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We examine an approach to texture segmentation that uses
the fractal dimensions along the 1-D cross sections of 2-D
texture data as image features, where an effective Haar trans-
form fractal estimation algorithm is utilized. The major advan-
tage of the Haar fractal estimator is its computational efficiency
along with robustness. The method is fast due to the pyramid
structure of the Haar transform and nearly optimal in the
maximum likelihood sense for fractional Brownian motion
(fBm) data. We compare the low complexity of this new algo-
rithm with the complexity of existing fractal feature extraction
techniques, and test our new method on fBm data, real Brodatz
textures, and natural scenes. @ 1995 Academic Press, Inc.

1. INTRODUCTION

Over the past years, a unified definition of texture has
been elusive. One can think of textures as images which
contain some random or deterministic patterns. Two tex-
tures are distinct if they can be separated visually. Exam-
ples of textures include grass, cloth, mammeographic im-
ages, and clouds. While for most cases, the eye can easily
distinguish between two textures, the classification and
segmentation of textures by a computer has proven to be
a challenging problem. The technology of texture classifi-
cation and segmentation is useful for the automation of
quality control in industrial monitoring, searching for earth
resolrces in remote sensing, medical diagnosis using com-
puter tomography, and target detection in synthetic aper-
ture radar (SAR) images.
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Early research work such as correlation [1], [2] and spa-
tial gray level dependence matrices (SGLDM) [3] was
based on the second-order statistics of textures. In the
1980s, researchers developed the Gaussian Markov Ran-
dom Field (GMRF) [4] and Gibbs distribution [5] texture
models, where the gray levels between nearest neighboring
pixels were characterized by a certain stochastic relation-
ship. Laws [6] proposed a simple scheme which used local
linear fransformations and energy computation to extract
texture features. The simple scheme often gives reasonably
good performance, and has been studied and improved by
many researchers (7, 8].

Many textures like cloth can be modeled as quasi-peri-
odic. As a result, many researchers have concentrated on
multichannel or multiresolution analysis to capture fea-
tures representing the dominant harmonics [9, 10]. These
methods often outperform traditional methods based on
the second-order statistics or the GMRF model. The main
problem of traditional texture analysis algorithms is that
they did not properly capture the features at different
scales. Recent work has concentrated around spatial/fre-
quency or spatial/scale analysis. For instance, algorithms
using the Gabor transform have been reported [11-13].
More recently, Chang and Kuo {14] utilized a wavelet
packet scheme to adaptively search out the dominate fre-
quency bands. While the subband techniques are good for
classifying a wide variety of textures, most of the algorithms
fail to distinguish between many natural textures.

Many natural textures have power spectrums which fol-
low a 1/f law. As a result, these textures only have a domi-
nant dc band. Flandrin [15] has shown a connection be-
tween the fractal dimension and the rate of decay of a
texture's power spectrum. Kumar et al. [16] and Pentland
[17] have demonstrated the connection between fractal
dimension and surface roughness. As a result, many re-
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searchers have utilized the fractal dimension as a feature
to distinguish natural textures. For example, texture classi-
fication algorithms were developed for medical applica-
tions [18, 19]. Texture segmentation algorithms based on
fractal dimension estimates are presented in [12, 17, 20—
25]. Moreover, a fractal dimension estimator was used for
speech segmentation [26]. While many algorithms measure
the fractal dimension of surfaces or curves by the box
counting method [20, 24], many others use a model based
approach with the fractional Brownian motion (fBm)
model [12, 17, 22, 25]. Most fractal segmentation methods
measure a local fractal dimension by applying global tech-
niques on a sliding window. Alternatively, Super and Bovik
[12] have demonstrated that the good spatial and frequency
localization properties of Gabor filters can be exploited in
order to achieve a better estimate of the local fractal di-
mension.

The fBm process has proven to be a very good model
for the analysis and synthesis of natural phenomena [27,
28]. For instance, fractal models have been successfully
applied to texture analysis and synthesis [17, 29] and land-
scape modeling [30]. In this rescarch, we propose a fast
Haar fractal estimator to capture features for texture seg-
mentation based on the fBm model. The new fractal esti-
mator provides an approximate maximum likelihood (ML)
estimate of the fractal dimension. The major advantage of
the Haar fractal estimator is its computational efficiency
along with robustness. Like most fractal segmentation ap-
proaches, our method essentially uses a small sliding win-
dow. The pyramid structure of the Haar transform provides
a fast implementation of the fractal dimension estimator
on the localized windows. We will demonstrate the ro-
bustness of the algorithm in Section 3.

