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Texture Roughness Analysis and Synthesis 
via Extended Self-Similar (ESS) Model 

Lance M. Kaplan, Member, IEEE, and C.-C. Jay Kuo, Senior Member, IEEE 

Abstract-The 2D fractional Brownian motion (fBm) model 
provides a useful tool to model textured surfaces whose roughness 
is scale-invariant. To represent textures whose roughness is scale- 
dependent, we generalize the fBm model to the extended self- 
similar (ESS) model in this research. We present an estimation 
algorithm to extract the model parameters from real texture data. 
Furthermore, a new incremental Fourier synthesis algorithm is 
proposed to generate the 2D realizations of the ESS model. Fi- 
nally, the estimation and rendering methods are combined to syn- 
thesize real textured surfaces. 

Index Terms-Fractals, fractional Brownian motion, processes 
with stationary increments, terrain modeling, texture analysis, 
texture synthesis, random fields, roughness perception. 

I. INTRODUCTION 

ANY interesting textured patterns which arise in nature M have certain semi-irregular structures that cannot be well 
modeled by traditional geometry. For instance, boxes and 
spheres cannot model the details of leaves and snowflakes. Re- 
cently, Mandelbrot has demonstrated how fractal geometry can 
be applied to mimic some natural textured patterns [26]. Man- 
delbrot argued that many objects in nature demonstrated similar 
structures at different scales and explained how self-similar pat- 
terns can be created to generate natural looking pictures. Al- 
though, many natural textures appear to be random, the random- 
ness still exhibits a similar structure at different scales. Mandel- 
brot and Van Ness introduced fractional Brownian motion (fBm) 
as a tool to model such random phenomena [27]. The fBm proc- 
ess provides a nonstationary correlation which follows a stc- 
chastic self-similarity condition. Due to the similar correlation 
structure at all scales, fBm has significant long term correlations 
referred to as persistence. Since the “average” power spectrum 
of fBm follows a llf law [ 101, the fBm model provides a good 
basis to represent llf processes and can therefore be used to 
analyze data in many fields, e.g., electronics, turbulent physics, 
meteorology, geology and economics [6], [20], [21]. Moreover, 
it has been shown that the two dimensional version of fBm is a 
good model to generate realistic looking mountain rages, coast- 
lines, and cloudy images [28]. 

A major disadvantage of fBm is that the appearance of its 
realizations is controlled by a single parameter H known as the 
Hurst parameter. The Hurst parameter controls the persistence 
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of fBm realizations, which is related to the visual roughness of 
the fBm curve [6] ,  [22], [30]. Because of the self-similarity 
condition, the same parameter H determines both long- and 
short-term behavior of the fractal model so that the roughness 
of fBm realizations is invariant to scale. Even though a natural 
texture may exhibit similar roughness over a large range of 
scales, it is improper in reality to assume the roughness to be 
constant for arbitrary large or small scales. For instance, most 
of the relief of the land is formed by the movement of the 
earth’s crust at large scales, while at the smaller scales, it 
seems more likely the land is smoother due to other processes 
such as erosion. Lewis [23] discussed many of the shortcom- 
ings of the fBm model for realism of natural scenery in the 
application of computer graphics. Moreover, data that ap- 
peared in [33] suggest that the landscapes are fractal for only a 
few scales. Another disadvantage of fBm is that the model is 
isotropic. For the application of generation of coastlines, the 
bays and peninsulas will appear roundish when using the fBm 
model to generate the scene. The lack of versatility for fBm to 
model numerous subtleties of the real world suggests that an 
expanded model can render many more realistic pictures. 

In an effort to expand the fBm model, researchers have intro- 
duced the concept of filtered fractals as a 1D random signal 
model [7], [12]. Unfortunately, the filtered fractal model is diffi- 
cult to generalize to 2D images. Another alternative is the long 
correlation model for 2D textures introduced in [ 181. We con- 
sider another model for which the roughness of the realizations 
that can be easily parameterized. In [ 141, we introduced the idea 
of extending the definition of self-similarity to create a more 
general stochastic model for natural phenomena. The extended 
self-similarity (ESS) condition provides a scale-dependent ran- 
dom structure to model interesting textured signals and images. 

Analogous to the relationship between the Hurst parameter 
and roughness, the generalized Hurst parameters provide in- 
formation about multiscale roughness. Generally speaking, a 
slow decaying correlation function suggests a smooth function 
while a slow decaying power spectrum suggests a rough func- 
tion due to significant high frequency components. However, 
these traditional analysis tools fail to provide any insight about 
the roughness of the curve at a particular scale. In contrast, the 
scale-dependent Hurst parameters in the ESS model character- 
ize the multiscale roughness features. In this work, we are in- 
terested in texture roughness analysis and synthesis by using 
the ESS model. We propose an algorithm to estimate the gen- 
eralized Hurst parameters of the ESS model from real image 
data to measure the roughness, and we study the statistics of 
the estimator. Then, it is shown that the generalized Hurst pa- 
rameters can be manipulated to control the roughness of 2D 
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textured surfaces at various scales, where a new incremental 
Fourier synthesis algorithm is used to generate the 2D realiza- 
tions of the ESS model. Finally, the estimation and rendering 
methods are combined to synthesize real data. 

The proposed new model will be useful in most applications 
to which fBm and fractals have been applied. These areas in- 
clude terrain modeling and analysis [21], [33], classification of 
medical images [2], [5], [24], texture segmentation [3], [17], 
[19], [31], and computer graphics [26], [28]. In fact, some 
researchers have already considkred using scale localized 
measurements of textures at different scales for texture classi- 
fication [5], [29]. Our work provides mathematical theory as 
well as new estimation and synthesis algorithms for a more 
rigorous multiscale study of natural textures. 

