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of CG g 2 ( r ,  y )  can be speeded up by a preprocessing like that for 
(13). We have decided not to lengthen this correspondence by the 
tedious derivation of this time-saving technique. We instead simply 
state our result that g2(s .y )  can be evaluated in O( 1) time for 
any given G with an O(  161) preprocessing and O(  [GI ) space. 

Since an optimal bipartition of G can be done in O(Co,,<3 L,) 
time, the worst-case time complexity of the ROFS algorithm-aided 
by the preprocessing can be bounded by O(I i (T,  + Xy)). If we 
assume that, on average, each bipartition of G halves G in size 
and each cutting direction has equal chance to the optimal one (and 
denote by C( n )  the cost of bipartitioning a subimage of size n), then 
the total cost of the procedure ROFS becomes 2‘C(lGl/2‘). 
Under the above assumptions, we have C ( n )  = O ( n o  ’) since G is 
not extremely prolonged in any cutting direction. Thus, the expected 
time complexity of the ROFS algorithm is E:=”,” 2‘C([G1/2‘) = 

The required preprocessing of computing (13) clearly takes O(  [GI) 
operations and O((G1) space, based on the parameter ranges in (13). 
Thus, the cost of the preprocessing asymptotically dominates that of 
the ROFS algorithm in the expected case for Zi << [GI. However, this 
will only be true for very large 15’1 because there is a considerable 
constant before the order complexity O((I<lgl)o ’) incurred by the 
overheads of computing the key vertices of newly formed canonical 
polygons and polygon scan conversion to determine the digital cutting 
line segment A,B, .  

0 ( ( I i l G O 0  5 ) .  

VI. CONCLUSION 
The recursive optimal four-way split and the RAG-guided mini- 

mum cost merge were proposed to improve the validity of the classic 
split-and-merge segmentation algorithm. The new optimized split- 
and-merge algorithm achieves the unification of edge detection and 
segmentation within a tree hierarchy. As a result of this data structure 
and a statistic preprocessing, the optimization can be done without 
increasing the time complexity order of the previous algorithms. 

The success of the adaptive four-way split naturally leads to the 
following question: Why should we not consider every orientation 
when we optimize the split to capture edges of arbitrary orientations? 
This is a matter of compromise between computational costs and 
the optimality. Although adaptive four-way cuts greatly improve the 
segmentation validity over regular rectilinear cuts, they still have 
relatively simple digital geometry and manageable computational 
cost. The same cannot be said when, say, eight different cutting 
directions are considered in the optimization. 
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Shape from Shading with a Linear 
Triangular Element Surface Model 

Kyoung Mu Lee and C.-C. Jay Kuo 

Abstract-We propose to combine a triangular element surface model 
with a linearized reflectance map to formulate the shape-from-shading 
problem. The main idea is to approximate a smooth surface by the union 
of triangular surface patches called triangular elements and express the 
approximating surface as a linear combination of a set of nodal basis 
functions. Since the surface normal of a triangular element is uniquely 
determined by heights of its t h m  vertices (or nodes), image brightness 
can be directly related to nodal heights via the linearized reflectance 
map. The surface height can then be determined by minimizing a 
quadratic cost functional corresponding to the squares of brightness 
errors and solved effectively with the multigrid computational technique. 
The proposed method does not require any integrability constraint or 
artificial assumptions on boundary conditions. Simulation results for 
synthetic and real images are demonstrated to show the performance 
and efficiency of our new method. 

Index Terms- Computer vision, shape from shading, surface model, 
triangular element. 

I. INTRODUCTION 
The shape-from-shading (SFS) problem extracts 3-D shape infor- 

mation from one or multiple 2-D shading images and can be viewed 
as an inversion problem of image formation. It was first formulated 
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by Horn 161, [7] and has been studied intensively for the last two 
decades 121, 141, [51, [9]-[121, 1161, 1171, 1201, 1211, 1241, 1251, [3Ol, 
1311. 

Most research work on SFS with a single image uses the variational 
approach [4], [9], [ lo] ,  1121, 1171, 1241 in which a surface orienta- 
tion field characterized by its slopes p ( x .  I / ]  = a:(.?. .yl/a.r and 
q ( . r .  y )  = a:(.,.. y)/a.y is determined by minimizing a cost functional 
of brightness errors. To achieve the objective, one applies the calculus 
of variations [3] to the functional to derive a set of coupled Euler 
equations involving p( . r .  ,I/) and q ( . r .  y ) .  However, a straightforward 
implementation of this approach does not work properly due to the 
nonintegrability of computed p (  .r. g 1 and q (  .r. q )  and the ill-posed 
nature of the problem. Methods for enforcing integrability have been 
studied by Frankot and Chellappa [4] and Horn (91. The ill-posedness 
of SFS is often handled by regularization [ l ] ,  (121, 1221. 