This paper is organized as follows. In Section 2, we give
a review of the properties of fractals, fBm, and the Haar
transform applied to fBm. The new Haar fractal feature
extraction algorithm is detailed in Section 3. Then we show
in Section 4 that the new fractal features can successfully
segment synthetic and real textures. Specifically, we apply
the k-means algorithm initialized by the splitting method
{31] to cluster the features. Finally, some concluding re-
marks are given in Section 5.

2. FRACTALS, FRACTIONAL BROWNIAN MOTION,
AND HAAR TRANSFORM

2.1.

To model the textured details of nature, Mandelbrot
popularized fractal geometry [28]. He demonstrated how
self-similar patterns can mimic patterns found in nature.
A strict mathematical treatment of fractals can be found
in [32]. Fractals are defined as objects, or sets, whose
Hausdorff dimension (or fractal dimension} is greater than
its topological dimension. In this paper, an image is treated
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as a surface with a topological dimension of two. The
surface is defined over a square lattice that represent pixels,
and the gray level of the pixels represent the location of
the surface on the z axis. Then, any cross-section of the
surface represents a curve whose topological dimension is
one. The fractal dimension of the surface (or curve) can
loosely be interpreted as the amount of three (or two)
dimensional space that the object occupies. As a result,
the fractal dimension provides quantitative information
about the roughness of the surface (or curve). For example,
Fig. 1 displays curves of varying fractal dimension defined
over the interval [0, 1]. The curves all have a minimum
value of zero and a maximum value of one. It is easy to
see that the curves of higher fractal dimension appear
rougher and cover more space in the one square unit of
area.

As shown in [28], the fractal dimension can be deter-
mined by trying to cover the object of interest with balls
of diameter e. If the diameter is small enough, the number
of balls N(e) of size & to cover the object is related to the
fractal dimension d by

N(g) o g7 (1)

Obviously, as £ goes to zero, a larger fractal dimension d
means that a larger number of balls or space is necessary
to cover the object.

2.2. Fractional Brownian Motion

The fBm process is the most common stochastic model
for random fractal textures. Many properties of fBm have
been examined [15, 27, 30, 33-38]. We will review some
basic results of 2D-fBm in this section. Two dimensional
fBm By(t) is a zero-mean (Gaussian random process
such that

By(0) =0 (2)
and for any t, s € [
var[Bu(t +s) — Bu(t)] = o7fs|3". (3

where 0 < H < 1, o” represents the variance of the incre-
ments for unit displacements, and |||}, is the standard Eu-
clidean norm. Condition (3) is known as the self-similarity
condition, and it means that the variance of any increment
is independent of the spatial location t and the orientation
of s but dependent on the displacement length, i.e., ||s|..
The parameter #/ is known as the Hurst parameter, and
the bounds on H assure that the fBm process is mean
squared continuous and that the correlation function pos-
sesses the properties of an inner product [27]. The self-
sinilarity condition leads to the fact that the realizations
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FIG. 1. Fractal curves of various fractal dimensions.

of 2D-fBm are fractals surfaces whose fractal dimension
D is related to H via [30]

D=3 H (4)

Note that the value three represents one added to the
topological dimension of a surface. The relationship be-
tween H and D shows that the Hurst parameter determines
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the visual roughness of a fBm realization. Moreover, an
estimate of H also provides an estimate of the fractal di-
mension. Based on (2) and (3), the correlation function of
By(1) can be derived as

rp s, = %2 P+ el = fls — o). )

Thus, fBm is a nonstationary process, and if H = §, the
fBm process has the correlation structure of normal
Browntan motion.

