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SIGNAL EXTRAPOLATION IN WAVELET SUBSPACES*

XIANG-GEN XIA$, C.-C. JAY KUO:, AND ZHEN ZHANG

Abstract. The Papoulis-Gerchberg (PG) algorithm is well known for band-limited signal extrapolation. The
authors consider the generalization of the PG algorithm to signals in the wavelet subspaces in this research. The
uniqueness of the extrapolation for continuous-time signals is examined, and sufficient conditions on signals and
wavelet bases for the generalized PG (GPG) algorithm to converge are given. A discrete GPG algorithm is proposed
for discrete-time signal extrapolation, and its convergence is investigated. Numerical examples are given to illustrate
the performance of the discrete GPG algorithm.
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1. Introduction. Band-limited signal interpolation (or sampling) and extrapolation have
many applications in both mathematics and engineering, including radio astronomy, radar tar-
get detection, geophysical exploration, medical image processing, and communication theory.
The Shannon sampling theorem provides a signal interpolation formula from discrete samples
of a band-limited signal if the sampling rate is above the Nyquist rate. In the ’70s, Papoulis
[14] and Gerchberg [9] developed an algorithm for extrapolating a band-limited signal outside
a known interval. There have been many extensions and modifications of these two funda-
mental signal interpolation and extrapolation schemes [3], [4], [11], [15], [18]-[22], [24],
[28]-[32]. However, all of them were derived from the Fourier transform viewpoint. Wavelet
theory has been extensively studied for the last several years [5], [6], [8]. It provides various
attractive multiresolution bases for signal representation with a good time-frequency local-
ization property. In particular, if the scaling function is chosen to be the sinc function, the
corresponding wavelet subspaces are those formed by band-limited signals. By extending the.
Shannon sampling theorem for band-limited signals, Walter [23] derived a general sampling
theorem applicable to signals in wavelet subspaces. In this research, we are interested in
generalizing the Papoulis-Gerchberg (PG) algorithm from band-limited signals to signals in
the wavelet subspaces.

Let us use the following two simple examples to illustrate the nature of the extrapolation
problem. Consider first the Haar wavelet, where the scaling function cpn(t) X0,1) (t), which
is 1 when 0 < < 1 and 0 otherwise. The wavelet subspaces

Vj={f(t)" f(t) is constant in each interval I2, (k+l))2j kZ} wherejZ,

consist of piecewise constant functions on intervals of length 2-J. For a signal f(t) Vj,
even though we know that the values of f(t) in interval [ko/2 kl/2J), where k0, kl Z and

k0 < kl, there is no unique way to extend f(t) outside the interval. Second, consider the sinc
wavelet as mentioned earlier where tPs sin,r_____.Zt and the wavelet subspaces Vj are
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SIGNAL EXTRAPOLATION IN WAVELET SUBSPACES 5 1

Vj {f (t) f (t) is 2jzr band-limited}.

For this case, any f(t) in Vj is an entire function [2] so that it can be uniquely determined by
its arbitrary piece. One such extrapolation procedure is in fact provided by the PG algorithm.
An important focus of this research is to study the convergence.of the generalized Papoulis-
Gerchberg (GPG) algorithm and the uniqueness of the extrapolated signal. Several sufficient
conditions on signals and wavelet bases for convergence and uniqueness will be given in 3
and 4. To implement extrapolation numerically, we propose a discrete GPG (DCPG) algorithm
which extrapolates a scale-time limited sequence.

This paper is organized as follows. In 2, we briefly review the PG algorithm for
band-limited signals and basic results of wavelet theory. We consider the extrapolation for
continuous-time signals in 3 and give some examples in 4. We then focus on the extrapola-
tion for discrete-time signals and establish a connection between the continuous and discrete
cases in 5. Some numerical examples are given in 6.

2. Preliminaries. We briefly review the PG algorithm for band-limited signal extrapola-
tion and orthogonal wavelets in this section. The following notations will be used throughout
this paper. The L2(R) denotes all real square integrable functions (or signals) defined on R.
For D > 0, the L2[-D, D] denotes all signals f(t) defined on I-D, D] satisfying

D

If (t)12dt <
D

Let (,) and denote the inner product and the norm on L2(R), i.e.,

(f, g) f (t)g(t)dt, where f(t), g(t) e L(R),

and Ilfll (f, f). Similarly, we use (,) and I1" lie to denote the inner product and the
norm on L[-D, D]. For f(t) La(R), we define

f(w) f(t)e-iUdt

to be the Fourier transform of f(t).

2.1. ThePG algorithm. A signal f (t) is said to be 92 band-limited if its Fourier spectrum
3?(09) 0 for Iol > s2. Let f(t) be 92 band-limited and f(t) be given for Itl < T with T > 0.
The question is to recover f(t) for Itl > Z. Define two projection operators Pr and Pn as
follows:

I f(t), Itl <T,PrY(t) / 0, Itl > T,

and

P(o) / f()’ Io1 <
/ 0, Iol >_

where Pr and P act on signals in the time and frequency domains, respectively. Let - and
.T"- be the Fourier transform operator and its inverse, respectively, and let I be the identity
operator. Then, the PG algorithm is defined by the following iterative procedure.
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52 X.-G. XIA, C.-C. J. KUO, AND Z. ZHANG

PG ALGORITHM.

(2.1) f()(t) Prf(t).

Forl 0, 1, 2

(2.2) f(l+l)(t) PTf (t) + (I Pr)F- PfSFf(l)(t).

This can also be written as

(2.3) f(l+l) (t) Prf (t) + (I Pr)PC f(l) (t),

where pa = ."-1 ef.-’, which can be viewed as the orthogonal projection from L2(R) onto
the f2 band-limited signal space.

In 14], it was shown that fq) f converges to 0 as goes to o. For the generalization
and discretization ofthe PG algorithm for band-limited signals, we refer to [4], 10], 18]-[22],
[24], [28], [30]-[32].