Since the variational approach leads to complicated first-order 
nonlinear partial differential equations (PDE's), modified SFS algo- 
rithms still have two major difficulties. First, appropriate boundary 
conditions are needed for PDE solution. N o  boundary conditions 
result in the ambiguity of the solution and the instability of the 
numerical algorithm [Y]. Second, nonlinear PDE's are solved by 
iterative algorithms whose convergence property is, however, not 
yet well understood [Y], [ lo],  [17]. The number of iterations of 
converging algorithms often grows linearly with image size .\- [Y] 
so that computational complexity is proportional to O(  .1-2). which is 
too high to be useful in real-time applications. 

A very different approach for SFS was recently proposed by 
Pentland [21]. It relates image brightness to surface height : ( . I ' .  y )  in 
closed form with a linearized reflectance map in the Fourier transform 
domain. The resulting algorithm is a nonoptimization and noniterative 
one. Since surface height :( .r .  .I/], rather than its slopes p ( . r .  y )  and 
y(.r. .I/ ), is computed directly from the algorithm, no integrability 
problem appears. However, the reconstructed surface by this approach 
is less accurate than that obtained by the variational approach since 
it is a one-step algorithm using only the global linearization of 
the reflectance map around the origin. Other shortcomings of the 
approach include that known physical information cannot be easily 
incorporated in the formulation and that it is sensitive to the noise. 

We propose a new approach to SFS in this research, The basic 
idea of our approach is to approximate a smooth surface by the 
union of triangular surface patches called triangular elements and 
express the approximating surface as a linear combination of a set of 
nodal basis functions of compact support. Since the surface normal 
of a triangular element is linearly determined by heights of its three 
vertices (or nodes), we can relate image brightness directly to nodal 
heights via the reflectance map. Furthermore, image brightness is an 
affine function of nodal heights if the reflectance map is linearized. By 
defining the cost functional to be the squares of brightness errors, we 
are led to a quadratic functional minimization problem parameterized 
by nodal heights. Our approach has several unique features. First, 
it does not need any integrability constraint since the height is 
computed directly. Second, boundary conditions are not needed in 
the solution process since it solves a discrete minimization problem 
rather than discretized PDE's. Third, since the cost functional is 
greatly simplified to be a quadratic form. it is much easier to analyze 
the existence and uniqueness of the solution and to search effective 
convergent iterative algorithms. Besides, the optimization problem 
can be transformed into the solution of a large sparse linear system of 
equations, and very efficient multigrid (MG) computational algorithm 
can be conveniently applied. The number of iterations for the MG 
algorithm is independent of image size -1- so that its computational 
complexity is only 0 ( -1- I. 

To use height values directly as variables in SFS has been con- 

Fig. 1.  Uniform triangulation of a square domain 0. 

sidered by several researchers. In [Y], Horn used both the height 
and gradients as variables so that the height was recovered directly 
without integration. However, boundary conditions were still needed 
for PDE solution in his work. It is also worthwhile to point out 
a very recent work by Leclerc and Bobick [15], which recovered 
heights directly using a discrete minimization formulation. Their idea 
is similar to ours except that they did not use an explicit surface 
model. Instead, the horizontal and vertical central differences of 
the height : ( . r .  y )  were used to approximate the gradients p and q .  
Besides, no linearization of the reflectance map was made, and the 
corresponding nonlinear cost functional was solved by the conjugate 
gradient method. 

11. SHAPE-FROM-SHADING PROBLEM FORMULATION 

A. Triangular Element Surface Model 

A smooth surface can be approximated by a union of triangular 
surface patches and expressed as a linear combination of nodal 
basis functions with compact support known as the finite triangular 
elements [13], 1231. For convenience, some notation is introduced as 
follows. A uniform triangulation of a square domain R with spacing 
11 is illustratcd in Fig. 1, where the domain R is divided into a set 
of nonoverlapping triangles T, 

l < , <  \ I t  

and where .\It is the number of triangles. Let l i  denote the set of 
continuous piecewise linear surfaces defined on R and linear over 
all triangles T,.  The nodal basis function 0, E l i  is the function 
that takes unity at the ith node and zero at other nodes (see Fig. 2) .  
It is easy to see that any : E T i  can be represented as the linear 
combination of nodal basis functions 

where r, is the value of : ( , r .  y )  at the ith node, and M7, is the 
number of nodal basis functions. 

