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ID. CONCLUSION 
From the derivations given in Section 11, the polynomial residue 

number system can be interpreted by the terminology of Chinese 
remainder theorem for polynomials over a finite ring, which is more 
familiar for the computer and signal processing societies. 
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Abstract-Discrete wavelet transform (DWT) is often used to approxi- 
mate wavelet series transform (WST) and continuous wavelet transform 
(CWT), since it can be computed numerically. In this research, we first 
study the accuracy of the computed DWT coefficients obtained from the 
Shensa algorithm as an approximate of the WST coefficients. Based on 
the accuracy analysis, we then propose a procedure to design optimal 
FIR premters used in the Shensa algorithm to reduce the approximation 
error. Finally, numerical examples are presented to demonstrate the 
performance of the optimal FIR preMters. 
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I. INTRODUCTION 

Wavelet transforms have recently been recognized as useful tools 
for various applications such as signal and image processing, numer- 
ical analysis and physics. There are three types of wavelet transforms 
discussed in the literature, namely, continuous wavelet transform 
(CWT) [4], wavelet series transform (WST) [3], and discrete wavelet 
transform (DWT) [6],  [SI. These transforms using biorthogonal 
wavelet bases are briefly summarized below. We use the notation 

and 

Let $( t )  and G(t)  be, respectiyely, areal wavelet function and its dual 
such that { $ ] k ( t ) } j , k  and { 4 j k ( t ) } j , k  form a biorthogonal wavelet 
basis in Lz(R). Then, for f( t)  E L2(R), its CWT with respect to 
the wavelet $ ( t )  is defined as 

m 

CWT{f(t); a ,  b )  1, f ( t ) $ a , b ( t ) d t  

where a and b are called the scale and time parameters, respectively. 
The WST of f ( t )  is obtained by sampling its CWT in the scale-time 
plane (a, b )  with the so-called “dyadic” grid, i.e. 

WST{f(t); j ,  k )  
= CWT{f(t); a = 2-’, b = k 2 - ’ } , j ,  k E Z. 

Thus, the WST coefficients, also denoted by b J , k .  can be determined 
by 

CO 

b l , k  wsT{f ( t ) ; j ,  k} = f ( t ) $ ’ 3 k ( t ) d t ,  j, k E z. (1) 1, 
Moreover, f( t)  can be reconstructed via 

f( t)  = x x b j , k q j k ( t ) .  

3 k  

The orthogonal wavelet_is a special case of the biorthogonal one 
by requiring $ ( t )  = $(t) .  If the t as well as parameters ( a , b )  
all take discrete values, which are recognized as a natural wavelet 
transform for the discrete-time signal f(mAt) with m E Z, the 
resulting transform is called the DWT of f(t).  It is clear that only 
the DWT coefficients can be computed numerically, and the CWT and 
WST coefficients have to be approximated by the DWT coefficients 
in practice. 

Several numerical algorithms have been proposed to compute the 
DWT coefficients such as the Mallat algorithm [6],  the ‘‘2 trous” 
algorithm of Holschneider et al. [ 5 ] ,  and the Shensa algorithm [SI 
as a unified approach for the former two. Efficient implementations 
and detailed computational complexity analysis for these algorithms 
were discussed by Rioul and Duhamel [7]. However, an important 
issue which has not yet been addressed is the numerical accuracy of 
the computed DWT coefficients b i , k  with respect to the true WST 
coefficients b 3 , k  as defined in (1). This was considered as an open 
problem in the work by Rioul and Duhamel [7] and Shensa [SI. In 
this research, after a brief review of some results from wavelet theory 
in Section 11, we derive formulas to characterize the error between the 
computed and true wavelet coeficients in Section 111. With such an 
error analysis, we develop a procedure to design the optimal FIR 
prefilter q[n] to reduce the error as much as possible in Section 
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IV. Numerical examples are given in Section V to demonstrate 
the performance of the optimal prefilters for both orthogonal and 
biorthogonal wavelets. 

