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PRECONDITIONED ITERATIVE METHODS FOR SOLVING
TOEPLITZ-PLUS-HANKEL SYSTEMS*

TA-KANG KUt AND C.-C. JAY KUOt

Abstract. The use of preconditioned iterative methods to solve a system of equations with
a Toeplitz-plus-Hankel coefficient matrix is studied. A new preconditioner suitable for Toeplitz-
plus-Hankel matrices is proposed, and the spectral properties of preconditioned rational Toeplitz-
plus-Hankel matrices are examined. It is shown that the eigenvalues of the preconditioned matrix
are clustered around unity, except for a finite number of outliers, depending on the orders of the
rational generating functions, and the clustering radius is proportional to the magnitude of the last
elements in Toeplitz and Hankel matrices. With the spectral regularities, an N N rational Toeplitz-
plus-Hankel system can be solved by preconditioned iterative methods with O(N log N) operations.
Numerical experiments are given to demonstrate the efficiency of the proposed preconditioner.

Key words. Toeplitz-plus-Hankel, preconditioned iterative method, rational generating func-
tion

AMS subject classifications. 65F10, 65F15

1. Introduction. The systems of linear equations with Toeplitz, Hankel, and
Toeplitz-plus-Hankel coefficient matrices arise in many signal processing applications.
For example, the inverse scattering problem can be formulated as Toeplitz, Hankel,
and Toeplitz-plus-Hankel systems of equations, which were done by Krein [20], Agra-
novich and Marchenko [1], and Gelfand and Levitan [14], respectively. (For more
recent work, we refer to [3], [4].) By exploiting the special structures of Toeplitz or
Hankel matrices, an N N system of equations can be solved by fast direct meth-
ods based on the Levinson or Schur algorithm with O(N2) operations [11], [12], [13],
[21]. Direct algorithms for inverting N N Toeplitz-plus-Hankel matrices with O(N2)
complexity have also been derived [16], [17], [27]. Although the computational com-
plexity of these fast algorithms is lower than that of the Gaussian elimination with
pivoting, i.e., O(N3), their stability is not guaranteed when applied to indefinite or
nonsymmetric matrices [5], [10]. In this paper, we propose to use preconditioned iter-
ative methods to solve Toeplitz-plus-Hankel systems, which have a low computational
complexity and a stable convergence performance.

Toeplitz preconditioners in circulant or skew-circulant matrix form have been pro-
posed and analyzed by many researchers [7], [9], [19], [22], [30], [32]. It was shown by
Chan and Strang [8] that, for a large class of symmetric Toeplitz matrices, the eigen-
values of preconditioned matrices are clustered around unity and the preconditioned
iterative method converges at a superlinear rate. For Toeplitz matrices generated by
rational functions, an even stronger convergence result was obtained by Trefethen [31]
and the authors [24], [25]. That is, the preconditioned iterative method converges in
a finite number of iterations independent of the problem size N. Consequently, a
rational Toeplitz system can be solved with O(Nlog N) operations. In addition to
low computational complexity, preconditioned iterative methods demonstrate a very
stable convergence behavior. Since a Hankel system can be transformed to a Toeplitz
system by reversing the order of the linear equations, the same results also hold for
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TOEPLITZ-PLUS-HANKEL PRECONDITIONERS 825

Hankel systems.
The inverse scattering problem is often formulated as two waves propagating in

opposite directions. The discrete version of the formulation can be naturally expressed
as an N N Toeplitz-plus-Hankel system Ax b, where A is the sum of a Toeplitz
matrix T and a Hankel matrix H with elements T,j t_j and H, hN+l-(i+j)
[2], [3], [4], [6], [26]. The idea of constructing a Woeplitz-plus-Hankel preconditioner
can be simply stated as follows. Let J be an N N matrix which has ones along the
secondary diagonal and zeros elsewhere (i.e., J,j 1 if i + j N + 1 and J,j 0 if
i + j N + 1). We can easily verify that the product of J and H gives a Toeplitz
matrix TH JH with elements [TH],j h_j, and that the Toeplitz-plus-Hankel
matrix can be expressed as A T + H T + JTH. Now, given preconditioners KT
and KH for Toeplitz matrices T and TH, we propose to use P KT + JKH as 8.

preconditioner for matrix A.
To solve the Toeplitz-plus-Hankel system Ax b with preconditioner P, two

major computations required at each iteration are the matrix-vector products Av
and P-iv with an arbitrary vector v. The operation Av can be performed effectively
via fast Fourier transform (FFT) with O(NlogN) operations, since both Tv and
Hv can be embedded in a 2N 2N circulant matrix-vector product. To implement
the preconditioning step Pz v, we relate it to an equivalent N N circulant
system which can be inverted via FFT with O(Nlog N) operations. Consequently,
the computational complexity for each iteration is O(N log N).

In the context of inverse scattering, the generating sequences of Toeplitz and
Hankel matrices can be selected with great flexibility. Thus, we focus on the case
that the sequences {t,} and {hn} are generated, respectively, by rational functions
of orders (CT, T, ")’T, T) and (H, H, ’)’H, H) (see the definition in 3.1) and study
the spectral properties of preconditioned matrices. The eigenvalues of P-IA are
classified into two classes, i.e., the outliers and the clustered eigenvalues. Then the
preconditioned matrix has the following two spectral properties: (1) The number
of outliers is bounded by a constant which depends on the orders of the rational
generating functions; and (2) the clustered eigenvalues are confined in a disk centered
at unity with radius e proportional to O(ItN + It_gl + IhNI-+-lh_gl). With the
above spectral properties, various preconditioned terative methods, including CGN
(the Conjugate Gradient iteration applied to the Normal equations) [18], GMRES (the
Generalized Minimal Residual) [28], and CGS (the Conjugate Gradient Square) [29],
can be effectively applied. It turns out that a rational Toeplitz-plus-Hankel system
can be solved in a finite number of iterations independent of the problem size N so
that the total operations required are O(Nlog N). Besides, preconditioned iterative
methods are highly parallelizable due to the parallelism provided by FFT. The time
complexity can be reduced to O(log N) if O(N) processors are used.

