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Abstract 

The minimum mean-squared error (MMSE) estimator has been used to reconstruct a band-limited signal from its finite 
samples in a bounded interval and shown to have many nice properties. In this research, we consider a special class of band- 
limited 1-D and 2-D signals which have a multiband structure in the frequency domain, and propose a new reconstruction 
algorithm to exploit the multiband feature of the underlying signals. The concept of the critical value and region is introduced 
to measure the performance of a reconstruction algorithm. We show analytically that the new algorithm performs #better than 
the MMSE estimator for band-limited/multiband signals in terms of the critical value and region measure. Finally, numerical 
examples of 1-D and 2-D signal reconstruction are given for performance comparison of various methods. 

Zusammenfassung 

Der Minimum-Mean-Squared-Error-(MMSE) SchPtzer wurde zur Rekonstruktion eines bandbegrenzten $ignals aus 
endlich vielen Abtastwerten aus einem begrenzten Interval1 benutzt und es zeigt sich, dal3 er viele giinstige Eigenschaften 
aufweist. In dieser Arbeit betrachten wir eine spezielle Klasse bandbegrenzter lD- und 2D-Signale mit Multiband- 
Struktur im Frequenzbereich und schlagen einen neuen Rekonstruktionsalgorithmus vor, der die Multiband-Eigenschaft 
des zugrundeliegenden Signals ausnutzt. Zur Bewertung des Rekonstruktionsalgorithmus wird das Konzept des kritis- 
then Wertes und Gebietes eingefiihrt. Wir zeigen analytisch, dalj der neue Algorithmus besser arbeitet als der MMSE- 
Schltzer fiir bandbegrenzte/Multiband-Signale in Abhlngigkeit vom kritischen Wert und Gebiets-Ma& SchlieBlich 
werden numerische Beispiele zur Rekonstruktion von lD- und 2D-Signalen gegeben, wobei die Eigenschaften ver- 
schiedener Methoden verglichen werden. 

Rbumi! 

L’estimateur de l’erreur minimale au sens des moindres carrts (EMMC) a Cti: utilist: pour reconstruire un signal 
a bande 1imitCe & partir de ses &chantillons finis sur un intervalle fermt, et a montrt: qu’il avait des proprittts interessantes. 
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Dans ce travail, now considtrons une classe particulitre, de signaux a bande limitee 1D et 2D, qui ont une structure 
multi-bande dans le domaine frequenciel; nous proposons un nouvel algorithme de reconstruction pour exploiter la 
caractiristique multi-bande des signaux sow-jacents. Le concept de region et de valeur critiques est introduit, dans le but 
de mesurer les performances dun algorithme de reconstruction. Nous montrons analytiquement que le nouvel algo- 
rithme se comporte mieux que l’estimateur EMMC pour les signaux a bande limitee/multi-bande en termes de mesure 
des region et valeur critiques. Enfin, des exemples numtriques de reconstruction de signaux 1D et 2D sont don&s pour 
comparer les performances de plusieurs mtthodes. 

Keywords: MMSE; Multiband signals; Extrapolation; Sampling; Critical value and region 

1. Introduction 

Band-limited signal reconstruction from ob- 
served samples in a bounded interval is important 
in many signal processing and communication ap- 
plications. It has been extensively studied by many 
researchers, say, [2-12, 16-21, 25-32, 36-401, 
and from prediction point of view, [24,23, 31. This 
problem can be generally stated as: given a band- 
limited signal f(t) with bandwidth Sz, i.e. f*(o) = 0 
for 1 o 1 > Q, we want to recover the signalf(t) from 
a limited number of samples f(ti), i = 1,2, . . . , N. 
The performance of existing reconstruction 
methods usually depends on the bandwidth B of 
f(t). That is, algorithms perform poorer when the 
bandwidth Q becomes larger. However, in some 
applications the spectrum of the signal_/-(t) does not 
fill the whole bandwidth [ - 52, O] but was a multi- 
band structure in [ - 52, Sz] as shown in Fig. 1. One 

c-m 

such example is signal transmission via frequency 
modulation with several carrier frequencies. Then, 
it is natural to seek an effective algorithm which 
reconstructs the signal by taking advantage of the 
multiband feature. 

