring of the power series and the ring of the semi-infinite lower (or upper) triangular
Toeplitz matrices, we can express TN as

TN LAL + UcU,
where LA is an N N lower triangular Toeplitz matrix with the first N coefficients
in A(z-) as the first column, and Uc is an N N upper triangular Toeplitz matrix
with the first N coefficients in C(z) as the first row. Then, we have

LBTNUDLB LAUDLB -k LBUcLB,

Hwhose four corner blocks remain unchanged for large N. Thus, Am and s, YmXm
with 1 _< m _< do not change with N, when N becomes sufficiently large.

Let vn(e) be the normalized vector of xn(e),

which can be decomposed as

+
where Vs(e) e Null(HN) and va(e) e Row(Hn). The magnitude of An(e), < n _< N,
of GN is approximated by

JAn(e)]--]lGNVn(e)l]2 --I]HNVR(e)+

By using (4.12)-(4.14), we obtain that

max II/ GNV.( )II 

/ II/XG rll 

for sufficiently large N. The above analysis is concluded in the following theorem.
THEOREM 3. Let TN be an N N Toeplitz matrix generated by T(z) in (4.1)

with the corresponding generating sequence satisfying (3.1) and (3.2). For sufficiently
large N, the preconditioned Toeplitz matrix KrTN has the following two properties:

P1. The number of outliers is at most } 2min(r, s).
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534 T.-K. KU AND C.-C. J. KUO

P2. There are at least N- eigenvalues confined in the disk centered at 1 with
radius eg where

g 0(Itgl / It-NI).

5. Spectral properties of preconditioned rational Toeplitz SITN. The
preconditioned Toeplitz matrix SITN has similar spectral properties as KTN. The
number of outliers of SITN can be obtained by proving that/kSN SN TN and
/kFN given by (4.4) are asymptotically equivalent.

LEMMA 7. Let TN be an N N Toeplitz matrix generated by T(z) in (4.1)
with the corresponding generating sequence satisfying (3.1) and (3.2). STN has
asymptotically at most 2 min(r, s) eigenvalues not converging to 1.

Proof. Let us define/SN SN --TN, and express the difference between/FN
in (4.4) and/SN as

/kEN /,SN E1,N W E2,N,

where E1,N and E2,N are N N Toeplitz matrices with elements

iN+i-j,(El,g)i,j
ti-j,

-(M- 1) _< i-j _< N- 1,
-(N- 1) <_ i-j <_ -M,

and

N- (M- 1) < i-j < N- 1,
-(N- 1) < i-j < N-M,

respectively. By using similar arguments in deriving Lemma 2, we can prove that/SN
and /FN are asymptotically equivalent. Since /FN is asymptotically equivalent to
the matrix -FLIUD with rank _< 2min(r, s) as described in Lemma 4, the
proof is completed. D

Similar arguments used in 4.2 can be applied to derive the following theorem.
THEOREM 4. Let TN be an N N Toeplitz matrix generated by T(z) in (4.1)

with the corresponding generating sequence satisfying (3.1) and (3.2). For sufficiently
large N, the preconditioned Toeplitz matrix STN has the following two properties:

P1. The number of outliers is at most 2min(r, s).
P2. There are at least N-? eigenvalues confined in the disk centered at 1 with

radius es, where

es O(ItN-MI -t- Itl-MI).

6. Numerical results. Five test problems, including both rational and nonra-
tional TN, are used to illustrate the above analysis. For the nonsymmetric Toeplitz
system TNX b to be solved, we choose b (1,..., 1)T and zero initial guesses
in the first four experiments. Without further specification, M is chosen such that
ItN_MI ,. ItS_M] to construct preconditioner SN. We use the first test problem, which
is generated by a nonrational function, to examine the clustering effect of singular
values. Test Problems 2-4 are generated by rational functions so that the number
of outliers and the clustering radius can be observed, which confirm the theoretical
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PRECONDITIONERS FOR NONSYMMETRIC TOEPLITZ 535

TABLE 1
Number of iterations required for the CGN method.

32 24 12 9

6:8 33 15 11
49 17 13

TABLE 2
Number of iterations required for the CGS method.

32 15 7 9
64 21 8 10
128 26 9 10

results developed in 4 and 5. One underdetermined Toeplitz system (singular TN)
is also given in Test Problem 5 with appropriate vector b.

TEST PROBLEM 1. Nonrational TN. Let TN be a Toeplitz matrix with generating
sequence

1/log(2- n), n _< -1,
t 1/log(2 n) + 1/(1 + n), n 0,

1/(1 + n), n >_ 1.

