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Surface reconstruction from photometric stereo images
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In previous research (Tech. Rep. 172, University of Southern California, Los Angeles, Calif., 1991) we developed

an iterative shape-from-shading (SFS) algorithm that uses a single image, by combining a triangular-element
surface model with a linearized reflectance map. In the current research we generalize the single-image SFS

algorithm to the photometric stereo SFS algorithm, which uses multiple images taken under different lighting

conditions for more-accurate surface reconstruction. An explicit surface model based on nodal basis-function
representation is used so that the integrability problem that arises in conventional photometric stereo SFS al-

gorithms can be solved easily. It is also shown that single-image SFS algorithms have an inherent problem; i.e.,

the accuracy of the reconstructed surface height is related to the slope of the reflectance-map function defined

on the gradient space. The accuracy can be greatly improved by combining two photometric images properly,
and the optimal illumination condition that leads to the best shape reconstruction is examined. Simulation
results for several test images are given to demonstrate the performance of our new algorithm.

1. INTRODUCTION

Extracting the surface information of an object from its
single or multiple shaded image, known as the shape-
from-shading (SFS) problem, is one of the fundamental

problems in computer vision. The image-formation pro-
cess consists of three factors: the object shape, the prop-
erty of the object surface, and the illumination condition
(light-source information). If the surface property and
the lighting condition are known a priori, the shading in-
formation provides important cues for three-dimensional
(3D) surface reconstruction, since the variation in bright-
ness arises primarily from the change in surface orienta-
tion. Research on the SFS problem has been performed
extensively in the past two decades.

Many SFS algorithms that use a single image have been
developed, such as the characteristic strip method,"2 the
variational method,'" the Fourier method,'2 and the
optimal-control approach.'3 However, the solutions are
not reliable because of the lack of either a proper con-
straint or a proper solution method. Although it has been
shown analytically in some recent research'3 "4 that the
single-SFS problem is not ill posed if the image contains
singular points, there are no satisfactory numerical results
with real test images so far. Thus researchers have con-
sidered the use of multiple images to provide additional
information for robust surface reconstruction, including
the photometric stereo method' 5 2 and the geometric
stereo method.2 4 27

The photometric stereo method was first proposed by
Woodham' 23 and has been studied and extended for prac-
tical implementation by several researchers.'15"6 "-20 With
this method, one uses images taken from the same view-
ing direction under different lighting conditions. The
surface orientation of a local point is determined by its
irradiances in these images, which are determined by us-
ing the fact that the orientation corresponds to the inter-
section of constant brightness contours of different

reflectance maps defined on the gradient space. The
conventional scheme usually requires an additional inte-
gration step for constructing a surface with the orienta-
tions obtained.

Methods of determining the depth map with the use of
geometric stereo and shading information have also been
studied. Grimson24 proposed a method of combining bin-
ocular shading information with stereo data to determine
the orientation of the surface normal along feature-point
contours as well as the reflectance-map parameters. The
method uses a general reflectance-map model consisting
of both diffuse and specular components. The method is,
however, numerically unstable and practically unreliable.
Ikeuchi2 6 considered another method for constructing the
depth map from dual photometric stereo images by
combining obtained surface-orientation maps by means of
camera geometry transformation and region matching.
The result depends heavily on the accuracy of the surface
orientations obtained by the conventional photometric
stereo algorithm and is therefore sensitive to noise.

In this research we provide a unifying approach to solve
both single-image and photometric stereo SFS problems.
Our new approach is based on the single-image SFS algo-
rithm proposed in Ref. 28, in which an explicit surface
model called the triangular-element surface model and
the linear reflectance-map approximation were used.
The basic idea can be simply stated as follows. We express
the surface height and orientation by using a nodal basis-
function representation so that the image brightness on
each triangular patch is related directly to the nodal
height by means of the reflectance map. The proposed
photometric stereo SFS algorithm combines the informa-
tion of all images simultaneously to recover the under-
lying surface height. It is formulated as a quadratic
functional minimization problem parameterized by sur-
face heights, in which the cost functional is the squares
of the brightness error. The surface heights can be
obtained by solving the equivalent large, sparse linear
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system of equations with efficient linear system solvers,
such as the multigrid and the preconditioned conjugate
gradient methods.

Compared with the conventional photometric stereo
method, our new method has two major advantages. First,
the new method determines surface heights directly, while
the conventional photometric stereo method determines
only the surface orientations. Thus the integrability
problem arises in the conventional method but not in ours.
Second, the new method is a global method that mini-
mizes the squared intensity errors over all points so that it
is insensitive to noise. In contrast, the conventional
method is a local one and is more sensitive to noise. By
examining the characteristics of the reflectance map, we
also show that the single-image SFS algorithm may not
yield an accurate result, and we explain how to use the
photometric stereo information to improve the accuracy
of the reconstructed surface. We also discuss the opti-
mal illumination condition that leads to the best shape
reconstruction.