The paper is organized as follows. Basic results of stochastic 
self-similar curves and roughness are generalized to extended 
self-similar curves exhibiting varying roughness at different 
scales in Section 11. A theory of 1D and 2D extended self-similar 
(ESS) processes is described in Section 111. An estimation algo- 
rithm to measure the roughness parameters is described and 
tested in Section IV. In Section V, we describe an incremental 
synthesis method for the generation of realizations of an ESS 
model, and we show the visual connection between multiscale 
roughness and generalized Hurst parameters in Section VI. Then 
the estimation and synthesis algorithms are combined to render 
some real textures in Section VII. Finally, some concluding re- 
marks are given in Section VIII. 

11. FRACTALS AND ROUGHNESS 

A. Basic Results of Fractal Curves 

FBm is characterized by the self-similarity condition 

VAR[B(f + S )  - B(t)] = dlsl”, 0 < H < 1. (2.1) 
The self-similarity condition is stationary in the sense that the 
power law is independent of the temporal parameter t of the 
random process. The value H is known as the Hurst parameter. 
The significance of H can be understood from both analytical 
and geometrical viewpoints. For instance, the Lipschitz con- 
cept describes the nature of the singularity of a function [25] 
where the Lipschitz exponent at a point provides information 
about a sudden change of the function in that position (whether 
the change occurred for the value of the function or it deriva- 
tives). It was shown in [9] that the Lipschitz exponent is 
bounded by a uniform value H for all points on a fBm curve. 
The smaller the value of H, the stronger the singularity and the 
rougher the curve. The fact 0 < H < 1 implies that the fBm 
curve is too rough to be differentiable and too smooth to be 
discontinuous. Note that the stationarity of the self-similarity 
condition assures that the singularities occur almost every- 
where. The Lipschitz exponent of a curve can be used to calcu- 
late the upper bound for its fractal dimension [8]. Falconer [9] 
showed that fBm realizations of a fractal curve with Hurst pa- 
rameter H have a fractal dimension D = 2 - H. Since curves 
with a higher fractal dimension occupy more space and appear 
rougher, fractal geometry also supports the claim that the 
smaller the value H, the rougher the curve. The analytic and 

geometrical interpretations of H have led researches to investi- 
gate a human’s ability to classify fBm curves and surfaces 
based upon visual roughness. Pentland [30] and, more re- 
cently, Kumar et al. [22] have verified the relation between H 
and visual roughness through psychophysical studies. 

B. Extended Self-similarity 

The connection between the fractal dimension and Lipschitz 
exponents demonstrates that the fractal dimension of a curve 
can be measured locally. As a result, a random fractal curve 
has only to follow the power scaling law of (2.1) as s ap- 
proaches zero. Since the self-similarity condition is stationary 
(i.e., independent oft), these local measurements can be aver- 
aged at all time points to measure the local scaling exponent H 
(or fractal dimension D = 2 - H). Since the scaling law does 
not hold for large values of s, we consider extending the con- 
cept of self-similarity by replacing the hyperbolic function in 
(2.1) with a more general function As). In other words, we 
define an extended self-similarity condition such that 

(2.2) VAR[B(t + s) - B(t)] = &As), 

where A1) = 1. The function As) is known as the structure 
function. Note that the structure function is not arbitrary. Prop- 
erties of the structure function can be found in [13], [32]. 
Since the extended self-similarity condition is still stationary, 
local measurements can be averaged to obtain estimates of 
scaling exponents. Because the local scaling exponent must be 
less than one (i.e., H < 1) to produce a curve that does not 
have a finite derivative in the mean square sense, it is our 
conjecture that processes have a fractal dimension greater than 
one when the termAs)/s2 diverges as s goes to zero. 

In many real world applications, data is collected and pre- 
sented as finite samples. For a given set of discrete data, the 
structure function as s + 0 becomes meaningless. Algorithms 
which claim to measure the fractal dimension of a discrete data 
sequence actually measure a power law exponent over the 
available scales and assume that the power law is consistent 
for the unavailable finer scales, Instead of looking for a fractal 
pattern over the available scales, we propose to measure dif- 
ferent power law exponents at different scales to provide some 
multiscale measure of roughness. For instance, to estimate the 
local Lipschitz exponent, we consider calculating a scaling law 
exponent over the two smallest possible scales, i.e., 

i ( 0 )  = -log2 - ; [g;) 
If the data is subsampled by a factor of 2”, then an appropriate 
value for the generalized scale dependent Hurst parameter is 

(2.3) 

This parameter provides clues about the apparent roughness of 
extended self-similar realizations at different scales. If the 
process happens to be fBm, then i ( m )  = H for all scales. In 
other words, fBm has constant roughness over all scales. The 
following theorem puts an upper bound on f i ( m ) .  
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THEOREM 1. Let k ( m )  be defined by (2.3), then 
- 
H ( m ) l l  m = 0 , 1 , 2  ,.... 

PROOF: By using the Cauchy-Schwarz inequality for the ex- 

f f ( s + t )  < f f ( s ) + f f ( t ) .  

pected value operator, we can easily show that 

By setting s, t = 2m, 

I 

Dividing both sides by f'(2m) and taking the logarithm, 
the theorem follows. 0 
Another similar measure of roughness over incremental 

lengths is also available. Since for fBm the logarithm of the 
structure function is 2H times the logarithm of the incremental 
length, a natural generalization of the Hurst parameter over 
incremental length is 

(2.4) 

which is called the diferentiul Hurst parameter. For sampled 
processes, a discrete approximation of this roughness measure 
yields 

We refer to k,(s) as the length dependent Hurst parameter. 
Note that CA(s) = H for fBm. 

111. ESS PROCESSES FOR TEXTURE MODELING 

All processes with stationary increments satisfy the ex- 
tended self-similar condition (2.2). In this section, we will fo- 
cus on one special family known as the extended self-similar 
(ESS) processes and examine the 2D ESS processes for texture 
modeling. 

