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escriptor of 
Curves: Theory and Applic 

Gene C.-H. Chuang and C.-C. Jay Kuo, Senior Member, IEEE 

Abstract- By using the wavelet transform, we develop a hi- 
erarchical planar curve descriptor that decomposes a curve into 
components of different scales so that the coarsest scale compo- 
nents carry the global approximation information while the finer 
scale components contain the local detailed information. We show 
that the wavelet descriptor has many desirable properties such as 
multiresolution representation, invariance, uniqueness, stability, 
and spatial localization. A deformable wavelet descriptor is also 
proposed by interpreting the wavelet coefficients as random 
variables. The applications of the wavelet descriptor to character 
recognition and model-based contour extraction from low SNR 
images are examined. Numerical experiments are performed to 
illustrate the performance of the wavelet descriptor. 

I. INTRODUCTION 

OUNDARY representation is essential in shape descrip- 
tion and recognition. It plays a key role in many appli- 

cations such as image analysis, pattem recognition, computer 
graphics, and computer-aided animation. Many methods have 
been proposed to describe planar curves. The chain coding 
method [16] approximates a curve with a sequence of di- 
rectional vectors lying on a square grid. Some quantitative 
measurements of the object, known as the shape factors 
[9], can be used to characterize shapes. Examples include 
moments, areas, perimeters, and comers. The spline tech- 
nique [5] uses a set of piecewise low-order polynomials to 
approximate a curve so that the curve can be determined by a 
small number of parameters. The spline-generated boundary 
curve can be translated, scaled, and rotated by performing 
the transformations on a set of control points. The Fourier 
descriptor [27], 1401 describes a curve with coefficients via 
Fourier analysis of a certain parametric representation such as 
the curvature or spatial coordinates of the curve. 

The multiresolution (or multiscale) technique [3], [281, [3 11 
for signal and image processing has grown very rapidly for the 
last several years. It was observed by study in psychophysics 
that the human visual system processes and analyzes image 
information at different resolutions. This motivated Rosenfeld 
[29] to develop a multiscale edge detection scheme. Marr 
[22] used the first- or second-order derivatives of a Gaussian 
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filter of different sizes for signal convolution and detected 
changes in the intensity or zero-crossing at different scales. 
More recently, Witkin [39] proposed a scale-space filtering 
approach that uses a set of parameterized Gaussian kernels to 
smooth a signal and extracts the descriptive primitives such as 
the locations of extrema or intervals bounded by the extrema. 
To characterize the features of local extremum, one can then 
detect the extrema at a certain coarse scale and track them 
across a couple of scales of finer resolutions. 

For most curve matching or shape recognition tasks, it is 
important that the decision is made based on features that 
are insensitive to rotation, translation, and change in size. 
To match contours in a hierarchical manner is one of the 
main motivation for developing the scale-space methods so 
that the global alignment is conducted first, and local com- 
parison is then performed at various resolutions. Permeuller 
and Kropatsch [ 151 presented a multiresolution descriptor 
of planar curves using comers with a hierarchical structure. 
Based on the scale-space plot of the curvature of a planar 
curve, Mokhtarian and Mackworth [23] proposed a multiscale 
shape representation that locates points of inflection on the 
curve at varying scales. Moreover, Bajcsy and Kovacic [I] 
proposed a multiresolution elastic matching method in which 
they assumed that one of two objects was made of elastic 
material and the other served as a reference. By applying 
an extemal force to the elastic object, the shape of the 
elastic object was deformed to match the reference object 
along somwee scales. This matching method was shown 
to be effective in medical applications such as anatomical 
human brain altas matching. For the scale-space methods, the 
Gaussian function is the optimal kernel for reducing noise with 
minimal delocalization [33], [21]. Nevertheless, a planar curve 
smoothed by the Gaussian kemel suffers from shrinkage [25], 
i.e., the perimeter becomes smaller after convolving with the 
Gaussian kemel. This may cause a problem in some pattem 
recognition applications. 

In recent years, the wavelet transform became an active 
area of research for multiresolution signal and images analysis. 
In this paper, we consider another type of multiscale planar 
curve descriptor by using the wavelet transform. Our main 
objective is to demonstrate the nice properties and interesting 
applications of this new descriptor. We show that the wavelet 
descriptor has the properties of invariance, uniqueness, and 
stability. Features extracted from the wavelet approach can 
be normalized so that we can handle the effect of rotation, 
translation, and scaling easily. In contrast with the scale-space 
filtering approach, which serves primarily as an analytical 
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tool, the wavelet descriptor provides an effective synthesis 
tool as well. The application of the wavelet transform does 
not yield a coarse resolution curve smaller than the original 
one so that there is no shrinkage problem, even though 
some detailed variations of the curve are removed. Compared 
with the Fourier descriptor that uses global sinusoids as the 
basis functions, the wavelet descriptor is more efficient in 
representing and detecting local features of a curve due to the 
spatial and frequency localization property of wavelet bases. 
Furthermore, we may interpret the wavelet coefficients as 
random variables and use the deformable stochastic wavelet 
descriptor to model a group of shapes that have the same 
topological structure but may differ slightly due to local 
deformations so that this descriptor can be conveniently used 
in multiscale matching. Since the forward and inverse wavelet 
transforms can be implemented via the cascade of quadrature 
mirror filter banks, the wavelet descriptor is computationally 
efficient and has a great potential for real-time applications 
such as target recognition and detection. 

This paper is organized as follows. We briefly review the 
wavelet theory and derive a wavelet representation for planar 
curves in Section 11. In Section 111, we examine several impor- 
tant features of the wavelet descriptor, including the effect due 
to scaling, translation, and rotation and the properties of invari- 
ance, uniqueness, and stability. These properties are essential 
for shape representation and recognition. The approximation 
capabilities of different wavelet bases with various vanishing 
moments and symmetry property are compared. In addition, 
we propose a procedure to normalize the wavelet coefficients 
contained in the feature set so that the recognition method 
is applicable to shapes with different sizes and variations. 
In Section IV, we study the application of the deformable 
wavelet descriptor to the model-based boundary extraction 
from noisy images using the maximum a posteriori (MAP) 
estimation method and perform an experiment' to illustrate 
the performance of the wavelet descriptor. Some concluding 
remarks are given in Section V. 