’l’his paper is organized as follows. We discuss the construction and the compu-
tational complexity of preconditioner P for Toeplitz-plus-Hankel matrices in 2. The
spectral properties of the preconditioner and the preconditioned rational Toeplitz-
plus-Hankel matrix are examined in 3. Numerical experiments are given in 4 to
illustrate our theoretical study.

2. The Toeplitz-plus-Hankel preconditioner.

2.1. Construction of the preconditioner. Consider the N N Toeplitz-plus-
Hankel system

(2.1) Ax b, A T + H,
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826 TA-KANG KU AND C.-C. JAY KUO

where T and H are given Toeplitz and Hankel matrices with elements Ti,j ti_j
and Hi,j hg+l-(i+j). With the special structures of Toeplitz and Hankel matrices,
a Hankel matrix H can be transformed to a Toeplitz matrix by premultiplying (or
postmultiplying) it with

0 0 0 1
0 0 1 0

0 1 0 0
1 0 0 0

which is known as the time-reversal operator. It is clear that TH JH is a Toeplitz
matrix with elements [TH]5 h_ and that JTH j2H H. Thus, (2.1) can also
be written as

(2.2) (T / JTH)x b,

where T and TH are N x N Toeplitz matrices generated by the sequences (tn} and
{hn }, respectively.

The procedure to construct a circulant preconditioner for Toeplitz matrix

to t-1 t_(N_2) t_(N-1)
tl to t-1 t-(N-2)

tl to
tN-2 t-1
tN-1 tN-2 tl to

is summarized as follows [22]. We are motivated by the observation that we can solve
the 2N x 2N circulant system effectively,

(2.3) RT x b RT AT T

where AT is determined by the elements of T to make RT circulant, i.e.,

AT=

0 tN-1 t2 tl
t-(N-l) 0 tN-1 t2

t-(N-l) 0
t-2 tN-1
t-1 t-2 t-(N-l) 0

Since (2.3) is equivalent to

(2.4) KTX b, KT T + AT,

we choose the circulant matrix KT as a preconditioner for T. Similarly, we have the
circulant preconditioner KH TH //kTH for Toeplitz matrix TH. Then, with respect
to (2.2), we propose to use

(2.5) P KT + JKH

as a preconditioner for the Toeplitz-plus-Hankel matrix A.
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TOEPLITZ-PLUS-HANKEL PRECONDITIONERS 827

2.2. Computational complexity of the preconditioner. To solve the Toe-
plitz-plus-Hankel system Ax b with preconditioner P, two major computations
required at each iteration are the matrix-vector products Av and P-iv with an
arbitrary vector v. We show below that they both can be achieved with O(N log N)
operations. Since other operations involved are vector additions or inner products
whose complexity is proportional to O(N), the total computational complexity per
iteration is O(N log N).

The N N Toeplitz matrix-vector product Tv can be embedded in the 2N 2N
circulant matrix-vector product

/kT T 0 /Tv

so that it can be effectively computed via FFT with O(N log N) operations. Premul-
tiplying J to a vector v corresponds to the reverse of the order of the elements in v.
Thus, the Toeplitz-plus-Hankel matrix-vector product

Av Tv + JTHv

can also be achieved with O(N log N) operations.
With the equality j2 I and (2.5), we have

(2.6) Pz KTZ q- JKHJJz v,

which is equivalent to

(2.7) JPz JKTJJz + KHZ Jv.

Since KT and KH are circulant, JKTJ K, JKHJ K and KT, and KH com-
mute. By multiplying (2.6) with KTT and (2.7) with g, we can write the difference
between the two resulting equations as

(2.8) (KTTKT ggH)z gv- gigv.

Thus, the solution of z P-iv can also be determined from (2.8). It is easy to verify
that KKT KTHKH is circulant and can be diagonalized with Fourier functions.
Consequently, p-iv can be solved effectively via FFT with O(Nlog N) complexity.
Note also that the Fourier coefficients 3k and @k of the vectors v and w Jv are
related via

?k ?-k mod N, 0 < k < N- 1,

which means that only a FFT and an inverse FFT are needed in solving (2.8), given
the eigenvalues of KT and KH.

In conclusion, the total computational complexity inside each iteration of the
preconditioned iterative methods is only O(NlogN). Besides, the preconditioned
iterative methods are highly parallelizable due to the parallelism provided by FFT,
and the time complexity can be reduced to O(log N) if O(N) processors are used.

3. Analysis of the preconditioner. We assume that Toeplitz matrix T and
Hankel matrix H are generated by real sequences {tn } and {hn} satisfying

(3.1) . Itnl <_ BT < x), Ihnl <_ BH < x.
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828 TA-KANG KU AND C.-C. JAY KUO

The circulant matrices KT, KTT, KH, and KHT share the same Fourier functions as
their eigenvectors with eigenvalues

N-1

Ak(KT) A(K) E
n---(N-1)

tne-J(2kn/N)

N-1

Ak(KH) A(K)= E
=-(N-1)

hne-J(2rkn/N),

where k 0, 1,..., N- 1, and denotes the complex conjugate of Ak. We also
assume that

(3.2) IA(KT)I -IA(KH)I > # > 0, 0 < k < N- 1,

where # is a constant independent of N. We will show in Theorem 1 that the above
condition implies the invertibility of the preconditioner P.

The generating functions of T and TH are defined as

T(z)- E tz-n’ H(z)= E hnz-"

We focus on the case

(3.3a) T(z) AT(Z-I) + CT(Z) H(z) AH(Z-) CH(Z)
BT(Z-1) DT(Z) BH(Z- Dg(z)

where T(z) is a rational function of order (aT,/T, 7T, 5T), i.e.,

(3.3b)
AT(z-l) aTi--O aT, z-i

BT(Z-) mrY]i=o bT,iZ , Cr(z) Ei--O CT,izi,
5TDT(Z) Yi=O dT, z

with aT,aTbT,TCT,.TdT,hT 0, bT,o 1, dT,o 1, and polynomials AT(Z-I) and
BT(Z-) (or CT(Z-x) and DT(Z-)) have no common factors. Similarly, H(z) is a
rational function of order (aH,H, /H,H). For convenience, we let

(3.4) rT max(aT, T), ST max(’T, ST),
rH max(all, H), SH max(TH, 5H).

