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A new algorithm is presented for the computation of dense
optical flow and motion boundaries from an image sequence using
two or more frames. The algorithm is based on a novel parametric
smoothness model; it decomposes optical flow into irrotational
and solenoidal fields, and imposes the smoothness constraint on
each field separately. This model implies smooth translation and
rotation of the underlying motion process. In contrast, the
smoothness constraints used in all previous work do not distin-
guish the translational and rotational components but simply
combine them as a whole. The derivation of the parametric
smoothness model sheds new light on the interpretation of the
conventional membrane model. The problem of oversmoothing
across motion boundaries can be resolved to a high degree by
successively improving the estimate of the parameters of the
smoothness model. Significant improvements over classical gradi-
ent based methods have been obtained for a class of test problems
by the proposed new algorithm. © 1993 Academic Press, Inc.

1. INTRODUCTION

Optical flow is a 2-D vector field that measures the
disparity between adjacent frames in a sequence of im-
ages. The information contained in the computed flow
field can be used for image sequence compression [22, 23]
or the determination of the relative depth map and/or
three-dimensional motion and structure [1]. It should be
noted that, in general, the shape of the underlying scene
cannot be uniquely determined from optical flow without
additional visual cues [2]; however, in motion compen-
sated coding, optical flow can be considered to be a good
estimate of motion vectors since only the compensation
residual needs to be minimized. In this paper, we develop
an algorithm for computation of a discontinuous optical
flow which is not directly based on discontinuous regular-
ization via line processes [7].

Since the flow field is usually not unique over extensive
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regions of its support, there have been many attempts to
limit the scope of estimation to regions for which only a
good estimate can be obtained. These techniques range
from computation of the flow only for highly conspicuous
points [4] to flow along some boundaries (8, 15, 29] or
some regions obtained by thresholding an appropriate
function [10, 19]. Although we do not explicitly address
any application issues in this paper, our intended target is
motion compensated coding. For such an application, we
need an estimate of the flow over the entire region of
support, which is often known as dense optical flow. In
this paper, we are mainly concerned with the computa-
tion of dense optic flow from at least two frames of an
image sequence. The desired algorithm should have the
following properties.

« An estimate of the flow should be available for all of
the pixels in the region of support with the exception of
occluded regions which must be identified.

+ The algorithm is able to provide a robust estimate of
the flow from two frames and improved estimation qual-
ity with more frames. This requirement is needed due to
practical limitation on the size of the frame storage buffer
in actual implementation.

» The complexity of the algorithm should be low and,
hopefully, in the order of N? operations per image frame
of size N x N.

» The algorithm is capable of estimating subpixel flow
fields. This is useful for applications where only a low
resolution estimate of the flow is needed so that computa-
tional time can be significantly reduced in processing the
subsampled image sequence.

The algorithm presented in this paper meets all of the
above requirements. It is based on a regularization ap-
proach similar to previous work in [16, 20] but with a
novel parametric smoothness model consisting of two pa-
rameter functions p(x, ¥} and e(x, y)—we denote these
functions as (p, w). Borrowing techniques from fluid me-
chanics, we decompose optical flow into two flow fields,
the irrotational and solenoidal fields, and impose the
smoothness constraint on each field separately. This im-
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plies smooth translation and rotation of the underlying
motion process. In contrast, the smoothness constraints
used in all previous work do not distinguish the transla-
tional and rotational components but simply combine
them as a whole. The conventional membrane model is
shown to be equivalent to the choice of (p, @) = 0 in our
model. An accurate estimate of the parameters p and w
can greatly enhance the computed flow field. The prob-
lem of oversmoothing across motion boundaries can be
resolved to a high degree, and an estimate of occluding
boundaries is obtained as a byproduct. Since the nature
of motion is characterized by p and w, we may incorpo-
rate a prior knowledge of motion obtained from earlier
frames in an image sequence into p and w by assuming
that they are smooth time-varying functions. In this
work, we focus on the two frame case where an iterative
algorithm is proposed for ¢stimating p and w.

This paper is organized as follows. Gradient based
methods for optical flow computation are reviewed in
Section 2. To put various problems arising in optical flow
computation into perspective, some fundamental charac-
teristics of optical flow are discussed in Section 3. Sec-
tion 4 forms the crux of our method, where a parametric
smoothness model is derived. In Section 5, we apply our
algorithm to a set of test problems ranging from a simple
translation and rotation to combined motion along all
axes. We end our presentation in Section 6 with a few
concluding remarks. Numerical implementation of the al-
gorithm is given in the Appendix. In particular, we derive
equations for the Gauss-Seidel relaxation that is appro-
priate for multigrid implementation.

2. REVIEW OF GRADIENT BASED METHODS FOR
COMPUTING OPTICAL FLOW

There have been many efforts reported in the literature
for computing optical flow. Most of these methods can be
classified into one of four major categories: gradient
based [16], contour based [8, 15, 29], correlation based
[3. 26], and spatiotemporal frequency based [14]. Since
our method falls into the gradient based category, its
basic idea and some related results are reviewed in this
section. For notational simplicity, the argument of vari-
ous functions of spatial and temporal coordinates, (x, y,
f), are dropped whenever such arguments are clear from
the context.