2. CONVENTIONAL PHOTOMETRIC
STEREO

Under the assumption of orthographic projection, Lam-
bertian surface, and a distant single-point light source, the
reflectance map is basically a function that characterizes
the relationship between the image irradiance and the ori-
entation of the object surface. It can be derived that

R(p,q) = {1Tn lTn 0
ITn < O' (2.1)

where -q is the albedo of the surface,

(-p, -q, 1)T
(1 + p2 + q2 )1"2

is the surface normal, p and q represent the derivatives of
surface height z, w, r, t, x, and y,

= (cos r sin y, sin sin a, cos )T

is the unit vector of the illumination direction pointing
toward the light source, and and are the tilt and the
slant angles that the illumination direction makes with
the x and the z axes, respectively. This can also be repre-
sented as

1 =~~~I)

(1 + Ps2 + q3
2)1/2

where p and q denote the slope of a surface element per-
pendicular to the illumination direction. Substituting
the vectors n and into Eq. (2.1), we obtain

The reflectance map R(p, q) is a nonlinear function that
can be depicted as nested contours in the gradient space
(p, q). The basic equation for the image-formation pro-
cess can therefore be expressed as

E(x, y) = R p, q), (2.3)

which is known as the image-irradiance equation.
Conventional photometric stereo is an algebraic method

for solving the image-irradiance equation. With given
albedo -q, illumination direction 1, and image irradiance E,
there are two unknown variables, p and q, in Eq. (2.3 so
that one needs at least two equations to determine the
values of p and q. However, since Eq. (2.3) is nonlinear, it
may have more than one solution, and a third image is
often needed for formation of an overdetermined system.
Based on the reflectance map [Eq. (2.1)], we can provide a
simple viewpoint for understanding the solution proce-
dure. Suppose that we have three images obtained with
illumination directions 11, 12, and 13. At a given point
(x, y) the observed image irradiances in these three im-
ages are El, E2, and E3, respectively. Thus we have three
image-irradiance equations,

Ei = qliTn, i = 1, 2, 3,

where n is the surface normal at the point (x, y).
equations can be written in matrix form as

E = Ln,

where

E = E2>,

These

(2.4)

L= 12].

If 11, 12, and 13 are linearly independent, L-' exists, and
Eq. (2.4) can be solved for n. However, note that the sur-
face normal n is a unit vector with two free variables.
Thus Eq. (2.4) is an overdetermined system, and we may
obtain its least-squares solution.

One feature of the above formulation is that it applies
nicely if the albedo, -q, is not known a priori and is vary-
ing at different image points. That is, we know from
Eq. (2.4) that

-qn = L-E. (2.5)

The magnitude of the right-hand side of Eq. (2.5) gives the
value of the albedo at (x, y),

= IL-'Ell,

and the corresponding unit surface normal n is
R(p,q) = {77K/(1 + p2 + q2)1/2 K 0

K < 

where

K = -p cos T sin u - q sin T sin cy + cos a,

or, equivalently,

(2.2a) n = (1/-q)L-'E.

Since the surface orientation instead of the surface height
is determined locally by this method, one has to integrate
the orientations for surface-height construction. Because
the surface orientations are usually not consistent, there

R(p, q) = {0i(l + PsP + qq)/[(l + p2 + q2 )(1 + p,2 + qc2)] 2 1 + pp + q q (2-2b)
+ pp +q~q <O
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may be no surface appropriate for surface-height construc-
tion. This is known as the integrability problem.3' 4

3. DIRECT SURFACE-HEIGHT RECOVERY
FROM PHOTOMETRIC STEREO WITH
TRIANGULAR-ELEMENT SURFACE MODEL

A. Nodal Basis-Function Representation of Surface
Height
Methods of determining the surface height directly from
shading information have been reported recently in the
literature.4 28 29 One can remove the integrability prob-
lem naturally by introducing a nodal basis-function repre-
sentation of the surface height. Consider an arbitrary
nodal basis function, if(x, y), whose value is equal to 1 at
grid point i and is 0 at other grid pointsj #A i. Let zi be
the nodal height at point i. Then one surface that inter-
polates all grid points can be written as

M"

z(x,y) = EZiqi(X, ),
i=1

where M, is the number of nodal basis functions, and the
surface orientation (or normal) can be computed as

p(x,yA) = Oz(x, Y) = i (x, Y) (3.1)
ax i=1 Ox

q(x, y) = az(x, Y) = ai (x, Y)
E Oy (3.2)

Leclerc and Bobick2 9 used the first-order numerical
derivatives to represent surface orientation in terms of
the following discrete forms:

Pij = '/2(Zi+l,j - Zi--j),

qij = '/2(zi,j+l - zij-,).