A nice property of 2D fBm is that each one dimensional
slice forms a 1D tBm curve. Specifically, given a normalized
directional vector n and an offset o, the 1D slice of fBm,

Bi(H) = Bu(m + o), (6)

satisfies the seif-similarity condition. While B{(2) is still
a nonstationary process, its increments Xy(m, Ax) of dis-
placement length Ax defined on an integer grid, i.e.,

Xy(m, Ax) = BP(Ax(m + 1)) — B (Axm), meZ,

(7

form a stationary process. The fBm increments defines a
sequence known as discrete fractional Gaussian noise
{dfGn). The correlation function of dfGn with displace-
ment length Ax for a correlation lag of & is

i (ke ) = T APk + 1+ e = 1P~ 2kPH). (8)

Due to stochastic self-similarity, the shape of the correla-
tion function or power spectrum of dfGn is the same for
all values of the displacement length. Moreover, dfGn can
be divided into three classes. Namely, when H < & the
increments are negatively correlated, when H > 5 the
increments are positively correlated, and when H = §; the
increments are uncorrelated (or white).

Although fBm is nonstationary and thus has no formal
power spectrum, Flandrin [15] showed that the “average”
power spectrum of 1D fBm follows as 1/f law, l.e.,

S(f) = ]% ©

where f represents frequency. The spectral behavior of
fBm provides good motivation to apply fBm as a model
for 1/f processes.

2.3, The Haar Transform and FBM

The Haar transform is the most basic member of the
class of orthogonal wavelet transforms, and it is the easiest
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to implement in hardware. In previous work [35], we have
shown some very useful properties of the wavelet coeffi-
cients when the Haar transform is applied to dfGn. We
summarize some main results in this section.

The Haar transform provides a multiscale representation
of a signal where coefficients defining the signal details at
different scale are computed. Given an approximation of
the signal at the finest available scale ay(¢) which is usually
the discrete signal samples, the approximation and detail
cocfficients of the signal at the next coarser level is com-
puted for m = 0 by

Ame(t) = a,,(20) + a,(2t + 1),
dmﬂ(t) = am(2t) - am(zr + 1)

(10)
(11)

Equations (10) and (11) are computed recursively to obtain
detail wavelet coefficients for different scales. It is known
that the Haar transform can effectively whiten the station-
ary dfGn process [35]. The orthogonality and “whitening”’
properties of the Haar transform applied to dfGn provide
an approximate Karhunen-Logve (KL) expansion. It is
important to point out, however, that the IHaar transform
cannot whiten 1D fBm for <0 H < 1. Thus, the simplicity
of the Haar transform cannot be exploited by a fractal
wavelet estimator applied directly to the fBm data {39].
Based on our previous results [35), we can show some
nice properties of the Haar transform applied to dfGn.
When ag(f) is set equal to the dfGn process with
Ax =1, the approximation coefficients of scale » are equiv-
alent to the increments of the fBm curve for a displacement
length of Ax = 2. By (8), the correlation function of a,,(¢)
is the same as that of a,(¢) scaled by a factor of 22" Then,
it can be shown that the variance o2, of the detail wavelet
coefficients d,,(¢) are related to scale by

32, = var[d,(f)] = 221 Dg(4 — 22H), (12)
Equation (12) and the KL-like property of the Haar trans-
form lead to a simple approximate ML estimator as will be
shown in Section 3.2.1. Note that a more regular orthogonal
wavelet provides better “whifening” filters than the Haar.
Unfortunately, the simple exponential variance progres-
sion of the detail wavelet coefficients via the discrete wave-
let transform applied to dfGn using the Haar basis does
not generalize to higher order (e.g., more regular) filters.
Besides, the Haar transform provides for a natural separa-
tion of data segments as discussed in Section 3. Thus, we
concentrate on the Haar transform.

3. FRACTAL FEATURE ESTIMATION VIA
HAAR TRANSFORM

For 2D fractal surfaces, the fractal dimension can be
measured by considering the surface to be isotropic where
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measurements are averaged over all possible directions.
Another choice is to consider 1D cross sections of the
surface as fractal curves and measure the fractal dimension
of the curves. The nonisotropic measurement technique
provides more information than the isotropic counterpart
when a real texture appears rougher on a preferred direc-
tion. Moreover, the fractal estimation of image strips can
be computed in parallel to reduce the computation time.
Thus, we consider fractal dimension estimators using the
directional measurement approach in this work.

N

Many methods to calculate the fractal dimension of a
fractal curve have been given in the literature. Three of
the most popular algorithms are the box counting, the
variance scaling, and the power spectral methods [17]. All
three methods require that linear or nonlinear regression
is used on the logarithm of some measurements versus the
logarithm of the scale where the calculated slope is the
estimate for H.