Given an image sequence E(x, y, ¢), we assume that

dE
— =0 .
dr 2.
Expanding this equation in partial derivatives, one ob-
tains the so-called optical flow constraint equation

Ew+ Ev+ E =0, 2.2)
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where the subscript denotes partial differentiation with

respect to the given variable and the optical flow (u, v}

are the velocities in the x and y directions, respectively—
e,

_ (dx dy)

(u’ U) - (dt, dt . (2.3)

Equation (2.2) can alternatively be obtained as the first
order approximation of a translation model

E(x,y,t+8t)=E(x—udt,y—vét,f, 24
as shown in [16]. kt is evident that the optical flow con-
straint imposes only one constraint for two unknown
variables per image pixel, so that we need at least one
more constraint to uniquely determine the flow field. All
gradient based methods use the optical flow constraint
equation, but consider different ways to impose addi-
tional constraints.

One way to avoid the underdetermination problem is to
impose a constant velocity constraint for neighboring
flow fields. Several methods were proposed under this
assumption. The local optimization method assumes two
or more neighboring pixels to have the same displace-
ment value so that a set of linear equations based on the
optical flow constraint is obtained [18, 19, 22]. With the
clustering method, one attempts to detect clusters of the
intersection of optical flow constraint equations from dif-
ferent pixels in the velocity space [24]. With the differen-
tial method, one can obtain three more equations for each
pixel by differentiating the optical flow constraint equa-
tion with respect to x, y, and 7 under the assumption that
«# and v are constant [13, 27].

Another approach to solve the underdetermination
problem is via regularization. The method of Horn and
Schunck [16] is perhaps the most popular technique for
computing optical flow due to the simplicity of its imple-
mentation. Here, one assumes that the overall flow satis-
fies a certain global smoothness constraint. For example,
by using the membrane model, one defines an energy
function

¢ = [| Ewu+ Ev+ EP

+ AGd + u§ + 02+ ui) dx dy, (2.5)

which is minimized for the desired estimate of (&, v). X is
known as the smoothness or the regularization parame-
ter; it determines the degree of smoothness in the com-
puted flow. There are two major difficulties with this
method. First, it ignores the presence of occluded regions
and very inaccurate flow may be concluded in these re-
gions. Second, the global smoothness constraint tends to
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smooth the solution across discontinuities, so that there
is a leakage of the flow into the stationary background.

An attempt was made in [9] to remedy these problems
by setting the smoothness term to 0 in regions near con-
tours of zero-crossings under the assumption that motion
discontinuity is a subset of intensity zero-crossings. An-
other solution based on an oriented smoothness con-
straint was proposed by Nagel in [20]. A weighting matrix
depending on gray value variations was introduced so
that the smoothness requirement would be retained es-
sentially only for the normal component of the flow. By
enforcing the flow at the gray value corners, the initially
proposed weighting matrix contained both first- and
second-order derivatives of the intensity process. How-
ever, Nagel recommended to use only first-order deriva-
tives in his later work [21] to make the computational
algorithm simple and robust.

3. DISCUSSION ON OPTICAL FLOW CONSTRAINT
EQUATION

The validity of the optical flow constraint equation was
studied in [25]. In this section, we provide more insights
into this equation and discuss its limitations.

Given an optical flow field (u, v), we can decompose it
into the normal and tangential components denoted by «
and B, respectively, along the iso-brightness contours
shown in Fig. 1, where the vector (p, q) with p = E, and
g = E, is the image gradient direction. We can rewrite the
optical flow constraint equation, i.¢. (2.2), in the product
form as

(Ee, E)u, v)T = [(E,, E)| |(u, v)] cos 8 = —E,, (3.1)

where 4 is the angle between (E,, E,) and (#, v). Thus,
based on (3.1), the & component of the flow can be ex-
pressed as

(wv)

=

Iso-brightness contours

FIG. 1. Normal and tangential components of the flow, where ¢ and
B are the normal and tangential components of the flow to iso-brightness
contours, respectively.
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By using the geometry shown in Fig. 1, we can also ex-
press (u, v) in terms of (a, B)

E, E,
_——— T 3,
VEI+ E? VE? + E§B
e B E Y
VEI+E! VEL+E:

It is clear that the optical flow constraint or, equivalently,
(3.2) provides information for the « component, but no
information for the 8 component. Thus, the 8 flow can
only be determined by imposing additional constraint
such as the parametric smoothness constraint discussed
in Section 4. Even with (3.2), there exist difficulties with
the computation of «. In the following, we discuss these
problems and ways to circurnvent them.

3.1. Occluded Regions

To give an example of occluded regions, consider a
simple translation of an object in the scene. There are
regions in the first frame that are to be covered in the
second frame, and new regions in the second frame that
were previously covered in the first frame. We denote the
union of occluded regions in both frames as (... Even if
we knew the location of ..., we still could not estimate
o from local information since there is no corresponding
region in the other frame. Thus, the value of @ computed
from (3.2) is invalid in £).... Note that the value of « is not
necessarily zero in occluded regions because the oc-
cluded region may not be part of the stationary back-
ground. One such example is self-occlusion, where parts
of the moving object occlude other moving parts of the
same object occurring in, say, rotation.