On the one hand, it can be viewed as a special case of the
above general approach with an appropriately chosen basis
function, ij (x, y). On the other hand, one can derive the
relationship by simply considering one-dimensional cen-
tral differencing of the height variables. The second
viewpoint is mainly a numerical technique and is little re-
lated to the underlying physical surface model.

A more physically plausible approach28 is as follows.
Consider the approximation of a smooth surface with a
union of triangular surface patches called triangular ele-
ments over a uniform grid domain, as illustrated in
Fig. 10,31 Here Oi(x, y) denotes this particular choice of
the nodal basis function ifr(x,y). Note that 4A(x,y) has
local compact support, and its value at an arbitrary point
(x, y) is obtained by linearly interpolating its three neigh-
boring nodal heights, as shown in Fig. 2.

B. Image Formation on the Modeled Surface
To remove the nonlinearity of the reflectance-map func-
tion given by Eq. (2.2a), we take the Taylor series expan-
sion of R(p,q) about a certain reference point, (po,qo),
through the first-order term; i.e.,

R(pq) R(po,qo) + (p - po) Op !pqq
aP (Rop o)

+ (q -q0) qR(p (q)
aq (po, q0)

n-f

The reference point (po, q0) can be either fixed or varying
for different values of (p, q).28 Combining the triangular
surface model with the linearized reflectance-map model
given by expression (3.3), we can express the image irra-
diance on a triangular surface patch directly in terms
of nodal heights of triangular elements. By substituting
Eqs. (3.1) and (3.2) into expression (3.3), we have

M.

E = R(p,q) ap + p + = >2Pizi + Y,
i=1

where

ai i(x,y) + aoi(x,y)
ax ay

y = R(po,qo) - apo - jft,

aR(p, q)
ap (po qo)

0 =R(p,q)
aq (posqo)

(3.4)

(3.4a)

* (3.4b)

Therefore a linear relationship between image irradiance
E and nodal height zi is established.

C. Photometric Stereo SFS Algorithm
For estimating the nodal height zi based on given J differ-
ent photometric stereo images E0j with their corresponding

21

Fig. 1. Uniform triangulation of a square domain, .

Ek -0-1%, / \

(3.3)
Fig. 2. Nodal basis function, pi.

h

I Ie

K. M.Lee and C.-C. J. Kuo

h

3 n



858 J. Opt. Soc. Am. A/Vol. 10, No. 5/May 1993

ref lectance maps Rj (p, q), j = 1..,J, a natural scheme is
to minimize the following cost functional over an image
domain, , which is divided into a set of nonoverlapping
triangles as shown in Fig. 1:

Wb = if > (E0 j - EJ) 2 dxdy, (3.5)
' j=1

where Ej~ and Ej are the jth observed and parameterized
images, respectively. By substituting Eq. (3.4) into
Eq. (3.5), we obtain

Eb=> .if[Lj E + )]dxdy,

where (Dj denote the function (Di in Eq. (3.4a) for the jth
image. After some manipulation2 8 we can rewrite the
cost functional as

gb = 1/2 ZTZ - bZ + C, (3.6)

where the overall stiffness matrix, A, and the load vector,
b, are the sum of each individual stiffness matrix, Aj, and
the load vector, bj, respectively; i.e.,

J J
A E= A, b= b,

j-1 j=1

and where the individual stiffness matrix and load vector
can be computed as

[Aj]mn = 2i ffIim jjndxdY,

[bj]m = 2ff (Ej - Vy) cjymdxdY,

1 c m, n Mn. (3.7)

The minimization problem [Eq. (3.6)] is equivalent to
the solution of the linear system of equations,

Az = b.

An efficient iterative linear-system solver, such as the mul-
tigrid method and the preconditioned-conjugate-gradient
method, can be applied for its solution. To obtain a more-
accurate reconstructed surface, we apply a successive
linearization scheme to the reflectance map.28 That is,
we linearize the reflectance map with respect to the local
gradient point of the triangular patch obtained from the
previous iteration and perform the above solution proce-
dure repeatedly. Note also that the smoothness constraint
is not imposed in the above formulation. For the single-
image SFS algorithm, a smoothness term is often incor-
porated to ensure the nonsingularity of the stiffness ma-
trix (sufficient condition for the unique minimum), and
the weighting of the smoothness term can be gradually
reduced as iteration continues.2 8 However, for the photo-

metric stereo case, the overall stiffness matrix, A, is
the sum of individual stiffness matrices, where the singu-
larity is removed by proper combination of photometric
stereo images so that the smoothness constraint is not
required.