The multiband signal sampling problem has 
been recently addressed by Vaughan et al. [34] and 
Beaty and Dodson [l]. An interesting result ob- 
tained is that it is possible to uniformly sample 
a multiband signal with a rate lower than the 
Nyquist rate based on the bandwidth Q for its 
perfect reconstruction. Most recently Ries in [28] 
studied the reconstruction problem of real and ana- 
lytic band-pass signals from a finite number of 
samples based on the truncations of the sampling 
theorems. Since the sampling theorems basically 
require that the sample points spread on the whole 
time domain with certain distance between adja- 
cent sample points which should not be too large. 
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Fig. 1. Fourier spectrum of a multiband signal. 
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Therefore, to have a good reconstruction an obser- 
vation in a large time interval is usually needed, 
which may not be satisfied in some applications. 
The following reconstruction problem is studied in 
this research. Letf(t) be a multiband signal with its 
Fourier spectrum as shown in Fig. 1, where we 
assume that the bandwidth Bk and the center posi- 
tion Ck of each band indexed by - m 6 k d m are 
known. Now, given a finite known samples f(ti), 
ti E [ - T, T] for an arbitrarily fixed T > 0, i = 
1,2, . . . , m, we want to find an approximation{(t) 
off(t) with t E [ - z, z], where r > T. Multiband 
signal reconstructions from finite samples occur in 
many applications, for example, optics [lo], radar 
[ 151, sonar [ 131, communications [35], biomedical 
signals [S] and power measurement [7]. 

In this work, we propose a new reconstruction 
algorithm for the above problem, which is not moti- 
vated from the sampling theorems but from signal 
extrapolations where the length of the observation 
time interval may be arbitrary. To measure the 
performance of different methods, we introduce the 
concept of the critical region and the critical value. 
Roughly speaking, by the critical region, we mean 
the area that the reconstructed signalf’(t) provides 
a good approximation of the true signalf(t). Then, 
we use the critical value to characterize the length 
or the area of the critical region for 1-D and 2-D 
signals, respectively. We obtain an explicit expres- 
sion for the critical value of the new algorithm, and 
show that it is better than the minimum mean- 
squared error (MMSE) estimator where the multi- 
band structure is not exploited. For modulated real 
signals, we can improve the reconstruction method 
further so that its critical value is almost twice as 
large as the one applicable to general complex 
multiband signals with Fourier spectrum shown in 
Fig. 1. We also consider the extension of the new 
algorithm to 2-D multiband signals which has 
applications in image processing. Numerical exam- 
ples in both 1-D and 2-D cases are given for perfor- 
mance comparison of various methods. 

This paper is organized as follows. The MMSE 
estimator for band-limited signal reconstruction is 
briefly reviewed, and the concept of the critical 
value and region is introduced in Section 2. We 
study the 1-D and 2-D multiband signal recon- 
struction problems in Sections 3 and 4, respectively. 

We use some numerical examples to demonstrate 
the performance of the proposed algorithm in 
Section 5, and concluding remarks are given in 
Section 6. 

2. Critical regions and values for band-limited signal 
reconstruction 

This section reviews some basic results of band- 
limited signal reconstruction [6,18,21,36]. The 
main objective is to introduce the concept of critical 
region and its associated critical value for a given 
interpolant. We will examine both 1-D and 2-D 
cases. 

Let f(t) be an Q band-limited signal and f(ti), 
i = 1,2, . . . , m, be given samples of f(t). Then, the 
MMSE estimator forf(t) is of the form (see [6]) 

(2.1) 

where coefficients a,, a2, . . . , u, are determined by 
solving the linear system 

f ak sinF(: i tk) =f(t,#), n = 1, 2, . . . ,m. (2.2) 
k=l 

It was proved in [6] that the MMSE estimator 
D,,,(t) is identical to the minimum energy band- 
limited interpolant. It was also shown in [21] that 
the MMSE estimator G,(t) is the pointwise min- 
imum-error estimator in the worst case. 

Furthermore, we have the following error esti- 
mate for the MMSE estimator a,(t) (see [lS, Eq. 