It is possible to determine the occluded regions with
the knowledge of exact optical flow («, v). However, it is
usually not easy to determing the exact flow (i, v) if the
occluded regions are not known ahead of computation.
This dilemma can be resolved to some extent by estimat-
ing Q... with the definition of optic flow (2.4) and an
estimate of (i, v) as described below. Let us denote E(x,
v, H) and E(x, y, t + 8t} as E| and E;, respectively. With-
out loss of generality, we choose 8¢ = 1. Given E; and an
estimate (i, 9) of the flow, we can obtain an estimate of E,
with (2.4) as

Exx,y) = E\(x — 4,y — 0. (3:4)
The quantity (E, — E;) is referred to as the comper}sation
residual and is denoted by r(x, ¥). By comparing E;{x, y)
and E,(x, v), we have an estimate of the occluded regions
as



312

Qoce = {(x, ) : |Exlx, y) ~ Ex(x, ) > 7}, (3.5)
where 7 is a threshold value. A good choice for 7 seems to
be the MSE value of the residual r(x, ¥). The estimate
Qocc can be used to improve the estimated optical flow (i,
0} as detailed in Section 4.2.

It is worthwhile to mention a fine point with the com-
putation of (3.4). Note that the range of (&, v} is the 2-D
vector field of real numbers, while the domain of F is a
2-D integer lattice

Q={x,y)|i,j=0,1,. .. ,N~- 1}
To obtain an estimate of F, over {), we should look for
the corresponding subpixel location in E, for each pixel in
E,. This means that the compuntations in (3.4) requires
subpixel interpolation. One commonly used 2-D interpo-
lation scheme is the bilinear interpolation.

3.2. Flow Field Characterization

We refer to regions with a small value of E2 + E2 as a-
indeterminate regions since the value of « cannot be de-
termined from (3.2). We denote the a-indeterminate re-
gions as

Qo = {(e, ) | E} + ES < 7}, (3.6)
where, % is a small positive threshold value, The o« com-
ponent of the flow can either be interpolated from the
boundaries of such regions or be considered simply to be
0. However, such a decision cannot be entirely based on
local information and is not an issue that can be resolved
at low-level vision. We sugpest interpolation of the flow
from the boundaries of these regions, and also marking
them as a-indeterminate. The decision to choose be-
tween 0 and interpolated values is left to a higher level of
vision and is not considered in this paper.

Evidently, th¢ « component of the flow can be
uniquely determined in £, (i.e., the compliment of €,)
from (3.2). However, it turns out that the 8 component
may also be recovered in such regions by adding appro-
priate constraints in some special cases. For example, in
regions where the local gray value structure is sufficiently
characteristic of the underlying motion, such as gray
value corners and extremum, it was shown in [21] that
the membrane model of Horn and Schunck [16] imposes
sufficient constraint to fully determine both components
of the flow. Another example was considered by Wax-
man and Wohn [28]. They showed that it is possible to
recover the 8 component of the flow from at least 12 local
measurements of the e components, if the optical flow is
caused by the motion of a planar patch. Therefore, it
seems reasonable to further divide £}, in two subregions:
af3-determinate, in which both components of the flow

HADDADI] AND KUO

can be determined, and S-indeterminate, in which only
the @ component of the flow is recoverable. To summa-
rize, we classify an image into four mutually exclusive
characteristic regions.

1. af-determinate regions: Both components of the
flow may be obtained from the membrane model.

2. B-indeterminate region: Only the & component of
flow can be determined.

3. a-indeterminate region: Neither component of the
flow can be determined from local information.

4. Occluded regions: No flow information is available.

From the above discussion, we see the limitation of the
optical flow constraint equation in determining the opti-
cal flow. The importance of the smoothness constraint
cannot be overlooked. Most smoothness constraints de-
rived so far do not take the underlying motion into con-
sideration. In Section 4, we derive a smoothness model
by using concepts borrowed from fluid dynamics,

3.3. Spatio-Temporal Filtering

In the above discussion, we considered the use of the
image sequence Elx, y, 1) to estimate first-order partial
derivatives. However, it is sometimes more advanta-
geous to use a smoothed version of the image sequence
for two major recasons. First, noise due to quantization
error and temporal aliasing present in an image sequence
are magnified by differentiation so that numerical compu-
tation of partial derivatives obtained directly from E(x, y,
1) often gives a poor approximation of true partial deriva-
tives. The quality of these approximations can be im-
proved by smoothing the intensity E(x, ¥, ¢) in both spa-
tial and temporal domains by an isotropic Gaussian filter;
ie.,

Ax,y, 1) = G(x, y, D * E(x, y, 1), (3.7
where
_ _x2 + y? a _i)
Gix,y,t) = cexp ( 203 307 (3.8)

and where o and o, are the parameters that determine
the amount of smoothing in spatial and temporal direc-
tions, respectively, and ¢ is the normalization constant.
Numerical approximation of partial derivatives of E(x, y,
t} can be computed by, say, central differences applied to
A(x, v, t). An alternative approach is to use the properties
of convolution so that the Gausstan filter is differentiated
before it is applied to the image sequence, i.e.,

AxE(G*E)szx*EJ
A, =(G+E), = G, *E,
A= (G+E) =G *E.