D. Triangulation of an Image
Note that the construction of each load vector b in
Eqs. (3.7) requires the average intensity Ej over each tri-
angular domain Tk, k = 1,... , Mt for the jth image.28 To
determine the average intensities, we first have to parti-
tion discrete image pixels so that they are contained by
the triangular domains. For the convenience of notation,
let us drop the subscript and consider one image, E. Two
possible partitioning schemes for the h = 4 spacing be-
tween adjacent nodal points are depicted in Fig. 3, where
the two-dimensional subscript notation is used for conve-
nience. Figure 3(a) shows the first scheme, in which
nodal points belong to a subset of image points; Fig. 3(b)
shows the second scheme, in which the nodal points are
located between the image points. The average intensity
over a triangular domain can be obtained by summing all
the intensity values inside the triangle and some fractions
of intensity values for nodes lying on the boundary of the
triangle and then dividing the sum by the area of the tri-

(a)
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1
-1

0
3, ny +3)

0
_ Tk

0

0

(b)

Fig. 3. Triangulation schemes of a discrete image. Open circles,
image pixels; filled circles, nodal points.
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angle. The average intensities, ER, for schemes given in
Figs. 3(a) and 3(b), respectively, can be computed as

Ek = [(Enx+2,n,+l + E+ 3,ny+l + E+3,ny+2)
+ 1/2 (En,+Iny+l + En.+2,ny+2 + E+ 3,ny+3 + En.+lny

+ En,+2,.y + E+ 3 ,ny + E+4,ny+l + En+4,ny+2

+ E+ 4,ny+3) + 1/8(En0 ,,ny + 2En+4,ny

+ En.,+4,ny+4)/(h 2/2),

Ek = [(En.+lny + En+2,ny + En.+3,ny + En.+2,ny+l

+ E+3,ny+l + En.+3,ny+2) + 1/2 (En.,ny + En.+ln,+

+ En:+2,ny+2 + E+3,ny+3)/(h2/2),

where h2/2 = 8 is the area of every triangle. It turns out
that these two schemes give similar results. In all experi-
ments reported in Section 5 below, the first scheme with
h = 1 is used to triangulate the input image.

It is worthwhile to point out that two different triangu-
lation schemes can also be made by choosing two different
directions of the oblique lines, i.e., 450 and 1350. When
the image domain is triangulated with the 450 oblique
lines, as shown in Fig. 1, there exists a directional prefer-
ence along the 450 direction, since only six nodal points
among the eight nearest neighbors are associated with the
central nodal point. The triangulation scheme sometimes
may affect the results of the algorithm under various illu-
mination directions. For example, for a spherically sym-
metric object illuminated by light sources with tilt angles
450 and 1350, the reconstructed surfaces may be slightly
different as a result of different triangulations. To avoid
the directional preference, we may use two triangulation
schemes simultaneously so that individual stiffness ma-
trix Aj and load vector bj can be computed by means of

Aj = 1/2 (Aj,r + Ajj), b = 1/2 (bj,r + b),

where Ajr, bjr and Ajl, bjl denote the jth stiffness ma-
trices and load vectors with 450 and 1350 triangulation,
respectively. However, the combination of two triangula-
tion schemes requires extra computational cost. This is
especially true for the multigrid method, in which the
stiffness matrices have to be computed at every coarse
grid level. Even though the single-triangulation scheme
is simpler, numerical experiments show that it often gives
satisfactory results.

points i = M + 1, .. , Mi, where Mi is the total number of
nodal and interpolated points. Then the algorithm mini-
mizes the cost functional

(3.8)Wi = d + A%,,

where

M,,
ctd 1/1 I (Zi - Zi)2,

i=1

Cs = 1/2 TfB .

B is the smoothing matrix characterized
stencil:

1
B3:T 1

by the local

1

2 -8 2

-8. -8 -8 1 ,
2 -8 2

1

where hi denotes the spacing between adjacent inter-
polated points. Some special operator stencils for nodal
points near the boundary are given in Fig. 4.

The cost functional, Eq. (3.8), can be expressed in ma-
trix form as

j = 1/2 TCz - bTz + , (3.9)

where

= + AB

and where D is a diagonal matrix with element 1 for the
row corresponding to a known data point and 0 other-
wise and b is the zero-padded vector whose element is
zi for node i. Problem (3.9) can also be solved efficiently
by the multigrid method3 3 35 or by the preconditioned-
conjugate-gradient method with the hierarchical basis
preconditioner.9

Our numerical experience is that the SFS algorithm
with surface interpolation often leads to a surface that is
much smoother than the original one. Thus, in order to
preserve the quality of the reconstructed surface, one
should use h = 1 at the finest level resolution. However,
the surface-interpolation scheme may be applicable to an
image that has large, smooth surfaces and is triangulated
with nonuniform patches.