Before moving to ESS processes, it is worthwhile to com- 
ment on insufficiency of signal modeling with stationary proc- 
esses. A stationary process always has stationary increments. 
Given a 1D stationary process B(t) whose correlation function 
r(z) is a function only of the time lag z, it is easy to show that 
the definition of the structure function (2.2) yields [32] 

Most natural processes have a correlation which decays either 
to zero or to some constant value for large time lags, i.e., 
lim,t+r(s) exists. Therefore, the structure function As) con- 
verges to a constant value as the incremental length s increases 
and, by using (2.3), one can prove that the generalized Hurst 
parameter H(m)  goes to zero for coarser scales, i.e., 
1imm+- H ( m )  = 0. This implies that stationary processes do 
not have enough correlation at the coarse scales to effectively 
model the persistence of fBm. 

- 
- 

A. 1D ESS Processes 
To develop a model for natural textures that have decaying 

but significant correlation for large time lags, one must resort 
to a nonstationary model. We define an extended self-similar 
(ESS) process as a zero-mean Gaussian process that satisfies 
the extended self-similar condition (2.2) under the condition 
that at the origin, 

B(0)  = 0. (3.6) 
With the above definition, one can show that the ESS process 
is nonstationary since its correlation' is given by 

6' 

2 
rs(s, t )  = - [ f ( s ) + f ( t ) - f ( ~ - t ) ] ,  s, t E R. (3.7) 

The restriction of the structure function is that the correlation 
function must be positive semidefinite. The increments of the 
ESS process, 

X(k;  Ax) = B ( k ( k  + 1)) - B(Axk), k E Z, 
are stationary and have the correlation function 

o2 
rx(k; h) = --[f(h(k+l))+f(Ax(k-l))-2f(hk)], 2 k E 2. 

For most cases, as the time lag k + 00, the stationary ESS in- 
cremental correlation of (3.8) will converge to zero. Unlike the 
case for stationary processes, the convergent correlation func- 
tion does not force the structure function to converge to a 
constant value. As a result, the realization of ESS processes at 
coarse scales can appear smooth and exhibit persistence. Note 
that if As) = IsIZH, (3.7) defines the correlation for fBm, and 
(3.8) provides the stationary correlation for fBm increments. It 
is clear that the ESS process is a generalization of fBm. 

For computer implementations, only sampled values of the 
ESS process can be stored and processed. We define a discrete 
ESS process as a zero-mean Gaussian process which satisfies 
(3.6) and (2.2) over the field of integer values n. Then, the 
finest increments of the discrete process has an incremental 
length Ax = 1. For 1D processes, the structure function is de- 
fined only on integer values, and the structure function is re- 
stricted to the set of function such that (3.7) is positive 
semidefinite over the field of integers. 

Any discrete stationary processes X(n; 1) can constitute in- 
crements of a discrete ESS process. The values of the discrete 
ESS process for positive n are found by simply summing the 
increments 

n-1 

B(n) = cX(i; l), n = 1, 2, 3, ... 
i=O 

As shown in [13], the structure function is related to the corre- 
lation function of the increments X(n; 1) via 

2 P-1 
f ( p )  = f ( p - l ) + l + T C r x ( k ;  I) ,  p = 2,3,  ... (3.9) 

rx(09 '> k=l 

or 

1 .  In this paper, the correlation function for the random process B(r) is 
r& t )  = E[B(s)B(r)],  and if B(r) is stationary, then r1d.r) = r d t  + 7, t). 
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2 P-1 
f ( p )  = p + - x ( p - k ) r x ( k ;  l), p = 2, 3, ... (3.10) 

' X ( O >  '> k=l 

whereKO) = 0,Xl) = 1, andf(-p) = f l ) .  Obviously, the increments of the 1D ESS slice, i.e., 
X ( k )  = B ( ( k + l ) ; + z ) -  B(kn+;) ,  are stationary, and these Note that the correlation function for fBm increments is 

by the Of the Hurst Parameter. For instance, 
when ' 'I2, nega- 

increments are referred to as first order increments of the 2D 
ESS process. Moreover, the second order increments of a 2D the increments are positively 

tively correlated when H < 1/2, and uncorrelated H = 1/2. 
Similar bounds can be placed on the generalized Hurst pa- 
rameters for many ESS processes as stated by the following 
theorem. 

ESS process are defined as 

x(;) = B( ;) + B(; + (1, l)T) - B( ; + (1, O ) T )  - B(; + (0, l)T). 

(3.13) 
I I . ,  

THEOREM 2. Let H and H A  be defined in (2.3) and (2.5), re- 
spectively, and let XAk; 1) be the finest scale increments of 
a discrete ESS process that has a correlation rx+(k; 1) de- 

It can be shown that the second order increments also form a 
stationary process. 

fined by (3.8). C. Parameterized ESS Models 
(a) Ifrx(k; 1) 2 0 for all k and rx(k) is monotonically de- 

creasing, then for all scales m = 0, l,  2, . . . and incre- 
mental lengths s = 1, 2, . . . , 

1/2 I f i (m) ,  f iA(s)  s 1, 

(b) and i f  rx(k; 1) I 0 for Ikl > 0 and rx ( k )  is monotoni- I f  I 
cally decreasing, then 

0 I f i (m) ,  kA(s) I 1/2. 

The proof of Theorem 2 is given in the appendix. 