2.2. Orthogonal wavelets. We focus on real orthogonal wavelets in this paper, and refer
to [5], .[6], [8] for more detailed discussion. Let (t) be a real scaling function such that, for
a fixed arbitrary integer j,

{qbjk(t)}kZ, where qbjk(t) 2J/2q(2Jt k)

is an orthonormal basis of the wavelet subspace Vj, and V }jz is a multiresolution approx-
imation of L2(R), i.e., Vj C Vj+I and j Vj L2(R). The wavelet function corresponding
to 4(t) is denoted by (t) and aPjk(t) 2J/2q/(2j k). The associated quadrature mirror
filters can be expressed as

(2.4) H(w) E hke-ik and G(w) E gle-ik)’
k k

where gk (- 1)h_,
(2w)-- H(w)$(w), and (2w) G(w)(w).

Then, we have

(2.5)
j=-oo k=-oo

for any f(t) c= L2(R) and

(2.6)
k=-o j <J k=-o

for any f(t) Vj, where bj,i (f, q/jk) and cj, (f, 4j). Let PS denote the orthogonal
projection operator from LE(R) onto Vj, i.e., for any f(t) Vs,

(2.7) PJf(t) E CJ,kCJk(t).
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SIGNAL EXTRAPOLATION IN WAVELET SUBSPACES 53

The bj,k in (2.5) are called the wavelet series transform (WST) coefficients of f(t), and
(2.5) provides the inverse wavelet series transform (IWST) of bj,k. On one hand, the WST
coefficients bj, with j < J can be obtained from coefficients cj, by the recursive formulas:

Cj-l,k xn hn-2kCj,n,(2.8)
bj-l, Yn gn-2kCj,n

for j J, J 1, J 2 On the other hand, we have the following synthesis formula to
compute coefficients cj, from cj0,k and bj,k with J0 < j < J via

for j J0, J0 + J 1. By viewing cj, as a sequence x[n], we call (2.8) the discrete
wavelet transform (DWT) ofthe sequence x[n] and (2.9) the inverse discrete wavelet transform
(IDWT) of coefficients cj., and bj,. By using the orthonormality of the wavelet basis, one
can prove that both DWT and IDWT preserve energy.

3. Extrapolation ofcontinuous-time signals. We examine the extrapolation for contin-
uous-time signals in wavelet subspaces in this section.

3.1. The GPG algorithm. Let f (t) Vj for a fixed integer J. Given the value of f (t)
for Itl < T (T > 0), we are concerned with the determination of the value f(t) for Itl >_ T.
We propose the following GPG algorithm for extrapolation.

GPG ALGORITHM.

(3.1) f)(t) Pf(t).

For/=0, 1,2

(3.2) f(l+l)(t) PTf(t) + (I Pr)PJ ft)(t),

where PJ is the projection operator defined in (2.7).

Note that the above iterative procedure reduces to the standard PG algorithm (2.3) if
t(t) sinzrt

--YT- as shown below. For this case, f(t) Vj implies that f(t) is 2Jrr band-limited
and PJ f--1 pal. pa with f2 zr2J.

The GPG algorithm has the property that it reduces the error energy during the iteration
process. To see this, we know from (3.2) that

fq+l)(t) f(t) (I- PT)(PJ fit)_ f)(t) (I- pj)pJ(fl f)(t)

for f(t) Vj. Therefore,

IlfI+> fll < III PJIIIIPJIIIIfI)- fll < IIf1)- fll.

3.2. Convergence and uniqueness results. We say that a signal f(t) can be uniquely
determined in a signal set S from its segment f(t) defined on interval [A, B], if any f(t), g(t)
S with f(t) g(t) for 6 [A, B], implies f(t) g(t) for 6 R. In this subsection, we will
perform some theoretical study on the convergence of the GPG algorithm, the uniqueness of
extrapolated signals, and their relationship.

We first focus on the convergence issue. To do so, results from operator theory 16] are
needed. Let us define
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54 X.-G. XIA, C.-C. J. KUO, AND Z. ZHANG

(3.3) Q(s, t) a_ dp(s k)dp(t k), (s, t) R2,

and

(3.4) Qj(s, t) = 2 Q(2s, 2t) k(s)2k(t).
k---oo

The definitions (3.3) and (3.4) also appeared in [23], where Qj (s, t) was called the reproducing
kernel (RK) for the reproducing kernel Hilbert space (RKHS) V. In particular, when b(t) is
equal to the sinc function, it is known that

sin 2zr(s t)
a2(s,t)

r(s t)

which is analytic in R2. When the decay of 4(t) satisfies Ib(t)l < O(1 + Itl5+’)-a for
some e > 0, Q(s, t) in (3.3) is always finite for all real s, t. In what follows, we assume that
Qs(s, t) is continuous in [-T, T]2 and finite in R2.

Some basic results are summarized below (see [16]). The following operator defined
from L2[-T, T] to itself,

g(t) g(s)Q(s, t)ds, e I-r,
T

is completely continuous and symmetric. We use .k and (t) to denote the eigenvalues and
normalized eigenfunctions of operator Q. and arrange I.1 in a descending order, i.e.,

(3.5) Qj,(t) ),k(t), 6 [-T, T],

for k 0, 1, 2 where ffr *(t)12dt 1 and o > I.01 >_ I-1 >_ ". Then, {k(t)}.
is an orthogonal basis of the range space Qj(L[-T, T]) of operator Qj so that we can write

g(t) .t(g, )rt(t), [-T, T], Y g(t) e La[-T, T].
k=O

Moreover, if all eigenvalues .k are not zero, {(t)} is an orthonormal basis of L[-T, T]
so that we have

g(t) (g, )r(t), e [-7’, 7’1, Vg(t) e/_,[-r, 7’1.
k=0

Now, let

K={k" )kT0, and k{0,1,2 }}.

For k K, we can extend ,(t) from [-T, T] to R via (3.5) as

(s)Q(s, t)ds(3.6) (t)

(3.7)

where R.
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SIGNAL EXTRAPOLATION IN WAVELET SUBSPACES 55

In the following, the symbol k(t) with k K is always used to mean the extended one
as given in (3.6). Properties of the extended k(t), k K, are described in the following
lemma.