E. Surface-Interpolation Technique
We may use a lower number of nodal basis functions than
the number of pixels in the observed image for computa-
tional efficiency and convergence of the algorithm and
then perform surface interpolation based on computed
nodal heights to increase the resolution of the final result.
The surface-interpolation technique has been well studied
in the context of surface reconstruction from stereo im-
ages.9 '3 2

-
3 4 One well-known scheme is the variational

spline-fitting algorithm.3 2 3 4 Let zi be the desired height
at point i, and let zi be the height computed through suc-
cessive linearization if i happens to be a nodal point, or let
zi be 0 if i is a point to be interpolated. We order first the
nodal points with i = 1, .. , Mn and then the interpolated

2 -6 2

1 -61-

2 8 

-8 9 -

2 -6 

QA

Fig. 4. Stencil forms of the nodal operators of B near the
boundary.
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face is a plane. In contrast, Fig. 5(c) contains enough
information for us to perform the exact 3D shape
reconstruction.

To understand the problem better, we may study the
characteristics of the reflectance map as follows. For
simplicity, let us fix the value q = qo and view the reflec-
tance map, R(p, qo), as a function of one variable, p. The
corresponding irradiance equation becomes

E = R(p,q). (4.1)

The sensitivity of p with respect to the change in E can be
estimated by means of

Ap _ OR(p, qo) -1iAE - [ ap j (4.2)

which is inversely proportional to the slope of the reflec-
tance map at point p. Thus, for a fixed value of AE, the
estimate 3 is more accurate (i.e., the value of Ap is
smaller) for the region where R(p, qo) is steeper. Similar
arguments can be made along the q direction; i.e.,

(4.3)
Aq aR(poq) 1X
AE [aq 

(c)
Fig. 5. Example of a roof surface: (a) 3D height plot; (b),
(c) synthesized images with (albedo, tilt, slant) = (230, 0°, 450)
and (230, 90°, 450), respectively.

4. RELATIONSHIP BETWEEN THE
PHOTOMETRIC STEREO AND THE
SINGLE-IMAGE SFS ALGORITHM

If J = 1, the above photometric stereo SFS algorithm re-
duces to the single-image SFS algorithm given in Ref. 28.
In this section we explain why photometric stereo images
produce a more accurate surface-reconstruction result
than does the single-image case.

A. Limitation of Single-Image SFS Algorithm
The single-image SFS algorithm is limited even if the ex-
act lighting condition and surface reflectivity are known.
One extreme case is that the 3D surface information may
be totally lost under a certain lighting condition, and thus
there is no way to recover the surface orientation. For
example, Fig. 5(a) shows a 3D height plot of a roof surface
consisting of two planes that have slopes of the same mag-
nitude but different signs. Figures 5(b) and 5(c) are the
synthesized images of Fig. 5(a) based on Eqs. (2.1) and
(2.3) with illuminating directions (tilt, slant) = (00, 450)
and (900, 450), respectively. Since there is no intensity
change in Fig. 5(b), it is natural to conclude that the sur-

The contour plots of two typical reflectance maps are
given in Figs. 6(a) and 6(b). They are skewed along the
line passing through (0, 0) and (ps, q,). If the spacings be-
tween the adjacent contour lines are narrower (or wider),
the slopes of the reflectance map R(p, q) are steeper (or
smoother), or, equivalently, the partial derivatives Rp(p, q)
and Rq(p, q) of the reflectance map have larger (or smaller)
absolute values. For a given point (po, qo) in the gradient
space, the sensitivity defined in Eqs. (4.2) and (4.3) is
highest along the gradient direction; i.e.,

VR(po, qo) = [Rp(po, qo), Rq(po, qo)],

and lowest along the tangential direction, i.e., [Rq(po, o),
Rp(po,qO)]. In practice, real images contain noise, such
as the sensor or the quantization noise. Besides, the irra-
diance values are averaged to obtain a uniform brightness
value for each triangular patch for the algorithm given in
Section 3. The averaging corresponds to a linear interpo-
lation for the nonlinear reflectance map, which results in
a modeling error. Since the image is corrupted by these
types of noise, it is relatively difficult to obtain accurate
surface orientations or heights in the region where the
slope of the reflectance map is smooth.