(1311: 

(2.3) 

where 0 = e-“2(2$1’2, c = 1/(2ezQ) and E(f) is 
the energy off: Thus, given the number m of sam- 
ples and the bandwidth 52 off(t), we can determine 
the condition on z so that the error bound is small 
in the interval [ - 5, t]. It is clear from (2.3) that we 
need 

ma > 1, 
m 

or z<~, 
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Fig. 2. Critical points in (a) 1-D and (b) 2-D cases. 

and a larger ma (or a smaller z) implies a smaller 
error bound. Also, increasing the number tn of 
samples tightens the error bound. These motivate 
the following definitions. The ratio 

(2.4) 

is called the critical value for the interpolant Q,(t) 
and the interval [ - T@,,,, r@,,,] is called the 
critical region. We conclude that the a,(t) is a 
good approximation of f(t) if ItI belongs to 
the critical region as shown in Fig. 2(a). Different 
interpolants may have different critical regions, and 
we can use the critical value as one performance 
measure. In this paper, when we say that an inter- 
polant Y,(t) is better than another one Yv,(t), it 
is meant that 

That is, Q1 (t) can approximatef(t) relatively well in 
a larger interval. 

The MMSE estimator can also be extended to 
the 2-D case (see [6] for more $etails). Letf(s, t) be 
(Q,, a,) band-limited, i.e., f(wl, 02) = 0 when 

Letf(si,, ti2)y iI = 1,2, . . . ,ml, i2 = 1,2, . . . . m2, be 
given samples off@, t). Then, the MMSE estimator 
off@, t) from these samples is 

x sin Q,(t - ti,) 

t - ti, ’ 
(2.5) 

where coefficients ai,i, satisfy 

il$l iz$l &.., sinY$ls; %) sinZ(yt; k) 

=f(s n,, Gl,) (2.6) 

for nl = 1,2, . . . ,ml and n2 = 1,2, . . . ,m2. For the 
error estimation, Xia et al. [36] extended the error 
bound (2.3) and obtained the following results. 

Proposition 1. Letf(s, t) be (Q,, Sz,) band-limited. If 

f(s, t) 13 L’(R2), i.e. 

s RZ If@, 01 dsdt < ~0, 

Ifh t) - @m,n&, 0 I 

< 01 ( 1 1 

ml(mlol)“’ 
+ 

> m2(m2o2P ’ 

(2.7) 

0 1 =8J2,r-W52 
7T3 

1 Q 2 If(s, 01 dsk 

1 
und ol=----, 

2eq CL?, 
1=1,2 

and lsi,l < ~1 and I ti,I < ~2 for ~11 possible iI and i2 
with arbitrarily given values of z1 and z2. 
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Proposition 2. Letf(s, t) be (Q,, I&) band-limited. If 
its Fourier spectrum fa(ol, w2) is second-order difir- 
entiable, then 

0 Jfi - 
2 ,3e 1’12Q~Q2 c l&l < 00 

1 
and ol = -, 

2eq Sz, 
I= 1,2 (2.9) 

and Isi, I < 51 and ) ti,) < ~2 for all possible il and iz 
with arbitrarily given values of z1 and z2.*The values 
b,,,, in (2.8) are Fourier coeficients off(colr w2) in 
c - 521, QII x c - Q2, &I. 

Although the constants O1 and O2 are different 
in error bounds (2.7) and (2.8), they have the same 
main term. Similar to the 1-D case, we can also 
determine the critical region for the interpolant 
@ ,,_. To have mzdI > 1, 1 = 1,2, we require 

ml 

” < 2eQl 
- = GJm,, 1 = 1,2, 

which is the critical region of Q,,,,. We plot the 
critical region in Fig. 2(b) as a square enclosed by 
the solid line, in which @m,m2(~, t) provides a good 
approximation for f(s, t). Furthermore, we choose 

(2.10) 

to be the critical value corresponding to the area of 
a quarter of the critical region (i.e. the dark region 
in Fig. 2(b)). Thus, we can also measure the perfor- 
mance of a 2-D interpolant with its critical value. 

3. 1-D multiband signal reconstruction 

3. I. General multiband signals 

We consider the reconstruction of a 1-D multi- 
band signalf(t) with its Fourier spectrum shown in 

Fig. 1, where Bk > 0 and Ck with Ikl ,< K, are 
known a priori and Ck - Ck _ 1 2 Bk -t- Bk . 1. The 
f(t) can be represented as 

f(t) = i fk(t)e-jrCk, 
k= -K 

(3.1) 

wherefk(t) is Bk band-limited. Since the bandwidth 
Q off(t) is often much larger than each Bk offk(t), 
the critical value of the MMSE estimator forf(t) is 
much smaller than that forfk(t). This observation 
motivates us to use the MMSE estimator offk(t) 
with Jkl < K for the reconstruction off(t). 