(3.9)
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The second reason to require spatiotemporal filtering
has to do with the validity of the optical flow constraint
equation (2.2). It was shown in [25] that the optical flow
constraint is valid even across spatial discontinuities for a
pieccewise continuous intensity process. Temporal dis-
continuities are more difficult to handle. For example,
the optical flow constraint equation is a poor representa-
tion of the & component of the flow over moving regions
which have a regular texture, even if the exact values of
(E,, E,, E,) are known. In [17], it was shown that this
phenomena could be quantified in terms of the interframe
cross-correlation function and spatiotempaoral filtering
can be used to reduce its effects. The importance of spa-
tiotemporal smoothing is further discussed in [5].

4. DERIVATION OF A PARAMETRIC SMOOTHNESS
MODEL

4.1. Flow Model Based on Fluid Dynamics

Given a 2-D vector field uix, y), we can determine its
divergence and curl, respectively, by

V-pu=p and VX yu=oi,

where i, = i, X i, is the unit vector perpendicular to the
plane. Using terminology from fluid dynamics, the field s
is called solenoidal it V - . = 0 and irrotational itV X p =
0. We can decompose a general velocity field u into the
solenoidal and irrotational components, i.e.

po=ps + (4.1)
where u, and u; satisfy the following constraints:
Vops =0, VXpu = oi, (4.2)
and
Vowi=p, Vxu=0 4.3}

By combining the two constraints [12], we get the cost
functional for the general flow case,

&= [[ w+ v, - pP dx dy

+ ] o = u, — @@ dr ay. (4.4)
Evidently, the flow computed from (4.4) depends only on
the estimates of p and w. 1t is instructive to look at the
Euler equations of this ¢nergy function. The overall inte-
gral is of the form

J‘f F(uv U, Uy, Uy, Hy,Uy) dx dy,
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with the corresponding Euler equations

P F

Fom 3 Fu = 35 Fu =0,
P 3

Fuo= 5 Fo= 55, = 0.

We assume that (5, &) is not a function of (u, v) or its
derivatives, Performing the required differentiations and
simplifying, we obtain the following set of Euler equa-
tions;

Vi~ (p — @) = 0,

(4.5}
Vv — (p, — &) = 0.
Given a pair of (4, &) and a set of boundary conditions,
we can solve (4.5) for its solution that minimizes the en-
ergy function (4.4), denoted by (i, ¢). Therefore, under
fixed boundary conditions, there is a one-to-one relation-
ship between (4, &) and (&, 7).
Next, we incorporate the smoothness model into the
optical flow constraint equation with regularization. Con-
sider the energy function

€= [[ A+ A0+ AP drdy + A [[ o+ 0, - pp
+ (U, — uy — &Y dx dy, (4.6)

where the first integrand is the smoothed version of the
optical flow constraint equation. The corresponding
Euler equations are of the form

Vi — (p, — &) = % (s + A, + A) A, “n

1
V2 = (B, + &) =+ (A + A0 + A) A,.

Comparing (4.7) to the Euler equations of the mem-
brane model of Horn and Schunck [16], we have the fol-
lowing observation: If (3, &) = O then the system (4.7) of
Euler equations is the same as that derived from the
membrane model given in (2.5). This result sheds new
light on the interpretation of the membrane model in
terms of the divergence and curl of the flow field; i.¢. the
membrane model is equivalent to assuming a curl-free
and divergence-free flow field. This observation also im-
plies that the smoothest flow field is not always the most
desired or optimal flow field. With our generalized model
(4.6), any prior knowledge of either curl or divergence of
the flow can be incorporated through the Euler equations
in (4.7).

Furthermore, by comparing (4.5) and (4.7), we see that
the optical flow constraint basically provides the right
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FIG. 2. Algorithm for iterative computation of optical flow with discontinuities.

hand side of (4.7). Even if the right-hand-side of (4.7)
becomes singular, i.e. A,u + Ay,v + A, =0, A, = 0, or
A, = 0, the solution to (4.7) will not be oversmoothed due
to the existence of p and w. Thus, the nature of motion
characterized by the functions p and @ can play an impor-
tant role in optical flow computation. Given a sequence
of images, it is possible to estimate the p and @ by assum-
ing that they are smooth time-varying functions. We fo-
cus on the case consisting of only two image frames in
this work, and describe a procedure to estimate p and w
in the next section.

4.2.  Estimation of Flow Using Two Image Frames

In this section, we present an iterative algorithm for

estimation of the optical flow from the image sequence

E(x, ¥, t). A block diagram of the algorithm is depicted in
Fig. 2. The algorithm is based on estimation of curl and
divergence, (4, @), from local intensity values and then
using these as parameters in the optimization of energy
function in (4.6). We assume the availability of at least
two image frames E;(x, ¥} and E>(x, ¥} at times ¢ and ¢ +
8t, respectively. .