11. PLANAR CURVE DESCRIPTOR 
USING WAVELET TRANSFORM 

The parametrized closed curves can be represented by 
periodic sequences. Wavelets defined in L2(R) are not suitable 
for this representation. Continuous wavelet analysis on the 
circle have been studied by Holschneider [17]. In this section, 
we will briefly review the theory of periodized wavelets [12]. 
Each periodized wavelet can be expressed as a sum of copies 
of periodically shifted continuous wavelets with reasonable 
decay. These functions constitute an orthonormal basis in the 
space L2([0,  I]). 

A. Review of Periodized Wavelet Theory 

certain m E Z, its translations 
We use #( t )  to denote a scaling function such that for a 

# ~ ( t )  = 2-m/2#(2-mt - n),  n E z 
form an orthonormal basis for the wavelet subspaces Vm and 
that { V m } m E ~  is a multiresolution approximation of the space 

L2(R).  For each scaling function 4(t) ,  one can determine 
the corresponding mother wavelet function $( t )  such that the 
collection of its dilations and translations 

form an orthonormal basis for L2 (R) .  The functions # and $ 
satisfy the following dilation equations: 

The coefficients h k  and .gk are related via g k  = ( - l )khl-k.  
The periodized wavelets in the space L2([0, 11) can be ex- 

amined based on the multiresolution analysis with the scaling 
function # and the wavelet $ in L2(R) .  The periodic scaling 
and wavelet functions are defined as 

The corresponding periodic multiresolution approximation 
spaces are 

In addition, as in the nonperiodic case, we have VmP1 = cm 63 I@-. It was proved in [12] that for negative integer 
m, V m  is finite-dimensional $r+k21ml ( t )  = $:(to for k E Z, 
and vm is spanned by the 2iml functions with n E Z, = 
(0, 1, . . . , 2lTnl -1}. A similar result holds for W m  with $:(to 
replaced by 4: ( t )  . 

For f ( t )  E VM,, we can express its finite-scale orthogonal 
wavelet expansion 

n E Z M J  

with 
1 1 

cn M c  = Jd f ( t )@( t )d t ;  d: = Jd f ( t ) @ ( t ) d t .  (2.4) 

A fast algorithm to compute the finite-scale wavelet transform 
is given below. Let us define a pair of filter coefficients 

It is easy to verify that j? and hy are periodic sequences 
with period 21ml. Then, the coefficients d z  and c,". can be 
computed from coefficients c? via the following recursive 
formulas: 

m = M f , .  . . , Mc - 2 ,Mc  - 1. (2.6) 
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M One can also obtain the coefficients C, 

via the synthesis formula 
from d," and ctlc 

1EZ,+1 

m = Mc - l,Mc - 2,. . . , M f .  (2.7) 

Equations (2.6) and (2.7) are called the forward and inverse 
discrete periodic wavelet transforms (DPWT), respectively. It 
can be easily shown that the DPWT is perfectly invertible 
when applied to sequences of finite length. 

B. Coordinate-Based Wavelet Descriptor 

parametric coordinates z ( t )  and y ( t )  by 
Let us denote a clockwise-oriented closed plane curve with 

where 
t normalized arc length 
1 arc length along the curve from a certain starting point t o  
L total arc length. 

By applying the wavelet transform to the parameterized coor- 
dinates, we obtain 

where 

n n 

are called the approximation coefficients at scale 111 and 

n m 

are called the detailed signals at scale m with m = M - mo 
being the finest scale and m = M being the coarsest scale. 
Then, we can use the wavelet coefficients U?, e:, r r ,  and 
d;: given in (2.9) and (2.10) as the planar curve descriptor. 

By using only a subset of wavelet coefficients consisting of 
primarily coarser scale components, i.e., small values of Iml, 
we can have different multiresolution representation of the 
shape. In terms of mathematical expression, we can modify 
(2.8) to be 

where M - mo 5 k 5 M + 1. The curves with coordinates 
2 ( k ; t )  and y ( k ; t )  provide a sequence of multiresolution ap- 
proximations to the original curve. This dyadic approximation 
sequence can be best depicted by its two extremes. On one 
hand, we obtain the original curve at k = M - mo, and on the 
other hand, the approximating curve contains only the coarsest 
scale description, i.e., z:(tt) and yy(t) for k = M + 1. To 
give an example, we show the Koch's snowflake in Fig. 1 
and its different approximations with a certain subset of 
wavelet coefficients. We perform an eight-level decomposition 

of wavelet transform using the biorthogonal cubic B-spline 
wavelets [34], [35].  Fig. l(1)-(8) are its approximations from 
the finest to the coarsest resolution, whereas the original curve 
with 3072 samples is given in Fig. I(0). In practice, it is 
proper for the coarsest-scale in shape representation to contain 
between 4 to 16 sampled points in applications such as shape 
matching. One main advantage of the wavelet descriptor is 
that the hierarchical decomposition 'can lead to significant data 
compression. For example, Fig. l(3) shows the approximation 
of the curve reconstructed from 384 points. We see that the 
approximation is very close to the original. 

The detailed signals at scale m can also be represented by 
using the polar coordinates, i.e. 

where 

(2.13) 

With this polar coordinate representation, we can plot a vector 
function with amplitude A? . 4,"(t) and phase e;. The 
wavelet vectors are the building elements of curves from a 
scale to its next higher resolution scale. The representation of 
wavelet vector depends on the wavelet basis G(t) it uses. In 
general, G ( t )  with shorter support offers better spatial locality 
property at the expense of the smoothness of reconstructed 
curves. 

We want to point out similarities and differences between 
the expression in (2.12) and elliptic Fourier features discussed 
in [20] and [30], where the sinusoidal orthogonal bases, i.e., 
sine and cosine functions, were adopted. If the coefficients of 
the sine and cosine functions are equal, the building elements 
are circles. Otherwise, they are ellipses. The building elements 
are flattened to vectors if only the sine or the cosine functions 
are used. In (2.12), the wavelet curve descriptor is reduced to 
a vector via the Cartesian-to-polar coordinate transformation. 