Let S S {tl, t2, . . . ,t,} c [ - T, T] for certain 
T > 0 be the set of selected sampling points, and 

Sk ’ @kl, tk2 , . . . , tkmr} c [ - T, T] be the set of 
arbitrarily fixed mk distinct points, where mk SatiS- 

fies 

mk = m. 
k= -K 

Then, a new reconstruction interpolant can be ob- 
tained via 

yy,(t) = (3.2) 
k=-Ki=l 

where coefficients ski satisfy the following system: 

sin Bk(h - tki) ,-jl,,c, _ 

t, - tki 
-f (t,), 

n = 1,2, . . . . m. (3.3) 

Note that the points tki in Sk are arbitrarily chosen 
in [ - T, T] and may not be related to the samp- 
ling points in S. 

Remark. When the parameters in (3.2)-(3.3) are 
the following: m, = m, mk = 0 for k # 0, ao,i = ai 
and to,i = ti, then the interpolant Y,,,(t) in (3.2) is 
the band-passed version of the MMSE estimator 
Q,(t) in (2.1) where the band-pass filter ha% the pass 
regions the same as the ones in Fig. 1. 

It is clear from (2.4) that, to keep the critical value 
constant, the larger the bandwidth B, of the kth 
signalfk(t) the more points mk we need in Sk, so that 

i$, ski 
Sin Bk(t - tki) 

t - tki 
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approximates&(t) well. Thus, we impose the fol- greater than the critical value rGrn of the MMSE 
lowing constraint on the size mk of the set Sk: estimator. We call 

mk 

B, = ry 
k=-K,-K+l,..., K, (3.4) 

where r is a positive constant. With (3.4) we have 
the gain factor. When the band [ - s2, 521 is fully 
occupied, the gain factor is 1 (no gain). 

(3.5) 

The following theorem gives an error bound for the 
reconstruction interpolant Y,(t) given by (3.2). 

Theorem 1. Letf (t) be a multiband signal with para- 
meters as stated before. If the coefJicient matrix for 
unknowns c&i in (3.3) is offull rank, then 

If(t) - Yu,(t)I < Or 5 
( ) 

2 mk 
k=_K r 

for t E [ - z, z], (3.6) 

where z > T, r is defined in (3.5) and 0 is a positive 
constant. 

The proof of Theorem 1 is given in Appendix A. 
The coefficient matrix in (3.3) often has a full rank. 
If not, one can adjust the points in Sk to make it 
a full rank matrix. Details depend on the sampling 
points t, and the subband bandwidths Q2,. 

Based on the error bound (3.6), the critical value 
ryr,,, for the interpolant Y,(t) can be defined as 

r m 

“, = % = 2eCf= _xBk = 

Q 

c;= _KBk Tom. 
(3.7) 

We see that the critical value rY, is reciprocally 
related to the total size of occupied bands, i.e. 
2x:= _KBk. Furthermore, Since cf= _K& < f& we 

have 

rYJ_ 2 Tarn. (3.8) 

This means that the length of the critical interval of 
the interpolant Y, given by (3.2) for an Q band- 
limited signal with a multiband structure is always 
greater than or equal to that of its MMSE es- 
timator a,,, without exploiting the multiband fea- 
ture. In addition, when the multiband signal f(t) 
does not fully occupy the band [ - C&O], the criti- 
cal value rlr, of our proposed method is strictly 

When all Bk are equal, the error bound in (3.6) 
can be simplified. 

Corollary 1. Let f(t) be a multiband signal with 
parameters as before and Bk = B for all k. If the 
coefJicient matrix for unknowns ski in (3.3) is offull 
rank, then 

If(t) - Y,(t)1 < O(2K + l)r 

for t E [ - z, z], 

where 

(3.9) 

’ = (2K “+ 1)B’ 

3.2. Real multiband signals 

As a special case of multiband signals f (t) in (3.1), 
we assume all fk(t) and f (t) to be real in this subsec- 
tion. The signal f (t) can be represented as 

K 

f(t) = 1 fk(t)CoS(Ckt), 
k=O 

(3.10) 

where fk(t) is real Bk band-limited for 
k = 0,1,2, . . . ,K. A typical Fourier spectrum for 
this class of signals is shown in Fig. 3, where 
B_, = &. 

For f(t) given by (3.10), we can use another 
interpolant instead of the one in (3.2)-(3.3), i.e. 