n. REVIEW OF BIORTHOGONAL WAVELETS 
AND DISCRETE WAVELET TRANSFORM 

We review basic properties of biorthogonal wavelets, and refer to 
[ l ]  for more details. Consider a real mother wavelet function $ ( t ) ,  
the associated scaling function 4(t),-and their dual functions $ ( t )  and 
$ ( t )  such that { $ J k ( t ) } l , k E Z  and { $ l k ( t ) } 3 , k E Z  form a biorthogonal 
wavelet basis in L2(R). Let the Fourier transform of f ( t )  E L2(R) 
be denoted by 

j ( w )  = 1, f ( t ) e - ' " t d t  

00 

and 

H ( w )  = C h n e C z n w  and G(w) = x g n e - z n w  
n n 

be the associated filters of 4( t )  and $( t ) ,  respectively. Similarly, we 
associate the following dual filters 

& ( U )  = x L n e C a n W  and G ( w )  = x g n e - 2 n w  

with the dual wavelet and scaling functions q ( t )  and $( t ) ,  re- 
spectively. One can derive the following well known properties for 
biorthogonal wavelets (see Chapter 5 in 111): 

" n 

W m 

$(J) = n H ( 2 Z k w ) ,  and ; (U)  = n I?(2-kw), 
k = l  k = l  
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i ( w  + 2 k 7 i ) $ ( - w  - 2kn) = 1. 
k 

Note that one possible solution for the second equation of the system 
(2) is 

G ( w )  = e-'"&(w + 7 r )  and G ( w )  = e-*"H(w + 7 r ) ,  ( 3 )  

which is _often imposed to simplify the filter design procedure. 
Let ( V , ) , E Z  denote the multiresolution wavelel subspaces in 

L2(R) corresponding to the dual s_caling function + ( t ) ,  and f ~ ( t )  
be the projection of f E L2(R) in VJ for an arbitrarily fixed integer 
J. In mathematical terms, we can write 

fJ(t) = x C J , k $ J k ( t )  x b j , k q j k ( t )  

k 3 < J  k 

where 
m 

c J , k  = 1 f ( t ) d J k ( t ) d t  (4) 
00 

and b J , k  is defined in (1). The coefficients b l , k  with j < J can be 
obtained from C J , k  via 

and 

for j = J ,  J - 1,. . . , J ,  + 1. Besides, one can reconstruct C J , k  from 
C J , , k  and b j , k .  J ,  5 j 5 J ,  via 

To compute wavelet coefficients with the Shensa algorithm, we 
first perform a prefilering on the sampled signal 4.1 = f ( r ~ / 2 ~ )  to 
obtain a new sequence x ' [n ] ,  i.e. 

z'[n] = C z [ m ] q [ n  - m] (7) 

and then apply the recursion (5) and (6) to ~ ' [ n ] .  The DWT 
coefficients of ~ ' [ n ] ,  denoted by 

nl 

DWT{z'[n];j,k} A b:sL, j < J , k  E Z 

are called the wavelet coefficients obtained from the Shensa algo- 
rithm. The well known Mallat algorithm is in fact a special case of 
the Shensa algorithm by choosing q[n]  = b[n] .  

111. ERROR ESTIMATION OF COMPUTED WAVELET COEFFICIENTS 
We see from the previous discussion that the difference between 

the WST coefficients { b J , k }  and the DWT coefficients { 2 - " / ' b ~ ~ , ' }  
results from the difference between the input sequences C J , k  in (4) 
and 2 - J / 2 2 ' [ k ]  given by (7). This can be written as 

b j , k  - 2-J/2b!,sk) = DWT { c J , ~  - 2 - J / 2 2 ' [ n ] ; j , k } .  

This error difference can be analyzed with two steps. That is, we first 
find an expression for the difference between C J , k  and 2 - J / 2 z ' [ k ] ,  
and then analyze the recursion (5) and (6) of the DWT. 