It is also possible to represent a smooth curve using the 
chain-coded tangent, cumulative tangent, or curvature. These 
kinds of differential representations [ 181, [40], are invariant 
under translation, rotation, and scaling. The curvature 6 of the 
planar curve is defined as the rate of change of the tangent 
angle with respect to arc length, i.e. 

where x and x (or y and y) denote, respectively, the first and 
second derivatives of the coordinate function ~ ( t )  (or y(t)) 
with respect to the parameter t of the curve representation. 
We can apply the finite-scale orthogonal wavelet expansion to 
the curvature via 

M 

n m=M-mo n 
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Fig. 1. 
spline wavelet. 

Multiscale representation of Koch's snowflake using the biorthogonal 

However, for a closed curve with differential representation, 
its reconstruction based on a set of truncated wavelet coeffi- 
cients may not be closed. Besides, it is difficult to compute 
the derivatives at sharp corners or under a noise-corrupted 
environment. Thus, we will focus on the coordinate-based 
wavelet descriptor in this paper. 

It is worthwhile to review Fourier descriptor, which is 
a popular curve descriptor in many applications, for the 
comparison at the end of this section. The Fourier descriptor 
is a method of describing a closed planar curve by a set of 
Fourier coefficients. Let (.(TI), y(n)) be the N-point discrete 
parameterized coordinates of a curve. By assuming the contour 
to be traced repeatedly, the coordinate functions ~ ( n )  and y(n) 
are periodic functions and can be represented by using the 
Fourier series as 

N-1  

k=O 
N-1 

y(n) = Y(k)eiZ"""N , n = 0 , 1 , 2  , . " )  N - I  
k=O 

(2.14) 

where X ( k )  and Y ( k )  are the Fourier coefficients. To recon- 
struct the closed planar curve largely, one may only need a 
small set of coefficients of low-frequency components when 
the coefficients of higher frequency components are small. 

111. PROPERTIES OF WAVELET DESCRIPTOR 

A. Scaling, Translation, and Rotation 
The scaling, translation, and rotation of a planar curve 

can be described via a suitable transformation of wavelet 
coefficients. First, we examine the scaling effect. The scaling 

of a curve by a factor can be written as 

Thus, by using the linearity of the wavelet transform, it implies 
that we can scale the wavelet coefficients CL?, e:, T:, and 
d z  given in (2.9) and (2.10) by the same factor p 

As far as the polar coordinates (2.12) are concerned, we have 

= arctan (-) Pd; = arctan (f) = er 
Pr," 

and 

Thus, the phase remains unchanged while the magnitude is 
scaled by the same factor p. 

Next, we examine the translation of the curve by a distance 
( b z ,  by). By using (2.1) and the admissibility property of 
wavelet basis, we have 

and it is easy to see that 

m E -N;n E Z,. 

Thus, the wavelet coefficients r," and d? of the detailed 
signals xT( t )  and y r ( t )  are invariant under translation. The 
displacement of the curve affects only the approximation 
coefficients ( t )  and y: ( t ) .  Since 

and 4 f ( t )  = 2-"I24(2-"t - n) ,  we have 

f m  

$:(t)dt = 2 - M / 2  $(t)2"dt = 2"/' 6' L 
where the property that the integral of the mother scaling 
function is equal to unity is used. It follows that 

rL E Z,. 
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(a) (b) (c) 

Fig. 2. 
the wavelet approximation does not have the shrinkage problem, as shown in (c). 

Perimeter of a curve is reduced by applying multiple Gaussian and discrete diffusion smoothing steps as shown, respectively, in (a) and (b), whereas 

In addition, it can be summarized as 

+ 2hf/2 . b, uM 
Translation: [g = [ :F + 2 M / 2  . ] , 

and [gj = [$I. 
Third, by rotating the curve by a counterclockwise angle p 

with the centroid as the pivot point, we have 

cosp - s i n p  
= [sinp c o s p ]  [:;I. 

It is more convenient to describe the rotation in terms of polar 
coordinates and straightforward to derive that 

Rotation: e," = 6'; + cp, and = A," 

for the wavelet coefficients of the detailed signals. The same 
relationship also holds for the polar coordinate representation 
of the approximation coefficients. 

In matching or recognition applications, it is known that 
the features selected as descriptors should be as insensitive as 
possible to the variation of changes in size, translation, and 
rotation. Curve normalization by using these properties will 
be described in detail in Section III-E. 

B. Nonshrinking Property 

One common problem in multiresolution curve represen- 
tation occurs when the curve convolves many times with 
some smoothing kernels. That is, the perimeter of a shape 
may become smaller. This is known as the shrinkage problem 
[25]. For example, let us consider the Gaussian and discrete 
diffusion smoothing kernels that satisfy analog and discrete 
scale-space conditions [21], respectively. Note that the family 
of discrete diffusion smoothing kemel is of the form T(n;  t )  = 
e - ' I m ( t ) ,  where In( t )  is the Bessel functions of integer order. 
The kemel T ( n ;  t )  is the solution of a discretized version of the 
diffusion equation and is proved to be the discrete counterpart 
of the Gaussian kernel for scale-space filtering. By comparing 
Fig. 2(a) and (b), we see that the perimeter of a curve is 
reduced by applying multiple times of Gaussian or discrete 

diffusion smoothings. In Fig. 2, the solid lines are the original 
curves, whereas the dashdot and dotted lines represent two 
curves as the results of multiple smoothing. The shrinkage 
problem in the Gaussian and discrete diffusion smoothings 
is due to the reduction in low- as well as high-frequency 
components. In contrast, the wavelet approximations have no 
shrinkage problem, as shown in Fig. 2(c). For the proof of the 
nonshrinking property of the wavelet transform, we refer to 
work of Oliensis [25]. 

C. Invariance, Uniqueness, and Stability 

Mokhtarian and Mackworth [24] discussed some desired 
properties of a general shape descriptor as stated the following: 

Invariance: For two curves with the same shape, they should 
have the same representation. 
Uniqueness: For two curves with different shapes, they 
should have different representations. 
Stability: Small differences in the shapes of curves corre- 
spond to small differences in their representations, and vice 
versa. 