LEMMA 1. The extended k(t) with k K as defined in (3.6) are in Vs and orthogonal
in L2 (R), and the associated , are greater than O.

Proof. Due to (3.7), Lk 0 and the fact that

12(s)qb(s)ds I111 < ,
T

we conclude that g(t) Vs. To check the orthogonality of k(t) in L2(R), we have

f_=(kl (S1)fk2(S2) Qs(sl, t)Qs(s2, t)dtdslds2
k ’k2 T T cx

for kl, k2 K. By using

(3.8)

we can further simplify the above expression to be

k, (t)k (t)dt (I)k, (S1) (I)k2 ($2) Qs (s1, s2)dsldS2

(1)
k (S1) (Ik (s1)ds1

,/q T

(3.9) -k’ kl--k2,
O, kl k2,

where the equality labeled with (1) is due to the fact that {(t)}k is an orthonormal basis of
L2[-T, T]. It is also obvious that k > 0. [3

Consider the space

(3.10) Us __.a {closed linear span of {k(t)} in L2(R)} pS pr(LE(R)),

generated by (t) with k 6 K. For any g(t) eKak(t) Us, we know from (3.9)
that

< (X),

so that Us is a subspace of L2(R). Furthermore, since k(t) Vj for k 6 K, Us C Vs. Now,
we are ready to state our first main result on the convergence of the GPG algorithm.
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56 X.-G. XIA, C.-C. J. KUO, AND Z. ZHANG

THEOREM 1. Let Qs(s, t) be defined by (3.4) and continuous in [-T, T]2 and Uj be
defined by (3.10). If f(t) Us, then [[f(/ fl[ 0 as --+ cx, where f(l)(t) is obtained
from the GPG algorithm described by (3.1)-(3.2).

Proof We have the following representation for any f(t) Uj,

f (t) E akk(t), where E [ak[2
kK kK .k

Given k 6 K and initialization fk(t) Ok(t), fo) (t) Pr fk(t), consider the iteration

(l+l)(t) Prf(t) + (1 PT)PJ (l)(t)k

We want to prove

(3.11) fk(t) f(l)(t) (I Pr)(1 -)k)ldpk(t) for 0, 1,2

The equality (3.11) is trivial for 0. By assuming (3.11) is true for l, i.e.,

f(k l) (t) f(t) (I Pr)(1 Z) (t)

Ok(t) (I Pr)(1 )k)tOk(t)

(1 (1 ,k)l)dOk(t) -b (1 )k) PTOk(t),

it can be shown that (3.11) holds for + 1. To see this, by using (2.7) let us examine

pJ f(kl)(t) E(f(kl) qbjn)qbjn(t)__ f(1)k (s)Qj(s, t)ds

(1 (1 .k)) k(s)Qj(s, t)ds + (1 )k) k(s)Q(s, t)ds
T

(1 (1 .k)l+l)Ok(t).

Thus, we have

f(/+l)(t) (I PT)[Ok(t) (1 (1fk(t)-- k

(I- P)(1 --.k)t+lok(t),

and (3.11) is proved by induction. A direct consequence of (3.11) is

(3.12) f (t) f(l(t) E ak[fk(t) f(l+l(t)] (I PT) E(1 )l)lakdPk(t)
k6K k6K

Therefore,

IIf- fl)ll 2 _< (1- .k)21 laklz
k6K k

To show IIf (/) f 0 as --+ c, we only have to prove 0 < At < for k 6 K. The fact
that .t > 0 has been proved in Lemma 1. By using (3.9), we have

D
ow

nl
oa

de
d 

01
/2

6/
14

 to
 1

32
.1

74
.2

55
.3

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



SIGNAL EXTRAPOLATION IN WAVELET SUBSPACES 57

I F Ik(t)12dt > Ik(t)12dt- 1,

so that Zk < 1, which completes the proof of Theorem 1. q

Based on Theorem 1, we have the following straightforward corollary on the uniqueness
of extrapolation.

COROLLARY 1. Let Qs(s, t) be defined by (3.4) and continuous in [-T, T]2 and Us be
defined by (3.10). If f(t) Us, then f (t) is uniquely determined in Us from the values of
f (t) with [-T, T].

Although it may not be easy to check the condition f(t) Us practically, Theorem
does tell us that there exists a subspace Us in Vs where the GPG algorithm converges.

The observation is not only of theoretical interest but also provides an important step to the
derivation of further results.

For a kernel K(s, t) satisfying K(s, t) K(t, s) and

(3.13)
N Ny ai{tj K (ti, tj) >_ O,
i=1 j=l

where the bar denotes the complex conjugate, for any integer N > 0, any N points ti [- T, T]
and any N numbers ai, we say K(s, t) is symmetric nonnegative definite in I-T, T]2. If the
inequality in (3.13) is strictly great than 0 when there is at least one ai 5 O, we say that K(s, t)
is symmetric positive definite in [-T, T]2. With a symmetric kernel K(s, t) in [-T, T]2, we
can define an operator from L2[-T, T] to L2[-T, T] like

T

lEg(t) K (s, t)g(s)ds,
T

[-T,T].

Then, K (s, t) is positive (or nonnegative) definite if and only if all eigenvalues ofthe operator/C
are positive (or nonnegative). As an example, the kernel Qs (s, t) defined in (3.4) is symmetric
nonnegative definite in [-T, T]2 for any 4(t).

The following lemma is needed for the proof of Theorem 2.
LEMMA 2. For any f (t) Vj and k K,

(3.14) (s)f(s)ds k k(s)f(s)ds.
T o

Proof We first prove that (3.14) is true when f(t) jn(t) for an arbitrary n.

For general f(t) Vs, since f(t) _nanqbJn(t) and n lanl2
holds.

The second convergence result is stated as follows.