For the first step, we have 
W 

C J , k  = 2"' 1, f ( t ) f$ (2J t  - k ) d t  

In addition, we know 

2 - J / 2 z ' [ k ]  = 2 - J / 2  C z [ m ] q [ k  - m] 
m 

where & ( U )  = E, q[n]e"". Therefore, it is concluded that for 
k E Z, 

C J , k  - 2 - J ' 2 Z ' [ k ]  

f (  -2 J w )  ( $ ( U )  - &( w))e- 'k"dw.  
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For the second step, let s[n] be an arbitrary discrete sequence used In particular, if 
as the input to the filters H ( w )  and G(w) so that it is decomposed 
into an approximation sequence U[.] and a detail sequence d [ n ] :  IH(w)12 + IG(w)12 = 1, 

v w  E [ -T ,T]  

a[k] = fie hn-Zks[n] (8) { R e [ m H ( $ t . ) + m G ( $ + ~ ) ] = * ,  (10) 

(9) 

then 

n Thus, the decomposition (8)-(9) preserves energy. 
With the results obtained in Ste s 1 and 2, we can easily estimate 

the error between b3,k and 2-J/2b,psx) For orthogonal wavelets, since 
H ( w )  = H ( w )  and G(w) = G ( w ) ,  condition (10) holds as a direct 
consequence of (2). Thus, by recursively applying (1 l), we have the 

Let s ( w )  = En ~ [ n ] e - * ~ ~ .  Take Fourier transforms of (8) and (9), 

A(2h) = [A(w)S(w) + H ( w  + T)S(W + T ) ]  Jz 
and following error estimate: 

Ib3,k - b:?Ll2 = l C j , k  - 2-J/2C'[k](2. 
J ~ J - 1  k k 

\ / 

where j 5 J - 1. 

IV. OWIMAL FIR PREFILTER DESIGN 
By examining (12) and (13), we see that for a signal with energy 

concentrated in frequency band [-2 J ~ ,  2'7~1, the integral term 

Cr,+(Q) = /' If^(-2Jw)lzlQ(w) - d(w)I2dw 

is the dominant term of the error. Thus, it is natural to minimize 
Cf,+ (Q) for the design of prefilter Q ( U )  to reduce the error between 
b,,k and 2- J / l " b ~ ~ ~ .  

(14) 
--* 
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0.0500 -0.0345 
0.6136 0.5975 -0.2039 0.1015 -0.0693 
0.0520 -0.0402 0.0287 
0.6135 0.5976 -0.2042 0.1018 -0.0698 

Fig. 1. Errors for: (a) causal; (b) noncausal signal dependent optimal 
prefilters in Example 1. 

TABLE I 
OPTIMAL PREFILTERS FOR THE D4 BASIS WITH a = 0 

length N 

0.6466 0.5846 -0.1975 
0.6466 0.5846 -0.1975 0.0980 
0.6466 0.5846 -0.1975 0.0980 -0.0675 
0.6466 0.5846 -0.1975 0.0980 -0.0675 

I 0.0517 
7 I 0.6466 0.5846 -0.1975 0.0980 -0.0675 

I 0.0517 -0.0420 
8 I 0.6466 0.5846 -0.1975 0.0980 -0.8975 

0.0517 -0.0420 0.0353 
0.6466 0.5846 -0.1975 0.0980 -0.0675 
0.0517 -0.0420 0.0353 -0.0305 
0.6466 0.5846 -0.1975 0.0980 -0.0675 
0.0517 -0.0420 0.0353 -0.0305 0.0269 

Fig. 2. Errors for: (a) causal; (b) noncausal signal independent optimal 
prefilters in Example 1. 

TABLE II 
OPl'IMAL F'REFILTERS FOR THE Dq BASIS WITH a = 0.1 

length N &I, 0 5 n 5 N - 1 

0.6179 0.5884 -0.1805 
0.6154 0.5942 -0.1975 0.0854 
0.6145 0.5961 -0.2015 0.0968 -0.0573 

6 0.6140 0.5969 -0.2029 0.0998 -0.0659 1 0.0431 
7 I 0.6138 0.5973 -0.2036 0.1010 -0.0683 

I 0.0528 -0.0419 0.0336 -0.0246 
10 I 0.6135 0.5977 -0.2043 0.1020 -0.0700 I 0.0532 -0.0427 0.0351 -0.0288 0.0214 I 
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~ .... 