We can rephrase the three properties with commonly un- 
derstood mathematical terminologies. First, the invariance 
property means that the mapping of a shape to its representa- 
tion in fact defines a function. Second, the uniqueness property 
says that the function is one to one. Third, the stability property 
implies that the function is well posed. It is clear that the 
wavelet descriptor given by (2.8) is a one-to-one function so 
that it satisfies the invariance and uniqueness properties. The 
stability property will be examined below. 

Since the x and y coordinates of a curve can be handled 
separately, we will focus on the scalar function rather than 
the vector function. Here, to present our explanation in a 
more general setting, we consider a class of square-integrable 
functions f E L2([0, 11) and their corresponding wavelet 
frame representations [7] ,  [12]. (Note that the frame is a 
concept that is more general than the basis. A basis is a frame, 
but a frame may not be a basis.) Based on the property of a 
Hilbert space, we want to explain that if two functions f l  and 
f 2  are close to each other, their wavelet frame representations 
W(f1 )  and W(f')  are also close, and vice versa. 

By choosing $(x) such that functions 
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constitute a frame in I;'(([(), I]), we have [71, [ 12, pp. 55-561. 

(3.4) 

for 0 < A < B < 00. Define the 2-norm of the wavelet 
representation 

m E -N n E Z ,  

It is easy to see that if two representations are close, the curves 
that they represent should be close as well. In the case that 
the functions ~ F ( x )  are the orthonormal set A = B = 1, and 
the computation of the transform is numerically stable. The 
limitation of these properties is that the parametrizations of 
curves must have the same starting point. 

D. Approximation by Different Wavelet Bases 

A good wavelet basis allows a signal to be approximated 
with a small error up to a certain resolution. "Which wavelet 
should we choose?' is a question with no quick answers. In this 
section, we compare the approximation capability of different 
wavelet bases in representing smooth curves. Following the 
idea of Daubechies [ 121, we investigate wavelet bases with 
different vanishing moments and symmetry property. 

We will discuss the importance of vanishing moments of 
wavelets first. By definition, we say that a wavelet basis has L 
vanishing moments if the corresponding mother wavelet 4 ( t )  
satisfies 

t+j(t)dt = 0, I = 0 , .  . . L - 1 J 
By expanding a scalar function f ( t )  with Taylor series at 
t o  = Zmn, where m is a negative integer, we obtain 

f ( t )  = f(2-n) + f( ')(2"n)(t - amn) 
1 
2! 

+ -f'"(a-n)(t - 2mny + 

where IR(t)I < 00 if f E CL-l. Let us multiply both sides 
of the above equation by 2-"/'7,&(2-"t - n)  and integrate 
from 0 to 1. If the basis has L vanishing moments, the first 
L terms will become zero. Therefore, for a very fine scale 
(or a large value of Iml), the wavelet coefficient l(f,4z)I 
will be small unless t = 2mn is near one of the singularities 
of f. Suppose we decompose a function into wavelets and 
throw away all the detailed coefficients at finer scales. To 
this end, the wavelet 4 with higher vanishing moments tends 
to pack more information in the approximate coefficients. 
For some applications, the scaling function &t) characterizes 
the coarsest scale approximation (zE,y?). Thus, it is also 

important to consider the vanishing moments of &t). Coiflets, 
which we will discuss later, fall into this category. 

Physiological and psychological studies show that the hu- 
man visual system is sensitive to the error induced by asym- 
metric reconstruction. It was proved that complete symmetry 
of 4 and 6 cannot be achieved by using compactly supported 
orthonormal wavelet bases except for the Haar basis [12], (371. 
The orthonormal wavelets with noncompactly supported bases 
can only be implemented by the IIR filters. The implementa- 
tion is generally recursive, which may lead to instability and 
limit cycles. Some other alternatives are biorthogonal wavelets 
[ 81 with different filters for decomposition and reconstruction. 

To compare the performance of different wavelet bases 
in representing planar curves, we use the Daubechies [lo], 
least asymmetric [12], Coiflets [4], [ l l ] ,  Battle-Lemarik [2], 
biorthogonal spline-variant [ 121, and biorthogonal cubic B- 
spline [34], [35] bases and show the results in Figs. 3 and 4. 
The previous four are orthogonal wavelets. Among them, the 
Daubechies and least asymmetric bases are both compactly 
supported wavelets with a maximum number of vanishing 
moments for a given support region. Coiflets are constructed 
by Daubechies and Coifman [ 111 from a class of orthonormal 
wavelet bases with an equal number of vanishing moments 
for 4 and d. It turns out that the mother wavelet 4 and the 
scaling function 4 of Coiflets are much more symmetric than 
their counterparts in Daubechies and least asymmetric bases. 
However, Coiflets require longer support of the basis function 
(and, hence, more computation efforts) to achieve the same 
order of vanishing moments. The BattleLemarit, biorthogonal 
spline-variant and cubic B-spline wavelets are constructed 
from spline functions and have prefectly symmetric scaling 
functions. We summarize the properties of these wavelets in 
Table I, where IIRFIR means that the analysis and synthesis 
filters are IIR and FIR, respectively. 

The approximations of a square by wavelet bases with 
various vanishing moments are plotted in Fig. 3. It appears 
that the biorthogonal spline-variant wavelet gives the best 
results for this symmetric test case since it represents both 
the corners and edges well. Furthermore, we compare the 
approximations of California's outline by different basis with 
similar computational complexity (12 filter taps in most cases) 
in Fig. 4. At M = -7, the results are almost of no difference, 
except the Battle-LemariC wavelets show some reconstruction 
errors due to the infinite convolution sum being replaced 
with a finite one. On the other hand, at M = -6, the 
Daubechies wavelets preserve sharp comers, whereas Coiflets 
nicely represent the right angle. The errors due to nonperfect 
reconstruction accumulate when more levels of decomposi- 
tionheconstruction are performed. Hence, higher noise appears 
in the Battle-LemariC's approximation at M = -6 than at 
M = -7. This truncation error can be significantly reduced 
by increasing the number of taps of the IIR filters. Note 
also that it can be catastrophic if computation is done by 
the nonperiodic wavelet transform. We performed many other 
experiments and obtained the following three observations. 
First, in representing the symmetric pattern such as the square 
and the Koch's curve, the wavelet bases with symmetric (or 
almost symmetric) scaling functions such as the biorthogonal 
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wavelets 
Daubechies least asymmetric Coiflets Battle-Lemard spline-variant cubic B-spline 

no poor almost Yes Yes yes 
FIWIR FIFWIR FWFIR mIR FIFUFIR IIR/FIR 

orthogonal orthogonal orthogonal orthogonal biorthogonal biorthogonal 

Daubeches 8, L=4 Daubechies 12. L=6 

Coiflets 12, L=4 Coiflets 18. L=6 Battle Lamane 

Biolth. spline-van'ant, L=4 Biorih. splinevariant, Ls Biorth. cubic €3-spline 

Fig. 3. Finite resolution approximations of a square with different wavelet bases 