The gradient ( p . q )  of the surface ~ ( x .  ,I/) can be computed as 

and 

Since the partial derivatives of o , ( . r . y )  with respect to s and y 
are simply some constants so that ~ ~ ( . r . , y )  and q( . r .y )  are linear 
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C. Image Formation on Modeled Surfaces 

By substituting (2.3) and (2.4) into (2.7), we have 

if, 

R ( p . y ) ~ a p +  j q + - . = x @ t z t + 2  
, = I  

where 

and where 

Fig. 2. Nodal basis function 0, 

functions of nodal heights z 2 .  Note also that p ( s .  y ) and q(s.  y )  are 
piecewise constant functions on n, and they take constant values on 
each triangular domain T,. 

B. Reflectance Map Image Formation Model 

Under the assumption of the orthographic projection, the Lamber- 
tian surface, and a distant single point light source, the irradiance or 
brightness E at a given point (r. y )  is primarily due to the surface 
orientation at that point. This relationship is described by the image 
irradiance equation [8], [ 111 

where R is called the reflectance map function. The form of R is 
usually chosen as 

(2.6a) 

or equivalently 

Ii = - p  cos T sin u - q sin T sin u + cos U (2.6b) 

where is the albedo of the surface, ( p ,  q )  the gradient of the surface 
at point (I. U), ( - p s .  -q . .  I) the illumination direction pointing 
toward the light source, and T and U the tilt and slant angles that 
the illumination direction makes with the r and 2 axes, respectively. 

As given in (2.6), the reflectance map R is a nonlinear function that 
can be depicted as nested contours in the gradient space ( p .  4 ) .  To 
remove the nonlinearity, techniques based on the linear approximation 
of the reflectance map have been recently proposed [9], [21], that 
is, we take the Taylor series expansion of R(p.  y )  about a certain 
reference point ( P O .  yo) through the first-order term 

The reference point ( p 0 , q o )  can be either fixed or varying for 
different values of ( p . 4 ) .  

Thus, combining (2.5) and (2.8), one can establish a.linear rela- 
tionship between the image brightness E ( x .  y )  and nodal values z , ,  
1 5 I 5 M,l 

17,- 

(2.9) 

To estimate the nodal heights z ,  based on the shading information, 
we consider the cost functional 

where E, is the observed image intensity, E, is the image intensity 
formed by the reconstructed surface via (2.9), and the subscript h 
denotes the cost due to the brightness error. By substituting (2.9) into 
(2.10), we obtain 

(2.11) 1 
2 

= - z T A z  - b T z  + c 

where z is the vector of nodal variables, and the elements a ,  , and 
h ,  of matrix A and vector b can be determined, respectively, as 

n ,  = 2 @.,@.,d.rdy. 

h ,  = 2 / ' k ( E o  - ? ) a Z d . r d y  15  r . 1  5 (2.12) 

Following the finite-element terminology, A is called the stifjness 
matrix, and b the load vector. Our objective is to determine the nodal 
height vector z that minimizes the quadratic functional (2.1 1). Note 
that the minimization problem can also be formulated as the solution 
of a system of linear equations 

A z  = b. (2.13) 

It is obvious that the quadratic functional gives a unique minimum 
only when the stiffness matrix A is positive definite. The property of 
A will be discussed in Section IV. 

111 CONSTRUCTION OF STIFFNESS MATRICES AND LOAD VECTORS 

Note that n L j  = 0 if I and J are not the neighboring nodal points 
since either @,(.r.y) or @.,(s.y) is zero for ( s . y )  E n. Thus, we 
only have to determine that a z  for J is equal to either the node 1 or 
one of its six neighboring nodes 11. . . . . J G  as shown in Fig. 2. We use 
Tk . . . . . Tp to denote the SIX triangular domains surrounding node 2, 
and SA..  . . . S,  the triangular surface patches defined on T k , .  . . . Tp.  
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TABLE I 
ELEMENTS OF STIFFNESS MATRIX A 

Fig. 3. Seven-point stencil nodal operator 

One can determine the gradients of the nodal basis function o, (.r. y )  
on triangles TA.. . . . , Tp from Fig. 2. They are 

( - K 1 . O ) .  for ( . r . ,y)  E T A .  

d&(.r*Y) do,(s .y)  ( / I - ' .  - - / I - ' ) .  for ( . r . y )  E T ,,,. 
(---- 8s ' - ) = {  dy ( h - I . 0 ) .  for i . r .  y )  E T,,. 