K mr, 
pm(t) = 1 c ski sin :Tti tki) cos(Ckt), 

k=O i=l 

where rki with i = 1,2, . . . ,rnk are arbitrarily fixed 
distinct points in [ - T, T] for each k, 
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Fig. 3. Fourier spectrum of a modulated real signal. 

Cf==omk = m and uki are obtained via solving the 
system 

sin &(tn - tkj) 

n = 1,2, . . . ,m. 

We can derive an error bound for p,,,(t) similar to 
that given in Theorem 1 as 

, t E c - 5, zl, 

where 0 is as before and 

m 

r=m. 

In particular, if & = B for k = 0,1,2, . . . , K, we 
have a result similar to Corollary 1, i.e. 

m/(K+ 1) 
If(t) - 9,(t)l < ov” ) t E [ - t, 21. 

The critical value for this case is 

Combining (3.8) and (3.11), we obtain 

r~_ > r,,,, 3 r,_ for K > 0. 

(3.11) 

Besides, it is straightforward to derive that 

where 

is the gain factor for p,,, with the MMSE estimate 
@,,, as the reference. It is interesting to point out 
that y2 is always greater than 1 if K > 0. When the 
bandwidth B. of the base band is small with 

we can simplify (3.11) to be 

rFrn = 2ryy, 3 2r+ 

so that the gain factor y2 3 2. This implies that the 
interpolant p, for modulated real signals performs 
almost at least twice as well as the MMSE es- 
timator r,_. This point will be demonstrated in 
numerical examples in Section 5. 

4. 2-D multiband signal reconstruction 

4.1. General multiband signals 

Now, let us consider 2-D multiband signals 
f(~, t) with 2K + 1 nonoverlaping multibands 
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I '7.k 

k- 2nl 4 
Fig. 4. Occupied bands in the frequency domain of 2-D multi- 
band signals. 

bounded by [ - sZ1, Q,] x [ - &, O,] as shown in 
Fig. 4, where each band, with index - K < k < K 
has the center frequencies Clk and CZk and band- 
widths Blk and BZk along the frequency axes o1 and 
ml, respectively. We assume that these multiband 
parameters are known a priori. It is clear that 

(4.1) 

The 2-D multiband signalf(s, t) can be represented 

by 

K 
f(s, r) = 1 fkh t)e- 

j(sClk+fCzk) 
3 (4.2) 

k= -K 

wheref,(s, t) is (Blk, BZk) band-limited whilef(s, t) 
is (Q,, Q,) band-limited. The reconstruction prob- 
lem is to recover f(s, t) from its samples f(Si,, ti2)) 

i[ = 1,2, . . . , ml, 1 = 1,2, where the sampling points 
are selected from [ - T1, TJ x [ - T2, T,] for 
some T1, T2 > 0. 

Let 

Sk = ((Ski19 tki2) E C - T1, TII X C - 7’2, T21: 

i* = 1,2, . . . ,mlk, I = 1,2}, jkl <K 

be a set of arbitrarily fixed m1km2k distinct points, 
where 

mlkm2k = m1m2. 

k= -K 

(4.3) 

Similar to the interpolant Yu,(t) in the 1-D case, we 
have the following Y,,,,,,(s, t) for the reconstruction 
off@, t): 

ym,&, t) = f y y Ukili2 sin”,l”“s, Sk4 
k=-Ki,=l ix=1 I 

x SinBm(t - lki2) ,-j(sCIL+tC2k) 

t - tki2 

7 (4.4) 

where aki,il Satisfy the following System: 

X 
sin && - ‘kiz) ,-j(s.,Clk+tnlCzlr) _ 

t,, - tkiZ 
-f (s,,, tn,) 

(4.5) 

for nr = 1,2, . . . ,ml and 1 = 1,2. 
We next estimate the error bound and analyze 

the critical region of Y,,,,(s, t). Similar to the as- 
sumption (3.4) in the 1-D case, we assume that 

mlk 
- = q, 
Blk 

l= 1,2, and 

k=-K,-K+l,..., K, 

where rl and r2 are constants. Thus, by 
have 

rlr2 i B,dbk = _i: mlkm2k = mlm2 

k= -K k=-K 

and, therefore, 

mm2 

‘lr2 = c,“= _KBlk&k. 

(4.6) 

(4.3), we 

(4.7) 

Then, we have the following theorem on the error 
bound of Y,,,,(t). 