The basic idea behind the box counting method is to
count the number of boxes on a grid of size & necessary
to cover a function on a compact interval as shown in Fig.
2. Since the number of boxes to cover the curve should
follow the law given by (1), the slope of the curve of
log(N(z)) versus log(e) is the fractal dimension. Usually,
one uses linear regression to calculate the slope. In reality,
the box counting dimension is greater than or equal to the
true fractal dimension.

The power spectal method uses the 1/flaw for the power
spectrum (i.e., (9)) to relate the coefficients of the fast
Fourier transform {FFT) to the frequency. Specifically, the
slope of the log of the power spectrum versus the log of
the frequency is calculated via linear regression. Thus, the
Hurst parameter or fractal dimension is obtained based
upon the slope.

The variance method uses the self-similarity condition
(3) where the variance of the increments for various lags
are plotted as a function of the lag. Again, the slope of
the log of the variance versus the log of the lag determines
the Hurst parameter or fractal dimension. While the vari-
ance method is motivated by the self-similarity condition
of the fBm, it does provide a good fractal dimension esti-
mate for general fractal functions. Besides, the variance
method can be related to the box counting method. For
instance, the variance method measures the expected
change in a function value over a distance of &. To cover
the function in this interval of size £ will require about
Vvar|[B(s + £) — B(s)]/e boxes. Then the total number of
boxes to cover the function should be about

Previous Fractal Dimension Estimators

N(g) = KVvar[B(s + &) — B(s)]/e%, (13)
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FIG. 2. Box counting at different scales.

where K represents the size of the support for B(s). By
using the self-similarity condition (3) and (1), it is easy to
understand the relation between fractal dimension and H
for a fractal curve,ie., D =2 — H.

3.2. Haar Fractal Dimension Estimation

The Haar transform leads to an approximate ML fractal
estimator for finite samples of fBm data. In this section,
we describe the Haar fractal estimator and its detailed
implementation.

3.2.1. Haar Fractal Dimension Estimator

Given the Haar transform of 2% dfGn samples, i.e., fBm
increments, and using the assumption that the detail Haar
coefficients are uncorrelated, one can compute the log-
likelihoed function as

1M 6-I2P1
m=1 m

where N(m) is the number of wavelet coeificients available
at scale m (usually N(m) = 2¥°™"), &2, is the sample vari-
ance of the wavelet coefficients, o2, is given by (12), and
M is the available number of scales. We maximize the
likelihood function to obtain the estimate of H. As shown
in the Appendix, the estimate of H is found by first solving
the following pelynomial for an intermediate variable 3,

M
2 C.Nm)o, M =0,

m=1

(15)

where

1
C, = m — . 16
E,‘:Ll mN(m) Efﬂ N(m) (o

Then, the Hurst parameter which maximizes the likelihood
function is calculated from B3 by

A =3 low(®) a7)

The Haar fractal method can be directly compared to
the variance method. By examining (10} for the case that
the finest scale approximation coefficients correspond to
the increments of length one, one can see that the variance
method in effect performs the regression analysis on the
approximation coefficients. In other words, the Haar
method adds the wavelet filtering step (11) to “whiten”
the coefficients so that a maximum likelihood estimate of H
is easy to perform. Even without the maximum likelihood
formulation, a linear regression analysis after the wavelet
filtering step should provide more accurate estimates be-
cause the coefficients are virtually independent.

3.2.2.  Efficient Implementation

To compute the local fractal measurement in the y direc-
tion, we take a 9 X 17 block (or a block consisting of 9
columns and 17 rows), For each 1 X 17 slice of the block,
we compute the 16 increments, pass the 16 increment
through the four level Haar transform, and compute the
sample variance of the detail Haar coefficients at each
scale. Then, the third order polynomial (15) is solved, and
H is calculated. The nine different estimates of H are
averaged to provide a local y-directed Hurst parameter H,
for the middle pixel in the 9 X 17 block of concern. We
then slide the block over the entire image to compute local
fractal measurements for every pixel. Similarly, we use a
17 X 9 block to compute the x-directed Hurst parameter
H,. More generally, one can consider rotations of the
9 X 17 block to calculate the directed Hurst parameters
at other angles. Although we are concentrated on the x-
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and y-directed Hurst parameters in the experiments in
Section 4, situations may arise where diagonal directions
may provide additional interesting texture features in the
real world problems.