(o.ll-' ). for ( . I , .  I/ ) E T,, . 
( - h - ' . ~ ' ) .  for (.r .y) E T,,. 

( O . - K 1 ) .  for (,r..y) E T / .  

(3.1) 

where h is the spacing. 
Consider the linearization of the reflectance map (2.8) by using 

different reference gradients for different triangles. Let ( P O , .  q o , )  be 
the reference gradient and a t ,  , jz,  and 7 2  be the coefficients of the 
linearized reflectance map on triangular domain T,. By using (2.12), 
we can express the elements of A and b in terms of n,, , j , ,  and 1, 
in a straightforward way. 

The diagonal element a,., of A can be determined [I81 as 

a L , ,  = cl: + 3; + ( ( l , n  - ' j 7 ) L ) L  + ag + J: + ( C l ,  - J p j 2  

where c l g . .  . . . a p  and . fk. .  . . . , I p  are coefficients of linearized re- 
flectance maps on triangles Tk. . . ' . Tp.  The off-diagonal clement of 
A also can be derived similarly, and the results are summarized in 
Table I. 

We can represent the corresponding nodal operator by a seven- 
point stencil as illustrated in Fig. 3. Finally, the clement h ,  of the 
load vector b can be obtained (181 by 

b, = h[-ak (TA- - -,A - ,fr(Fc - : r )  
- + (on, - ,j,X ) (E??,  - *;?It  1 + ( 1 7 ,  (Z,, - : r z  ) 

+ ,j"(Zo - 7 0 )  - n p ) ( E ,  - ; p ) ]  (3.2) 

where Ek.. . . . E ,  denote the average brightness on the triangles 

One special case of the linearization scheme is to choose the 
reference ( P O .  40 ) to be the same for all triangular surface patches. We 
call it the global linearization and denote the corresponding stiffness 
matrix by A,. The elements ot . ,  of A, can be further simplified and 

- 
Tk,.--.T,. 

TABLE I1 
COEFFICIENTS OF GLOBAL STIFFNESS MATRIX A, 

' 1  J3" I  J 6  2 3(n - 3) 

summarized in Table 11. Since the values of cl. 1, and are the same 
for all triangular domains, their subscripts are dropped. 

Suppose that we do not have any a priori knowledge of the 
reconstructed surface; we may set all initial nodal values zero and 
proceed as follows. 

Algorithm I: The Basic SFS Algorithm 

Initialization ( k  = 0) 

Set the reference gradient ( p : , .  q:( ) at every triangle 7, to be (0. O) ,  
and construct the global stiffness matrix A: and the load vector 
bo. Solve A:zo = bo for nodal values zo. 

Iterations ( k  = 1 . 2 . .  . .) 
Set the reference gradient (p; , .  4At j at triangle T, to be the 
local gradient determined by nodal values zk- '  and construct the 
corresponding stiffness matrix A: and load vector bk, where the 
subscript I denotes local linearization. Solve A f z k  = b" for nodal 
values z A .  
If IIz' - zk - ' ) l  < F, where t is a predefined small quantity, then 
z A  is the desired solution. Otherwise, go to the next iteration. 
In the above algorithm, we use a successive linearization scheme, 

where the linearization of the reflectance map is performed based 
on the local gradients obtained from the previous iteration. The 
motivation is simple. There are two kinds of error introduced in our 
SFS formulation: the surface approximation error introduced by the 
triangular element model and the reflectance map approximation error 
due to linearization. The first kind of error depends on the spacing 
11 and can be reduced by using smaller spacings. The second kind 
of error can be reduced by approximating the reflectance map to the 
original nonlinear one as close as possible. Since the coefficients Q ~ 

and ~ j (  are functions of local reference gradients (PO,. yot ), the choice 
of ( p u g .  q o Z  ) is important. To determine appropriate local reference 
gradients, we need good surface information. By doing the successive 
linearization, we can get increasingly accurate surface gradients and 
surface values. 