0.6766 0.4347 -0.0976 
-0.0783 0.6766 0.4347 -0.0976 0.0573 

TABLE JII 
SIGNAL DEPFNDENT OFTIMAL PREFILTERs FOR THE BIORTHWNAL WAVELET 

4 

length N I  I qo[n], -NI I n 5 NI 
0 1 1.0000 I 

-0.0405 
-0.0379 0.0518 -0.0783 0.6766 0.4347 -0.0976 

5 

3 I 0.0518 -0.0783 0.6766 0.4347 -0.0976 0.0573 1 

0.0573 -0.0405 0.0314 
0.0298 -0.0379 0.0518 -0.0783 0.6766. 0.4347 

1 
2 

0.6749 4349 -0.0965 
-0.0770 0.6763 0.4348 -0.0974 0.0563 

I I -0.0976 0.0573 -0.0405 0.0314 -0.0256 

3 

4 

5 

TABLE IV 
SIGNAL INDEF-ENDENT OFTIMAL PREFILTERS FOR THE BIORTHWNAL WAVELET 

length N I  I qo[n], -N I n I Nl 
0 I 1.0000 

0.0508 -0.0780 0.6765 0.4347 -0.0976 0.0571 
-0.0397 
-0.0371 0.0516 -0.0782 0.6766 0.4347 -0.0976 
0.0572 -0.0403 0.0307 
0.0291 -0.0377 0.0517 -0.0782 0.6766 0.4347 
-0.0976 0.0572 -0.0404 0.0312 -0.0250 

We consider the determination of the optimal filter qo[n] (or 
Qo(w))  which has a finite length and minimizes the cost function 
Cf ,+(Q) .  To do so, let us expand C f , + ( Q )  as a function of q[n] 

n n<m 

n 

where 

B,, = 2 J_: [ [ ( - 2 ~ w ) 1 2  cos((n - m ) w ) d w ,  for n # m 

(16) 

(17) cn = J_: I f (  -2Jw)12Re(~(w)e -2nv )dw 

D = If^(-2Jw)121&~)12dw. 

The solution of the above problem can be solved from the following 
equation 

Let the prefilter be an FIR filter of length N  with filter coefficients 
q[n] = 0 for n < NI and n 2 N2 and NZ - NI = N  > 0. Then, 
with (18), one can show that the optimal qo[n], NI 5 n 5 N2 - 1, 
can be solved from the following linear equations: 

Tiqo = C I ,  

and A, B,, and C, are defined by (15), (16) and (17), respectively. 
For some applications, it may be preferable that the prefilter does 

not depend on a signal while some partial knowledge of signals is 
available, say, the rough shape of signal spectra. To compute the 
WST coefficients for this class of signals, we may adopt a procedure 
using a nonnegative weighting function F ( w )  to replace the term 
I f ( -2Jw)12 in (14). For example, consider 

where the parameter a can be adjusted according to different appli- 
cations. If the input signal is known in advance, it is natural that the 
error b:? resulting from the signal-independent optimal prefilter is 
larger than that resulting from a signal-dependent optimal prefilter. 

V. NUMERICAL EXAMPLES 
We consider two numerical examples of optimal FIR prefiltering 

for the Shensa algorithm with orthogonal and biorthogonal wavelets, 
respectively. 

Example I -Orthogonal  Wavelets: The test function f (t) is a 2 6 ~  
band-limited signal whose Fourier spectrum is of the form 

3 I 4  < 2 6 T ,  e-(w/loo)~ 

f ( 4  = { o, otherwise. 

The wavelet bases studied include the Haar wavelets, the Daubechies 
D4 and Dg . Both causal and noncausal prefilters are considered. For 
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a non-causal prefilter with length N, we always choose - N I  + 1 2 
N2 - 1 2 - N I  where N = NZ - N I .  