To compute the local fractal features effectively, one
can divide an N X N image into strips of width one pixel
and length N pixels. The orientation of the strips depends
on the directional Hurst parameter that one wants to calcu-
late. For each strip, the increments are computed. Then
the Haar transform is calculated for nonoverlapping blocks
of W pixels by applying log,{W) levels of the Haar trans-
form to the increments via (10) and (11). We use W = 16
and, therefore, 4-level Haar transforms in our experiments,
The energy of the detail Haar coefficients is computed for
each scale in each block, and Eq. (15) is used to calculate
the local Hurst parameter for each block.

The pyramid structure of the Haar transform provides a
fast method toslide the analysis window block. To illustrate
this idea, we show the pyramid structure of the Haar trans-
form for W = § in Fig. 3 as an example. First, the local
Hurst parameters for the pixels marked with zero are calcu-
lated. In the next step, the local Hurst features for the
pixels marked with one are computed. This can be easily
achieved by switching the neighbor of the second coarsest
approximation coefficients used to calculate the coarsest
wavelet coefficients. The new calculation scheme is indi-
cated by the broken lines in Fig. 3. Once the coarsest
coefficients are modified, (15) is reevaluated. In general,
a new step will slide the analysis window by 2 pixels when
the approximation coefficients neighbor grouping at scale
m is switched, and the wavelet coefficients and energy
values are recalculated by (10) and {11). Figure 3 shows
the pixel ordering for the feature calculation. It turns out
that the local fractal features for each pixel in a W length
segment is computed by considering shifting the analysis
window by the bit reversed value of the step number,

After the wavelet features are computed for all N strips,
V strips are averaged by a sliding window. When V = 9
and W = 16, it is the method described above and used
in the experiment. Note that to calculate the Hurst and

[1]s]s]7]o]<]2]e

1|5|3|7!0|4[2[T|

/

O

FIG. 3. Segmentation of the Haar transform for W = 8,
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incremental power features for all pixels in the image, one
must consider extensions around the image borders. In our
work, we consider the image to extend symmetrically about
all the edges.

3.2.3. Computational Complexity

When the method presented above is used to calculate
the local fractal features, only a limited number of coeffi-
cients need to be altered for each step before the nonlinear
regression analysis. Table 1 shows the number of times
the energy of the coefficients for each scale needs to be
calculated and the complexity to compute the energy val-
ues at each scale for W = 16. In general, our wavelet
extraction method takes about 4W log,(W) flops for each
of the N/W segments in a strip. Given N strips, the total
cost to compute one directional local fractal dimension
measurement for each pixel is about 4 log,(W)N? flops.
The cost per pixel is only O(log,(W)).

The computations necessary to set up the regression
analysis are higher by using other fractal methods. For
instance, the box counting method must be computed in
O(W) flops per pixel. The power spectral method has a
complexity of O{W log,(W)) per pixel because one must
compute an FT'T of length W tor each pixel. A straightfor-
ward implementation of the variance method would result
in a complexity of O(W?), However, the variance scaling
can be implemented in about 3W flops per pixel. For our
experiments where we use segments of length W = 16, the
approximate flop count to set up the regression analysis is
about 48 flops for variance scaling and only about 16 flops
for the Haar transform. Note that computation of the V
length smoothing filter is negligible in our analysis.

An important point is that the directionally based fractal
estimators can be computed in parallel. Specifically, fractal
estimates on each strip can be computed separately from
other strips. Moreover, the averaging step to compute the
final Hurst estimate at each pixel can also be computed
in parallel.