Note that (3.1) implies that all zeros of BT(Z-1) and BH(Z-) (DT(z) and DH(Z))
are inside (outside) the unit circle. By applying the isomorphism between the ring
of the power series and the ring of semi-infinite lower (or upper) triangular Toeplitz
matrices, with respect to T(z) and H(z) given in (3.3), we have

(3.5) -1T LA,TLT + Uc,TUD,T, TH LA,HL[3H -+" Uc,HUD H,

where LA,T and LB,T (Uc,T and DC,T) are N x N lower (upper) triangular Toeplitz
matrices generated by AT(Z-) and BT(Z-) (CT(z) and DT(z)), respectively. The
LA,H, LB,H, UC,H, and UD,H are similarly defined with respect to H(z).
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TOEPLITZ-PLUS-HANKEL PRECONDITIONERS 829

3.1. Invertibility of the preconditioner. With condition (3.2), in the follow-
ing theorem we prove that p-1 exists.

THEOREM 1. Let T and H be N N Toeplitz and Hankel matrices satisfying
(3.2). Then, IIP-l12 is bounded for any given g.

Proof. Recall from (2.8) that Pz v is equivalent to

(3.6) (KKT KKH)Z (K KJ)v.

For any given N, IKTTIIz and IKII are both bounded. As a consequence, I[K,II2
is also bounded. Similar results hold for KHT. Thus, the right-hand side of (3.6) is
bounded. With condition (3.2), the magnitude of any eigenvalue of KKT KKH
is also bounded by

I)k(KKT KKH)I IXk(KT)I2 --IX(KH)I2 ]>_ /z > 0.

Therefore, J]P-I[2 is bounded and the preconditioner P is invertible.

3.2. The number of outliers of p-1A. Since

A(P-A) 1 A(P-/A),

the eigenvalues of P-1A clustered around one correspond to those of P-1/A clustered
around zero. According to the definitions of KT and KH, the difference matrix
/A P- A can be written as

/A =/XT + J/kTH.

Based on the structures of/T and/TH, we will decompose the/A into the sum of
a low rank matrix/F and a perturbation matrix, in which the rank of/F does not
change with N and all matrix norms of the perturbation matrix converge to zero for
asymptotically large N. Then, we define the outliers of P-/A as the eigenvalues of
p-1/A corresponding to the nonzero eigenvalues of P-1/F with perturbation. Since
there is a one-to-one correspondence between the eigenvalues of p-1AA and P-A,
the outliers of p-1A can also be defined. A direct consequence of this definition
is that the outliers of P-A do not converge to unity for asymptotically large N.
Besides, the number of outliers of P-A is fixed and equivalent to the rank of/F.
The rank of/F will be examined in this subsection so that the number of the outliers
is determined. The perturbation theory of eigenvalues will then be used in 3.3 to
study the clustering radius of the clustered eigenvalues.

The analysis for the number of outliers proceeds as follows.
Step 1. Construct a low rank matrix /F based on the recursion in tn and hn

described in Lemma 1.
Step 2. Show that/F is asymptotically equivalent to/A (Lemma 2).
Step 3. Establish an upper bound for the rank of/F, which is equal to the

number of outliers of P-1A (Theorem 2).
LEMMA 1. The sequences tn and ha generated by (3.3) that satisfy condition (3.1)

follow the recursions

tn+l --(bT,tn + bT,2tn- +"" + bT,fTtn--/r+),
tn--1 --(dT,ltn + dT,2tn+l -b + dT,STtn+ST--1),
hn+ -(bH,lhn -b bH,2hn-1 - + bg,/Hhn--H+l),
hn- -(dH,hn + dH,2hn+ +.’. + dH,hn+H-1),

72

_
rT,

72

_
--8T

?2

_
rH

?2

_
--8H
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830 TA-KANG KU AND C.-C. JAY KUO

where bT,i, dT,i, bH,i, and dH,i are given in (3.3b) and rT, ST, rH, and SH are defined

Proof. The proof is similar to the proof of Lemma 1 in [24]. [:l

Based on the recursion (3.8), we construct two low rank Toeplitz matrices AFT and
/kHT as

(3.9) AFT FT,1 + FT,2, and

where

/FH FH,1 - FH,2,

tN iN-1 t2 tl
tN+I tN tN-1 t2

tN+l tN
t2N-2 iN-1
t2N-1 t2N-2 tN+l tN

t-N t-(N+l) t_(2N-2) t_(2N_l)
t-(N-l) t-N t-(N+l) t-(2N-2)

FT,2 t_(N_l) t-N
t-2 t-(N+)
t-1 t-2 t-(N-l) t-N

and FH, and FH,2 are similarly constructed by changing elements of FT, and FT,2
from tn to hn. The AFT and AFH are asymptotically equivalent to/kT and /kTH,
respectively, and we have the following lemma.

LEMMA 2. Let T and H be N N Toeplitz and Hankel matrices generated by
T(z) and U(z) in (3.3) with the corresponding generating sequences satisfying (3.1)
and (3.2). Then,

IIA-- FIIu < O(ItNI / It-Nt / IhNI +

where AA is defined in (3.7) and

AF AFT + JAFH

with AFT and AFH given by (3.9). Consequently, AA is asymptotically equivalent
to AF.

Proof. The proof is similar to the proof of Lemma 2 in [25]. [3

With (3.8), we can easily determine upper bounds for the ranks of AFT and
AFH, i.e.,

rank(AFT) _< rT + ST and rank(AFH) _< rH + SH.

Since both J and P are full rank matrices, the rank of P-AF (or equivalently the
number of outliers of P-A) is bounded above by

(3.10) rT q- 8T - rH q- SH.

However, the bound is not tight.
following theorem.