TABLE I 
SYMMETRY AND OTHER PROPERTIES OF DIFFERENT WAVELETS 

spline-variant or Coiflets give better results. Second, a basis 
with higher vanishing moments gives better approximations at 
the price of a higher computational cost. Third, with relatively 
light computations, the Daubechies wavelets preserve sharp 
corners in approximating not-so-smooth curves. 

E. Normalization of Wavelet Coeficients 

The invariance, uniqueness, and stability properties of the 
wavelet descriptor proved in Section 111-C is important in 
the shape recognition application. Due to the invariance and 
uniqueness properties, it is convenient to perform clustering 
based on the wavelet representation rather than the spatial 
coordinates. The significance of the stability criterion is that 

it guarantees that a small change in the shape of a curve 
will not cause a large change in its wavelet representation, 
and hence, the wavelet representation is stable with respect to 
noise. Thus, by measuring the distance between two boundary 
curves in terms of their wavelet coefficients, we can perform 
classification by the nearest-neighbor clustering rule. This 
procedure is detailed below. 

Given a boundary curve and supposing that the starting 
point in traversing the curve is fixed, we calculate the wavelet 
transform and choose a set of significant coefficients as its 
features. Since the position, size, and orientation are not 
relevant in recognizing the shape, we have to normalize 
the contour so that the representation is invariant to these 
transformations. We now consider a normalization procedure 
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Biorlh cubic Bapline. M: 4 Bioflh cubic 8-spline, M= -7 

Daubchias 12. M=-6 Daubedries 12. M=-7 

Least asymm. 14 M=-6 Least asy".  12. M=-7 

Coiliets 12. M=6 Coiflets 12, M=-7 

Baule-Lemarie 14. M=6 Battle-Lemade 14, M=-7 

is the averaged displacement vector over the total 
number N I  of coefficients a:' (or cf) in the feature 
set. 

2) For sizing normalization: A," t AT/A,  where A = 
& E,,, A; is the averaged magnitude over the total 
number N2 of coefficients r," and d," in the feature set. 

3) For orientation normalization: 0,- +- 0," - e, where 
&f = 1 En,, 8," is the averaged angle over the total 
number N2 of coefficients r," and d: in the feature set. 

This normalization sets up a scheme for silhouettes or 
signature recognition. It is worthwhile to point out that the 
above normalization procedure does not only normalize the 
shape for the purpose of classification but also removes noise 
in raw data. 

N2 

original F. An Example: Character Recognition 

We use an example to demonstrate the the performance of 
the wavelet descriptor and will compare the result with that 
of the Fourier descriptor. 

We work with the character set 

{2,z, U ,  V, D ,  0, Q, 5 ,  S, E ,  F, P, R, L ,  M ,  NI 

Fig. 4. 
different wavelet bases. 

Finite resolution approximations of the outline of California with 

applied to the wavelet transformed data. It is clear from (3.2) 
that the wavelet coefficients r," and d: are invariant under 
translation. The centroid of the contour can be obtained by 
taking the average of the prime signals a," and e,", and 
the translation effect can be offset by setting the centroid 
of the contour to the origin. The scale normalization can 
be accomplished by dividing the magnitude A,'I" of wavelet 
coefficients with the averaged values A over the significant 
set. By calculating the averaged phase 8 of wavelet vectors 
over the significant set, we can offset the orientation effect by 
performing an inverse rotation. 

In short, by performing the wavelet transform on the co- 
ordinate representation ( ~ ( l ) ,  y ( l ) )  of a contour via (2.6) and 
choosing a feature set, we can normalize the parameters, or 
wavelet coefficients, for each individual curve as follows: 

1) For displacement normalization: (a,", e,") +- 
M M  (a?, - (bz, by), where (bz, b,) = & C ( a n  rcn 

and represent each character by a binary image array of size 
24 x 24. The reason for choosing such a character set is that 
elements in subsets { 2 , Z } ,  { U , V } ,  { D , O , Q } ,  and so on, 
are easily misclassified due to similar contour shapes. We trace 
the boundary of each character with a piecewise linear contour 
to represent the shape of the original image array. We have 
to mention that wavelet models depend on the choice of the 
starting points t o  of curves. Fourier descriptors, however, can 
be normalized [38] to global shift invariance, even though the 
normalization procedure is complicated. In this experiment, 
we suppose that the documents are aligned and scanned so 
that the choice of starting point is not a problem. Once the 
length of the contour is computed, we interpolate and resample 
the boundary contour so that the total number of samples 
is 256. (Note that both 128 and 512 points have also been 
tried, and we see any significant difference in the final results.) 
Then, the coefficients of Fourier and wavelet descriptors are 
computed by using (2.14) and (2.6), respectively. For the 
wavelet transform, we decompose the curve description into 
six levels with four coefficients at the coarsest scale. 

Three fonts for each character, as shown in Fig. 5, were 
used in the training phase. It was observed that the regularity, 
vanishing moments, or even the choice of wavelets does not 
play a significant role in this character recognition experiment. 
In the following, we report the result based on the Daubechies 
D8 wavelet basis. Since only some lower resolution (or 
frequency) coefficients have substantially large values while 
the magnitudes of other coefficients are negligible, we choose 
a subset of the Fourier or wavelet coefficients as the feature 
vector. A reference feature vector for each character was 
obtained by averaging the feature vectors over all three fonts in 
the training stage. To perform nearest-neighbor rule clustering, 
we use the Euclidean distance. In the case of classification 
with only 4 features, which correspond to the coarsest scale 
wavelet coefficients, we found that the three characters 5 ,  S ,  
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(a) (b) (C) 
Fig. 5.  
helvatica; (c) itc avant garde gothic. 