< cx, (3.14) alsoD
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58 X.-G. XIA, C.-C. J. KUO, AND Z. ZHANG

THEOREM 2. If Qs(s, t) is continuous and positive definite in [-T, T]2 and f (t) is
uniquely determined in Vs by f(t), E [-T, T], then IIf /) fll - 0 when -+ oo, where
f(l) (t) is obtainedfrom the GPG algorithm (3.1)-(3.2).

Proof When Qs(s, t) is positive definite in [-T, T]2, we have )k > 0 for k 0, 1, 2,
i.e., K {0, 1, 2, 3 }. Therefore, by using the results summarized in the beginning of

3.2, {k(t)}k is an orthonormal basis of LE[-T, T]. For f(t) Vs, when [-T, T],

f(t) E(f, dOk)rdOk(t).
k=0

By Lemma 2, when 6 [-T, T],

f(t) .(f,
k=0

For 6 R, let

f(t) ’ )(f, k)O(t).
k=O

Then, f (t) f(t) for [- T, T and

k=O

By (3.9), {x/(t)}k is orthonormal in L2(R). Therefore, Ilfll 2 < Ilfll 2 < oo. This proves
f(t) Us. Since Us C Vs, f(t) is also in Vs. By assumption, we know that f (t) is uniquely
determined in Vs by f (t), [-T, T] so that f(t) f (t) for all real t. Thus, f(t) Us
and, by Theorem 1, Theorem 2 is proved. H

Theorem 2 tells us that if Qs(s, t) is continuous and positive definite in [-T, T]2, the
uniqueness of extrapolation in Vs implies the convergence of the GPG algorithm. Instead of
checking the uniqueness of extrapolation for various functions f (t) of interest in Vs individ-
ually, the following theorem says that it is sufficient to check that for the scaling function 4(t)
only.

THEOREM 3. If Qs(s, t) is continuous and positive definite in [-T, T]2 and the scaling
function dp(t) is uniquely determined in Vs by any one of its segments ok(t), [-2ST
k, 2ST k], k Z, then IIfl) fll ---> 0 as ---> oo where fl)(t) is obtainedfrom the GPG
algorithm (3.1)-(3.2).

Proof Since 4(t) is uniquely determined in Vs by any one of the segments q(t), E
[-2ST -.k, 2ST k], k 6 Z, 4)s(t) is also uniquely determined by 4sk(t), 6 I-T, T] for
any k Z. Similar to the proof of Theorem 2, 4sk(t) Us for all k E Z. This implies that
Vs C Us. Thus, Vs Us by Us C Vs. By Theorem 1, Theorem 3 is proved. H

As a direct consequence of Theorem 3, we have
COROLLARY 2. Under the same conditions as stated in Theorem 3, if f (t) Vs, then

f (t) is uniquely determined in Vs by its segment f (t), [-T, T].
By the definition of positive definite, if Qs(s, t) is continuous and positive definite in

[-T, T]2 then it is also continuous and positive definite in any [A, B]2 with -T < A < B <
T. The observation implies the following corollary.

COROLLARY 3. Let Qs(s, t) be continuous and positive definite in [-T, T]2. If ok(t) is
uniquely determined in Vs by any of its segments and f (t) Vs, then [If1) fll --+ 0 as
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SIGNAL EXTRAPOLATION IN WAVELET SUBSPACES 59

--+ O where f(ll(t) is obtainedfrom (3.1)-(3.2) with [-T, T] replaced by an arbitrarily
fixed [A, B] with -T < A < B < T, and also f (t) is uniquely determined in Vj by its

segment f (t), [A, B].
The proof is completely similar to that of Theorem 3 except replacing [-T, T] by [A, B].

The details are therefore omitted. It is easy to see that the Haar wavelet does not satisfy
Theorem 3. We consider examples of wavelet bases satisfying the conditions in Theorem 3 in
the following section.

4. Examples of wavelet bases for continuous-time signal extrapolation. We first
consider a general result on scaling functions such that they satisfy the conditions in
Theorem 3.

THEOREM 4. Let qb(t) be a scalingfunction. If its Fourier transform satisfies
1, Iol < an’,

(4.1) (w)
0, Iol > brr,

where a and b with a < b are two positive constants and a + b < 2, then it satisfies the
conditions in Theorem 3. That is, Qj(s, t) is continuous andpositive definite in [-T, T]2 and
(t) is uniquely determined in Vs by any one ofits segments qb(t), [-2J T k, 2JT k],
k 6 Zfor any T >0.

Proof. We know from (4.1) that tp(t) is band-limited. Therefore, tp(t) is uniquely deter-
mined in V by any one of its segments q(t), 6 [-2J T k, 2s T k], k 6 Z for any T > 0.
To prove Theorem 4, we only need to prove the positive definiteness of Qj(s, t) in [-T, T]2

for any T > 0. Without loss of generality, we assume J 1. Thus we need to prove that
Q(s, t) is positive definite in [-T, T]2 for any T > 0.

Let g(t) L2[-T, T] so that

T

g(s)Q(s, t)ds 0 /t [-T, T].
T

That is,

(4.2) y. g(s)(s k)ds(t k) 0
k=-cx T

Vt[-T,T].

Since tp(t) is band-limited, the function

g(s)4(s :)ds4(t )
k=- T

is also band-limited with variable t. Equation (4.2) implies that

g(s)qb(s k)dsdp(t k) 0
k=-oo T

Yt 6R.

Since {tp(t k)} is an orthonormal basis of V0,
r

g(s)cp(s k)ds 0 Yk Z.
T

Then, we have

g(s)qb(s k)dseik 0
k=-x T

’o9 R,

or
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60 X.-G. XIA, C.-C. J. KUO, AND Z. ZHANG

(4.3)
o

g(s) E (s k)eikds O Yw E R.
T k=-oo

We now examine what _,k%_oo cb(s k)ei’’ is.