A tighter bound is available according to the
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TOEPLITZ-PLUS-HANKEL PRECONDITIONERS 831

THEOREM 2. Let T and H be N x N Toeplitz and Hankel matrices generated by
T(z) and H(z) in (3.3) with the corresponding generating sequences satisfying (3.1)
and (3.2). The number of outliers of p-1A is bounded by

(3.11) max(rT + H, rH + T) + max(sT

where Yc is the number of common roots in BT(Z)DT(z) and BH(Z)DH(z).
Proof. We first focus on the case that all roots of BT(Z), DT(z), BH(Z), and

DH(Z) are simple. By applying the partial fractional expansion to AT(Z-1)/BT(z-1)
and CT(z)/DT(z) and determining the corresponding Toeplitz matrix for each term,
we obtain a decomposition for T, i.e.,

T T
T- T1,0 + ETI, + T2,0 + E T2,i.

i--1 i=1

In the above expression, T,i and T2,i are, respectively, lower and upper triangular
Toeplitz matrices. If CT ]T -- 0, T1,0 has a lower bandwidth CT /T. Otherwise,
it is equal to zero. The Tl,i, 0, corresponds to the Toeplitz matrix generated by
a root of BT(Z-1). The T2,i, 0 <: <:_ ST, is similarly defined.

We construct FT, I,i and FT,2,i for T,i and T2,i based on (3.9). Since the con-
struction is linear, we have

3T 6T

aFT FT,I,O + EFT,I, / FT,2,0 4- E FT,2#.
i--1 i=1

It is easy to verify that the elements of FT,I,o and FT,2,0 are zeros except the northeast
max(CT-/T, 0) and the southwest max(0’T -ST, 0) diagonals, respectively. All re-
maining terms in/kFT are rank one matrices. The/kFH can be similarly decomposed

where the elements of FH,1,0 and FH,2,0 are zeros except the northeast max(CH--/H, 0)
and the southwest max(OH -(H, 0) diagonals, respectively, and all other terms are
rank one matrices.

Let us examine the rank of/kF -/kFT + J/kFH. The ranks of FT,,O + JFg,l,0
and FT,2,o + JFH,2,o are clearly bounded by max(cT --/T, OH --/H, 0) and max(O’T
(T,H --(H, 0), respectively. Since all other terms in FT and /kFH are rank one
matrices, the rank of F is bounded above by

(3.12)
/T --/H -+" (T -{- (H "+- max(CT /V, CH --/H, 0) + max(/T (T,H (H, 0)

which is the same as y given in (3.11) with yc 0.
Now, suppose that BT(Z)DT(z) and BH(Z)DH(z) have common roots. This

implies four combinations. That is, BT(z) and BH(Z), BT(Z) and OH(Z), DT(Z)
and BH(Z), or DT(Z) and DH(Z have common roots. Without loss of generality, we
assume that BT(Z) and BH(Z) have a common root # and that Toeplitz matrices Tl,k
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832 TA-KANG KU AND C.-C. JAY KUO

and JHl, are generated by this root. By postmultiplying FT,I,, FH,I,k, FT,,k +
JFH,,k with the lower triangular Toeplitz matrix L which has

[1,-#, 0,..., 0]T

as the first column, the resulting matrices have only one nonzero column. Thus, the
rank of AF AFT + JAFH is lower than (3.12) by one due to the root # shared by
BT(Z) and BH(Z).

As to the other three combinations, similar arguments hold with the following
modifications. When DT(Z) and DH(Z) have common roots, we postmultiply FT,2,k +
JFH,2,k by the corresponding upper triangular banded Toeplitz matrix constructed
with respect to the common root. When BT(Z) and DH(Z) (or BH(Z) and DT(Z))
have common roots, we examine the rank of

AFT,I,k + J’FH,2,kJJ AFT.I.k +/kFTH,2,kJ
by premultiplying an appropriate lower (or upper) triangular Toeplitz banded matrix.

Let us now focus on the case that BT(Z), DT(z), BH(z), or OH(z) has repeated
roots which are common for both BT(Z)DT(z) and BH(z)DH(z). Without loss of
generality, we assume that BT(Z) has kT roots at # and that BH(z) has kH roots at
#. Let FT, I,i, 1 <_ i <_ kT, and FH, I,j, 1 <_ j <_ kH, be constructed with respect to the
repeated roots #. It can be shown that

FT, l,i -{- FH,l,i L, k max(kT, kH),
\i=1 ":

has at most k nonzero columns. Therefore, the rank of AF AFT + JAFH is
lower than (3.12) by min(kT, kH) due to the repeated roots shared by BT(Z) and
BH(Z).

3.3. The clustering radius of P-A. It is clear from the analysis in 3.2 that
the number of outliers of P-1A does not depend on the boundedness of IIA-II2. To
examine the spectral clustering property of P-A, we restrict our discussion in this
subsection to the case that IIA-II2 exists and is bounded by a constant independent
of the size N of A. Besides, it is also assumed that BT(Z)DT(z) and BH(z)DH(z)
have no common roots (c 0).

Since nonzero eigenvalues of P-A and A-1AA are related via

(3.13) [A(P-1A)] -1 A(A-(A + AA)) 1 + A(A-AA),

the eigenvalues of P-1A clustered around unity are equivalent to the eigenvalues of
A- AA clustered around zero. Besides, it is known from the proof of Theorem 2 that
AA is asymptotically equivalent to

(3.14) /kF AFT + JAFH (FT,1 + FT,2) + J(FH,1 + FH,2),

at a rate of O(ItN + It_NI + IhNI + Ih_vl). Thus, we divide the discussion on the
spectral clustering radius of A-1/kA into two steps.

Step 1. Transform A and/kF into QA and/kQF whose eigenstructures are easier
to analyze (Lemmas 3-5).

Step 2. Use the perturbation theory to determine the spectral clustering radius
of A-AA or, equivalently, P-A (Lemmas 6 and 7, and Theorem 3).
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TOEPLITZ-PLUS-HANKEL PRECONDITIONERS 833

We first transform the generalized eigenvalue problem

AFx AAx, AF AFT + JFH, A T + JTH,

to another generalized eigenvalue problem

(3.15) AQF-- AQA, X UD,TUD,HLB,TLB,H,

where

(3.15a)
(3.15b)

AQF (LB T,T.,H) AF (UD,TUD,HLB,TLB,H),
QA (LB T,TE,H) A (UD,TUD,HLB,TLB,H).