The same phenomenon can be explained from another
viewpoint. The components of the stiffness matrix are
determined primarily by the partial derivatives of the
reflectance map with respect to p and q, as given by
Eqs. (3.4) and (3.7). Small values of a or f3 cause some
elements of the stiffness matrix to be nearly zero and
make the problem ill conditioned so that the height or the
orientation related to those elements cannot be easily de-
termined. We observe that smaller values of the partial
derivatives Rp(p, q) and Rq(p, q) often slow down the con-
vergence rate of the algorithm. The slow convergence be-
havior is attributed to the large condition number of the
original nonlinear minimization problem [Eq. (3.5)].

(a)

(b)

K. M.Lee and C.-C. J. Kuo



Vol. 10, No. 5/May 1993/J. Opt. Soc. Am. A 861

ing (p, q) plot, respectively, after 1 iteration and (c), (d)
after 20 successive iterations. The (p, q) value of all
points is set to zero initially. By comparing the (p, q) dis-
tributions in Figs. 8(b) and 8(d) with the original distribu-
tion in Fig. 7(b), we can easily see that the gradient points
spread quickly along the steepest descent direction of the
reflectance map and reach quite accurate values in one
iteration. In contrast, the gradient points move slowly
along the tangential direction of the contour lines and have
not yet reached satisfying values even after 20 iterations.

B. Optimal Lighting Condition
The difficulties resulting from a single reflectance map
can be overcome by using photometric stereo images, since
they provide several reflectance-map functions that en-
hance the sensitivity of Ap and Aq with respect to AE
over the gradient domain of interest. It is desirable to

(a)

(b)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

p

(C)

Fig. 6. Contour plots of two reflectance maps with (a) (albedo,
tilt, slant) = (250, 450, 450) or (p 8,q,) = (-0.707, -0.707) and
(b) (albedo, tilt, slant) = (250, 135°, 450) or (ps, qs) = (0.707,
-0.707), (c) combined reflectance map of (a) and (b).

The following example is used to illustrate the above
discussion. In Fig. 7 we plot (a) the original heights of a
portion of a sphere, (b) the corresponding distribution of
the gradients (p, q) of the triangular surface patches, and
(c) the synthesized image from the illumination direction
(tilt, slant) = (45°, 450), with albedo = 250. In Fig. 8 we
show (a), (b) the reconstructed surface and the correspond-

0. 

-. 5

-1.5 -1 -0.5 0 0.5 1 1.5

(b)

(c)

Fig. 7. Example of a sphere surface: (a) ground truth, (b) (p, q)
distribution in the gradient space, (c) synthesized image with
(albedo, tilt, slant) = (250, 450, 450).

(a)
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(a)

(a)

-C

.C

1.5

.5

0n 

..5

-1.5

(b)

-1 -0.5 0 0.5 1 1.5

(b)

(c)

(C)

p

(d)

Fig. 8. Results of application of the single-image SFS algorithm
to the sphere image of Fig. 7(c): (a), (b) reconstructed height
and corresponding (p, q) plot, respectively, after one iteration; (c),
(d) reconstructed height and corresponding (p, q) plot, respec-
tively, after 20 successive iterations.

(d)
Fig. 9. Sombrero test problem: (a) ground truth of the sombrero
surface, (b) (p, q) distribution in the gradient space, (c) synthe-
sized image with (albedo, tilt, slant) = (250, 45°, 45°), (d) synthe-
sized image with (albedo, tilt, slant) = (250, 135°, 450).
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incorporate reflectance maps that compensate for one an-
other's weaknesses. It is easy to see that the tilt angle
determines the orientation of the reflectance map around
the origin, whereas the slant angle determines the dis-
tance between the origin and (ps, q,) in the gradient space
as well as the shape of the reflectance map. Therefore
the angular distance between the two reflectance maps
with tilt angles 7- and T2 is simply - T21. If the slant
angle is in the range between 300 and 600, the reflectance
map covers the central region of the gradient space, which
is our main concern, and has appropriate values in steep-
ness. Thus the optimal lighting condition is dependent
primarily on the tilt angles of different light sources and
is not sensitive to the slant angles as long as they are be-
tween 30° and 600.

We know from the discussion in Subsection 4.A that the
reflectance map provides good sensitivity along the gradi-
ent direction but poor sensitivity along the tangential
direction. Consider two photometric stereo images illu-
minated from the same slant angle but from different tilt
angles. Ideally the gradient directions of one reflectance
map correspond to the tangential directions of the other
reflectance map over the region of interest. We can
achieve this by choosing the difference of their tilt angles

to be 90°. One such example is given by Fig. 6(c), where
the contour plots of two reflectance maps are shown to-
gether. The tilt angles are 450 and 1350, while the slant
angle (= 450) and the albedo (= 250) are fixed. Note that
the gradients of a smooth surface are usually concen-
trated on the central region of the gradient space, say,
-0.5 < p, q < 0.5. It is clear from these two figures that

1.5

(a)

(d)

Fig. 10. Results of application of the single-image SFS algorithm
to the sombrero images: (a), (b) reconstructed height and corre-
sponding (p, q) plot, respectively, based on the image of Fig. 9(c);
(c), (d) reconstructed height and corresponding (p, q) plot, respec-
tively, based on the image of Fig. 9(d).

p

(b)

Fig. 11. Results of application of the photometric stereo SFS al-
gorithm to the sombrero images: (a), (b) reconstructed height
and corresponding (p, q) plot, respectively.