3.2.4. Robustness of Haar Fractal Dimension Estimator

We tested the robusiness of the proposed wavelet
method on true fBm images of size 256 X 256. The synthetic
fBm images were generated by using a new spectral synthe-
sis technique that creates realization which represent the
true statistics of fBm {40]. The means and standard devia-
tions of the x and y oriented fractal features over all 65,536
pixels are listed in Table 2 with various values of H. These
statistics are comparable to results obtained by using iso-
tropic fractal feature methods [25]. The fact that the Hurst
parameter is always underestimated may be due to the
nonlinear regression analysis performed by (15). Most im-
portanitly, the measurements of /f appear consistent, Table
2 also shows that as H approaches one, the wavelet estima-
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TABLE 1
Number of Flops to Implement the Haar Fractal Dimension Extraction Method on a Segment of size W = 16

Calculation Calculation Calculation Flops Number of times Total

Scale of (10) of {11) of energy to calculate energy values flop

(m} in flops in flops in flops energy value are calculated count
! 8 § 15 {=16) 11 (=32) 2 62 (~64)
2 4 4 7 (=8) 15 (=16) 4 60 (~64)
3 2 2 3 (=4) 7 (=8) 8 56 (=64)
4 1 1 1(=2) 3 (md4) 16 48 (=64}

tor error increases. This phenomena is most likely due to
the fact that as H increases, the correlation of pixels in-
crease. In fact, other experiments that we have performed
may suggest that the field of local Hurst parameter esti-
mates does not form an ergodic process when H > & The
same prablem was reported by Hofer ef al. [22].

3.3. Fractal Power Estimation

Medioni and Yasumoto have pointed out that the fractal
dimension alone will not classify or segment all real tex-
tures [41]. Thus, we also consider the estimate of the fractal
power parameter, ie., ¢” in (3), as a feature for texture
segmentation. In fact, the fractal power parameter is simi-
lar to a morphometric parameter that is used in geology
to determine the roughness of landscapes [42]. While the
power parameter is sensitive to the contrast of the texture,
one can assume the lighting condition are fairly homoge-
neous over the entire texture so that the power parameter
is a valid feature in the segmentation problem. To estimate
the fractal power parameter, we compute the x- and y-
directed increments of an image and calculate the average
energy of each of the two increments over a 9 X % block.
Note that efficient computation of the averaging window
can be accomplished by exploiting its separable property.
Then, we use the logarithm of the two average energies

TABLE 2
Results of the Haar Fractal Dimension Estimator Applied to
Real fBm Realizations

i, f,
Fractal True
dimension H Mean Std. Mean Std.
29 0.1 0353544 111746 047463 110777
Z8 0.2 146877 118725 149234 123621
2.7 0.3 248023 128212 245142 132294
26 0.4 353126 143719 357044 145934
25 0.5 453680 153522 441098 152108
24 0.6 540792 165553 549634 164069
2.3 0.7 649483 170730 6426018 170432
22 0.8 740592 179003 T28553 175834
2.1 09 804649 181956 810099 190086

as two local features for the middle pixel. The logarithm
is used so that the resulting features vary linearly instead
of exponentially with respect to H when two {Bm textures
have equal dynamic range for their grey level values. Fi-
nally, we slide the 9 X 9 block over the entire image.

4, EXPERIMENTAL RESULTS

4.1. Segmentation of Texture Mosaics

The fractal features can be combined with any other
texture features to perform texture classification of seg-
mentation. To validate, the new fractal features, we used
only the x- and y-directed Hurst and incremental power
estimates for a total of four features. The segmentation
results that we present may be improved by adding other
features such as subband features obtained from Laws
masks.

To perform the segmentation, we first smoothed the
four computed features via a 3 X 9 edge preserving noise
smoothing quadrant (EPNSQ) filter [7]. Based upon the
smoothed features, we search for different clusters. In our
experiments, we assume that the number N of texture types
in an image is known a priori, and we apply algorithms
which search for N clusters in the feature space. To search
for N clusters, we employ a splitting algorithm [31] to
perform an initial search for cluster centers. We choose
to implement the splitting algorithm because it typically
provides clusters of uniform size. Then, we apply the
k-means algorithm to refine the clusters’ variance to a local
least squares solution. Each pixel is classified to the closest
cluster centroid in the feature space. The segmented image
contains N gray level where each gray level represents the
texture class of the pixel. Since one can assume that the
actual segments are more than just a few pixels in size,
postsmoothing is performed to remove the small spots that
may appear in the segmented image. In our work, we used
a mode filter such that a pixel’s gray level is changed to
the gray level that appear most frequently in a 9 X 9
surrounding window. The mode filter has many similar
properties to the median filter such as the ability to pre-
serve boundaries.