Three fonts of the symbol “2”: (a) New century schoolbook; (b) 

and 2 were misclassified by the Fourier descriptor, whereas 
the two characters Q and 0 were misclassified by the wavelet 
descriptor. It is also possible to select the set of coefficients 
with the highest magnitudes as features. In the case of classifi- 
cation with seven features by using this approach, the character 
S was misclassified to 5 by the Fourier descriptor, whcreas all 
characters were classified correctly by the wavelet descriptor. 
The above experiment is by no means complete, but the result 
supports that the wavelet descriptor can be an alternative to 
the Fourier representation that suffers from the drawback of 
not being sufficiently localized in space. 

IV. DEFORMABLE WAVELET DESCRFTOR 

A. Basic Idea 

To model a group of shapes that have the same topological 
structure but may differ slightly due to deformation, we can 
interpret the wavelet coefficients as random variables and 
propose a deformable stochastic wavelet descriptor to describe 
them. The possible applications of deformable wavelet descrip- 
tors include motion tracking, stereo matching, and computer 
animation. 

Staib and Duncan [30] used coefficients of the Fourier 
descriptor as the parameters of deformable models. However, 
the basis functions of the Fourier descriptor are the sinusoids 
that are periodic and global (not sufficiently localized in space) 
so that a small perturbation of one parameter will affect the 
entire outline of a shape. This deformable model is not efficient 
in describing shapes with only local deformation. In contrast, 
the wavelet descriptor uses a set of basis functions with local 
support and multiscale dilations and, therefore, provides a 
scheme to model local as well as global deformation. In 
Fig. 6, we model the amplitude of a certain wavelet vector 
as a Gaussian random variable and assume that all other 
wavelet vectors (defined as in (2.13)) are deterministic. The 
deformation using the Fourier descriptor is also plotted for 
comparison. The superior local deformation property of the 
wavelet descriptor can be easily seen in this example. 

Furthermore, we use the entropy as a measure of the 
averaged uncertainty of Coefficients. The entropy H ( x )  of a 
random variable x is defined as N ( x )  = - Pr(z) lnPr(z), 
where Pr(x) is the probability density function of x. For a 
Gaussian random variable x, the entropy is equal to H(x) = 
ha=, where CT is the standard deviation of the Gaussian 
distribution of the random variable x [26]. Now, consider a set 
of deformable curves with independent Gaussian-distributed 
spatial coordinates ~ ( t )  and y(t). Then, the corresponding 
Fourier and wavelet coefficients are also Gaussian distributed. 

( 4  (b) 
Fig. 6. 
descriptors. 

Comparison of curves reconstructed by (a) Fourier and (b) wavelet 
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Fig. 7. 
using (a) Fourier and (b) wavelet descriptors. 

Distributions of transform coefficients for a Gaussian deformed curve 

We plot the statistical distribution of the Fourier and wavelet 
transformed coefficients in Fig. 7, where the mean of the 
transform coefficient is indicated by the solid line, and the 
standard deviation for each transform coefficient is depicted 
with a vertical bar. Since the coefficient with a larger standard 
deviation has a larger entropy, we conclude that the neighbor- 
hood deformation of a curve can be more efficiently described 
by the wavelet descriptor than the Fourier descriptor. 

For the case of a nonclosed curve, a straightforward repre- 
sentation of the curve would result in discontinuities; therefore, 
the boundary problem occurs when the wavelet transform 
is performed. This problem can be avoided by letting the 
parameter t start at one end of the curve, trace along the 
contour to the other end, and then trace back to the starting 
point to form a closed path. Fig. 8 shows an example of a 
nonclosed curve and its deformations, where the solid, dash, 
and dashdot lines represent the mean curves and curves with 
minus and plus one standard deviation, respectively. The 
curves are locally deformed in the x and y directions in 
Fig. 8(c) and (d). Note that these locally deformed curves 
cannot be easily achieved by using the Fourier descriptor 
deformable model. The locally deformable property makes the 
wavelet descriptor an attractive tool for handwritten signature 
generation and recognition. 

B. Model-Based Contour Extraction 

We consider one particular application of the deformable 
wavelet descriptor that extracts the boundary of an object from 
noisy images with a model-basedBayesian approach. The idea 
of extracting the object boundaries from noisy images using 
the model-based Bayesian approach is inspired by the work of 
Staib and Duncan 1301. However, it is worthwhile to point out 
some differences. First, we propose a hierarchical matching 
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Fig. 8. Deformation of a nonclosed curve. 

scheme by exploiting the multiscale representation capability 
of the wavelet descriptor. Second, to avoid exhaustive numer- 
ical line integrals for continuous gradient formulation in [30], 
we adopt the chamfer matching. 

Let 3 be the parameter vector of the wavelet descriptor of 
a contour where p’ includes a set of N wavelet coefficients of 
the z, y coordinates as its elements. Given a contour template 
C&i, k )  corresponding to a particular value of the parameter 
vector 5, we want to detect the template C,- from an image 
F ( j ,  I C ) ,  where j and k are the indices of pixels in the image. 
To extract the contour of an object, some preprocessing of the 
image F ( j ,  I C )  is needed. We apply the Laplacian of Gaussian 
(LOG) [22] operation to F ( j ,  I C )  to obtain an estimate of the 
edge location. The LOG operator is defined as 

I ( j ,  k )  f LoG(F)( j ,  I C )  = F ( j ,  I C )  * (-V2G)(j, I C )  

where V2 is the Laplacian operator, and G is the Gaussian 
smoothing kernel. The lowpass Gaussian filter reduces the 
noise sensitivity of the Laplacian operator while preserving 
the location of zero crossings. 