B. 2D ESS Processes 

To model 2D textured surfaces, we define a 2D ESS proc- 
ess B(;) to be a zero-mean multivariate Gaussian process such 
that at the origin B(6)  = 0 and the variance of the increments 
of ~ ( k )  follows a power law of 

where 1 and k' denote arbitrary displacement vectors with 

and R is a positive definite matrix. IfKl) = Ill2" for 0 < H < 1 
and R = I, then B(;) is simply the 2D fBm. In general, if R = I, 
then the 2D ESS process is isotropic. Similar to the 1D case, 
the 2D ESS process is not stationary, and its correlation func- 
tion is 

The structure function determines the appearance of the 2D 
random model as discussed in Section 11. For example, the 
hyperbolic structure function f(s) = IsIm defines a subset of 
ESS processes known as the fBm. The Hurst parameter charac- 
terizes the fSm, and the roughness of the fSm process is in- 
variant to scale. In this section, we consider alternative 
parameterizations of the structure function. We do restrict our 
models to discrete ESS processes, because they are intended to 
be used to create or analyze computer data. Two examples of 
structure functions are given below. 
EXAMPLE 1. Asymptotic FBm. A structure function that pro- 

vides a model whose long term behavior is like the fBm 
while short term correlations are altered is 

P M  - 1 
f (1) = (1 - A)-+ 

P-1 
(3.14) 

where 0 5 p <1,0 I H I 1, and A is bounded by values that 
depends on p and H .  The parameter A is the smoothness pa- 
rameter that determines how correlated the process is in the 
short term, H is the asymptotic Hurst parameter or persis- 
tence parameter which measure how smooth coarse repre- 
sentations of the random field appears, and p is the smooth- 
ness capacitance because it measure how quickly the fine 
scale smoothness is lost. In fact, the values of f i ( m )  for 
such a structure function converge to H as m + CQ. The rate 
of convergence is dependent of the value of p. We refer to 
the resulting ESS process as asymptotic fBm (a"). 

EXAMPLE 2. Delta Hurst. The delta Hurst model is parameter- 
ized by the length dependent Hurst parameters fiA(s) for 

s = 1, . . ., s. m e  structure function is defined as 

'g('3 ') = b i [ f [ ~ ( ' l l ~ ) + f ( l ~ s l / R ) - f [ ~ ~ ~ - s ' ~ ~ ~ ) ] .  2 (3.12) 

A discrete 2D ESS process is defined such that t, s' E z2. Un- 
like the 1D case, the structure function must be defined over 
noninteger values. The constraint for the structure function is 
that (3.12) is positive semidefinite over the 2D integer lattice. 

Each normalized 1D slice of a 2D ESS process forms a 1D 
ESS process. Specifically, given a normalized directional 
vector Z such that llZllI = 1 and an offset 0', the normalized 
process BZ+(k)  = B(kn'+ 0')- B ( 6 )  has a structure function 

0 i f s = O  
Us1J-i 2 a A ( 1 )  I *'A(LlSlJ) 

f(4 = n,=, (59 (d) if 1 I Is1 < S .  

2fiA(l) I 2fiA(s) 
if s I (SI n;:(?, [!) 

(3.15) 

where L.1 represents the greatest lower integer. The length de- 

I 
__ 



KAPLAN AND KUO: TEXTURE ROUGHNESS ANALYSIS AND SYNTHESIS VIA EXTENDED SELF-SIMILAR (ESS) MODEL 

True 
H 

0.75 
0.50 
0.25 

5 

I047 

H 
Mean Std 
0.724 1 0.0422 
0.4938 0.0227 
0.2474 0.0168 
0.6812 0.0316 
0.6667 0.0229 

pendent Hurst parameters are completely determined by the 
model parameters for lengths s = 1, ..., S. When s > S,  
H,(s )  = fiA(S). The modeler has more control of the rough- 
ness for this model than the afBm model. One potential draw- 
back to the model is that the differential Hurst parameter 
g8(s) defined by (2.4) is constant and equal to fi,(LsJ) for 

LsJ < s < LsJ +1 .  Then, the values of Ea(,) may jump for inte- 
ger values of s. As demonstrated in [13], the length dependent 
Hurst parameters should not change drastically overs. 

I 

6 
7 
8 

Iv . ESTIMATION OF THE 
GENERALIZED HURST PARAMETERS 

- 0.6212 0.0217 
- 0.4191 0.0138 
- 0.3150 0.0147 

For texture analysis and synthesis applications, the estima- 
tion of the generalized Hurst parameters provides important 
information. In this section, we present a straightforward al- 
gorithm to measure the scale dependent Hurst parameter and 
demonstrate the quality of the estimator through numerical 
simulations. The algorithm presented in this section assumes 
that the image is isotropic. However, it can be easily general- 
ized to the nonisotropic case. 

To estimate the generalized Hurst parameters of an isotropic 
image, the average energy of the nonoverlapping horizontal 
and vertical increments for available scales are calculated. 
Then, the scale dependent Hurst parameters are estimated by 
using the logarithm of the ratio of the energy at different 
scales. The algorithm is detailed below. 
ALGORITHM 1. ESTIMATION OF GENERALIZED HURST 

P A R A M E T E R S  F R O M  IMAGES. 

Let B(x, y )  be an isotropic ESS texture of size N x N ,  then to 
calculate H(m),  

1) Calculate the incremental energy for scales m = 0, 1 ,  . . ., 
logz(N) - 1:  

2 

x=o y=o 

2) Estimate the generalized Hurst parameters for scales 
m = 0, 1 ,  ..., 10g2(iV) - 2: 

Note that nonisotropic measurements can be made by consid- 
ering separate ratios of &(m) and i y ( m )  to estimate x and y 

directed values for k ( m ) .  In addition, other incremental en- 
ergy calculations for other lag directions may be necessary 
depending on the orientation of the nonisotropic texture. 