E (s--k)eikw-- (o91)eis-)doeik
2rr

k=-oo oo

(1) eik(-) eiwlSdl
k=-

(1) ( 1 + 2k) eimlSd

( +e+’.
k=-

Thus, by (4.3), we have

T oo

g(s) , (w q- 2krc)ei(+2kr)Sds 0 YwER,

or

(4.4) fq(w + 2kzr) g(s)ei(+2kr)sds 0 Yw R.
k----oo

For Io1 < art, by combining (4.1) and (4.4), we have

1"

g(s)eiSds O.
T

Let
T

,T(W) g(s)eiSds.
T

We have d1"(w) 0 for all w 6 R, since it is time-limited. This implies that g(s) 0
for s 6 [-T, T] almost surely and that Q(s, t) is positive definite in I-T, T]2 for any
T>0. El

We give some examples satisfying the conditions in Theorem 4 and, therefore, the con-
ditions in Theorem 3 below.

Example 1 (The sine wavelet). It is clear that the sine wavelet satisfies the condition in
Theorem 4. The well-known convergence result of band-limited signal extrapolation is in fact
a special case of Theorem 4. [3

Example 2 (The Meyer wavelets). Define q(t) by

21, Iol
31o91 1)),6(o)) cos((

0 otherwise,

where v is a real function in C or Co satisfying
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SIGNAL EXTRAPOLATION IN WAVELET SUBSPACES 61

(4.5) v(x)=[ 0, if x<0,

/ 1, ifx>_ 1,

and

(4.6) v(x) + v(1 x) 1, x R.

Clearly, the Meyer wavelets satisfy the condition in Theorem 4.
Example 3 (The cardinal Meyer wavelets). The function q(t) is called a cardinal scaling

function and 9(t) is the associated cardinal wavelet if they satisfy the properties given in 2.2
and

1, n=0,
(4.7) b (n) 0, n 4-1, 4-2

It is clear that condition (4.7) is equivalent to

(4.8) ((w + 2nn’) 1 ’V’w R.
n-----

For more details about cardinal wavelets, we refer to and [27].
In the following we construct real and cardinal Meyer wavelets as follows. We define

4(t) by

(4.9) q(co)
+ w->

-12( (w+2zr)-l))eirrv(

O,

where v (x) is as in Example 2.

2

2 4
5zr < co < 5zr,

7r <CO <--Tr,
4Iol >_

We first show that b(t) is real. To do so, it is enough to show (co) *(-co) for all
2 4real co. For 4(t) with (4.9), it is enough to show (co) *(-m) for 5 < m < 5. When

2 4

1( (_m+2)_ 1) )*(--)= 1--e-iv(

(1 e-i(-)2

( (1-1 e_i(_(_+ll)
_(1 -1)+ eiu(
2

where step (1) is from (4.6). This proves q (t) is real.
We now prove that 4(t) is a scaling function. To do so, with the definition (4.9) of 4(t)

and the results from [8] and [13], we only need to show

(4.10) I((co + 2nrr)l 2 1 co 6 R.

By using (4.9), we see that to prove (4.10), it is enough to prove that when
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62 X.-G. XIA, C.-C. J. KUO, AND Z. ZHANG

I(co)l2 + 16(o9- 2zr)l2 1.

This is achieved by noticing that

(1 + eirv(-l)),
and

1( eirrv(3 1))(w--Zn’)= 1-- o-

To see that tp(t) is cardinal, from (4.8) it is enough to show

(4.11) (co -4- 2nzr) o9 6 R.

Equation (4.11) can be proved in a similar manner as that of (4.10).
To conclude, p(t) with (4.9) is real, cardinal, and band-limited. Clearly, b(t) satisfies the

condition in Theorem 4 and therefore the conditions in Theorem 3. Since 4(o9) has the same
regularity as that of v, (t) may have fast decay when goes to infinity. As mentioned in [8],
a candidate of v(x) in (4.9) is

(4.12) v(x) x4(35 84x + 80X2 20x3), 0 < x _< 1,

which has C4-E regularity. For more about Meyer wavelets, we refer the reader to [8] and
[131. U

Although many wavelets as discussed above satisfy the conditions in Theorem 3, wavelets
with compact support such as the Daubechies wavelets are excluded. In the next section, we
consider the discrete-time signal extrapolation problem where the conditions on wavelet bases
for convergence are weaker than those in Theorem 3 so that Daubechies wavelets may be
included.

5. Extrapolation ofdiscrete-time signals. We consider the discrete version of the GPG
algorithm in 3 for handling discrete-time signals. This is what we need practically. Recall
that the DWT of a sequence Cj,n x[n] can be implemented via (2.8) for a certain integer J.
The discrete sequence cj,, is said to be (J, K) scale-time limited for certain integers J and
K > 0 if its DWT coefficients (with lowest resolution J0) satisfy that coefficients CSo,k and
bj-l,k may take nonzero values only when Ikl < K and J0 < j < J. When J and K are
sufficiently large, the (J, K) scale-time limited sequence provides a practical discrete-time
signal model.

5.1. The DGPG algorithm. Let x[n] be a (J, K) scale-time limited sequence. The
values of x[n], n ./V’, are given, where the cardinality IN’I N is finite. The extrapolation
problem is to recover x[n] for n ’ .A/’. Let P" and Ps, K be the following operators:

[ y[n], n .A/’,
PA;y[n] 0, n ’ A/’,

and

kl < K and J0 < j < J,
otherwise.
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SIGNAL EXTRAPOLATION IN WAVELET SUBSPACES 63

Let I be the identity operator and 79 and 79-1 be the DWT and IDWT operators. The DGPG
algorithm can be stated as follows.

THE DGPG ALGORITHM.

(5.1) x()[n]-- PN’x[n]

for/=0, 1,2

(5.2) x(l+l)[n] PAfx[n] + (I PAl)79-1 ej, K79x(1)[n].