(a)

(b)

(c)
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that these two images are shaded by light sources with
orthogonal tilt angles. Results of the single-image SFS
algorithm applied to Figs. 9(c) and 9(d) are given in
Fig. 10. The results are not good in some regions. It is
easier to see the discrepancies in the (p, q) domain. By
comparing the distributions of these (p, q) values with the
original distribution, we can see clearly that points move
slowly along the tangential directions of the contours.
The results of the photometric stereo SFS algorithm are
shown in Fig. 11. By comparing the (p, q) distributions of
the photometric stereo algorithm and the single-image
method with the original distribution, we see that we have
achieved a significant improvement by using the photo-
metric stereo SFS method. This improvement is due to
the fact that the two reflectance maps help each other and
provide good sensitivity over the region of the gradient
space of interest, as discussed in Section 4.

Test Problem 2: Mozart Statue
The test images are synthesized from the Mozart statue,
and the surface height is obtained from the range data.

(a)

(c)
Fig. 12. Mozart test problem: (a) the ground truth of the
Mozart statue; two synthetic images illuminated with (b) (albedo,
tilt, slant) = (250, 1350, 450) and (c) (albedo, tilt, slant) = (250,
450, 450).

the gradient direction of one reflectance map is the tan-
gential direction of the other, and vice versa, in this re-
gion. To summarize, the optimal lighting condition can
be written as

T1i - 21 = 900.

This condition has been confirmed experimentally. 7

5. EXPERIMENTAL RESULTS

Our algorithms have been applied to four sets of photo-
metric stereo images. The first two sets (sombrero and
Mozart) are synthetic images, while the last two sets
(faces of two statues) are real images. The results are
compared with those obtained from the single-image SFS
algorithm described in Ref. 28.

Test Problem 1: Sombrero
The tested photometric stereo images are generated from
the sombrero surface as shown in Fig. 9(a). The corre-
sponding (p, q) distribution is given in Fig. 9(b). The two
photometric stereo images are generated by illuminating
from (tilt, slant) = (450, 450) and (1350, 450), with albedo =
250, as shown in Figs. 9(c) and 9(d), respectively. Note

(b)

(c)

Fig. 13. Results of application of the SFS algorithms to the
Mozart images: (a), (b) heights reconstructed from Figs. 12(b)
and 12(c), respectively, by the single-image SFS algorithm;
(c) heights reconstructed by the photometric stereo SFS
algorithm.

(a)

(b)^ i d :.
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tion in those regions. Additional information, such as
shading from different illumination directions and other
high-level visual cues, is needed for recovery of the shape
in the shadowed region. Note that although there are
shadow regions under the nose in both test images, they
do not overlap, and hence they provide sufficient informa-
tion for surface reconstruction.

The results of the single-image SFS algorithm based on
Figs. 14(a) and 14(b) and the results of the photometric
stereo algorithm are shown in Figs. 15(a), 15(b), and 15(c),
respectively. By comparing the two reconstructed sur-
faces of the single-image SFS algorithm in Figs. 15(a) and

(b)

Fig. 14. David test problem: two real images of the David
statue illuminated with (a) (tilt, slant) = (1350, 450), (b) (tilt,
slant) = (450, 450).

(a)

The original 3D surface height is plotted in Fig. 12(a), and
two images generated with illuminating directions (tilt,
slant) = (1350, 450) and (450, 450) and albedo = 250 are
shown in Figs. 12(b) and 12(c), respectively. Note that
there are some defects in the original data, such as points
along the object boundaries and under the nose. Fig-
ures 13(a) and 13(b) show the 3D plots of the surfaces
reconstructed by the single-image SFS algorithm applied
to images in Figs. 12(b) and 12(c), respectively. The re-
sults of the photometric stereo SFS algorithm are shown
in Fig. 13(c). The reconstructed surfaces from the single-
image SFS algorithm contain errors in regions over the
face and the background, depending on the illumination
direction or, equivalently, the reflectance map. In con-
trast, the reconstructed surface with the photometric
stereo algorithm shown in Fig. 13(c) is almost the same as
the original surface except at the discontinuities along the
boundary and at some points that were defective on the
original surface.