In the initialization step, the image sequence E(x, y, f)
is first filtered by the 3-D Gaussian filter given in (3.8) to
produce the required parameters (A,, A,, A;). Assuming a
membrane mode (i.e., (p, @) = 0), an initial estimate of
the flow (ug, vg) is computed by minimizing (4.6). Because
of the excessive smoothness induced by the membrane
model, this estimate can be improved by zeroing the flow
over an estimate of stationary regions, Let

r'ix, ¥y = Ex(x, y) — Eilx, y),
nix, y) = Exlx, v) — Ex(x —u, y — 1),

and let g(x, ¥) denote a 2-D Gaussian filter. The improved
initial estimate can be written as

0 r'(x, y) * g(x, ¥) < rilx, y) * g(x, y),
(1, 1) =

(19, vy) otherwise,
(4.8)

where * denotes convolution.

In the iterative improvement step, the initial estimate
(2y, v;) ts first used to obtain an estimate of occluded
regions from (3.5) as

roc ={(x,y: IEZ(x, y) = Ex—wm,y- UI)|2 > T}~
4.9)

Evidently, the initial estimate of the flow is a poor repre-
sentation of the true flow in Q.. This can be caused by
one of two factors. First, it may be the case that Quecis a
good representation of the true location of the occluded
regions, in which case no satisfactory estimate of the flow
can be computed from the information available in the
two image frames. Second, it may be the case that Qocc is
estimated incorrectly due to errors in the initial estimate
of the flow. The latter case seems to be the dominant
factor during the initial iterations of the algorithm.
Hence, for each (xg, yo) € Qec., it is possible to use local
information to improve the quality of the flow. This can
be accomplished by a local optimization as described be-
low.

Let W(xy, yo) denote a window (e.g., 2 X 2) centered at
(xg, ¥o). Using the translational model in (2.4), we per-
form a local search in W(xy, y,) to obtain the optimal local
value of the flow, (#min, Umin), such that
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{Uemin» Umin) = {(i, U 1 |Ex — i, ¥y — v) — Ex(x, y)|
< |Evx — u;, y — v) — Exlx, y)|,
J € Wixg, yoll.

A new (nonsmooth) estimate may thus be obtained as

min> Ymin, » Eﬂocc
(u;,u;)={(“ ) (52 3) 4.10)

(u, vy) otherwise.

To summarize, we have obtained two estimates of the
flow: (&, vy), which is optimally smooth over the moving
regions, and (i1, v1), which may exhibit sharp discontinu-
ities over estimates of occluded regions. We wish to com-
bine these two estimates so that a smooth solution is
obtained with possible discontinuities along motion
boundaries. One way to accomplish this is to formulate a
constraint optimization problem using the parametric en-
ergy function €{u, v, p, &, A) in (4.6), i.¢.,

minimize: #(u, v, p, &, A)

@.11)
(u, v} = (uy, v))  (x,¥) E Qoce,

subject to:

where 4 and & are the curl and divergence of (i, vy),
respectively. The constraint in {4.11) ensures that we do
not over-smooth the solution in nonoccluded regions,
while the parameters (4, &) favor a solution with disconti-
nuities along motion boundaries. Numerical solution of
the above optimization is discussed in the Appendix and
it is shown that the explicit computation of (4, &) is not
necessary.

The new estimate, (u;, v2), obtained by solving the con-
straint optimization in (4.11} may be used as the initial
guess for the next iteration of the algorithm. This itera-
tive process may be terminated after a predetermined
number of iterations or when there is no substantial im-
provement in the MSE of the compensation residual.
Also, note that the choice of the regularization parameter
M, k=1,2,, . ., affects only the value of the flow over
the estimate of occluded regions. Hence, we increase the
value of A, at each iteration so that the computation of the
flow becomes less dependent on the intensity process
Alx, y, Y over occluded regions.

5. EXPERIMENTAL RESULTS

In all our experiments, we assume that only two frames
of a test image sequence E(x, y, t) are available as E, (x, v)
and E;(x, y). Although additional frames can be used to
compute a more accurate estimate of partial derivatives
according to (3.9), the following results show that the
estimate of the flow obtained by the algorithm of the pre-
vious sectiont from only two frames is comparable to
other computationally more intensive techniques that use
as many as 21 frames. Of course, using two frames to
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obtain an accurate estimate of the flow is not only compu-
tationally more efficient than using a large number of
frames, but also implementation of the algorithm in real
systems with limited video buffer necessitates a small
number of frames. We also note that by applying the
same technique to every two consecutive frames, we are
able to calculate the optical flow of the entire image se-
quence.

We perform experiments on both synthetic and real
image data. For synthetic images where the true flow
field is known, the error of the estimated flow field is
evaluated using phase error used in [6], i.e.,

AAPE = Average absolute phase error (5.
— l i j fecos ( u,-jzi,-j + U,'jﬁ,'j +1 )
“Raal? (@ + 0% + D + v} + D)7

where (u;;, v;;) are the true values of the flow and (i, ;)
are the estimated values of the flow. It is also useful to
look at the compensation error,

MSCE = Mean square compensation error

| . R
= Z Z;J (Ex(xig, yi) ~ E(xy — dyg, yi5 — 0P
(5.2)

MSCE is the only type of error that we report for natural
images where the true optical flow is unknown. Also, in
all of our experiments, we set the value of the threshold =
in (4.9) equal to MSCE obtained by the most recent esti-
mate of the flow.