To test the robustness of the estimation algorithm we calcu- 
lated the mean and standard deviation of the generalized Hurst 
parameter estimates over 64 independent realization of 
128 x 128 2D ESS images. The images were rendered by the 

incremental synthesis method detailed in Section V. The test was 
performed for eight different afBm models which were chosen to 
represent numerous situations of persistence (i.e., H(m) > 1/21, 
antipersistence (i.e., i ( m )  < 1/2), and nonpersistence (i.e., 
e(,) = 1/2) at both the fine and coarse scales. Table I shows 
the parameters for the eight afBm models. Note that the first 
three test cases represent the fBm subset of afBm. The actual 
and estimated mean of the scale dependent Hurst parameters are 
displayed in Fig. 1 .  The error bars in the figure represent the 
standard deviation of the Hurst estimate. Obviously, the standard 

deviation of g ( m )  increases as the scale becomes coarser be- 
cause less measurements are available. The figure shows that the 
estimation algorithm provides close to unbiased results, and the 
standard deviation is low enough for most scales to provide a 
good classification feature. It is clear that for the coarsest scale, 
the estimator underestimates the generalized Hurst parameter, 
and the bias is larger for more persistent models. 

,. 

TABLE I 
PARAMETER VALUES FOR THE EIGHT afBm TEST CASES 

TABLE I1 
THE HURST PARAMETER ESTIMATE USING THE fBm MODEL 

FOR THE EIGHT TEST CASES 
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Fig. 1 .  Accuracy of the scale dependent Hurst parameter estimation algorithm. Left column, top to bottom: Test 1 ,  Test 3, Test 5, Test 7; Right column, top to 
bottom: Test 2, Test 4, Test 6, Test 8. 
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deviation of the Hurst parameter for the three fBm test cases 
and the other five test cases. Even though the method underes- 
timates the Hurst parameter for persistent fBm, the overall 
performance is very good. For nonfBm data, the results are not 
informative except that they should fall between the values of 
i(m) corresponding to the finest and coarsest scales. 

V. SYNTHESIS OF ESS PROCESSES 

The 1D and 2D ESS processes can be synthesized through the 
use of Cholesky decomposition. The Cholesky decomposition 
has been used to create 1D fBm in [24] and to create 2D fBm in 
[ 113. The difficulty of using the Cholesky algorithm includes 
numerical complexity and memory requirements. For example, 
to create a 1D ESS process of length N, the computational com- 
plexity of the Cholesky method is O(N3) and the memory re- 
quirements are O(N2). This becomes even worse for 2D ESS 
synthesis, i.e., to create an N x N 2D ESS process requires O(N6) 
computations and O(@ storage units. Another problem is that if 
the correlation is not positive definite, the Cholesky decomposi- 
tion will break down and provide no output. 

To generate ESS realizations, we will use a method called 
the incremental Fourier synthesis. The advantages of this new 
method over traditional Fourier synthesis is documented in 
[15]. For the generation of 1D ESS processes, the algorithm 
requires O(Mogz(N)) operations with memory requirements of 
O(N) because the method take advantage of the fast Fourier 
transform (FFT). Similarly, for a 2D ESS process, the compu- 
tation complexity is O(N210g2(N)) and the memory require- 
ments are O(N2). While the method does not generate a proc- 
ess based on the exact statistics of the ESS process, the method 
does creates realization with statistics that are very close to the 
intended ESS process. Moreover, if the correlation of the ESS 
process is not positive semidefinite, the algorithm still attempts 
to create a positive definite process whose statistics are as 
close as possible to the intended ESS process. In fact, a major 
discrepancy between the synthesized and intended statistics is 
an indication that the intended ESS process is not well defined. 

The basic idea behind incremental Fourier synthesis is to cre- 
ate the stationary increments through Fourier synthesis. Tradi- 
tional Fourier synthesis attempt to create the nonstationary proc- 
ess directly. The new method exploits the fact that the discrete 
Fourier transform (DIT) represent the Karhunen Lokve trans- 
formation for a discrete periodic stationary random processes. 
The method, however, cannot create exact realizations because 
the target correlation functions of the increments are considered 
to have compact support and are periodically extended to form 
the periodic process. As a result, the values of the target power 
spectra may have some small negative values which are forced 
to be zero in the actual power spectrum. The 1D incremental 
Fourier synthesis algorithm is stated below. 

ALGORITHM 2 .  1D INCREMENTAL FOURIER SYNTHESIS. 
1) Create white noise processes such that for 

k = 0, ..., N, @(k) - N(0, l), @(k) - lJniform[O, 2 r ) ,  

and @O) = @N) = 0. 

2 )  Calculate the target correlation function R(n) for k = 0, 
..., N b y ( 3 . 8 ) f o r A x =  l , a n d f o r k = N +  1, ..., 2N- 1 
let R(n) = R(2N - n).  

3) Calculate the target power spectrum R(k) by taking the 
FFT ofR(n). 

4) Define the actual positive semidefinite power spectrum of 
the synthesized increments by 

if R ( k )  < 0 
$ k )  = 

{ : (k)  otherwise ’ 

5 )  Synthesize the FFT coefficients of the increments by 

ii(k) = [ ,!%W(k)e’m(k) for k = 0, . . . , N 
X*(2N-k) for k = N + 1 ,  ..., 2N-1 

6) Calculate the increments by taking the inverse FFT of 

I )  Calculate the ESS process by summing up the increments 
k ( k ) .  

f o r n = l ,  ..., N-1, 

B(0) = 0,  

B(n) = B(n - 1) + X(n - 1). 

The advantage of the incremental Fourier method is that the 
actual correlation function of the synthesized increments is 
found by simply taking the inverse FFT of the actual power 
spectrum j ( k ) .  Then, by using (2.3) and (3.10), the actual 
values of the generalized Hurst parameters for the synthesized 
fields are available. 