Test Problem 3: Face of the David Statue
The tested images are 128 X 128 real images of the face
of the statue of David illuminated from directions (tilt,
slant) = (1350, 450) and (450, 450), as shown in Figs. 14(a)
and 14(b), respectively. Even though the plaster statue
has a Lambertian surface, we would like to comment on
several problems concerning these images. First, it is dif-
ficult to get an ideal lighting condition that satisfies the
reflectance-map model, and therefore the observed
brightness at a given point may have undesirable distor-
tions or variations that are due to the finite distance of
the light source as well as to the quantization noise. Sec-
ond, the shadow problem often appears in real images.
Since no shading information is available in shadowed re-
gions, it is difficult to extract the correct shape informa-

(b)

(c)

Fig. 15. Results of application of the SFS algorithms to the David
images: (a), (b) heights reconstructed from Figs. 14(a) and (b),
respectively, by the single-image SFS algorithm; (c) heights re-
constructed by the photometric stereo SFS algorithm.

(a)
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6. CONCLUSION AND EXTENSION

A new photometric stereo algorithm based on a nodal basis-
function representation of a surface was proposed. By
using the linear approximation of the reflectance map and
a triangular-element surface model, we formulated the
shape-reconstruction problem as a quadratic functional-
minimization problem parameterized by surface heights.
The new method does not require any additional inte-
grability constraint or artificial boundary assumption.
We also showed that the accuracy of the reconstructed

(b)
Fig. 16. Agrippa test problem: two real images of the Agrippa
statue illuminated with (a) (tilt, slant) = (135°, 50°), (b) (tilt,
slant) = (450, 450).

15(b), one can observe that they are not consistent with
each other in several regions. Besides, the surface in
Fig. 15(a) seems to be erroneous as a result of the ambigu-
ity that occurs in the cheek region, as shown in Fig. 14(a).
The reconstructed surface orientations are quite different
from their true values, even though the brightness error is
small. We can understand this phenomenon by examin-
ing the roof-surface example of Fig. 5. A great deal of
improvement is achieved with the photometric stereo SFS
algorithm. The result shown in Fig. 15(c) looks quite
good. Both the brightness distortion effect and the
shadow problem are resolved by combining photometric
stereo images.

Test Problem 4: Face of the Agrippa Statue
The test images are 128 X 128 real images of the face of
the Agrippa statue as shown in Figs. 16(a) and 16(b),
where the estimated illumination directions are (tilt,
slant) = (1350, 500) and (450, 450), respectively. These
images have relatively large regions of shadow. The re-
sults of the single-image SFS algorithm and the photo-
metric stereo algorithm are shown in Figs. 17(a)-17(c).
We observe from Figs. 17(a) and 17(b) that ambiguities
that are similar to those discussed in test problem 3 occur
for both surfaces in several regions, including the cheeks.
Moreover, the self-shadow problem is quite serious. It is
evident from Fig. 17(c) that both ambiguity and shadow
problems are resolved by use of the photometric stereo SFS
algorithm. Note also that the two images in Figs. 16(a)
and 16(b) have common shadowed regions near the eyes.

The reconstructed shape of the regions may not be accu-
rate, since sufficient shading information is not provided.
The situation often happens in practice and may be
handled by incorporating an additional photometric stereo
image that gives shading information in these regions.

(a)

(b)

(c)

Fig. 17. Results of application of the SFS algorithms to the
Agrippa images: (a), (b) heights reconstructed from Figs. 16(a)
and (b), respectively, by the single-image SFS algorithm; (c)
heights reconstructed by the photometric stereo SFS algorithm.

(a)
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surface and the performance of the single-image SFS al-
gorithm are related to the slope of the reflectance-map
function in the gradient space and that more-accurate
surfaces can be reconstructed by the proper combination
of several reflectance maps and the corresponding image
information. Our algorithm has been tested for several
synthetic and real images. Experimental results show
that the proposed photometric SFS algorithm is robust
and reliable and produces more-accurate reconstructed
surfaces than does the single-image SFS algorithm. Even
in the presence of intensity distortions, noise, and shad-
ows in real images, the new photometric SFS algorithm
produces robust reconstructed surfaces, while the single-
image SFS algorithm does not. The effect of different
illumination directions of two light sources was also ex-
amined. The best result can be obtained when the two
illumination directions are orthogonal to each other, since
their reflectance maps complement each other optimally
in the central region of the (p, q) domain.

Compared with the conventional photometric stereo
method, our new iterative SFS method has two major ad-
vantages: it has no integrability problem, and it is insen-
sitive to noise. It would be interesting to see the results
of a combination of the conventional and the new method:
for example, the application of the conventional method in
regions with discontinuities and changing albedo com-
bined with the application of the new method to the re-
maining region.
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