Similar to the continuous-time GPG algorithm, it can be shown that the error energy of the
DGPG algorithm is monotonically decreasing, i.e.,

Z [x(l+l)[n] x[n][2 < Z Ix(t)[n] x[n]12
n n

/=0,1,2

5.2. Convergence and uniqueness results. To show the convergence of the DGPG al-
gorithm (5.1)-(5.2), some tools are needed. We introduce two operators H and G related to
the quadrature mirror filters H (co) and G(w) in (2.4) as follows"

Hy[k] = E hn-2ky[nl, and Gy[k] = E gn-2ky[nl.
n n

Let H* and G* be their duals, respectively, i.e.,

H*y[n] hn-2y[k], and G*y[n] E gn-2y[kl.
k k

Then, from (2.9), we have

x[n] (H*c._l,g q- G*bj-l,g) [n]

(H* (H*c,_2, + G*b,_2,) + G*bs_,)[n]
((H*)J-CJo,k + (H*)S--G*b.o,k +""-Jr" H*G*b-2, + G*bj-l,k) [n].

We can rewrite the above equation as

(5.3) x[n] Wnp, n q Z,

where p and Wn are, respectively, column and row vectors of length (2K + 1)(J- J0 + 1)of
the form

(p cyo, bo, bJ0+1 bj-1

In ((H*)n -’, ((H*)’-’-IG*)n (H*G*)n, G’n),
and where

C.o (C.o,-c, CSo,-c+

G*n (g-K-Zn, g-K+l-Zn gK-2n)

(H*G*)n-"2(nhnl-2ng-K-2nl’Ehnl-2ng-K+l-2nlnl Ehnl-2ngK-2nl)’hi
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64 X.-G. XIA, C.-C. J. KUO, AND Z. ZHANG

((H,)JG,)n (./)j+l (nl E""Ehnj-2nhnj_-2nj...hnl-2n2g-K-2nl,
n2 nj- E hnj-2nhnj_l-2nj hn-2n2g-K+l-2n,

nl n2 nj

Y...Ehnj-2nhnj_l-2nj ...hnl-2n2gK-2nl
nl n2 nj

(H*)n ()J’ (nl nj

_
hnJl-2nhn--2n’ hn-2nh-K-2n,

’’" hnl-2nhn,_l-2nJl ...hnl-2n2h-K+l-2nl,
I11 n2 ll 1-1

nl n2 nJ1-1

for 1 < j < J- J0- and J1 J- J0. Now, by letting

.N" {ml, m2 mN" ml < m2 < < mN}

we obtain the following linear system

(5.4) x Wp,

where

T TT
rCmv )(5.5) x (x[ml], x[m2] x[mN])r and W (rdTml, ’VCm2

are known. If p can be uniquely solved from (5.4), then x[n] with n ’ ./V" can be extrapolated
from x[n] with n 6 A/’. For p, we have (2K + 1)(J J0 + 1)

zx
r0 unknowns. Therefore, to

uniquely determine x[n], it is required that N > r0 and that the rank ofW has to be ro. The
above arguments prove the following theorem.

THEOREM 5. Let x[n] be a (J, K) scale-time limited sequence. Then, x[n] can be uniquely
determinedfrom x[n], n A/’, ifand only if the rank ofW is r0 (2K + 1)(J J0 + 1).

To extrapolate x In] outside N" via the DGPG algorithm is equivalent to the solution of
(5.4) for p. There are two reasons to avoid solving (5.4) directly. One is that the direct
computation ofW is expensive. The other is that, even though W is known, to solve the linear
system (5.4) is also expensive. We now go back to the convergence of the DGPG algorithm.

THEOREM 6. Let x[n] be a (J, K) scale-time limited sequence. If the rank of W is

r0 (2K + 1)(J J0 + 1), then

(5.6) E [x(l)[n] x[n]12 - 0 as --+ cx.

On the other hand, if(5.6) is truefor all (J, K) scale-time limited sequences, thenthe rank of
the matrix W is ro.

Proof When the rank of W is r0 (2K + 1)(J J0 + 1), the DWT coefficients p is
uniquely determined from x by solving the linear system (5.4). Also, WWr has rank r0 and
is a nonnegative definite matrix. Let ,ki, 1, 2 N, be the eigenvalues ofWWr and qi,

1, 2 N, be the corresponding eigenvectors, i.e.,
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SIGNAL EXTRAPOLATION IN WAVELET SUBSPACES 65

(5.7) WWTqi Xiqi 1, 2 N,

where

qi forms an orthonormal basis of Cs, and where C denotes the set of complex numbers. Let

(Yl, Y2 Yro) wT (ql, q2 qro)"

Since qi, 1 < < ro, are linearly independent and the matrix Wr has rank ro, Yi with
1 < < r0 forms a basis of Cr. Therefore, there are ro constants ai such that

r0

p

_
aiYi.

i=l

Only qi[n] with n A/" are given in (5.7). For 1 <_ <_ ro, we extend qi[n] from n A/" to all
integers via

(5.8) li[n] --WnwTqi, n e Z.

By (5.3) and (5.8), we have

(5.9)
r0 r0 ro

x[n] --wnp-wn EaiYi ZaiwnWTqi aiili[n].
i=l i=l i=l

Note that the reason for proving (5.9) is similar to that for proving f(t) Us in the proof of
Theorems 2 or 3.

We now prove that Xi < for < < r0. For < < r0,

11i112__ ii[n]12
1 12_.

n:--cx 7 n:--cxE IWnWTqi X7 )-lwTqi 2

1

)V/2
WTqi , I1P./vli

where we use the properties that both 79 and 79-1 preserve the total energy and that Wr

behaves like 79P- when operating on (J, K) scale-time limited sequences. Thus, Li < 1 for
1 < < r0. Similar to the proof of the error formula (3.12), we have

ro
(5.10) x[n] x<t)[n] (I -PAc) E aiXi(1 ,i)l]i[n].

i=1

By 0 < Ki < 1, 1 < < r0, and similar to the proof of the standard PG algorithm,

Ix[n]
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66 X.-G. XIA, C.-C. J. KUO, AND Z. ZHANG

This proves the first part of Theorem 6. If (5.6) is true for all (J, K) scale-time limited
sequences x[n], then x[n] is uniquely determined by x[n], n A/’. By Theorem 5, the second
part of Theorem 6 is also proved.