Theorem 2. Consider a function f (s, t) of the form 
(4.2). For all k = - K, - K + 1, . . . , K, if 
0) Us, t) E L’(R), or 
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(ii) f (ol, w2) is second-order differentiable in 

[ - Blk, hkl x [ - B2k, B2k1, 

and the coeficient matrix for unknowns aki,i, in (4.5) 
is offill rank, then 

If (sv t) - ~m,mAs, t)I 

for I4 d zl, Itl d ~2, (4.8) 

where z1 3 T, for I = 1,2, 0 is a positive constant 
and rl, r2 are as in (4.6). 

Since the proof of Theorem 2 is similar to that 
of Theorem 1, it is omitted. In the uniform multi- 
band case, the estimate in (4.8) can be simplified 
further. 

Corollary 2. Zf the same conditions stated in Theo- 
rem 2 are satisjed and if Blk = B,, for 1 kl d K and 
I = 1,2, then 

4.2. Real multiband signals 

Whenfk(s, t) and f (s, t) in (4.2) are real signals, we 
can find a more efficient reconstruction algorithm. 
The f (s, t) can be represented as 

f(s, t) = i fk(s, t)cos(SCIk + tC2k). 

k=O 

Note that its spectrumf*(w,, 02) has the symmetry 
with respect to the origin, i.e. 

A% (32) =.A - 01, - (32). 

Fork=O,l, . . . . K, we use Sk to denote the set of 
auxiliary sampling points and 

mlkm2k = mlm2. 

k=O 

Then, we can use the following interpolant as 
an approximation for the real multiband signal 

f 6, t): 

1 f (s, t) - ym,m2(s, t)/ 6 o( (?rlB’ i-(~).Z’) 

for IsI < zl, ItI d z2. (4.9) 

Based on error bounds (4.8) and (4.9), the critical 
value for Ym,,, is 

rYPn,m2 = rlr2/(4e2). 

By using (2.10) and (4.7), we can relate this critical 
value to that of the MMSE estimator @,,_ in (2.5) 
as 

hn,m2 = 

mlm2 QlQ2 

~2~,K= -&kB2k = cf= -K&kB2k 
bn,m,~ 

so that the gain factor is 

It is clear from (4.1) that y3 2 1. Moreover, if the 
band [ - L?,, Q,] x [ - &, 52,] is not fully occu- 
pied, the gain factor y3 > 1. Thus, we conclude the 
new algorithm is better than the MMSE estimator 
for (Q,, Q,) band-limited signals with a multiband 
structure. 

x sin B2k(t - tki2) 

t - tkiz 

cos(s~lk + tC2k)r 

where coefficients aki,il satisfy the following system: 

X 
sin B2k(tn2 - tkil) 

t 
co~(&,clk + t,,c,k) =f (sqr t,,) 

n2 - tkiI 

for nl = 1,2, . . . , m, and I= 1,2. The error bound 
on the interpolant ~m,m2(s, t) is 

If 6, t) - Kvi& t)l 

for IsI d zl, /tl 6 z2, 

where q > T1 for 1 = 1,2,0 the same as in (4.8) and 

I _ mlm2 
“‘-’ = ~;,o&.&k 

(4.10) 
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By using (2.10), (4.7) and (4.10), we can compute the 
critical value for this case as 

Therefore, we have the gain factor 

Q1 Q2 

y4 = CkK,OBlkB2k. 

If the bandwidth B,, of the base band is small, we 
have 

Consequently, I’P,,,,,,~ x STY,,,_ > 2r~,,,,,,,, and 
y4 2 2. Note also that if the signal has symmetric 
spectrum with respect to both o1 and w2 axes, it 
can be expressed as 

f(s, r) = 5 fk(s, r) cos (sC1/c) cos PC,,). 
k=O 

It is possible to modify the above algorithm so that 
it achieves a gain factor ys B 4. 

5. Numerical experiments 

We use numerical examples to demonstrate the 
performance of the proposed algorithms. 