The singular values of SITN and KITN are plotted in Fig. l(a) for N 32, 64,
and 128. Both SITN and KclTN have clustered singular values. The eigenvalues of
KclTN with N 32 are plotted in Fig. l(b). It is clear that the eigenvalues possess
a certain clustering property. We apply both the CGN and CGS methods to solve the
preconditioned Toeplitz system P1TNx P b. The numbers of iterations required
for the CGN and CGS methods to achieve lib- TNXI[2 < 10-12 are summarized in
Tables 1 and 2, respectively. The case without preconditioning, denoted by TN, is also
included for comparison. The use of preconditioners does accelerate the convergence
rate of these iterative methods. The number of iterations required for SN and KN
increase slightly as N becomes large. The KN performs better than SN in the CGN
method. However, their performances are comparable for the CGS method. Note
also that it requires more iterations for the CGN method to converge than the CGS
method. Since the operation counts inside each iteration of the CGN and CGS meth-
ods are approximately equal, the CGS method performs better for this test problem.
However, the CGN method may have a more robust convergence behavior for general
problems. We refer to [13] for a more detailed comparison of these two nonsymmetric
iterative algorithms.

Although the necessary conditions for convergence of the CGS method are not
clear yet, there exists a direct relation between the convergence rate and the eigenvalue
distribution of the iteration matrix [11], [13]. We will only present results of the CGS
method for remaining test problems to verify the theoretic results about the eigenvalue
distributions of the preconditioned rational Toeplitz matrices.

TEST PROBLEM 2. Rational TN with (r, s) (1, 1). The generating function of
TN is chosen to be

1 / 0.7z-1 1 0.8z
T(z)

1 0.9z-1 + 1 + 0.7"
To show that the simple rule for choosing M, i.e., ItN_Ul [tl-M[, does provide
a better spectral clustering property and a better convergence rate for SITN, two
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0
0

N--32

N--128

N=128

(a)

0.4

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

"0’40.7 0:8 0:9 1:1 1:2 1:3 l:t 1.5

real part

(b)

FIG. 1. (a) The singular value distribution of SITN and KITN, and (b) the eigenvalue
distribution ofKTN for Test Problem 1.

preconditioners SN and SN are constructed. The SN is constructed with M such
that ItN_MI Itl_MI while the SN is constructed with M [N/2]. The eigenvalues
of TN, ITN, STN and KTN with N 32 are plotted in Figs. 2(a)-(d). All
preconditioned Toeplitz matrices have eigenvalues clustered around 1 except 2
2min(r, s) outliers. The KTN has the best clustering effect, and the eigenvalues
of STN are more closely clustered than those of ITN. The sums of magnitudes
of the last elements in constructing SN and KN and the corresponding clustering
radii are listed in Table 3. They are of approximately the same order, as stated in
Theorems 3 and 4.
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3

o

-I

_9.

-3

(a)

0.4

0.2

-0.2

-0"60.5 0.6 0.7 0.8 0:9 i:1 1’:2 1.3

real part

FIG. 2. The eigenvalue distribution of (a) TN and (b) 1TN for Test Problem 2.

The convergence history of the CGS method with various preconditioners is plot-
ted in Fig. 3 with N 32. The convergence rate of the CGS method without precon-
ditioning (the curve denoted by TN) is very slow. This phenomenon is not surprising
by examining the eigenvalue distribution given in Fig. 2(a). Preconditioning improves
the convergence behavior dramatically. It is clear that KN performs the best, while
SN performs better than g.

TEST PROBLEM 3. Rational TN with (r, s) (3, 1). The generating function of
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0.4

0.2

-0.2

-0.4

-0’.5 "0:6 0:7 0:8 0:9 i.1
real part

(c)

0.6

0.4

0.2

-0.2

-0.4

-0’.5 0:6 0:7 0:8 0:9 ’1’.1
real part

(d)

FIC. 2. The eigenvalue distribution of (c) SITN and (d) KITN for Test Problem 2.

TN is chosen to be

(1 + 0.5z-1)(1 + 0.7z-1)
T(z) (1 0.4z-)(1 0.6z-)(1 0.Sz-x)

1 + 0.8z
+ 1 / 0.9z

The eigenvalues of TN, STN, and KITN with N 64 are plotted in Figs. 4(a)-
(c). It is clear that K’TN has 2 2min(r, s) outliers. The outliers of SITN
are not easy to identify for this case. However, two outliers can be observed more

easily for larger N. Besides, the eigenvalues of KITN are more closely clustered
than those of SrTN. We list in Table 4 the sums of magnitudes of the last elements
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TABLE 3
Clustering radii e of preconditioners SIV and KN for Test Problem 2.

32

64

128

eS [tN-M[ + [tl-M[ ]1 eK It/V--l[-" [tl--N’l

8.2 x 10-2 2.8 10-1 3.5 10-2 6.8 10-2

4.6 x 10-2 2.1 10-2 1.2 10-3 2.3 10-3

3.3 x 10-5 1.1 10-4 1.4 10-6 2.7 x 10-6

102

10-
0 14

No. of iterations

FIG. 3. Convergence history of the CGS method for Test Problem 2.

in constructing SN and KN and the corresponding clustering radii. The convergence
history of the CGS method with N 64 is plotted in Fig. 5. We observe that the CGS
method without preconditioning does not converge and that the CGS method with
preconditioners KN and SN converges in 4 and 6 iterations, respectively. This seems
to suggest that the use of preconditioners does not only accelerate the convergence
rate by providing better spectral properties, but also improves the convergence of
nonsymmetric iterative algorithms by making the preconditioned matrix more close
to normal.