Suppose that W has rank r0 and .1, L2 LN are eigenvalues of the matrix WWT

arranged in a descending order, i.e.,

X1 > .2 > > ro > Xro+l /.N 0.

Based on (5.10), we obtain an error estimate

Ix(l)[n]- x[n]l <_ O((1- .o)t)

for sufficiently large 1. Even when the rank ofW is r0, the conventional PG (DPG) algorithm
for band-limited signals [20], [22] usually converges slowly. This is because the condition
number of the corresponding WWT is usually quite large due to the smoothness of the sinc
function. In contrast, by using suitable wavelet bases the condition number ofWWT is smaller
so that a faster convergence rate can be achieved (see numerical experiments in 6).

5.3. Connection between continuous-time and discrete-time extrapolation. We ex-
amined continuous-time signals in the wavelet subspace Vs in 3, where each f(t) 6 Vj has
the form

k=-x k=-o Jo <_j <J k=-o

In practice, f(t) is small for large Itl so that Cjo,k and bj,k are also small for large Ikl. Thus, it
is important to consider signals in the following subspace of Vy,

V,,r A f(t) f (t) E C’o,kdP’ok(t) -l- E E bj,kj(t)
k=-K Jo<j<J k-’-K

for some constants cj0,, bj,k }.
We call signals in V,x as (J, K) scale-time limited. This explains the motivation of the
definition of scale-time limited sequences. For f (t) 6 Vj, r, we have

K K

k k=-K Jo<_j<J k=-K

where

Since b(t) behaves like a lowpass filter, c,k is close to f(k/2) [12], [17], [26] for sufficiently
large J. Therefore, we can replace cs,k or x[k] with samples f(k/2) and use the discrete-time
GPG algorithm to provide a good approximation for continuous-time signal extrapolation. In
[25], it was proved that the discrete-time signal extrapolation converges to the continuous-time
one when the sampling rate in the given interval goes to infinity.

6. Numerical examples. In this section, numerical examples are presented to illustrate
the theory for discrete-time signal extrapolation developed in 5. Two wavelet bases are
considered. One is the Meyer wavelet given in Example 3 of 4 with v defined by (4.12),
which is simply called the Meyer M4 basis. The other is the Daubechies D4 basis [7]. Note
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SIGNAL EXTRAPOLATION IN WAVELET SUBSPACES 67

that the Meyer M4 basis satisfies the convergence conditions given in Theorem 3 for the
continuous-time signal extrapolation while the Daubechies D4 basis does not. However,
since we perform discrete-time signal extrapolation numerically, the convergence condition in
Theorem 6 is more relevant. We show numerically the rank of the matrix W below to verify
this convergence theorem for both M4 and D4 wavelet bases.

6.1. The Meyer M4 basis. The test signal x[n] as given in Fig. 1 is a (J, K) (4, 2)
scale-time limited signal with J0 1, whose DWT coefficients are Cl,k 0, bj,k 1.0,
1 < j < 3, 1 < k < 5, and the wavelet basis is M4. Since the low resolution coefficients c1,
are 0 for this case, x[n] is in fact generated by the 15 wavelet coefficients bj,. Thus, x[n] has
r0 15 degrees of freedom. We consider four test cases: the values x[n] are given for n
with.h/"={n" 1 <n < 15},{n" <n<30},{n" 1 <n <42},and{n" 1 <n <45}.

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.8
-10 0 10 20 30 40 50 60

FIG. 1. The test signal x[n] with the Meyer wavelet M4.

We use the DGPG algorithm (5.1)-(5.2) to compute x(l)[n] iteratively. Let el denote the
2-norm of the extrapolation error at/th iteration, i.e.,

et Ix (l)[n X [n]l2

The convergence history of el as a function of the number of iteration is plotted in Fig. 2,
where the errors remain about the same for N 15 while the errors decrease as the iteration
proceeds for N 30, 42, and 45.

We show the rank of the matrix W and the first 15 eigenvalues ofWW7" with the wavelet

M4 in Table 1. It is clear that the condition for Theorem 6 is satisfied in cases with N 30, 42,
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10o

10-1

.........0 0 "0 0

+ 4- .-I- .+ + + + .+. .+.

error for N=15 with dashdot line marked by o

error for N=30 with point line marked by +
error for N=42 with dashed line marked by x

for N=45 with solid line marked by *

10-2
Z 3 6 7 8 9 10

iterative step

FIG. 2. Convergence history ofthe 2-norm ofextrapolation errors.

TABLE

N=15

N=30

N=42

N=45

First 15 eigenvalues ofWWr

0.99997 0.99872 0.95037 0.76713 0.62626

0.31103 0.30700 0.24620 0.11131 0.04713

0.00073 0.00044 0.00009 0.00001 0.00000

1.00000 0.99906 0.95079 0.76827 0.62761

0.32933 0.31993 0.29804 0.29778 0.29363

0.15791 0.15750 0.10932 0.01303 0.00051

1.00000 0.99906 0.95079 0.76827 0.62761

0.32951 0.32013 0.29860 0.29792 0.29412

0.16446 0.16273 0.15191 0.14297 0.04114

1.00000 0.99906 0.95079 0.76827 0.62761

0.32951 0.32013 0.29860 0.29792 0.29412

10.16477 0.16428 0.15236 0.14580 0.10901

Rank ofW

14

15

15

15

and 45 so that the algorithm converges for these cases. However, the convergence rate is quite
slow. This can be explained by the large condition number of the matrix WWr.
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6.2. The Daubechies D4 basis. The test signal x[n] as given in Fig. 3 is constructed as
the one given in 6.1 except that the wavelet basis is replaced by the Daubechies D4 basis.

0.8

0.4

0.2

0

-0.2

-0.6

-0.8

-l
-10 0 10 20 30 40 50 60

FIG. 3. The test signal x[n] with the Daubechies wavelet D4.