The segmentation method was applied to three images
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FIG. 4. Texture segment labels for the three test images.
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FIG. 6. (a)texture mosaic consisting of random Brodatz textures,
and (b} segmentation result,

of size 256 X 256, and the ground truth of the segmented
textures is displayed in Fig. 4.

Test fmage ! (Texture Mosaic with 5 fBm [mages). The
first test image is a texture mosaic with 5 synthetic fBm
textures of varying /1 as shown in Fig. 5a. The actual seg-
mentation result is provided in Fig. 5b. A similar problem
was tested by Hofer er al. [22]. Figure 5b shows that no
misclassifications occurred in the interior of the different
textures. There are segmentation errors along the texture

FIG. 5. (a) FBm test image and (b) segmentation result. borders. It is evident that the border effects are strongest
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FIG. 7. Smoothed (a) x- and (b) y-directed Hurst features.

between segments with large differences between their
Hurst parameter. These edge effects occur because the
calculation of the incremental power is an edge detecting
operator, and in many cases, the local Hurst parameter will
have different values along texture edges (see Section 4.2).

Test Image 2 (Texture Mosaic with 4 Random Brodatz
Textures). The test image contains four random Brodatz
textures f43], i.e, pressed cork (D4), herring bone (D16),
pigskin (D92) and wood grain (D68), as shown in Fig. 6a.
The second experiment was designed to test the ability
to classify natural random textures which do not contain
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FIG. 8. (a) Texture mosaic consisting of periodic Brodatz tex-
tures, and {b) segmentation result.

TABLE 3
Classification Accuracy of Different Test Images

Number Classification
Image of textures accuracy
1. fBm collage 5 95.15%
2. Random Brodatz 4 91.32%
3. Periodic Brodatz 4 95.62%
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FIG. 9. (a) San Francisco image, (b) average incremental power {normalized), (c) histogram of average incremental power, (d) initial
segmentation result, (e} x-directed Hurst estimate, (f) final segmentation result.

obvious harmonics. The segmentation result is depicted in
Fig. 6b. For this test case, the directional fractal dimension
measurements were very useful to separate the wood tex-
ture as shown in Figs. 7a and 7b. The border effects are
not as pronounced as in Test Image 1 because the random
textures do not provide an accurate fit to the fBm model.
Unfortunately, another result of the lack of a perfect model
fit is sporadic classification errors in the interior of the
different textures. The misclassification between pressed
cork and pigskin is understandable since these textures are

visually similar. The misclassification between the wood
to the herring bone is a result of some repeating fine grain
structure of the wood. Figure 7 shows that the y-directed
Hurst parameter cannot distinguish between these two tex-
tures and that the x-directed Hurst provides classification
errors in the wood texture along the left border of the
wood,

Test Image 3. (Texture Mosaic with 4 Periodic Brodatz
Textures). The test image includes four Brodatz textures



TEXTURE SEGMENTATION

FIG. 9—Continued

which represent woven aluminum wire (D6), straw matting
{DD55), cotton canvas (D77), and raffia (D84) as shown in
Fig. 8a. The segmentation result is provided in Fig. 8b.
Ewven though the fractal features are designed to distinguish
the random textures via roughness, they seemed to do a
very good job in segmenting periodic type of textures as
demonstrated by this example. The segment border effects
are the least pronounced for this test case. The only signifi-
cant errors occur in the interior of the raffia texture where
the texture is classified as cotton canvas. It should be noted
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that the weave between these two textures do appear alike
except that the strands of the raffia are larger.

The segmentation results of the three test cases are very
good. They are comparable to other fractal segmentation
results as provided in [20}. The segmentation results of this
section do show that our fractal feature extraction method
provides useful features for texture segmentation. The clas-
sification accuracy of the three test cases is shown in Table
3. The segmentation results can be further improved by
considering to measure some local multifractal or lacu-
narity parameter as used in [20, 24] respectively. These
parameters help to segment textures based upon “sparse-
ness’ while the fractal features measure “roughness.”

4.2, Natural Scenes

The incremental power feature is very useful for seg-
menting water and land from aerial photographs. The frac-
tal feature, itself, will not distinguish land and water, but
the feature does provide higher values for the Hurst esti-
mate at the water/land boundaries. The edge detection
abilities of the fractal feature have been documented in
[17, 18]. In our application, the edges will allow for further
refinement of the segmented photograph when the incre-
mental power feature of the land dominates a small lake
or river.