The 2D incremental Fourier synthesis algorithm creates 
both the stationary first and second order increments of a 2D 
ESS process by Fourier synthesis. The first order increments 
are summed to generate the values of the 2D ESS process 
along the x and y axis, and the second order increments are 
summed to fill the remaining 2D lattice. The first and second 
order increments can not be generated independently. The de- 
tails of the 2D algorithm are given in [ 151 for the case of tBm 
and in [ 161 for the general ESS model. For the sake of brevity, 
the 2D algorithm will not be repeated here. 

VI. TEXTURE ROUGHNESS ANALYSIS WITH ESS MODEL 

By using the generation procedure described in the previous 
section, the relationship between the generalized Hurst pa- 
rameter and textured surface roughness can be verified. Recall 
that the smoothness (or roughness) of the textured surface is 
directly linked to a larger (or smaller) value of the generalized 
Hurst parameter. To demonstrate this concept, we generated 
two 2D processes of size 512 x 512 with the same random 
seed. They are: 

1) fBm with H = 0.4 (i.e., afBm with H = 0.4, p = 0, and 
A = 1) and 

2) afBm with H = 0.4, p = 0.4339, and A = 6.6684. 

Figs. 2a and b show the scale dependent Hurst parameters for 
these two cases at various scales. The generalized Hurst pa- 
rameters are similar for the two processes at coarser scales 
(larger m). but different at finer scales (smaller m). Figs. 3 and 4 



show the textured images of the four processes at two scales. 
At each scale, the resolution of the picture is 64 x 64, and each 
picture is scaled so that the dynamic range of the pixel values 
cover all 64 gray level values. As expected, at the coarse 
scales the two processes appear identical, and at the finer 
scales the afBm process is smoother. 
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Fig. 2. Scale dependent Hurst parameters for 2D random processes: (a) 2D 

Fig. 3. Zooming into an fBm texture with H = 0.4: a sampled every eight units 
(m = 3), (b) sampled every four units (m = 2), (c) sampled every two units 
(m = l ) ,  and (d) sampled every unit (m = 0). 

fBm ( H  = 0.4). (b) isotropic 2D-afBm (H = 0.4, p = 0.4339,and A = 6.6684). 
and (c) nonisotropic 2D afBm (H = 0.4, p = 0.4339, and A = 6.6684). 

(C) (4 
Fig. 4. Zooming into an atBm texture with H = 0.4, p = 0.4339, and A = 6.6684: 
(a) sampled every eight units (m = 3). (b) sampled every four units (m = 2), 
(c) sampled every two units (m = l) ,  and (d) sampled every unit (m = 0). 
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Fig. 5. Comparison of different coastline models generated by the same seed: 
(a) an isotropic atBm model, (b) a nonisotropic afBm model, (c) a rough fBm 
model, and (d) a smooth tBm model. 

To further examine the versatility of the ESS model, we rep- 
resent the surface of a 2D ESS process as coastlines so that all 
values which fall below a given sea level are represented as 
black. The land is represented as lighter shades of gray that 
depend on the elevation of the surface. As before, we used the 
2D afBm model with H = 0.4, p = 0.4339, and A = 6.6684, of 
size 256 x 256 to synthesis an isotropic and a nonisotropic 
processes. For the nonisotropic process, we choose 

It=(’ 0 4  0 ) .  

The scale dependent Hurst values for the isotropic and noni- 
sotropic processes are given if Figs. 2b and c. Figs. 5a and b 
represent the coastlines of isotropic and nonisotropic afBm, 
respectively. The two figures show that the coastlines of the 
resulting processes appear smooth and natural at the finer 
scales. The smaller values for the scale dependent Hurst values 
at the coarser scales yield the interesting bay formations. The 
smaller values for the scale dependent Hurst parameters in the 
y direction of the nonisotropic afBm model indicate that the 
surface is rougher in the y direction so that the bays and penin- 
sulas will be longer in the x direction. These two facts are 
verified in Fig. 5. Figs. 5c and d show fBm with H = 0.4 and 
H = 0.75, respectively. The images in Fig. 5 were generated by 
the same seed, and the figure demonstrates that at coarse 
scales, the isotropic afBm process with H = 0.4 has almost the 
same coastline as fBm with H = 0.4. At the finer scales, how- 
ever, the afBm process is smoother and looks more realistic. 
Fig. 5b shows that changing the value of R allows for less 
roundish bays and peninsulas, and Fig. 5d shows that fBm with 

larger values of H are smooth enough at the fine scales to ap- 
pear real. However, these fBm processes are too smooth at the 
coarser scales to provide interesting bay formations. 

Finally, we compare the effect of zooming into the coast- 
lines of fBm and afBm that appear similar at the coarse scales 
in Figs. 6 and 7. The images in Figs. 6 and 7 were generated 
using the same random seed. The self-similarity of fBm is evi- 
dent in Fig. 6 where the overall roughness of the coastline is 
independent of the scale. Fig. 7 verifies that at the finer scales 
the afBm can be designed to be much smoother than at coarser 
scales. 

Fig. 6.  FBm with H = 0.4: (a) the coastline and (b) zoom in of the coastline. 

(a) (b) 

Fig. 7 .  AdBm with H = 0.4, p = 0.5436, and A = 9.8139: (a) the coastline and 
(b) zoom in of the coastline. 

VII. REAL TEXTURE RENDERING 

The problem of real texture rendering involves measuring 
features or parameters from real textured. data and using these 
parameters to synthesize textures so that the synthesized texture 
appear similar to the real texture. We investigate the isotropic 
afBm and delta hurst models to render real isotropic textures 
based upon the scale dependent Hurst parameters in this section. 
The current work considers the synthesis of textures that exhibit 
the decaying but significant correlation which result in “cloudy” 
textures. Examples of “cloudy” textures include mammographic 
images, terrain models (when the elevation is viewed as a gray 
level), and pictures of fire, dust, clouds, and smoke. The current 
work does not consider the synthesis of processes that contain any 
dominate harmonics which result in a deterministic structure that 
propagates through the structure. Examples of the more structured 
textures include many of the textures found in the Brodatz album 
including wood, cloth, sand, and netting [l]. Chellappa and 
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Kashyap have demonstrated how to use the noncausal autoregres- 
sive (NCAR) models to render such textures [4]. The NCAR 
model is stationary and thus unable to capture the decaying but 
significant correlations (or llf effect) of persistent textures (see 
Section 111). Therefore, the NCAR and ESS models coexist to 
represent two different classes of natural textures. 