5.1. Synthetic Images

A set of 64 X 64 pixel images are synthesized with
known optical flow fields. The first frame, shown in Fig.
3, is a sphere with radius of 20 pixels on a sinusoidal
background. We consider three types of motion.

* Experiment 1: Irrotational flow.
The radius of the sphere in Fig. 3 is increased from 20
pixels to 21 pixels. This corresponds to translational mo-
tion perpendicular to the plane of view. The true optic
flow (Fig. 4a) has sharp discontinuitics on the motion
boundaries.

* Experiment 2: Solenoidal flow.
The sphere is rotated 5° along the axis passing through
the center of the sphere and perpendicular to the plane of
view,

« Experiment 3: General motion.
The motion of the sphere is the combination of the above
two types of motions.

In each experiment, we first presmooth the input im-
ages by a spatiotemporal Gaussian filter, where 3 x 3
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FIG. 3. First frame of a synthetic sphere images. Both the pattern
on the sphere and the background are sinusoidal functions.

spatial windows are used to maintain a good resolution of
discontinuities in the flow field. Based on the prepro-
cessed images, partial derivatives A, and A, are com-
puted using 2-point central differences and A, is com-
puted by first order forward differences, since we assume
only two frames are available. The bilinear interpolation
is used for getting the gray values at subpixel locations.
In all experiments, we use the regularization parameter
Ay = 250. The relaxation equations are iteratively up-
dated until the residual drops below 1073,

Table 1 summarizes the results of the experiments. In
this table, the first row of each experiment corresponds
to the optical flow obtained by assuming § = 0 and & = 0,
which we know to be equivalent to the Horn and
Schunck solution. The second row in this table corre-
sponds to the enhanced solution obtained by our algo-
rithm after 10 iterations of updating p and w (further itera-
tions lead to only marginal improvements). The enhanced
flow exhibits consistent improvement over the Horn and

HADDADI AND KUO

TABLE 1
Comparison of Results for Experiments 1-3
AAPE MSCE Density
Experiment 1
Horn and Schunck 6.01° 21.85 100%
Enhanced Estimate 1.21° 1.05 100%
Estimate over {},,, 0.97° .09 96%
Experiment 2
Horn and Schunck 4.80° 9.28 100%
Enhanced Estimate 2.05° 0.82 100%
Estimate over Q. 1.50° 0.08 94%
Experiment 3
Horn and Schunck 6.92° 28.01 100%
Enhanced Estimate 2.38° 3.10 100%
Estimate over Qpor 1.72° 0.23 96%

a

FIG. 4.

Schunck solution. The third row of each experiment in
the table lists the measures of error of the enhanced esti-
mate considered only over the estimate of non-occluded
regions .., as defined in Section 3.1 and shown in Fig.
7. The density values in the last column represent the
percentage of the pixels for which the error is computed.

While the two types of error measure defined above are
useful for global evaluation of the quality of the optical
flow, a more detailed analysis of the flow field requires
local estimates of the error, Figures 4a—6a show the com-
puted optical flow. The flow shown in these figures has
been obtained by averaging the computed optical flow
over 2 X 2 blocks. The true flow is virtually identical to
the computed values and hence is not shown. We define
the local squared error as

(5.3)

(0, J) = luyy — ayl* + jvy — Ol
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(a) Computed optical flow for irrotational flow. (b} Cross-section of error between estimated and true optical flow.
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FIG. 6. (a) Computed optical flow for general flow. (b) Cross-section of error between estimated and true optical flow.
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FIG. 8. First frames of real image data. (a) Yosemite sequence. (b) NASA-Ames sequence. {c) SRI trees sequence.

Cross-section plots of & are shown in Figs. 4b—6b for the  estimate of A, is unreliable in these regions. However, we
Horn and Schunck and the enhanced estimates of the note that ¢ drops off rapidly from its maximum for the
flow field—cross-sections are taken along €(i, n/2). In all enhanced estimate of the flow. Indeed, the main disad-
cases, we observe that maximum error occurs on the vantage of the membrane model is the fact that the solu-
boundary of motion. The main reason for this is that the tion is smoothly connected across the motion bound-
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FIG. 9. Result of applying our algorithm to Yosemite sequence. {a) True optical flow. (b) Estimated optical flow. (¢) Compensation residual
obtained by optical flow in (b).




PARAMETRIC COMPUTATION OF DENSE OPTICAL FLOW

arics. The cross-section plots clearly show that our
algorithm provides an effective methed to overcome this
problem,

5.2. Real Images

We test our algorithm on three sets of real images that
were also used in the comparatively study of various
techniques for computation of optical flow reported in
Barron et al. [6]. For comparison of our results to other
techniques for computation of optical flow, we refer the
reader to that reference. The first frame of each sequence
is shown in Fig. 8.