Figure 9a shows an aerial view of the San Francisco Bay
Area in an image of size 512 X 512. The average of the x-
and y-directed power features of the San Francisco image is
displayed in Fig. 9b, and the histogram of Fig. 9b is shown
in Fig. 9c. Based on the histogram, we choose the gray
level 130 as a threshold between the water and the land.
The initial segmentation result is given in Fig. 9d. The
figure shows good separation of the land and water. How-
ever, some smaller areas of water such as the river (Area
D) and bay inlet (Area E) disappear.

While the incremental power feature provide good
segmentation, the result can be improved by integrating
fractal dimension estimates. The x-directed Hurst feature
of the San Francisco image is given in Fig. 9e. The figure
does provide larger value for H around the water/land
interfaces. In fact, edges appear in the figure that represent
the river and water inlet which were misclassified as
land. To integrate the fractal feature to obtain a final
segmentation result for the photograph, we first used a
threshold to consider only the largest 2.5% values of the
x- and y-directed values of H to represent edges. Then,
we applied one step of mode filtering to remove any
spurious edges. Finally, the edges are combined with
the initial segmentation result. Specifically, if an edge is
detected at a pixel and the majority of surrounding pixels
in a 9 X 9 window are also edges, then the classification
of the pixel from the original segmentation step is re-
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versed. The final segmentation result is shown in Fig. 9f.
The figure does show that more of the river and water
inlet are classified as water. The indentaticn that appears
around Area A is due to lake that is very close to the
bay, and Lake Merced (Area C) is detected. The San
Bruno Mountains (Area B) provided some problems to
the segmentation algorithm. Other experiments suggest
that other mountain ranges causes difficulties for the
algorithm. Other false lakes appeared around the Oakland
Airport (Area F) for unknown reasons. All in all, the
incremental power and fractal dimension features provide
very good separation of water and land in the San Fran-
cisco image.

5. CONCLUSIONS AND EXTENSIONS

We presented a new fractal feature extraction method
by using the Haar transform. The new algorithm is fast
and provides good segmentation results with only four
features, as demonstrated in the experiments. More seg-
mentation problems can be performed to evaluate our new
method. It would also be useful to find a way, if possible, to
extend the Haar transform to higher regular filters without
losing the efficient algorithmic architecture presented in
Section 3. Additionally, Stewart et al. [25] reported that
tree and grass clutters represent dfGn instead of fBm and,
therefore, we should investigate the cases where the dfGn
model (i.e. do not calculate the initial increments) provides
better segmentation results for real textures. Other experi-
ments which combine the fractal features with other tex-
ture features may prove to be useful. Finally, the effect of
noise on the Haar fractal feature extraction method should
be studied.

APPENDIX: ESTIMATION OF H

Under the assumption that (14) is the likelihood function
for the curve of interest, the maximum likelihood estimates
&3, and H )y, are the values of o and H which maximizes
{14). The make the notaticn easier, the following (erms
are defined,

B=22H

ag'l= (22—2H —_ 1)0.2’

(18)
(19)

so that the variance progression given by (12) can be rewrit-
ten as

o = a'2gm

(20)
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To minimize the likelihood function (14), the derivatives
of the likelihood function with respect to 8 and o' is set
to zero to provide the following two relations,

_ E,,Afﬂ N(m)a2
S N(m)

o'

, (21)

and

1 & . . M
= > mN(m)GZLA™ " — B~ Y mN(m) =0. (22)
m nr=1

=1

=0

Substitution of (21) in (22) yields

(fl N(m))(i mN(m)aer[g-m—l)

m=1 m=1

(23)
~ M M ~
- B! (E jrnz\r(m))(g=1 N(m)ﬁrzmﬁ"”) = 0.

m=1

Then, multiplication by B 1/(Sa, N(m))Sm-. mN(m))
provides Eq. (15). Note that Wornell and Oppenheim have
shown that when at least one value of &3 is non zero and
M = 0, then there exist a unique positive real solution to
(15) [39}. Finaily, the maximum likelihood estimate of
is determined by the inverse of (18), i.e., (17).
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