In (3.153) and (3.15b), B,H is an N N upper triangular Toeplitz matrices generated
by zf" BH(Z-1), whereas all other matrices are defined in (3.5). The postmultiplica-
tion with UD,TUD,HLB,TLB,H in (3.15a) is to make the elements of/QF zero except
the first and last several columns as described in Lemma 3. The premultiplication
with LB,Tb[,H and the postmultiplication with UD,TUD,H in (3.15b) is used to sim-
plify the structure of QA so that the elements in the four corner blocks of QA do not
change with N, as shown in Lemma 4. An explanation for introducing the matrix
IB,H will be given after the proof of Lemma 4.

LEMMA 3. Let T and H be N N Toeplitz and Hankel matrices generated by
T(z) and H(z) in (3.3) with the corresponding generating sequences satisfying (3.1)
and (3.2). The elements of AQF are zeros except the first so and last ro columns,
where

80 max(sT - 5H, 8H -{- ro max(rT + H, rH + t3T).

Proof. Recall from (3.9) that AFT FT, + FT,2 and

(FT,1)i,j tN+i-j, (FT,2)i,j t-N+i-j.

The (i,j) element of FT,1UD,TUD,HLB,TLB,H is

(3.16)
N N N N

EE E EtN+i-kdT,l-kdH,m-lbT,m-nbH,n-j.
k--1 l--1 m--1 n--1

If j < N (rT + H), the above summation can be simplified as

k’=O/=0 n=0 \m=0

dT,k’dH,l’bH,n’ O,

where k’ k, l’ m l, m’ m n, n’ n j, and the equality is due to (3.8).
Similarly, the (i, j) element of FT,2UD,TUD,HLB,TLB,H can be simplified as

/’=0 m’=O n’=O \k’=O

for j > ST + 5H. Thus, the elements of AFTUD,TUD,HL,TLs,H are zeros except
the first ST + 6H and last rT + H columns. We can argue in a similar fashion that

D
ow

nl
oa

de
d 

01
/2

6/
14

 to
 1

32
.1

74
.2

55
.3

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



834 TA-KANG KU AND C.-C. JAY KUO

the elements of AFHUD,TUD,HLB,TLB,H are zeros except the first SH + 5T and last
rH + T columns. Then, it is clear that the elements of/QF are zeros except the
first So and last r0 columns, and the proof is completed.

According to Lemma 3, the rank space of Q4AQF is contained in

T={vERN vn=O, s0<n_<N-r0}.

Therefore, the nonzero eigenvalues of QIAQF only depend on the northwest So so,
the northeast so r0, the southwest r0 so, and the southeast r0 r0 blocks of QA
and AQF. The structures of the four corner blocks of QA and AQF are stated in
Lemmas 4 and 5, respectively.

LEMMA 4. Let T and H be N N Toeplitz and Hankel matrices generated by
T(z) and H(z) in (3.3) with the corresponding generating sequences satisfying (3.1)
and (3.2). The elements in the northwest so so, northeast So to, southwest ro so,
and southeast ro ro blocks of QA do not change for sufficiently large N.

Proof. With the relation A T / JTH, the QA can be written as

QA QT T QH

where

QT (LB,Tbl,H) T (UD,TUD,HLs,TLB,H),
QH- (LB,TbITB,H) JTH (UD,TUD,HLB,TLB,H).

By using (3.5), the fact that TlgS,H is a lower triangular Toeplitz matrix, and the com-
mutative property of the matrix product among lower (or upper) triangular Toeplitz
matrices, we obtain

QT 14TS,l (LA,TUD,T / LB,TUc,T) UD,HLB,TLB,H,

which is a product of lower and upper triangular banded Toeplitz matrices. Thus, the
elements in the corresponding four corner blocks of QT do not change for sufficiently
large N.

To examine elements in the four corner blocks of QH, we use the relation

(3.18)

and rewrite QH as

(3.19) QH "-JL,T (blB,H TH UD,H) UD,TLt,TLB,H.

Let us decompose B,H into matrices consisting of its north and south blocks, respec-
tively, i.e.,

[B,H WN - Ws,

where WN (or Ws) consists of the first N H (or last H) rows of IB,H and zeros
elsewhere. Since the first N-H rows of blS,H are the same as the last N-H rows
of LB,H, we know that

WN (WNTHUD,H) UD,TLB,TLB,H
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TOEPLITZ-PLUS-HANKEL PRECONDITIONERS 835

has its last H rOWS equal to zero and first N-/H rows equal to the last N- H
rows of

G- (LB,HTHUD,H) UD,TLB,TLB,H
(LA,HUD,H + LB,HUc,H) UD,TLB,TLB,H.

The elements in the four corner blocks of JL,TG do not change for sufficiently
large N since it is a product of lower and upper banded triangular Toeplitz matrices.
Consequently, the elements in the corresponding four corner blocks of

JL,TIN--JL,T (WNTHUD,H) UD,TLB,TLB,H

do not change with N. Besides, since IB,H is upper-triangular, the elements of
Ws -blS,H WN are zeros except the southeast H X H block. It can be shown
directly by matrix multiplication that the elements in the four corner blocks of

JL,T (Ws TH UD,H) UD,TLB,TLB,H

do not change with N, and the proof is completed, cl

With the above proof, it is easier to explain the need for introducing the premul-
tiplying matrix/4T in transformation (3.15) First, it has to be a lower triangularB,H
Toeplitz so that it commutes with LB,T. Second, in order to move the time-reversal
operator J in QH to the front as in (3.18), its transpose has to behave similarly as
LB,H SO that its multiplication with JLH relates to a banded matrix. The L/BT,H
satisfies both conditions, and is then used in transformation (3.15).