To render an ESS model that did capture some periodic ef- 
fects of a texture would require measurements of the length de- 
pendent Hurst parameters or structure function. At least for 1D 
signals, the complete discrete structure function can be rebuilt 
from these parameter values, and a discrete structure function 
can represent periodic signal [13]. The problem with using the 
HA ( s )  measurements is that half of the parameter values require 
estimation of the structure function at a scale which exceeds the 
maximum scale estimated by Algorithm 1. Based on the results 
of Section IV, the variance of the i i A ( s )  estimates for these 
lengths will be too high for the estimates to be reliable. There- 

- 

exactly. 
To fit the delta Hurst model to the measured data, one must 

find values of fiA(s) for s = 1, . . ., S where S = 2M+' and M is 
the coarsest measured scale. By substituting the delta Hurst 
structure function of (3.15) into (2.3), one can compute the 
relation between the scale and length dependent Hurst parame- 
ter to be 

2m+l  -1 (7.16) 
+ c logZ(i)[kA(i-l)-HA(i)], 

i=2'"+1 

for m = 0, . . ., M. As shown in [ 131, the length dependent Hurst 
parameters should not change abruptly for the delta Hurst model 
to be well defined. We choose to make kA(s) vary linearly with 
respect to the logarithm of s for constant scales, i.e., 

2m+l - 
fore, the paper only considers measurements of g(m) .  f f A ( s )  = a,log,(s+l)+bm for s = 2"-1, ...) -1.  

(7.17) A. Calculation of Model Parameters 

In Section IV, we described a method to calculate the scale 
dependent Hurst parameters which can be further used to cal- 
culate the parameters of the afBm and delta Hurst models. To 
calculate the parameters of the afBm model, one assumes that 
the coarsest scale value of f i (m)  represents the asymptotic 
Hurst parameter for the afBm model (i.e., H). Then, for many 
cases, one can choose values for the parameters of afBm so 
that the fine scale roughness values of k(0) and i (1 )  are pre- 
determined for a given value of H. It turns out that the value of 

By substituting (7.17) into (7.16), one can show after some 
algebra that 

a, = 2"#+1 

G(m) - E, (2") 

m2 + m + l - m 1 o g ~ ( 2 ~  +1)+~i=2n+l~og2(i)[log2(i)-~og2(i+1)] 
-I 

b" = G*(2m-1)-ma,, 
,. 

for m = 1, ..., M. By initializing kA( l )  = k(O), the values of 
kA(s) for s = 2, . . ., 2'+1 - 1 can be calculated. 

p can be calculated by solving for the roots of the following 
third order polynomial B. Experiments 

~p~+~p~+(a+b)pt(a+b+c) = 0, 

where 

2(H+fi(O)+fi(l)) 2(2H+fi(0)) 
c = 2  -2 

Then, A is determined by 

A =  

Note that the combinations of f i ( O ) ,  k(1), and H can be rep- 
resented by the afBm model only if one root of the third order 
polynomial is between zero and one. For example, if one wants 
H = 0.4, g(0) = 0.9, and k(1) = 0.8, then one would set 

p = 0.4339 and A = 6.6684 (see Fig. 2). 
A drawback of the afBm model is that the method presented 

above will only use the three parameters of afBm to fit the 
actual to the measured g ( m )  for exactly two points. Moreo- 
ver, there is no guarantee that a model exists to fit the meas- 
ured data. In contrast, the delta hurst parameter has an arbi- 
trary number of parameters to fit the generalized Hurst plot 

Both the afBm and delta Hurst models can be used to render 
textures. We will only present the results of the delta Hurst 
model in this section. To render a texture of size N x N ,  the 
coarsest scale available for k ( m )  is M = logZ(N) - 1. The first 
M values of k ( m )  are estimated by Algorithm 1, and k ( M )  is 
set equal to k ( M  - 1). Then, the parameters for the delta Hurst 
model are calculated, and the 2D ESS model is rendered based 
upon the delta Hurst structure function. Since the ESS model 
represents an improved model over traditional fBm for the 
representation of persistent textures, we compare the rendered 
ESS result to a rendered fBm textures. Specifically, we gener- 
ate a 2D fBm texture based upon the measured fBm Hurst 
value for the real data. 

For an illustration of terrain modeling, we used data from a 
digital elevation model (DEM) provided by the U.S. Geologi- 
cal Survey. A DEM provides elevation levels for a square lat- 
tice of land. To visualize the DEM, we will represent the DEM 
as a coastline image to distinguish the contours of the land. 
The DEM used represents Allens Park in Rocky Mountain 
National Park in Colorado. The generalized Hurst plots for the 
real and rendered DEM appear in Fig. 8. The real, ESS, and 
fBm coastlines are shown in Fig. 9. Both the actual DEM and 
rendered ESS model display large bays, and the fine scale 
coastline for both textures appear very smooth. The rendered 
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fBm coastline, on the other hand, does not exhibit the large 
bays because H is too large to model the coarse scale rough- 
ness of the DEM. At the same time, the fine scale coastline of 
the fBm model appears rougher than the DEM and ESS model. 
Obviously, the ESS model is better than the fT3m model for 
capturing features of the DEM at all available scales. In other 
words, the ESS model provides an improved model to synthe- 
size and analyze terrains. 
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Fig. 8. Generalized Hunt parameters for the Allens Park, CO DEM: (a) H(m) 
and(b) H,(S). 