Based on the preprocessed information I ( j ,  I C ) ,  we can for- 
mulate MAP estimation problem. Let CMAP denote the MAP 
estimation of boundary curve C. Then, the MAP problem of 
our interest can be written as 

where Pr(C,-) is some a priori knowledge of the contour, 
and Pr ( I  I C,-) is the the likelihood function of detected 
edge information I with given Cg. Since the term Pr(I)  is 
independent of p’, we can take the logarithm on both sides and 
change the optimization problem (4.1) to be 

max[lnPr(l  I CF) + lnPr(Cg)]. (4.2) 

By assuming independent zero-mean Gaussian noise with 
standard deviation on, we know that the likelihood function 
of is of the form 

P 

Pr(1 I Cg) = Pr(n = I - C,-) 
I - [1(3,k)-Cg12 

- 
- n -e 

j , k  E A 

In the above equation, the noise at each pixel n(j, k )  is 
independently and identically distributed with the probability 
density Pr(n), and that probability for noise over the entire 
picture area A is nothing but the product of noise on the 
individual pixel. The maximization problem (4.2) is equivalent 
to maximizing the objective function [28] 

r 1 

(4.3) 

The second term of (4.3) is the natural logarithm of the a 
priori probability that confines the solution CMAP to a group 
of curves within the prescribed model, whereas the first term 
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Fig. 9. 
image I ,  where I is calculated by applying the Laplacian of Gaussian operator to the cardiac image. 

Likelihood term approximated by the cross-correlation of (a) normalized chamfer correlation image of the contour template C,- and (b) zero-crossing 

Fig. 10. 
of a synthesized image; (b) superimposed initial guess and the objective (the inner circle); (c) final result of multiscale elastic matching. 

Example of the normalized chamfer correlation image and its matching result using Powell’s method (a) Example of the normalized chamfer image 

is the approximation of logarithm of the likelihood Pr(1 1 Cg) 
and is, in some sense, a cross correlation of the contour Cg 
and S(j, k ) .  Note also that the cross correlation is weighted 
by a factor k/c: that decreases as the energy of Gaussian 
noise increases. This implies that the estimation depends more 
heavily on the information of likelihood than the a priori 
knowledge when the noise is small and the apriori information 
prevails in the objective function when the noise corruption 
becomes more severe. 

We will assume that all wavelet coefficients are Gaussian 
distributed. This assumption is in fact close to what we 
observed in the beating heart image sequence in the experiment 
described in Section IV-C. Let us choose 

where the mean mi and the standard deviation mi of each 
wavelet coefficient p; are parameters of the deformation 
model. We assume that they are known in advance. Note that 
if no a priori information is available, the uniform probability 
yields a constant a priori term and therefore has no influence 
to the solution of the objective function. 

The MAP estimation CMAP can be calculated in a pyramidal 
structure. We first solve the MAP problem in a very coarse 
scale (by setting the wavelet coefficients in other finer scales 
to zero) and use the result as the initial guess at the next 
finer scale. That is, by fixing the coarse scale coefficients 
obtained from the coarse scale optimization, we solve the 
MAP problem by adjusting only the wavelet coefficients that 
are responsible for variations in this fine scale. The same 
procedure is applied recursively scale by scale until the highest 
resolution is reached. The hierarchical algorithm reduces the 
computational cost significantly. 

It is worthwhile to compare our approach with a commonly 
used approach known as the snake [19]. The snake is an 
active contour model where a curve is deformed due to a 
certain extemal force. The proposed MAP estimate deforms 
the curve to maximize the probability of estimation given the a 
priori information and the a posteriori knowledge, whereas the 
snake scheme changes the curve shape to minimize the energy 
due to internal and external forces. The internal force acts as 
the smoothness constraint, whereas the external force guides 
the active contour toward image features. The smoothness 
constraint of snake is to minimize the first- and the second- 
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Fig. 11. Contour extraction by the MAP estimation using the deformable wavelet descriptor. 

order derivatives of curves, but our scheme restricts the curve 
representation in the wavelet coefficient space to achieve 
multiscale matching. However, both the snake and wavelet 
deformable model share the advantage of having local control 
property so that the modification of the position of a control 
point results in only a local variation of the curve. 

C. Experiments 

In this experiment, we use the deformable model to extract 
the contour of a heart from a certain computer tomography 
(CT) image. The extraction of the cardiac contour is important 
in assessing the regional diastolic function [ 141. To collect 
the a priori information of the contour, we consider a set 
of 15-frame noiseless CT images of size 128 x 128 that 
forms a full cycle of the heartbeat. We use the contours of 
these images to calculate the mean and the standard deviation 
of the deformable model. Note that the proposed method 
relies on other mechanisms to register the contours in the 
image sequence such that the starting points are identical. 

By using the MAP estimation method, we show how to 
extract the contour of the heart from a certain frame, say, 
the second frame, with high-level additive white noise and 
compare the results of using the deformable Fourier and 
wavelet descriptors. 

Since the gradient of the objective function provides infor- 
mation of the new search direction, most numerical optimiza- 
tion methods require it for fast convergence. However, it is 
sometimes difficult to obtain the analytic form of the gradient 
as well as its discrete approximation. In the current setting, 
to calculate the analytic form of a gradient vector involves a 
numerical line integral that is too tedious to be practical while 
its discrete approximation is sensitive to error resulting from 
an inadequate choice of step sizes. Thus, we propose to do 
the following. 

In the experiment, we first ignore the first term in (4.3) by 
setting it to zero and focus on the optimization of the second 
term. To be more precise, we choose the quasi-Newton [13] 
method to maximize this term, which has a quadratic form 
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Fig. 12. Multiscale contour extraction by the MAP estimation. 

as shown in (4.4), with the objective to match features in 
the coarsest scale. The interpolated solution obtained from 
the coarsest scale is then served as the initial guess for the 
optimization in the next finer scale. 