LEMMA 5. Let T and H be N x N Toeplitz and Hankel matrices generated by
T(z) and H(z) in (3.3) with the corresponding generating sequences satisfying (3.1)
and (3.2). The corresponding four corner blocks of/QF converge to QNW, QNE,
QSW, and QSE, respectively, where QNE i8 the the northeast so ro block of

(LB,T,H) FT,1 (UD,TUD,HLB,TLB,H),

Qsw is the the southwest ro so block of

(LB,TbI,H) FT,2 (UD,TUD,HLB,TL,H),

QNW is the the northwest so So block of

(LB,Tbl,H) JFH,2 (UD,TUD,HLB,TLB,H),

and QSE is the the southeast ro ro block of

(LB,TbI,H) JFH,1 (UD,TUD,HLB,TLB,H).

The elements of QNW, QNE, QSW, and QSE do not change .for sujficiently large N.
Proof. Recall that

/F =/FT + J/FH (FT,1 "]- FT,2) + J(FH,1 + FH,2).

Let us define

1 FT,1UD,TUD,HLB,TLB,H and 2 FT,2UD,TUD,HLB,TLB,H.
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836 TA-KANG KU AND C.-C. JAY KUO

With (3.16), the (i, j) element of T is bounded by

ItN+i-j+nl

To determine an upper bound for m=O bT,’ I, we factorize BT(z-) as

BT(Z-1) (1 rlZ-1)(1 r2z-1) (1 reTz-1).
A direct consequence of (3.1) is that Irl < 1, 1 <_ i <_ T, so that

]bT,ml_ ( Tm )(maxlril)m_ ( Tm ), where (mT
Therefore, we obtain

T fT

m--O

Similarly, we can derive that

H 6T H
(3.21) ]b.,t] 2’, IdT,l 26, ]d.,tl 26".

/=o k=0 /=0

the (i, j) element of l is boundedThus, by

(3.22) 2++er+e m It+-+l.-(r+)(er+@)

We can see from (3.22) that the elements in the corresponding northeast, northwest,
southeast, and southwest blocks of T1 are bounded by O(Itol), O(ItNI) O(ItNI) and
O(It2NI), respectively. The same result holds for LB,TI,HT since LB,TH,H is a
lower triangular banded Toeplitz matrix with 2-norm of O(1). In addition, we can
verify that the elements in the northeast block of LB,T[,HT1 (i.e., -NE) are fixed
for sufficiently large N, which is due to the banded structures of [T UD,T, UD,HB,H
LB,T, and LB,H. Similarly, we can argue that the elements in the corresponding
northeast, northwest, southeast, and southwest blocks of LB,T[,H2 are bounded
by O(It_2NI) O(It_gl), O(It_NI) and O(Itol) respectively, and the elements in the
southwest corner block (i.e., Qsw) do not change for large N. Since T and TH are
both rational Toeplitz, the same results also hold for

(ns,Tbl,H) (JFH,1UD,TUD,HLB,TLB,H), (LB,TbI,H) (JFH,2UD,TUD,HLs,TLB,H),
and the proof is completed.

With the above lemma, we change the corresponding four corner blocks of/kQF
to their asymptotic values, and denote the resulting matrix by/QF, i.e.,

QNW 0 QNE
o _Q.

Qsw 0 QsE

D
ow

nl
oa

de
d 

01
/2

6/
14

 to
 1

32
.1

74
.2

55
.3

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



TOEPLITZ-PLUS-HANKEL PRECONDITIONERS 837

where Qw (or QE) are the middle N- (r0 + so) rows in the first so (or the last r0)
columns of/kQF. Thus, the matrix/kQF-/kQF converges to the zero matrix at
rate bounded by

(3.24) [[/YQF /F[[2 O([tN[-[-It-N[ " IhN[ "-b [h-N[).

Since the nonzero eigenvalues ofQ/YF only depend on elements in the correspond-
ing four corner blocks of QA and/QF, which do not change with N, the framework
of the perturbation analysis for eigenvalues can be conveniently applied as described
in the following.

Due to transformation (3.15), the eigenvalues of A-1/A are those of Qal/kQA
where

/QA (LB T,TEI,H) /A (UD,TUD,HLB,TLB,H).

We can view/kQA as the sum of/IQF and a perturbation matrix

AQE =-- AQ AGE (AQA AQF) + (AQF A-QF).

To determine a bound on II/Qll, we have

(3.25) I[AQE[[2 <

By using Lemma 2 and the boundedness of

[[UD,T[[2, [[UD,H]I2, [[LB,T[12, [[LB,H]I2, and []/4,H]]2,T

which is implied from (3.20) and (3.21), it is clear that

II,QA -/QFII= < O(ItNI + }t-NI + IhNI + Ih-NI).

The above equation, (3.24), and (3.25), give a bound on II/EII, i.e.,

II/EII2 < O(ItNI / It-NI / IhNI / Ih-NI).

In addition, we know from (3.15) that

(3.26)
111112 UD,TI 2ILB,T 2 112 II IrA-xILB,HII2 [I II D,H

Since all roots of the generating function for lower (or upper) triangular banded
matrices in the above inequality are inside (or outside) the unit circle due to (3.1), all
matrix norms in the right-hand side of (3.26) are bounded by a constant independent
of N [23], [25]. Therefore, 111112 0(1) and we obtain the following lemma.

LEMMA 6. Let T and H be N N Toeplitz and Hankel matrices generated by
T(z) and H(z) in (3.3) with the corresponding generating sequences satisfying (3.1)
and (3.2). Then

II/EII2 < O(ItNI / It-NI / IhNI / Ih-NI)

for sufficiently large N.
Note that/F has at most r0 + so nonzero columns, which is equal to r/in (3.10)

with / 0. The rank / of/QF is therefore bounded by

(3.27)
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838 TA-KANG KU AND C.-C. jAY KUO

where and are defined in (3.10) and (3.11). We arrange the eigenvalues of
in descending order, i.e., IAnl >_ IAn+ll, and denote the corresponding normalized
right-hand and left-hand eigenvectors by Xl,X2,...,XN and Y,Y2,...,YN, respec-
tively. Since the rank of/kQf is r, An 0 for r < n _< N. We choose vectors xn
with Yr < n _< N to be orthogonal for different values of n. We also define

HX l<n<N.