Iv. SINGULARITIES OF STIFFNESS MATRICES 
The stiffness matrix A is sparse since each nodal basis function 

a ,  ( . r .  y ) has a compact support and overlaps with only a finite number 
( 5  G )  of neighboring nodal basis functions. It is evident from (2.12) 
that o , . ~  : n, , ,  so that A is symmetric. Besides, for any nonzero 
vector z, we have 

so that A is positive semidefinite. However, A is singular, and 
consequently, the cost functional given in  (2.11) does not have a 
unique minimum. In this section, we will investigate the reasons (or 
physical interpretations) for the singularity of A and discuss ways 
to remove it. 
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A. Stifiess Matrix with Global Linearization 

One reason for A, to be singular can be explained by the well- 
known fact that we cannot determine the absolute heights of the 
object surface from the image plane since the brightness of a surface 
patch is only determined by its gradient. According to Table 11, it is 
easy to verify that the row sum of A, is zero for every row. Let U 

be the vector of l's, i.e., U = [l. 1.. . . .  11'. We have A,u = 0. 
Therefore, if A,z*  = b 

A,(z* + cu) = b (4.2) 

where e is an arbitrary constant. This singularity is clearly the inherent 
limitation of the SFS problem. However, it can be removed by 
introducing an arbitrary reference nodal point. 

Another reason for A, to be singular can be understood by 
considering a single triangular patch. Suppose that one node is chosen 
to be the reference. There are still two nodal heights to be determined. 
Since the image irradiance equation R ( p . q )  = E ,  where E is the 
average brightness on the patch, only provides one constraint, the 
two equations consisting of these two relative nodal heights have to 
be linearly dependent. Hence, we conclude that the global stiffness 
matrix A, has a null space of dimension of at least two. 

The singularity of A, may also be resulted from special values of 
0 and ,j, that is, if n = 0, ,j = 0, or (1 = j, we are not able to 
relate the gradient of a surface patch to its image intensity via (2.Y). 
To see this, let us consider the triangular surfaces SA. ' . . S, over 
the triangular domains T A . .  . . . T, as specified in Fig. 2. If ( I  = 0 
(or 3 = O), the image intensities of surfaces SA and S,, (or SI and 
S o )  are independent of p (or y) and, thus, the nodal height :,. This 
phenomenon can also be explained by using Table 11. Note that 

( I , , ~ ,  = (1 ,.,, = o , , ~ >  = t i ,  

( i t  ,,,, = (7,  ,,,, = n, . zL  = ( I , , ~ ;  = 0. 

= 0. if ( I  = 0. 

if 1 = 0. 

Similarly, we have 

o , . , ~  = ~ i , , ~ ,  = n,.,, = ( I ,  ,(, = 0. if ( i  = j. 

It follows that if (1 = J, the image intensities of surfaces S,,, and S,  
cannot be used to determine the nodal height :,. 

Motivated by the previous discussion, the sufficient conditions for 
the quadratic cost functional (2.11) to have a unique minimum can 
be stated as follows. 

Theorem 1: The quadratic functional (2.11) with A = A,, has a 
unique minimum if the following two conditions are satisfied. 

1. There are two neighboring nodal points whose heights are 
given. 

2. (1 # 0, , j  # 0, and (1 # j. 

Proof: Without loss of generality, i t  is assumed that we know 
the two nodal heights of the triangular surface S1 over the domain 
T I ,  as depicted in Fig. 4. If 31 and - 4  are given since (1 # 0, we can 
use the linearized reflectance map and the image irradiance equation 
to determine the value of - 5 .  Similarly, we can argue that -1 (or 34) 
can be obtained from given :.I and - 5  (or and L~). In turn, the 
nodal heights of adjacent triangular surface patches S2.5,; can be 
determined since they share two common nodes with SI. Thus, by 
this manner, all nodal values z r  can be uniquely determined. 0 

In practice, to achieve the first condition, we may simply select 
two neighboring nodal points in an estimated plane region as the zero 
reference points. Since r i  and ,j are functions of the reference gradient 
( p o .  yo), the second condition can be satisfied by choosing a proper 
value of ( P O .  yo ). To give an example, consider the reflectance map 
(2.6) with the illumination direction ( p S . q s .  1) and ( p 0 . c l 0 )  = (0 .0) .  
It is straightforward to see that the second condition is satisfied except 
p 9  = 0, q .  = 0, or 11 .  = (I.. If the illumination direction happens to 

25 

Z1 

I 

Fig. 4. Simple example of a triangularized domain. 

be these cases, we may move the reference gradient slightly around 
the origin so that the second condition is still satisfied. 