Next, we investigate how the ESS model is better than fBm 
at capturing some of the effects of one of the random Brodatz 
texture. We rendered the pressed cork texture (D4) because 
this texture represents a random isotropic texture which does 
not exhibit any dominant harmonics. The generalized Hurst 
plots for the real and rendered textures are shown in Fig. 10, 
and since the generalized Hurst parameters converge to zero, 
the plot suggests that pressed cork might be a stationary tex- 
ture. The real, ESS, and fEim textures are provided in Fig. 11. 
The ESS model was able to represent some of the granularity 
of the original texture, but the model can not represent the 
deterministic texel primitive of the cork. The fBm image fails 
to resemble the cork texture. The fEim image appears too 
cloudy, and the image does not exhibit the larger grainy struc- 
ture of the ESS and cork textures. 

(C) 

Fig. 9. Comparison of real and synthesized DEM data: (a) Allens Park, CO 
DEM, (b) synthesized ESS model, and (c) synthesized fBm model ( H  = 0.85). 

(b) 
Fig. 10. Generalized Hunt parameters for pressed cork: (a) i ( m )  and (b) HA (s) . 
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(C) 

Fig. 1 1 .  Comparison of real and synthesized pressed cork textures: (a) pressed 
cork, (b) synthesized ESS model, and (c) synthesized fBm model (H = 0.13). 

VIn. CONCLUSIONS AND EXTENSIONS 

The concept of fBm has been generalized to allow for a 
wider range of natural textures and landscapes to be synthe- 
sized. It has been demonstrated how some different coastline 
features can be generated by different ESS models. For in- 
stance, the new approach allows an artist to choose the pa- 
rameters of the afBm or the delta Hurst model to control how 
rugged the bays and peninsulas appear at different scales. 
Moreover, the artist can control the length and orientation of 
peninsulas by choosing a proper R matrix. We have demon- 
strated computationally simple algorithms to analyze and syn- 
thesize a class of natural textures using the ESS model. The 
ESS model and associated algorithms should prove equally 
useful for texture classification. 

The theory of extended self-similar processes has many open 
problems. A study on necessary conditions for the generalized 
Hurst parameters would be very helpful. For example, results in 
[ 131 suggest that the differential Hurst parameter of (2.4) should 
be continuous. Furthermore, a detailed psychophysical study 
would help to further understand the strengths and weaknesses of 
the generalized Hurst values as a multiscale roughness measure. 
More application oriented studies include the use of the general- 
ized Hurst parameter measurements for texture classification. To 
facilitate texture analysis applications, it would be of great inter- 
est to investigate the performance of the generalized Hurst pa- 
rameter estimation algorithm on nonisotropic data and to extend 
the rendering method to nonisotropic textures. While the estima- 
tion of f i (m)  for various orientations is straightforward, finding 

a structure function model and R matrix to fit the z ( m )  meas- 
urements along different orientations is a matter of further in- 
vestigation. Finally, a study of methods to interpolate a 2D ESS 
process has important application to terrain modeling. The inter- 
polation method may lead to faster synthesis algorithms and 
would allow for changes of the parameters of the ESS surface at 
different locations. 

APPENDIX 
PROOF OF THEOREM 2 

PROOF OF (a). The fact that k ( m )  I 1 follows from Theorem 1. 
The fact that fiA(s) < 1 will be proved by induction. First 
HA(l) I 1  because fiA(l)  = f i(0).  Now, assume that 

~ , ( s )  I 1 for s = 1, ..., n - 1 but f i A ( n )  > 1. Then, we 
have 

- 
- 

Combining the two inequalities yields 

f (n+ l>+f (n- l>  2n2+2 >2. f n 

Then subtracting two from both sides and multiplying by 
f(n)/2 gives 

rxb;  1) > fo 
2 ’  o2 n 

where rdn; 1) is derived by (3.8). Since 
be expressed as a linear combination of 
up to n2 when rdk; 1) = d V k ,  one can show 

by (3.10)Kn) can 
r d k ;  1) that sums 

n-l 

k=O 

where 
n-l 

k=O 

Therefore, one can conclude 

rdn; 1) > min { r d k ;  1) : 0 I k I n - 1 ) .  

However the inequality contradicts the hypothesis that 
rdn;l) is monotonically decreasing. Thus, iiA(n) < 1, and 
then by induction, fiA(s) I 1 Vs. A proof by induction is 
also used to provide the lower bounds for the generalized 
Hurst parameters. First, assume that fiA(l)  < 1/2. Then, we 
havef(2) e 2fll) which yields by (3.8) that rx(l; 1) < 0. This 
contradicts the hypothesis. Next, assume that fiA(s) 2 1/2 

for s = 1, ..., n - 1,  but f iA(n)  < 1/2. Then, we can write 
the following inequalities 
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f(n+l) n + l  f ( n )  n <- and - 2 - 
f (n)  n f(n-1) n-1’ 

which leads to 

Then by inspecting (3.8), it is easy to see that the inequality 
leads to the fact that rdn; 1) < 0. However, the incremental 
correlation is positive by hypothesis. Therefore 
fiA(n) > 112, and then by induction EA(s) 1112 Vs. To 
prove that fiA(m) > 1/2 Vm, we can write 

Thus,fl2“+’)H2”) 2 2, and f iA(m)  2 112 Vm. 

PROOF OF (b). The fact that f i (m) ,  fiA(s) I 1/2 can be proved 
by using a similar technique as given in Part (a) and is 
therefore left to the reader. To prove the lower bound, we 
notice that since rdk; 1) must have a positive spectrum and 
rdk; 1) I O  fork > 0, then 

n+l 

rx(o; 1)+2xrx(k; 1) 1 o Vn E N. 
k=l 
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