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A New Initialization Technique 
for Generalized Lloyd Iteration 

Ioannis Katsavounidis, C.-C. Jay Kuo, and B e n  Zhang 

Abstract-The generalized Lloyd algorithm plays an important 
role in the design of vector quantizers (VQ) and in feature clus- 
tering fdr pattern recognition. In the VQ context, this algorithm 
provides a procedure to iteratively improve a codebook and 
results in a local minimum that minimizes the average distortion 
function. In this research, we propose an efficient method to 
obtain a good initial codebook that can accelerate the convergence 
of the generalized Lloyd algorithm and achieve a better local 
minimum as well. 

I. INTRODUCTION 
VECTOR quantizer Q of dimension k and size N is a A mapping from a vector in k-dimensional Euclidean space 

Rk into a finite set C containing N output or reproduction 
points. We can write it mathematically as &: Rk -+ C, where 
C = {yl:y2 , . . . ,  y ~ } ,  and 9% E Rk. The set C is called the 
codebook, and yi, 1 5 i 5 N, are called the code vectors or 
codewords. To measure the vector quantizer performance, a 
distortion measure d(z,  Q ( x ) )  has to be defined in association 
with any input vector z and its reproduction vector Q(x) .  With 
such a measure, one can quantify the performance of a vector 
quantizer by either the average distortion D = E[d(x,  &(.))I 
or the worst-case distortion D,,, = max,d(z,Q(z)). To 
permit tractable analysis and easy evaluation, the distortion 
measure is often chosen to be the squared error d(z, &(x)) = 
112 - Q(x)112. 

The design of an optimal quantizer is to seek the code- 
book that minimizes the average distortion over all possible 
codebooks. It can be easily shown that the optimal quantizer 
must satisfy the following two conditions. First, it must be a 
nearest neighbor quantizer, i.e., it assigns to an arbitrary vector 
the codeword that is closest to it. Second, for a given partition 
of the feature space, it must satisfy the centroid condition, i.e., 
each codeword must be the centroid of the vectors that are 
mapped to it. The above two optimality conditions provide an 
algorithm for the design of a locally optimal codebook with 
iterative codebook improvement. This algorithm is known as 
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the generalized Lloyd iteration where each iteration consists 
of the following two steps: 

1. Given a codebook C,,, = {yi; i = 1, . . . , N} obtained 
from the mth iteration, find the optimal partitioning of 
the space Rk, that is, use the nearest-neighbor condition 
to form the nearest-neighbor cells Ri = {x: d(x,yi) < 

2. Use the centroid condition to update the codebook 
Cm+l = {centroid(Ri); i = 1,. . . , N}, which is the 
optimal reproduction codebook based on the cells found 
in (1). 

The above algorithm is an iterative optimization procedure 
based on the method of alternating projections and, therefore, 
leads to a local minimum. 

It has been observed that both the convergence rate of 
the generalized Lloyd iteration and the performance of the 
converged codebook depend on the initial codebook CO. Thus, 
it is important to find a good initial codebook. Many different 
initialization methods have been proposed, including random 
coding, pruning, pairwise nearest-neighbor design, product 
code, and splitting. A thorough survey of these methods 
can be found in [Z]. Although random coding and product 
codes are easy to implement, they provide poor results, i.e., a 
larger number of generalized Lloyd iterations and a poor local 
minimum as the ultimate codebook. The pruning, pairwise 
nearest-neighbor design and splitting initialization methods 
give better results but have a higher computational complexity. 
Equitz [ 11 proposed a reduced-complexity pairwise nearest- 
neighbor method that produced better results than random 
initialization. 

To improve the performance of the VQ codebook, meth- 
ods other than the standard GLA have been examined by 
researchers. Yair et al. [4] suggested an on-line (or serial) 
version of the GLA that achieved better results than some 
implementations of the GLA. Zeger et al. [5] proposed to use 
stochastic relaxation, such as the simulated annealing method, 
to achieve a better result than GLA. These methods show an 
average improvement of 0.3 dB in codebook performance, but 
they require significantly more execution time than the GLA. 

In this letter, we propose a new simple initialization tech- 
nique that leads to a fast convergence behavior and a con- 
verged codebook with an excellent performance in terms of 
average or worst-case distortion. Note that the work in [4] 
and [5J addressed the optimality of the GLA and proposed 
substitutes for that while we are trying to find a way to improve 
the result by changing the initial conditions of the GLA. 

d(x,YJ;j # i). 
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11. NEW bJITIALIZATION mCHNIQUE 

The idea behind our technique is similar to that of pruning, 
that is, we pay attention to the training vectors that are most far 
apart from each other because they are more likely to belong to 
different classes. Let vi, i = 1, . . . , M be the training sequence 
of vectors. The procedure can be stated as follows: 

1. Calculate the norms of all vectors in the training set. 
Choose the vector with the maximum norm as the first 
codeword. 