Test problem I: 1-D multiband signal. The test 
signal is chosen to be the modulated real signals 

f(t) ‘So@) + 0*5fr(r)cos(C1r), 

with the Fourier spectrum 

where k = - l,O, 1, and ak and Bk are positive 
constants. Sincef(t) is real&( - 0) =fk*(c$ In the 
experiment, we choose 

uo = 47c, a, = 67r, 

and 

Q = 47c, B. = a, Cl = Q - B1, 

where B1 be a parameter ranging from 0 to 31x/16. 
Note that, when B1 = 31rt/16, B. + 2BI = s2 so 
that the band [ - Q, s2] is fully occupied. We ob- 
serve the functionf(t) at uniformly sampled points 
t = n/10 with n = - 10, - 9, . . . ,9 so that the total 
number of sampling points is 20. The auxiliary 
sampling point sets are chosen as subsets of S with 
SlVS2 = s. 

We compute p,,, for the reconstruction of f(t). 
The critical value for this case is 

k0 = 
20 10 

2e(Bo + Br) = e(7c/8 + B,) ’ 

which is a function of Bl . The curve of Tq,, via B1 is 
shown in Fig. 5. The critical point for the MMSE 
estimator is 

which corresponds to the constant line as shown in 
Fig. 5. We can clearly see the improvement of our 
proposed algorithm when the bandwidth Bl be- 
comes smaller and the band [ - Q, Q] is less fully 
utilized. 

9 c m=20. BO= pi/8 
i 

8 x: new proposed algorithm 

7 o: the MMSE estimator 

Fig. 5. The critical value curves via B1 for the algorithm 
It 2. and the MMSE estimator (PzO. 
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To give a more clear performance comparison of 
various methods, we applied the MMSE estimator 
&(t) and the interpolant pzo(t) to two test signals 
with B, = 7c/8 and B, = 31x/16 and plotted the 
results in Figs. 6-9. In all these figures, we show the 
true signal f(t) in (a), its Fourier spectrum fro) in 
(b), the reconstructed function (pzo(t) or &,(t)) in 
(c) and the corresponding error (1 pzO(t) -f(t)1 or 
IQzO(t) -f(t)]) in (d). In subplot (d), we also indi- 
cate the critical region by labelling two boundary 
points as ‘critical point’. When B1 = n/S, the signal 
f(t) consists of three narrow bands. When 
B, = 31x/16, the signal f(t) is in fact a full-band 
signal. By comparing the results in Figs. 6 and 
7 and those in Figs. 8 and 9, we can clearly see that 
the proposed method with p&t) performs much 
better than the MMSE estimator &,(t) in both 
cases. Besides, the proposed algorithm performs 
better when the bandwidth is not fully occupied. 

Test problem 2: 2-D multiband signal. The 2-D test 
is a (47~ 4~) band-limited real signal of the form 

(4 

0.08 

0.06 
g 

0.04 

f(s, t) =foh t) + 0.25fl(S, ~)cos(Clls + ClZf), 

wheref,(s, t) are (Blk, BZk) band-limited with Blk = 

Bzk=7r/4 for k=O,l, Ci, =C,,=47c-n/4= 
:57c/4. The contour plot of the Fourier spectrum 

f(wr, w2) is given in Fig. 10(a) and the original 
signal f(s, t) is shown in Fig. 10(b). We choose 
m, = m, = 20, ml0 =m,, = 10 and m20 = 

m,, = 20. The sampling point set is 
S = {(nillO, n2/10): for ni = - 10, - 9, . . ,9 for 
i = 1,2}, which is concentrated in [ - 1, 11 x 
[ - 1, 11. The auxiliary sampling point sets So and 
Sr are also chosen as subsets of S. The reconstruction 
@20,20(s, t) from the MMSE estimator and the 
reconstruction !P 20,20(~,t) from our proposed 
method are shown in Figs. 1 l(a) and (b), respectively. 
We can clearly see that the new method gives a 
more accurate result over a larger domain. 
We also show the absolute error of these two 
methods in Figs. 12 and 13 with both surface and 
contour plots. The improvement is clear from these 
plots. 

04 
4 : 

;;i 
2 . . . . . . . . . . . . . . . . . . .._. 

3 I’ 
p ; I 

y 
F 
-_2 . . . . . . . . . i . . . . . . . . . . . . . 

_4 ; ! I 
-10 0 10 

omega 
(d) 

Fig. 6. Results with QzO(t) for B, = n/S 
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(4 (b) 

0.08 . . . . . . . . . . . . . . . . 
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0.08 . ..__.__._..‘____..__ 

5 
‘% 0.06 

2’ 
E 0.04 
8 
2 0.02 
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Fig. 7. Results with 

0.1 

g 0.05 

0 
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-0.05 
-5 0 5 
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-5 0 5 
t 

omega 

x 10 
-3 

21 
W- 

I x : criiical point 

t 

Pp,,(f) for B1 = n/8. 