The reciprocal of s is usually known as the condition of the eigenvalue AN [15], which
is bounded uniformly by a constant independent of N as stated in Lemma 7.

LEMMA 7. Let T and H be N N Toeplitz and Hankel matrices generated by
T(z) and H(z) in (3.3) with the corresponding generating sequences satisfying (3.1)
and (3.2). Then, the Isnl,1 <_ m <_ , of Q]/k-F is bounded by a constant
independent of N.

Proof. According to (3.23), it is clear that the rank space of Q]AF is contained
in

T={vERN Ivy=O, so < n <_ N ro},

where

So max(sT + 5H, SH +/iT), r0 max(rT + H, rH + T).

All nonzero eigenvalues of QIAF can be determined by considering the generalized
eigenvalue problem in the subspace T. Since all elements in the corresponding four
corner blocks of QA and /f do not change with N, the boundedness of Israel,
1 _< m <: , is implied, and the proof is completed. [:]

The eigenvalues of

QAQ QAF +QAQ

can be estimated from those ofQI/F through perturbation theory. Since the norm
of the perturbation matrix is equal to as given in Lemma 6, we denote the eigenval-
ues and the right-hand eigenvectors of the perturbed matrix QAQA by () and
xn(e), respectively. According to perturbation theory for repeated eigenvalues [331,
the eigenvectors x(e) with < n

_
N must take the form

?r mn N

Xn() E (An m)Smxm " E 9mnXm "- O(2)’
m: m:r+

where mn yHmQ41AQEXn, An O, gnn 1, and Sm defined in (3.28). Due to the
construction, we know that

The factor Iml is bounded by

The Isjn], 1 _< m _< , is also bounded due to Lemma 7. The magnitude of A,(),
r < n <_ N, of QIAQA is approximated byD
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TOEPLITZ-PLUS-HANKEL PRECONDITIONERS 839

Since / _< y as given by (3.27), we conclude that Q]IAQA (or A-1AA) has at least
N-y eigenvalues bounded by

eQ O(ItNI + [t-NI + [hNI +

for sufficiently large N. With (3.13), the above results are summarized in the following
theorem.

THEOREM 3. Let T and H be N x N Toeplitz and Hankel matrices generated
by T(z) and H(z) in (3.3) with the corresponding generating sequences satisfying
(3.1) and (3.2). Besides, A T + H has a bounded inverse, and BT(Z)DT(z) and
BH(Z)DH(z) have no common roots. For sufficiently large N, there are at least N-
eigenvalues of P-1A, where 1 is given in (3.11) with c O, confined in the disk
centered at unity with radius e proportional to

O(ltNI + It-NI + IhNI + Ih-NI).

4. Numerical experiments. We use four test problems, including symmetric
and nonsymmetric T and TH, to illustrate the analysis. For all Toeplitz-plus-Hankel
systems Ax b to be solved in the experiments, we choose b (1,..., 1)T and the
zero initial guess.

Test Problem 1. Symmetric T and TH with (OT,/T, "T, (T) (1, 1, 1, 1) and
(H,/H, "H, H) (1, 2, 1, 2).

The generating functions of T and TH are chosen to be

0.5 + 0.7z-1 0.5 + 0.7z
T(z) +1 + 0.7z-1 1 + 0.7z

0.5 0.4z-1
U(z) (1 0.7z-)(1 0.9z-) +

0.5 0.dz

(1 0.7z)(1 0.9z)"

The eigenvalues of A-1AA, except those with magnitude less than 10-6, are plotted in
Fig. 1. Although it is difficult to distinguish the outliers from the clustered eigenvalues
for N < 64, we can see six outliers more easily for the case N 128. The number
of outliers is consistent with (3.11), where the last three terms are all equal to zero.
The clustering radii e, ItNI, and [hNI for different N are listed in Table 1. The values
of e decrease at a rate of O([tNI + IhNI). The convergence history of the CG and
PCG methods are plotted in Fig. 2. The upper four curves are those of the CG
method whereas the lower four curves correspond to those of the PCG method. The
preconditioning does accelerate the convergence rate of the CG method significantly.
The convergence rate of the CG. method becomes slower for larger N. In contrast,
the PCG method converges faster as N becomes larger. It in fact converges in four
(- //2 + 1) iterations asymptotically. The reason that it takes only /2 + 1 iterations
for the PCG method to converge can be explained by the fact that that the outliers
are related in pairs such that only /2 iterations are needed to eliminate the effects
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840 TA-KANG KU AND C.-C. JAY KUO

TABLE 1
The clustering radius e of P-1A for Test Problem 1.

N I[ ItNl -It-Nl
16 1.6 10-3

32 5.5 10-6

64 6.1 10-11

128 7.0 10-21

4.7 10-2 1.5 10-1

8.6 x 10-3

2.9 x 10-4
8.8 10-2

1.3 x 10--2

3.5 x 10-7 1.4 x 10-5

N--128

N=64

N=32

N=16

10-6 10-s 10-4 I0-3 10-2 I0-I I0 101

FIG. 1. The eigenvalue distribution of A-/xA ]or Test Problem 1.

of outliers. A similar phenomenon has been reported in [22] for solving symmetric
positive-definite Toeplitz systems with the PCG method.

Test Problem 2. Symmetric T with (CT,/T, 7T, T) (1, 1, 1, 1) and nonsym-
metric TH with (CH,/H, ’)’H, 6H) (0, 0, 1, 3).