B. Stiffness Matrix with Local Linearization 

For general stiffness matrix A, we can also state the sufficient 
conditions for the quadratic cost functional (2.11) to have a unique 
minimum as follows. 

Theorem 2: The quadratic functional (2.11) has a unique mini- 
mum if the following two conditions are satisfied. 

1.  There are two neighboring nodal points whose heights are 
given. 

2. n ,  # 0. , j 9  # 0 and nt # J, for the linearized reflectance map 
defined on every domain T,. 

Its proof is omitted since it is very similar to that of Theorem 1. Note 
that these conditions are not necessary but are sufficient. For example, 
(2.11) may have a unique minimum even if the second condition 
is not satisfied. As before, the first condition can be satisfied by 
selecting two neighboring nodes in an estimated plane region as the 
zero reference points. To attain the second condition, one possibility 
is to consider the selection of a proper reference gradient for each 
triangle patch. This can be achieved by checking the values of a,, Jt  
and perturbing the reference point slightly whenever it is necessary. 
Another possibility is to introduce a regularization method to ensure 
the well poseness of the SFS problem. 

v. REGULARIZATION WITH SMOOTH SURFACE CONSTRAINT 

Regularization is often achieved by adding some terms to the cost 
functional so that the regularized problem is well posed [l], [22], 
[29]. It is preferable that we associate the additional term with some 
physical interpretation. As discussed in Section IV, the nonuniqueness 
of the minimum of the quadratic functional (2.11) is primarily due 
to some free nodal variables that may have arbitrary values without 
affecting the cost functional. Therefore, to obtain a unique solution, 
we have to restrict these free variables by some constraint, say, the 
smoothness surface constraint, so that each node is related to its 
neighboring nodes through other means. Another reason to impose 
the smoothness constraint is to make our algorithm less sensitive 
to noises such as the sensor noise, the quantization noise, and the 
imperfect reflectance map model for real images. 

To impose the smooth surface constraint, we define a new cost 
functional 

where :'h is the original cost functional given by (2.11), and X is the 
smoothing factor. The smoothing cost functional I, can be chosen 
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as a discrete version of thin plate energy model 

(5.2) 

By discretizing (5.2), we obtain 

+ 2(-n,+l.u.,+1 - - n , . n y + l  - :nr+l t i y  + ~ r t ,  t i y  l 2  

+ ( A r . z l Q + l  - 2-,z,.r?y + - r l s . " y - l ) 2 1  

where h is the spacing. We can also express (5.2) in matrix form as 

f S  = Az7Bz (5.3) 2 
where z is the vector of nodal variables, and B is the smoothness 
matrix, which is sparse and symmetric. It is convenient to view the 
matrix-vector product B z  as a local nodal operator operating on a 
2-D array. The local nodal operator is of the following stencil form 

where h denotes the spacing between nodal points. Some special- 
operator stencils for nodal points near the boundary are given in [27] 
and [28]. 

Substituting (5.3) and (2.11) into (5.1), we obtain 

f = Az'Cz - b'z + ('. (5 .5)  2 
where 

C = A + A B  

The following theorem states the conditions for the existence and 
uniqueness of the minimum of (5.5).  

Theorem 3: The quadratic functional (5 .5)  has a unique mini- 
mum if the following two conditions are satisfied: 

1. There is one nodal point whose height is given. 
2. There exist at least one pair of coefficients ( (I (. i, ) and ( (1,. 1, ) 

of the linearized reflectance maps over triangular domains T, 
and T, satisfying 

Proof: Since matrices A and B are both positive semidefinite, 
C = A + AB with X > 0 is also positive semidefinite. Thus, the 
minimum of the quadratic functional (5.5) exists. In the following, we 
want to show that under condition 2, the positive semidefinite matrix 
C has only one eigenvalue equal to 0, which is associated with the 
eigenvector ( 1.1.. . . .1). As a consequence, if both conditions 1 and 
2 are met, the minimum is unique. 

It is sufficient to prove that z '  C z  = 0 only if z is a constant 
vector. Let us rewrite Z'CZ as 

Z'CZ = z T ( ~  + X B ~ Z  

=z' Az  + Xz' Bz. 