The Yosemite sequence shown in Figure 8a is actually
a complex set of synthetic images with known optical
flow shown in Figure 9a. Motions are as large as 4 pixels
per frame. The frames are ¢clipped to 256 x 256 pixels.
Because of the large interframe motion, we first decimate
the sequence to obtain 128 X 128 frames and then apply
our algorithm to the decimated frames with Ay = 250.
Then we linearly interpolate the computed flow to obtain
a 256 % 256 estimate of the flow. We use this estimate to
compensate Ej(x, y) according to (2.4) and again apply
our algorithm to the compensated frames with A, = 1000.
Finally, we obtain the estimate shown in Fig. 9b. Table 2
lists the error between the estimated and true optical
flow.

Comparing Figs. 9a and 9b, we note that phase error
seems to be large over the regions corresponding to the
clouds in the image. This observation is verified by the
third row of Table 2 where the phase error over cloud
regions is excluded from the total error. The source of
this error may be partially explained by considering the
compensation residual, r(x, y), as was defined in Section
3.1. Since r(x, ¥} is the difference between two images
with I, = 256 gray scales, the range of r(x, ¥) is (—L, L).
However, in practice, the histogram of r(x, y) is mostly
centered about zero. A useful way to represent r(x, y) is
as a negative image r+(x, ¥), where

ri(x, y) = max{L — 10|r(x, y)|, 0} (5.4
Figure 9¢ shows r*(x, y) obtained by the estimated opti-
cal flow. The darker a region in this figure, the higher the
value of residual error. The negative residual image

TABLE 2
Average Phase Error between the True and Estimated Optical
Flow Obtained by Our Algorithm for the Yosemite Sequence

AAPE MSCE Density
Estimate over the entire image 14.62° 40.17 100%
Estimate over nonoccluded regions 14.42° 7.13 83%
Estimate over lower § of image 10.53° 50.43 75%
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TABLE 3
Comparison of Various Algorithms for Computation of Optical
Flow of the Yosemite Sequence (Adopted from Barron et al. [6])

AAPE Density
Horn and Schunck 22.58° 100%
Lucas and Kanade (x; = 1.0) 5.20° 35.1%
Lucas and Kanade (h; = 5.0) 3.55° 8.8%
Uras et al. (unthresholded) 16.45° 100%
Uras et al. (det(H) = 1.0) 5.97° 23.4%
Uras et al. (det(H} = 2.0) 3.75° 6.1%
Anandan 15.54° 100%
Heeger 11.74° 44.8%
Fleet and Jepson {r = 1.25) 4.95° 30.6%
Fleet and Jepson (r = 2.5) 4.29° 34.1%
The proposed method with threshold
1. = 0.256 10.40° T0%
7, = (L128 9.88° 65%
7, = 0.064 9.10° 60%
T, = 0.032 7.88° 52%
7o = 0.016 6.43° 43%
T, = 0.008 5.41° 2%
7, = 0.004 4.52° 19%
T, = 0.002 3.87° 8%
7. = 0.001 2.95° 3%

shows that the estimated optical flow over the cloud re-
gions provides a reasonably good compensation.

For comparison purposes, we have summarized the
result of other techniques for computation of optical flow
of the Yosemite sequence in Table 3. We refer the reader
to [6] for description of various algorithms in the table. In
order to compare our results with others, we should use a
thresholding technique to exclude some of the computed
flow values. Let (ii, 0) denote the optical flow estimated
as described in the above, and let o,(x, ¥) and o;(x, ¥}
denote the variance of # and 0 at point (x, y), respec-
tively. To threshold the result, we simply exclude the
estimated flow value at (x, y) if a,(x, ¥} + o4x, ¥) is
greater than a threshold 7. Results of this thresholding
method are listed in Table 3 for several values of 7. We
note that although our computation is based on first order
approximation of partial derivatives from two frames,
our result is comparable to other techniques that use
higher order approximation from many frames.

The NASA-Ames sequence is a nearly irrotational se-
quence with interframe motion of less than 1 pixel/frame.
We use frame 1, shown in Fig. 8b, and frame 3 of the
sequence as input to our algorithm. The frames are
clipped to 300 x 300 pixels. Fig. 10a shows the computed
optical flow with Ay = 1000. The negative compensation
residual »+(x, y) corresponding to this estimate is shown
in Fig. 10b with a MSCE of 9.32 gver the entire region of
support and 1.57 over the estimate of nonoccluded re-
gions (89,19%).

The SRI trees sequence shows horizontal translation of
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FIG. 10. Result of applying our algorithm to NASA-Ames sequence. (a) Estimated optical flow. (b) Compensation residual obtained by optical

flow in (a),

a scene (foreground trees) over a nearly stationary back-
ground. The interframe motion is less than 2 pixel/frame.
The first frame is shown in Fig. 8c. Fig. 11a shows the
computed optical flow with Ay = 1000. The negative com-
pensation residual corresponding to this estimate is
shown in Fig. 10b with a MSCE of 47.35 over the entire
region of support and 9.85 over the estimate of nonoc-
cluded regions (78%).