2. Cdculate the distance of all training vectors from the first 
codeword, and choose the vector with the largest distance 
as the second codeword. Then, we have a codebook of 
iize 2. 

3. Generally, with a codebook of size i, i = 2 , 3 , .  . ., we 
compute the distance between any remaining training 
vector 'uk and all existing codewords and call the smallest 
vdue the distance between V k  and the codebook. Then, 
the training vector with the largest distance from the 
codebook is chosen to be the (i + 1)th codeword. The 
procedure stops when we obtain a codebook of size N .  

The essence of the above procedure is to use the vector 
that is most different from existing code vectors as the new 
codeword. Note that in Step 3, we only need one distance 
computation for each training vector at each iteration since 
only one new member is added to the codebook. Based on 
this observation, it is easy to see that it takes N iterations to 
obtain a codebook of size N ,  and each iteration requires M 
distance calculations, and consequently, the entire initialization 
procedure has a complexity of O ( M N ) .  This is exactly the 
same as the complexity of one generalized Lloyd iteration. 

The proposed initialization scheme has several attractive 
properties. First, it can be applied to arbitrary codebook sizes 
(not only of integer resolution as is the case for product codes 
and splitting). Second, there is no need for the specification 
of a threshold, like the pruning method. Third, with proper 
implementation, we can keep the minimum distance as well 
as the associated codeword for each training vector during 
the initialization phase. Thus, we can also obtain the initial 
partition as the byproduct. This means that by doing the 
proposed initialization procedure, we are in fact performing 
the first generalized Lloyd iteration. 

111. PERFORMANCE EVALUATION 

We find it difficult to provide a performance analysis of 
the proposed new method and will instead present some 
experimental results to illustrate its performance. We applied 
the new method to a set of training sequences obtained from 
three test images. They are the well-known baboon, Lena, and 
boat images from the USC image database, which have a size 
of 512 x 512 pixels and 256 gray scales per pixel. We examined 
different block sizes including 2 x 2, 4 x 4, and 8 x 8. 

Our method was compared with the splitting method [3], 
which is, in fact, the primary competitor. We restricted our 
experiments to integer resolution, i.e., a codebook of size 
N = 2m for some integer m. However, it must be em- 
phasized that this is a restriction of the splitting and not 
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Fig. 1 .  
(dashed) and proposed new (solid) initialization methods. 

Convergence history of generalized Lloyd iteration with the splitting 

TABLE I 
MSE VALUES OF CODEBOOKS OBTAINED IN 20 GENERALIZED LLOYD ITERATIONS 

of our method. We allowed two generalized Lloyd iterations 
in the intermediate stages of the splitting process. Since the 
complexity of one generalized Lloyd iteration at resolution 
2a is 2iM, the complexity of the whole initialization process 
is 2CTL; 2 k M  = 2M(2" - l),  which is equivalent to the 
computational complexity of two generalized Lloyd iterations 
at the finest (i.e., 2") level. 

We report the results for the baboon image in Fig. 1 and 
Table I. In Fig. 1, we plot (in semi-logarithmic scale) the MSE 
value versus the number of generalized Lloyd iteration with 
different block sizes by choosing N = 512. Recall that the 
initialization with the splitting method is equivalent to two 
generalized Lloyd iterations while our method does not add 
extra cost. Thus, to make a fair comparison, the solid curve 
(our method) starts with 0 iteration, whereas the dashed curve 
(splitting) starts with two iterations. We see that the MSE 
decays very quickly (in one iteration) for our method and 
has a lower converged value. We also list the MSE values 
for various codebook and block sizes after 20 generalized 
Lloyd iterations in Table I. We see that our method provides 
a better codebook with lower MSE values for all cases. To 
characterize the gain, we computed the ratios of MSE values of 
two methods and expressed them in decibels. When the vector 
dimension IC or the codebook size N becomes larger, the gain 
is more pronounced. Generally speaking, the improvement is 
very impressive. The same results were also observed for the 
Lena and boat test images. 

IV. CONCLUSION 

An efficient initialization technique for the generalized 
Lloyd iteration was proposed in this letter. It reduces the com- 
putational complexity and achieves a better local minimum. 
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Thus, it provides an excellent choice for the implementation [2] A. Gersho and R. M. Gray, Vector Quantization and Signal Compression. 
of the generalized Lloyd algorithm in both vector quantization 
and unsupervised clustering applications. 
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