Note that for nonzero A,  the above equation is zero only when both 
zTAz  and z'Bz are zero since each term represents nonnegative 
energy. Recall that z' B z  is the discretized version of 

which becomes zero only when ~ ( s .  .y ) is a linear function over 0. 
Hence, z7 B z  is zero only when ( U .  y ) is constant over the whole 
domain R. On the other hand, from (2.8) and (4.1), we know that 
the term zTAz is zero only when 1;:; @t:t = 0 or, equivalently, 
~ k p k  + , j k c l r  = 0 for every triangular domain Tk. 

Thus, Z'CZ is zero only when n k y +  . j k y  = 0 for every triangular 
domain TA with respect to some constant ( y . y ) .  This implies all 
( C I A .  j t ) ,  1 5 I; 5 -Iff are orthogonal to a certain ( p , q ) .  Now, 
consider the case where two coefficients (nl. ,31) and ( 0 2 ,  & )  are 
not linearly dependent. For z r C z  to be zero, we have to require 
( p .  y )  = (0.0). In addition, if one nodal point is assigned with value 

0 
As discussed earlier, since only relative nodal heights have to be 

determined, we can pick an arbitrary point in reference to satisfy the 
first condition. The second condition usually holds in practice when 
we perform the local linearization of the reflectance map based on 
reconstructed surface obtained from the previous iteration. Therefore, 
the unique minimum of (5.5) can be easily guaranteed. Note that 
the conditions in Theorem 3 are sufficient but not necessary. For 
example, in the initialization stage of the successive linearization 
scheme described in Section 111, even though condition 2 in Theorem 
3 does not satisfy, the unique minimum of (5.5) is still guaranteed 
by conditions of Theorem 1. 

We incorporate the regularization into the basic SFS algorithm to 
obtain a modified SFS algorithm, which is the algorithm used in our 
experiments described in Section VI. 

C, it follows that z = (c. c.. . . . c)'. 

Algorithm 11: The Modified SFS Algorithm with Regularization 

Initialization (A ,  = 0) 
Set the reference gradient (&,. y:t) at triangle T,  to be (0. 0),  and 
construct the coefficient matrix C" = A:+AB and the load vector 
bo. Solve Cozo = bo for nodal values zo. 

Iterations ( k  = 1 . 2 . .  . .) 
Set the reference gradient ( p a , .  q h g )  at triangle T, to be the local 
gradient determined by nodal values z'-', and construct the 
corresponding coefficient matrix CA = A: + AB and load vector 
b" Solve C h  z' = b' for nodal values z'. 
If llzA - ~ " ' 1 1  < F. where F is a predefined small quantity, then 
zh is the desired solution. Otherwise, go to the next iteration. 

VI. EXPERIMENTAL RESULTS 
Our algorithm has been tested on several synthetic and real images. 

We use the global linearization scheme with respect to ( p .  q )  = (0.0) 
at the first iteration and perform local linearizations successively at 
the following iterations. The reconstructed surface of the previous 
iteration serves as the initial estimate of the current iteration, and 
therefore, the number of multigrid V cycles required to reach a given 
error bound decreases as iteration proceeds. The resulting algorithm 
is very efficient computationally. Similar to [9], [26], and 1151, we 
choose the smoothing factor X to be a certain small value at the first 
iteration and reduce the value gradually to near zero at following 
iterations. 

To illustrate the quality of results, we present the 3-D surface 
plot of the reconstructed surface as well as three shaded views 
produced with three illuminating directions: the same, orthogonal, and 
opposite tilt directions with respect to the original lighting direction 
as suggested by Horn [9],  (311. 
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Fig. 5.  Results of our algorithm applied to a synthetic 64 x 64 DTM image: 
(a) Ground truth; (b) reconstructed surface; (c) image generated from ground 
truth with (tilt, slant, albedo, bias)=(OO. 50°, 250, 0); (d) and (e) are shaded 
views of (a) with the opposite and orthogonal illumination direction, with tilt 
equal to 90 and 180°, respectively; ( fHh) are shaded views of (b) with the 
lighting conditions used to generate (cHe), respectively. 