-41 : : : I 
-10 0 10 

omega 

2.5 
(d) 

x : britical point 

Fig. 8. Results with 4&,(t) for B1 = 311c/16. 
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-10 0 10 

omega 

W 

6. Conclusions 

We proposed a new reconstruction algorithm for 
a band-limited signal with a multiband structure 
from its finite samples. The concept of critical re- 
gions and values for a reconstruction algorithm 
was introduced for the performance measure. 
Based on this criterion, we can clearly see the 
improvement of our new algorithm for band- 
limited/multiband signals over the MMSE 
estimator for general band-limited signals. We 
also gave numerical experiments to support the 
theoretical derivation. 

x : critical point 

Fig. 9. Results with p2,,(t) for B1 = 31x/16. 
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Appendix A. Proof of Theorem 1 

Let a denote the solution vector for the system 
(3.3), and A be the coefficient matrix. Let f be the 
constant vector with components f(tJ in (3.3). 
Then, we can write (3.3) as 

Aa =J (A.11 

Let a(‘) be the Tikhonov regularization solution of 
the system (A.l) with parameter CC, i.e., 

aw = A*f 
A*A + cd 

64.2) 

where A* is the complex conjugate of the matrix 
A and I is the m x m identity matrix. Then, see 
~27,291, 

(A.3) 
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wnlour of the Fourier speclmm of f(s,t) 

‘“I 
reConstruction 

(a) (4 

0.3. 
0.3 

0.2. 

0.2 

0.1 

4 4 

I s 

(b) (b) 

Fig. 10. (a) The contour plot off^(w,, w2) and(b) the surface plot 
of the exact f(s, t). 

Fig. 11. The reconstructions: (a) &, &, t) and (b) p2,,. &, t). 

where O1 is a constant which only depends on the Let b denote the vector 
signal f: For each k with - K d k < K, let bki all possible k, i. From 
satisfy the following system: estimator 

for I = 1,2, . . . ,mk. (A.41 

0.4 
1 

with Components bki for 
b we have the MMSE 

@),,(t) = F bki sin ffy lki)_ 
i=l kr 



X.-G. Xiu et al. / Signal Processing 42 (1995) 273-289 287 

error 

I 44 
s 

6 

contour of the error 

(6) 

Fig. 12. The error err2 = I azo, zo(s, t) -f(s, t)l: (a) the surface 
plot and (b) the contour plot. 

(6) 

Fig. 13. The error err1 = _ I Yzo. 20(s, t) -.f(s, f)l: (a) the surface 
plot and (b) the contour plot. 

Then, by applying the error estimate (2.3) to the kth 
Bk band-limited signal h(t) of f(t), 

where f 2 T and r is defined in (3.4). Since 
t,E[-T,T],wehave 

/Ik mk 

for t E [ - z, r], (A.3 for n = 1,2, . . . ,m. 
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Therefore, 

UN(n) -_&)I = 

1 Y,(t) -f(t) 6 I K&) - 5 @m,tWjrC~ 
k=-K 

+ C @,,(t)e-jtCk -f(t) I k=-K 
,iJ, izl (Uki - bki) sin~~t~ lki) e-j"" / 

K 

for n = 1,2, . . . ,m, 

where 0 is as before. Let 

b(a) 4 
A*Ab 

A*A+aZ’ 

Then, 

Ilb - b(O) II < O,&, (A-7) 

where O2 is a positive constant which only depends 
on the signalfi By (A.l), (A.6) and (A.7), 

A*f A*Ab 

A*A + al - A*A + al (I 

+A*W -f)ll 

Therefore, 

II = - b II < II a - (I(~) II + Il a@) - b(=) II + II b - b@) (I 

G to,+ o,,& 

Setting 

we have 

Ila-bll GO’&(rkiK(y)“*)“3, (~4 

where 0’ is a positive constant which only depends 
on signalf: We are now ready to estimate the error 
of the new algorithm Y,. 

I K 

By (AS) and (A.8), for t E [ - z, 21 with z 3 T, 

Iym@) -f@)I 6 Olmr 

When z is significantly larger than T, 

where 0 is a constant which only depends on the 
signal jI 
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