The generating functions of T and TH are chosen to be

0.5 + 0.3z-1 0.5 / 0.3z
T(z)=

l+0.8z-1 + 1+0.8z
0.5 0.4z

H(z) (1 0.bz)(1 -t- 0.8z)2"

Note that ST(Z-1) 1 + 0.8z- and BT(Z)DT(z)- (1 + 0.8z)2. Since BT(Z)DT(z)
and OH(Z) have two common roots (Yc 2), we know that there are at most
three outliers according to (3.11), which is confirmed numerically. The other eigen-
values of P-A are confined in the disk centered at unity with radius e. Since
[h-NI >> ItN[ [t-NI, e O([h-NI). The clustering radii e, ItNI and Ih_N[ are
listed in Table 2. We apply the CGS method to solve the Toeplitz-plus-Hankel sys-
tem and plot the convergence history in Fig. 3. The lower and upper four curves
are those of the CGS method with and without preconditioning, respectively. The
preconditioned CGS method converges faster as N becomes larger, and converges in
four iterations asymptotically. In contrast, the CGS method without preconditioning
does not converge at all. Although the relation between the convergence rate of the
CGS method and the spectrum of the iteration matrix is not clear, our numerical
results show that the CGS method converges in a finite number of iterations if the
iteration matrix has only a finite number of asymptotic distinct eigenvalues.

Test Problem 3. Nonsymmetric T with (aT,/T, fT, (T) (1, 2, 0, 0) and non-
symmetric TH with (H,/H, 7H, 5g) (1, 1, 0, 0).
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TABLE 2
The clustering radius e of P-1A for Test Problem 2.

N II ItNl=lt-NI
16 3.5 10-3

32 9.9 10-5

64 7.8 10-8

128 4.9 10-14

Ih-NI
2.9 10-1 8.9 10-1

1.6 x 10-2 4.1 10-2

2.5 10-5 3.1 10-4

3.1 x 10-11 8.2 10-10

10

10-2

104

10.14

I0.2

10-26

10-32

lO-3So

N=128

"’., ""’"..3 =32

16...................
..............N=64

........N=128
2 4 6 lb 1’2 1’4 1

No. of iterations

FIG. 2. The convergence history of the PCG method for Test Problem 1.

The generating functions of T and TH are chosen to be

1 0.9z- 1 + 0.5z-
T(z) (1 + 0.5z-I)(1 + 0.Sz-1) H(z)

1 0.7z-1"

Theorem 2 predicts three outliers, which is confirmed by the experiment for large
N. All other eigenvalues of p-1A are confined in the disk centered at unity with
radius e. The values of e, Itgl, and Ih_gl are listed in Table 3. Since ItNI >> [hNI, e
decreases at a rate of O(Itgl ). The convergence history of the CGS method with and
without preconditioner is plotted in Fig. 4. They correspond to the lower and upper
four curves, respectively. Again, we observe that the CGS method converges in four
iterations for large N whereas the CGS method, without preconditioning, does not
converge at all.

Test Problem 4. Symmetric nonrational T and TH.
The preconditioner P is applied to nonrational Toeplitz-plus-Hankel matrices,

where T and TH are symmetric Toeplitz matrices with generating sequences

1 1
tn Inl + 1

and hn (inl + 1)1.1
respectively. The eigenvalues of A and p-1A are plotted in Fig. 5. Although the
spectral properties of P-1A are beyond our analysis in 3, the preconditioner P still
provides a good spectral clustering property. We apply the CGN method to solve
the preconditioned system P-Ax P-b, and plot the convergence history of this
method with and without preconditioning in Fig. 6, where they correspond to the
lower and upper three curves, respectively. It is clear that the CGN method with
preconditioner K converges faster than without preconditioning.

Test Problem 5. Ill-conditioned T and TH.
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10

10

lO-,t

10-to

10-16

lO-Z

10.

I0-

i0-o

i0-

10-52
0

..:...,.:.-..’.

--32

"’.’:::

",N=125

No. of iterations

FIG. 3. The convergence history of the CGS method for Test Problem 2.

109

10-3

10-9

10"s

lO.Z

10-27

10.33

10-39

=16

5":.’.: ", =32.......... ’".,=28
"-....

0 2 4 6 10 12 14

No. of iteratiom

FIG. 4. The convergence history of the CGS method for Test Problem 3.

A(P-1A)

A(A)

N=32

N=125

N=64

N=32

-5 0 5 10 15

FIG. 5. The eigenvalue distribution of A and P-1A for Test Problem 4.

D
ow

nl
oa

de
d 

01
/2

6/
14

 to
 1

32
.1

74
.2

55
.3

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



TOEPLITZ-PLUS-HANKEL PRECONDITIONERS 843

TABLE 3
The clustering radius e of P-1A for Test Problem 3.

lO

10-2

10-5

16 1.6 10-1

32 4.5 10-3

’,’,18 ,,2 ,i0 12

IhNI
5.7 10-3

1.9 10-5
1.5 x 10-1

1.0 x 10-8.1 x 10-6

i.i x 10-11

12

32
I0 15 20 25

No. of itvrations

FIG. 6. The convergence history of the CGN method for Test Problem 4.

The generating functions of T and TH are chosen to be

T(z) el + z-: H(z) e2 + z,

where e: and g’2 denote some small constants. The A is ill conditioned when both
e: and 2 are close to zero. Although P-A is ill conditioned, it has two distinct
eigenvalues, i.e., one outlier close to zero and (N- 1) eigenvalues repeated at one.
The number of outliers is in fact less than the bound given in Theorem 2. By applying
the CGS method to solve the preconditioned system, we observe that the 2-norm of
the residual is reduced significantly in two iterations for various values of el, e2,
and N.

5. Conclusion. In this research, we generalized the circulant preconditioning
technique from Toeplitz to Toeplitz-plus-Hankel matrices. When the Toeplitz and
Hankel matrices are both generated by rational functions, we proved that the eigenval-
ues of the preconditioned matrix are clustered around one, except for a finite number
of outliers depending on the order of the generating functions, and that the clustering
radius is proportional to the magnitudes of the last elements in Toeplitz and Hankel
matrices. With the spectral properties, an N N rational Toeplitz-plus-Hankel sys-
tems can be solved by preconditioned iterative methods with O(N log N) operations.
Although our discussion focused on real Toeplitz-plus-Hankel systems, the general-
ization to complex Toeplitz-plus-Hankel systems can be done in a straightforward
Way.

Acknowledgment. The authors thank the referees for their help in improving
the technical presentation of this paper.
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