First, we examine the error when the signal-dependent optimal 
prefilter is used in WST coefficient computation by the Shensa 
algorithm and plot the result in Fig. 1. We can see the significant 
improvement of the Shensa algorithm with a prefilter of length N > 1 
from the Mallat algorithm corresponding to the case N = 1. Also, 
the error resulted from the Shensa algorithm by using a non-causal 
optimal prefilter is smaller than the one by using a causal optimal 
prefilter when the prefilter length N 2 4. Second, we examine 
the error when the signal-independent optimal prefilter is used. The 
weighting function F ( w )  used is F ( w )  = with a = 0 and 
0.1. For a = 0, the optimal prefilter qo[n] can be solved from 

Thus, the optimal qo [n] is exactly the coefficients d,, N I  5 n < N z ,  
of the Fourier series expansion of 4 ( w )  in [-T,T]. This implies 
that the optimal qo[n] with shorter length is the truncation of the 
one with longer length. We show in Tables I and II two designs of 
signal-independent optimal causal prefilters with lengths from 1 to 10 
where the wavelet basis is the Daubechies D4. Fig. 2 shows the error 
between b f , k  and bl:i with the same parameters as in Fig. 1 except 
the prefilters used here are signal-independent with F ( w )  = & ( U ) .  

We see that the error resulting from the Shensa algorithm with N > 1 
is also much smaller than the one resulting from the Mallat algorithm 
with N = 1. The properties in Fig. 2 are similar to the ones in Fig. 1 
except the errors in Fig. 2 are generally larger than the ones in Fig. 1. 

Example 243iorthogonal Wavelets: The biorthogonal wavelet 
basis adopted here is given in [2]. The filters are 

and 

and filters G ( w )  and G ( w )  are determined according to (3). The test 
function considered is 

which is 2J7r band-limited with J = 6. We focus on noncausal 
filters q ( - N l ) , q ( - N l  + 1), . . . , q (  NI - l ) , q ( N l )  of length N = 
2N1 + 1, and both signal dependent and signal independent optimal 
prefilters are designed. For the signal independent case, we choose 
the weighting function 

F ( w )  = e--awz , a = 0.01. 

Tables III and IV show the filter coefficients for N I  ranging from 
0 to 5. 

The errors ej, j = 5,4,3, between the true WST coefficients and 
the computed ones are defined as 

8 ‘i 

8 ’i 

pnfiltcr length N 

(b) 

Fig. 3. The errors es ,  e4 and e3 between desired b j , k  and the computed 
b:? with (a) signal dependent and (b) signal independent optimal prefilters 
as given by Tables III and IV. 

and plotted in Fig. 3. Again, we see a clear advantage of the Shensa 
algorithm with optimal prefilters of even very short length. There is 
no substantial difference for signal dependent and signal independent 
cases if an appropriate parameter a of the weighting function in (19) 
is used for this particular test problem. 

VI. CONCLUSION 
In this work, we studied the error estimate between the true WST 

coefficients and the computed ones from samples of a continuous 
time signal by using the Shensa algorithm with biorthogonal wavelet 
bases. We discussed the design of optimal prefilters used in the Shensa 
algorithm, and showed that they provide significant improvement 
on the accuracy of computed wavelet coefficients over the Mallat 
algorithm. 
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Efficient Closed-Form Estimation of Multivariate 
Moving-Average Processes Using Higher Order Statistics 

Hong Chen, Tao Chen, and Tianping Chen 

Abstract-In this paper, an improved algorithm is proposed for esti- 
mation of noncaussian, nonminimum phase, multivariate moving average 
(MA) processes using higher order cumulants. This algorithm improves 
upon earlier results [3] [ U ]  and contains development beyond existing 
algorithms. It provides a closed-form solution to estimating the M A  
parameter matrices (up to a post-multiplication by a permutation matrix), 
and (under certain assumptions) eliminates the indeterminacy associated 
with scaling. The algorithm is theoretically derived and tested via com- 
puter simulations. In addition, it will be shown that this algorithm is 
computationally more efficient than the one in [l l] .  Finally, the effect of 
imperfect input data on our algorithm is tested via simulations. 