6. CONCLUSIONS AND EXTENSIONS

In this paper, we discussed the limitation of the optical
flow constraint equation by decomposing the flow into a
and 8 components. Motivated by concepts from fluid dy-
namics, we derived a parametric smoothness model by

P N T S T L

a

decomposing the flow into irrotational and solenoidal
fields, and imposing the smoothness constraint on each
field separately, This implies smooth translation and rota-
tion of the underlying motion process. We focused on the
two frame case in this research and proposed an iterative
procedure to improve the estimate of parameters p and w
and obtain a more accurate result of the computed optical
flow. An estimate of occluded regions, where the motion
compensation error is likely above a given threshold, can
also be obtained as a byproduct of the algorithm. We
showed that significant improvements can be achieved
with the proposed algorithm over the classical regulariza-
tion approach for a set of test problems.

We are also interested in the hierarchical representa-
tion of images, where our optical flow algorithm can be

FIG. 11. Result of applying our algorithm to SRI trees sequence. (a) Estimated optical flow. (b) Compensation residual obtained by optical flow

in (a).
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applied to the low resolution image, so that multiple pixel
motion can also be characterized by using the same algo-
rithm—some of our preliminary results have been re-
ported in [12, 11].

APPENDIX: NUMERICAL IMPLEMENTATION

In this appendix, we derive Gauss—Seidel relaxation
equations required for the solution of the optimization
problem in (4.11).

A.1. Discretization

Let the region of support, ), be an N X N rectangular
grid,

Q={iHl=i=N, |l=j=N}L

Any function u(x, ) defined over (1 is represented as an

N? element lexicographically ordered vector of the sam-
ples of u(x, y),

u = {uli, P|G, j) € O}

Partial derivatives can be approximated by forward dif-
ferences, backward differences, or central differences:

0X 0¥ /5 \wen — 8y

A
forward
B (UU - 'l(r—l)j) _ 1(u(s+1)j - “u-l)j)
uy = wgon/ 2\ gy — Wgon/
—_—— —_—

backward central

Assuming zero boundary conditions, partial derivatives
for backward differences can be written as matrix—vector
products,

]
Pl B.u and b;u = B,u,
where
I
T,
o |
B, = B, =
T,
I I
1
-1
Tb =
-1 1
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Similarly, matrix operators ¢an be defined for backward
and central differences; we denote these by F,, F,, C,,
and C,, respectively. Using forward differences, (4.6)
can be written as

% = [Pu + Qv + ¢ + AFau + Fyv — pff?
+ A|F.v - F,u — of,

where P and Q are N2 X N? diagonal matrices with their
diagonal elements equal to samples of A, and A,, respec-
tively, and t is a vector formed by lexicographical order-
ing of samples of A;. A similar expression is also obtained
for backward differences, %,. It turns out that by estimat-
ing € with the average of the forward and the backward
differences, € = (%, + %,), some cross terms cancel
which otherwise would have made the subsequent com-
putations unnecessarily more complex. After some alge-
braic manipulations, € can be expressed as

7 (AH + P2 PQ )(u)
u
(g—(¥)( PQ AH + Q¥/\v

“r(Pt+M)
u ; ; .
+2(v) Qt + \g Tt plp + w'w), (A2)

(A.1)

where

H = {(F/F, + F/F, + BIB, + B/B,),
f=(C.p-Cuw),
g=(Cp+ Cw).

The iterative solution of this optimization problem re-
quires evaluation of matrix—vector products of the form
Hu. It is convenient {o express these products as a stencil
of H operating on a 2-D array of u(x;, ¥;). The stencil
operators of H for various positions of the 2-D array are
shown in Fig. 12.

A.2. Gauss—Seidel Relaxation Method

We divide (&, v) into two groups, (4%, v*) and (u—, v7),
where the variables with a plus sign superscript are con-

-1 -1

Q.l

-1 -1 -1

interior points sides COTIETS

FIG. 12. Stencil operators of matrix H.
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strained. Also, we define A* and A~ as subsets of the
identity matrix such that

u=A"wt + A n" and v=Alv"+ Av .
Substituting the above expressions for (¢, v) in (A.1) and

equating the partial derivatives with respect to (u~, v7),
to zero, the following normal equations are obtained:

A O\(AH+P* PQ \/u
PR N
A 0 Pt + Af
=_(o A)(Qwhg)'

Using the stencil operator of H, this can be written as

(4?\ +ph pygy )(Msj) B (4'\57 - Pijfﬂ')
piq; AN+ qh/\v; 4T - quty
(xh ,VJ) GE roc;
where
= %(Ht(;vfu Tt oug-n t Mgy T Hg-u; — fij s
U= i+ + Uig-n + Vs T Vo-; — i)

Solving for (uy;, v;), we obtain the following update equa-
tions:

- PUE + q,'!'ﬁ + ]
Wy —u— ) 2 Pii
45 + P(j + q"J' (xis yj) ¢ roc-
— p,'jLT+ q,--t? + t,'j
Uiy — U — Lol | A iis
v ANt pitgy
(A.3)
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