Test Problem 1: Terrain 

The tested image is a complicated synthetic G4 x G-l image 
generated from the digital terrain model (DTM). Fig. S(a) shows the 
original 3-D height plot, which is a wrinkled and steep surface (called 
the alto-relievo surface [9], (141) of mountain area. The input image 
is generated by illuminating it from the east direction as shown in Fig. 
S(c). The 3 - 0  plot of the reconstructed surface is shown in Fig. S(b). 
By comparing the true height in Fig. S(a) and the reconstructed height 
in Fig. 5(b), they look very similar to each other. The shaded views 
of the reconstructed surface illuminated from the east, north, and 
west directions are given in Fig. S(f)-(h). They should be compared 
with Figs. S(c)-(e), which are generated by illuminating the true 
height from the east, north, and west directions, respectively. The 
corresponding shaded images appear to be almost the same. 

The error of the reconstructed surface is plotted in Fig. 6(a), 
which is quite flat. To examine the error better, we present 1-D 
cross sections of heights in horizontal (parallel to the .I' axis) and 
vertical directions (parallel to the .y axis) in Fig. 6(b) and (c), where 
the solid and dotted lines represent the original and reconstructed 
values, respectively. Note that the reconstructed surface is more 
accurate along the horizontal (east-west) direction in parallel with the 
illuminating source and less accurate along the vertical (north-south) 
direction. The same phenomena were observed for all our test 
problems and were reported in [9], [26]. Generally speaking, local 
fluctuations or ripples in parallel to the lighting direction occur in 
the reconstructed surface. They are particularly visible in the plane 
region. 

It is worthwhile to point out that the phenomenon highly depends 
on the light source direction. Since different light sources result in 
different reflectance maps, it is possible to give an explanation by 
analyzing the property of reflectance maps. In [19], we perform a 
simple analysis of the reflectance map and show that the accuracy 
of reconstructed orientations or heights is closely related to the slope 

10 
io  U) 30 40 so m 

mth mr 

(b) 

I 

Fig. 6.  (a) Three-dimensional plot of the height error; (b) 1-D cross section 
of original and reconstructed surfaces at 20th row; (c) 1-D cross section of 
original and reconstructed surfaces at 50th column. 

of the reflectance map in the gradient space. This is an inherent 
limitation existing in the single-image SFS problem. Motivated by 
such an analysis, we propose a new scheme to overcome the limitation 
by combining multiple photometric stereo images with different 
reflectance maps [19]. 

Test Problem 2: Lena 

The tested image is the 25G x 2.56 Lena image as shown in Fig. 
7(a). This image consists of both smooth and rapid varying areas 
with discontinuities in the surface orientation. The 3-D plot of the 
reconstructed surface and its shaded views illuminated with light 
sources from the same, opposite, and orthogonal tilt directions are 
shown in Fig. 7(b)-(e), respectively. This test problem is considered 
difficult since it contains several objects (possibly nonlambertian) 
with different reflectivities and shadows. Besides, the lighting con- 
dition is not ideal. However, with the assumption of homogeneous 
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(c) (d) (e) 
Fig. 7. Results of our algorithm applied to the 256 x 236 Lena image: (a) 
Original image; (b) reconstructed surface with (tilt, slant, albedo, bias)=(30°. 
60°, 25’, 3); (cHe) are shaded views of (b) illuminated by the same. opposite, 
and orthogonal directions with tilt equal to 30, 210, and 4 O 0 ,  respectively. 

reflectivity and Lambertian over the entire image, our algorithm still 
produces good results. By comparing Fig. 7(c) with the original image 
in Fig. 7(a), we see that they are very similar. Pay special attention 
to the regions of face and shoulder. The shaded views illuminated 
from different directions in Fig. 7(d) and (e) also show that these 
reconstructed regions are satisfactory. 

VI]. CONCLUSION 
We presented a new efficient algorithm for the SFS problem 

in this research. Our algorithm recovers surface heights directly 
without any additional integrability constraint or artificial boundary 
assumption. It is based on a linear approximation of the reflectance 
map and a triangular element surface model, in which we express 
a surface as a linear combination of nodal basis functions. The 
nodal heights are determined by minimizing the cost functional, 
which is the total brightness error parameterized by nodal heights. 
This is equivalent to solving a large sparse linear system to which 
the efficient multigrid method can be easily applied. We discussed 
the existence and uniqueness of the solution by investigating the 
properties of the stiffness matrix. A regularization technique using 
the smooth surface constraint was introduced to ensure the well 
poseness of the SFS problem. A successive linearization scheme 
was developed to obtain increasingly correct surface and gradient 
information. Another advantage of our algorithm is that i t  maps 
naturally onto massively parallel architectures where each process 
covers one or several nodes. 
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