For all optimization problems in the finer scales, we consider 
the objective function consisting of both terms as given in 
(4.3). We use Powell's method to solve the optimization 
problem and progress from the coarsest scale to the finest 
scale. Powell's method [ 131-a special example of conjugate 
direction methods-does not involve explicit computation of 
the gradient of a function but takes more iterations to converge. 
To use Powell's method for optimization, we found that direct 
cross correlation fails to provide the direction that leads to op- 
timum if a template C,- has no coincident points with the object 
data I .  Thus, we turn to a technique known as chamfer match- 
ing [6] ,  which determines the best fit of imperfect edge data 
from two images. Chamfer matching offers a generalized cor- 
relation that shows the direction to achieve the maximum cross 
correlation. We calculate the normalized chamfer correlation 
image of the contour template C,- and perform the cross cor- 
relation between the chamfer correlation image and the zero- 
crossing image I ( j ,  k ) .  Fig. 9 gives an example of the normal- 
ized chamfer correlation image and the zero-crossing image 
(which is the Laplacian of Gaussian of the cardiac image). 

The normalized chamfer correlation image is derived from 
the conventional chamfer distance by taking two to the power 
of -vj,/c, i.e., 2 - " 3 z k ,  where v j , k  is the corresponding chamfer 
distance image, and j ,  k are the row and column indices of the 
image. We normalize the image so that chamfer correlation 
gives the value 1 if the estimated and the original curves 
are totally coincided, the value 0 if totally irrelevant, and 

all values in between if they are proportional to the degree 
of coincidences. Fig. l0(a) is an example of the normalized 
chamfer image of a synthesized image. The binary edge 
image is a circle. The brightest pixels represent the value 
1. The value decreases gradually to 0 as the distance from 
the circle increases. In the optimization process, the chamfer 
correlation is also helpful in improving the convergence rate, 
especially when the template is too far from the edge. We 
use Fig. 10 as an example to demonstrate how the chamfer 
matching works for a nonmodel-based (maximum likelihood) 
optimization with Powell's method. We first calculate the 
normalized chamfer correlation image in Fig. 1O(a), where 
the circle of brightest grey level is the object to reach. In 
Fig. 10(b), we superimpose the initial guess and the objective 
(the inner circle), whereas Fig. 1O(c) gives the final result of 
multiscale elastic matching. 

Now, we are ready to show an example of contour extraction 
from a set of noisy images, which are obtained by adding 
white Gaussian noise of different levels to the second frame 
of the 15-frame image sequence. The noise level ranges from 
on = 10 as shown in Fig. l l(a) to cr, = 160 as given in 
Fig. ll(f), or the corresponding SNR values range from 21.3 
dB to -2.8 dB. The proposed MAP estimator extracts the 
contour accurately for these noise levels, but the estimation 
tends to be trapped to the local maxima for images with 
an even lower range of SNR. The applicable SNR region 
depends on the structure and the contrast of the image. Some 
external features tend to give erroneous results and hamper 
the estimator's ability to find the real contours. In addition, 
the applicability of the proposed scheme to structured (instead 
of Gaussian) noise remains an open problem. 
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Descriptor 

Wavelet 

69 

Estimation result of frame 
2 4 6 8 10 12 14 

0.7494 0.7917 0.7825 0.7861 0.8033 0.8222 0.8424 

TABLE I1 
COMPARISON OF THE MAP ESTIMATION RESULTS IN TERMS OF NORMALIZED CHAMFER CORRELATION, WHERE 1 

MEANS THAT THE ORIGINAL AND ESTIMATED CURVES COMPLETELY COINCIDE, WHEREAS 0 MEANS NO CORRELATION 

Fourier 1 0.7215 0.7201 0.7285 0.7330 0.7525 0.7436 0.8142 

The multiscale matching process can be best illustrated 
in Fig. 12, where four levels of scales are used in this 
experiment. We show, in Fig. 12(a), the contour extraction 
done at the coarsest scale by using four wavelet coefficients 
as the feature vector. The result is then used as the initial curve 
for matching at the next finer scale. The results of intermediate 
scales are given in Fig. 12(b) and (c) by using eight and 16 
wavelet coefficients as feature vectors, respectively. Finally, 
the optimal estimation is achieved at the finest scale as in 
Fig. 12(d), where the feature vector consists of 32 wavelet 
coefficients. This hierarchical process avoids the undesirable 
local minima resulting from noise or spurious details existing 
in finer scales. 

We compare the results of the MAP estimation using 
wavelet and Fourier descriptors in Table 11, where a quan- 
titative comparison for even frames of the cardiac image 
sequences with additive noise on = 80 is reported, and 
the normalized chamfer correlation is chosen as the per- 
formance measure. The reason that the wavelet descriptor 
has better results in this case is that it is more effective in 
representing the local deformations of a group of deformable 
contours. 

v. CONCLUSION AND EXTENSIONS 
By using the wavelet transform, we developed a planar 

curve descriptor that has a multiscale analysis capability and 
can be computed effectively. The effect of scaling, translation, 
and rotation of a planar curve on its wavelet coefficient 
vectors was explored. The invariance, uniqueness, and stability 
properties of the wavelet descriptor were derived. We also 
compared the performance of a class of wavelet bases with 
different vanishing moments and symmetry properties. The 
application of the wavelet descriptor to the modeling of 
deformable objects was studied. 

The multiresolution bases provide a powerful tool for local- 
to-global shape description and will have impact in the analysis 
and synthesis of 2-D and 3-D shape deformation. We have 
recently found research using the wavelet transform for 3-D 
multiscale deformable modeling by Vemuri and Radisavlje- 
vic [36]. They made an improvement on the dynamic 3-D 
deformation model of Terzopoulos [32] with superquadrics 
and a global deformable model characterized by the coarsest 
level wavelet coefficients. Their work considered 2-D wavelets 
constructed from the tensor products of 1-D wavelets and 
examined the applications of surface deformation in a 3-D 
space. In this research, however, we focused on the planar 
curve descriptor, i.e., 1-D wavelet descriptor in a 2-D space. 
Since this is a relatively simpler mathematical problem, we 

were able to discuss their properties in a more detailed way 
from a better perspective. Besides, most of the properties 
derived can be straightforwardly extended to the 3-D case, 
and the applications examined in this work also have their 
own practical values. 

There are many interesting topics worth further study, 
including the application of wavelets to the description of 
object shapes in the 3-D space, dynamic shape warping in 
computer animation, and optimum surface reconstruction. 
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