TEST PROBLEM 4. Rational triangular TN with (r, s) (1, 0). The generating
function of TN is chosen to be

1 -0.7z-1
T(z)

1 / 0.Lz-1"

Since there are only N nonzero elements in TN, we can make SN the same as KN. The
eigenvalues of KilTN with N 32 are plotted in Fig. 6(a). We see that all eigenvalues
are clustered around 1 with radius eK O(ItNI) 10-9. This is consistent with
Theorem 3, which predicts that KITN has 0 2 min(r, s) outliers. The convergence
history of the CGS method with N 32 is plotted in Fig. 6(b). The CGS method
with preconditioner KN converges in two iterations while the CGS method without
preconditioning does not converge.

TEST PROBLEM 5. Ill-conditioned TN. Let TN be the N N Toeplitz matrix
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15,

5

-10

-15
-2

0.15

0.I

0.05

-0.05

-0.1

-0.15

-0"02.97 0.75’ O.b8 o.8 o.9 o.9
real part

1.005

o.2

t0.15

0"11o.o5

"’" -0.05

-0.1

-0.15

-02
b.97 0.75 0.98 o.;ss o.9 o.5

real part

1.005

FIG. 4. The eigenvalue distribution of (a) TN, (b) SITN, and (c) KITN for Test Problem 3.
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10-4

I0-o

K
4 6 8 10 12

No. of iterations

14

Fro. 5. Convergence history of the CGS method for Test Problem 3.

TABLE 4
Clustering radii e of preconditioners SN and KN for Test Problem 3.

128

es

1.7 x I0-I 1.4 i0-I

It-MI + It-ml II

2.7 x 10-2 1.3 10-2

1.7 x 10-3 1.6 10-4

K

6.1 X 10-2 2.8 10-2

5.1 X 10-4 1.6 10-4

5.8 X 10-7 1.7 10-7

generated by polynomial T(z) + z--1 with < 1, i.e.,

0 0 0 0 0
0 0 0

0 0 0
0 0

0 1 0
0 0 0 1 e

o(,-n).
The preeonditioner Kv (=

1
0

KN= 0

0
0

is

0 0 0 0 1
0 0 0

1

0 0 0
0 0

0 1 0
0 0 0 1 e

and IKll is bounded for large N. Since the rank of the matrix KN TN is one,
KITN has N- 1 eigenvalues repeated at 1 and our theoretic results still hold.

Matrix TN is nearly singular for large N and IT lll increase with N at the rate
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xlO-

0.8

0.6

0.4

0.2

-0.2

-0.4-

-0.6-

-0.8-

(a

No. of iterations

"’-. KN

FIG. 6. (a) The eigenvalue distribution of KITN and (b) the convergence history of the CGS
method for Test Problem 4.

However, preconditioning TN by KN cannot improve the ill-conditionedness of matrix
TN. The preconditioned matrix KITN is still nearly singular, and the solution is
not accurate due to the ill-conditionedness.

For the extreme case 0, matrix TN is singular with eigenvalues repeated at 0,
and T does not exist. If b is in the rank space of TN, TNx b has more than one
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solution of the following form,

(6.1) x x* + v,

where x* is in the row space of TN with TNX* b, and v is in the null space of
TN. Note that K exists even though TN is singular. Since only the inversion of
the preconditioner is required in each iteration of preconditioned iterative methods,
the iteration can be performed without difficulty. It can be verified that KITN
has one eigenvalue at 0 and all other N- 1 eigenvalues repeated exactly at 1. As a
consequence of the eigenvalue distribution, the CGS method converges to one solution
in form (6.1) after one iteration.

7. Conclusion. In this paper, we generalized the circulant preconditioning tech-
nique from symmetric to nonsymmetric Toeplitz matrices. The resulting precondi-
tioned Toeplitz systems are then solved by various iterative methods such as CGN
and CGS. For a large class of Toeplitz matrices, we proved that the singular values
of STN and KTN are clustered around unity except for a fixed number indepen-
dent of N. When the generating function is rational, the eigenvalues of KITN and

SITN are classified into clustered eigenvalues and outliers. The number of outliers
depends on the order of the rational generating function. The clustered eigenval-
ues are confined in the disk centered at 1 with the radii eg O(ItNI / It-NI) and
s O(ItN-MI-I-Itl-MI) for KTN and STN, respectively. Since the eigenval-
ues of KITN are more closely clustered than those of STN, preconditioner KN
performs better than SN for solving rational Toeplitz systems.
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