I. INTRODUCTION 
Estimation of multivariate moving-average processes is one of the 

fundamental problems in time series analysis, with applications in 
multivariate linear prediction, spectral estimation [9], image cod- 
ing and multivariate control. Conventional methods based only on 
second-order statistics generally require the assumption that the MA 
models are of minimum phase. The use of higher-order statistics 
makes it possible to estimate MA models, which may be non- 
minimum phase, noncausal and/or non-Gaussian [4]. Moreover, a 
cumulant-based estimator is insensitive to additive Gaussian obser- 
vation noises, white or colored. 

Because of these features, cumulant-based methods have received 
considerable interest [1]-[13]. Although much of the work in this 
area is concentrated on the single channel case, third-order cumulant- 
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based methods were recently reported for estimating parameters 
of multivariate MA models in [3] and [4]. It was shown in [3] 
and I l l ]  that the information contained in the third-order output 
cumulants theoretically is sufficient for the identification of the 
multivariate MA parameter matrices, up to a post-multiplication by a 
permutation matrix. In particular, when driven by i.i.d. (independent 
and identically distributed) input signals, these parameters satisfy a 
set of nonlinear equations involving third-order output cumulants, 
now referred to as cumulant-based identification (CBI) equations [3] 
[ 111. Similar CBI equations of any (higher) order were derived using 
the Kronecker product in [lo]. 

Although the issue of theoretic identifiability has been well ad- 
dressed by these papers, there is a need for practical algorithms. 
However, solving these simultaneous nonlinear CBI equations is non- 
trivial. A closed form solution for the bivariate case was given in [ 11; 
adaptive algorithms have been proposed in [ l ]  and [6]. A solution was 
proposed in [3] when the initial model m a e x  is in a triangular form. 
Recently, an interesting eigenstructure-based iterative algorithm for 
solving the third-order CBI equations was proposed in [ I l l ,  which 
identifies the MA parameter matrices up to a post-multiplication by 
a permutation matrix and a diagonal (scaling) matrix. 

In this correspondence, we improve upon the results in [3] and 
[ 1 11 and independently develop a closed-form identification algorithm 
to solve this problem. Instead of relying on some intermediate 
matrix variables whose positive-definiteness is required, and must 
be guaranteed by the clever use of iterative procedures such as a 
perceptron algorithm [ 111, this improved algorithm adopts an alter- 
native approach which circumvents this difficulty. In addition, this 
algorithm removes the indeterminacy of scaling in the final results. 
Finally, the computational efficiency is considerably improved. 

The authors wish to point out that recently, an improvement [12] 
was independently made to solve the same problem in closed form, 
while retaining the scaling and permutation indeterminacy. 

11. PROBLEM FORMULATION 

Let {y(t) E R”} be a stationary process. The third-order cu- 
mulants of { y ( t ) }  are defined as the set of n x n matrices [3] 
r111 

Ct(mi, mz) = E{y(t + mi)y*(t)y,(t + m z ) } ,  i = 1,2,... ,n 
(1) 

where yz(t) denotes the ith component of vector y(t) and E ( . )  
denotes the mathematical expectation operator. Consider a stationary 
n-variate, qth order MA vector process given by 

q 

y(t) = H ( k ) z ( t  - k )  + n( t )  
k=O 

satisfying the following assumptions [3] [ 111: 
1) H ( 0 )  and H ( q )  E RnXm are of full column rank. 
2) {z ( t ) }  is an m-variate, zero-mean, stationary and nonGaussian 

process with components { z c ( t ) } .  Spatial order m is not 
necessarily known. 

3) { n ( t ) }  with components {n,( t )}  is an n-variate, Gaussian, 
perhaps colored, zero-mean process independent of {z(t) }. 

1 ,  f o r i = j = k  

0, otherwise. 
and ti = t z  = t 3  4) E{zt(tl)zj ( t 2 ) z k ( t 3 ) }  = 
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