The convergence history of el as a function of the number of iterations is plotted in Fig.
4. One can clearly see that the errors remain about the same for N 15, 30 while the errors
decrease significantly as the iteration proceeds for N 42, 45. In other words, the DGPG
algorithm converges to the correct solution only when N 42 and 45. This convergence
behavior can be explained by examining Table 2, where we show the ranks and the first 15
eigenvalues ofWWr for all four cases, where W is defined by (5.5). Note that the ranks of
W are equal to the degree of freedom of x[n] only when N 42 and 45. For N 15 (or
N 30), there are 4 (or 1) zero eigenvalues among the largest 15 eigenvalues.

Note also that to determine x[n] outside A/" is equivalent to the determination of wavelet
h(1)coefficients b.,, _< j _< 3 and _< k _< 5, which are all equal to 1 by design. Let .., be the

corresponding DWT coefficients of xCt) In]. The convergence of xt)[n] to x[n] is equivalent to
t,t) b, We show the values of .., and .., in Tables 3 and 4. We seethe convergence of

h(1)that ’j,k converge quite fast to the true values 1 of bj,k for N 42, 45. In contrast, there are 4
(l! ’s(or 1) o),k which do not converge to 1 for N 15 (or N 30) due to the zero eigenvalues

existing in the matrix WWr.
7. Conclusions and extensions. In this paper, we proposed a new iterative algorithm

which extends the well-known PG algorithm for band-limited signal extrapolation to sig-
nals in the wavelet subspaces. The convergence of the GPG algorithm and the uniqueness of
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100

10-1

10-2

10-3

10-4

10-6

10-7

+ + .+ + + .+ + + +

for N=15 with dashdot line marked by o

for N=30 with point line marked by +

for N=42 with dashed line marked by x

for N=45 with solid line marked by *

2 3 4 5 6 7

number of iterations

FIG. 4. Convergence history ofthe 2-norm ofextrapolation errors.

TABLE 2

N=15

N=30

N=42

N=45

First 15 eigenvalues ofWWT

1.00000 1.00000 1.00000 1.00000 1.00000

1.00000 1.00000 0.97964 0.96402 0.11057

0.00065 0.00000 0.00000 0.00000 0.00000

1.00000 1.00000 1.00000 1.00000 1.00000

1.00000 1.00000 1.00000 1.00000 1.00000

1.00000 0.97843 0.79403 0.40207 0.00000

1.00000 1.00000 1.00000 1.00000 1.00000

1.00000 1.00000 1.00000 1.00000 1.00000

1.00000 1.00000 0.99793 0.97843 0.36378

1.00000 1.00000 1.00000 1.00000 1.00000

1.00000 1.00000 1.00000 1.00000 1.00000

1.00000 1.00000 1.00000 0.97843 0.72182

Rank ofW

14

15

15

extrapolated signals for both continuous-time and discrete-time cases are investigated. Several
conditions on signals and wavelet bases to achieve convergence and uniqueness are described.
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TABLE 3

N=15

N=30

N=42

N=45

j(5),k,1 <j <3,1 <k<5

1.08760 0.59008 0.00000 0.00000 0.00000

1.00013 1.00000 0.99501 0.47866 0.00000

1.00019 1.00000 1.00000 1.00000 1.00000

1.00000 1.00000 0.92549 0.15589 0.00000

1.00000 1.00000 1.00000 1.00000 1.00000

1.00000 1.00000 1.00000 1.00000 1.00000

1.00000 1.00000 1.00000 0.99550 0.92973

1.00000 1.00000 1.00000 1.00000 1.00000

1.00000 1.00000 1.00000 1.00000 1.00000

1.00000 1.00000 1.00000 1.00000 0.99954

1.00000 1.00000 1.00000 1.00000 1.00000

1.00000 1.00000 1.00000 1.00000 1.00000

N=15

N=30

N=42

N=45

TABLE 4

bOo) l<j<3,1<k<5j,k

1.06050 0.85387 0.00000 0.00000 0.00000

1.00009 1.00000 0.99722 0.64568 0.00000

1.00013 1.00000 1.00000 1.00000 1.00000

1.00000 1.00000 0.93937 0.31247 0.00000

1.00000 1.00000 1.00000 1.00000 1.00000

1.00000 1.00000 1.00000 1.00000 1.00000

1.00000 1.00000 1.00000 0.99953 0.99268

1.00000 1.00000 1.00000 1.00000 1.00000

1.00000 1.00000 1.00000 1.00000 1.00000

1.00000 1.00000 1.00000 1.00000 1.00000

1.00000 1.00000 1.00000 1.00000 1.00000

1.00000 1.00000 1.00000 1.00000 1.00000

We observe from the experiments in 6.1 and 6.2 that the convergence of the DGPG
algorithm not only depends on the wavelet basis but also the length N of the observation
sequence. Roughly speaking, the uniqueness and convergence of the GPG or DGPG algorithm
depend on the smoothness of the wavelet bases. If the algorithm converges, its convergence
rate depends on the time-localization property of wavelet bases. Thus, the desired wavelet
bases might be those which are smooth and have a fast decay in the time domain. However,
a more quantitative characterization remains to be investigated. There are many interesting
topics to be studied as extensions of this work. The list at least includes: (1) to search more
wavelet bases satisfying the conditions in Theorem 3; (2) to establish a relationship between
the conditions in Theorem 3 and the one in Theorem 6 for continuous- and discrete-time
signal extrapolation; (3) to perform signal extrapolation with noisy data; (4) to investigate the
properties ofthe eigenvectors ofthe kernel Qj (s, t) in 3. Since various bases can be provided
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by wavelet theory, it is believed that the proposed GPG algorithm should have many potential
applications in signal recovery.

Acknowledgments. The authors are grateful to the referees for their patience, encour-
agement, and valuable suggestions. Especially, one referee pointed out that the space Us in
(3.10) is identical to the range space PJ Pr(L2(R)), which helps to simplify the derivation
in 3.
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