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Abstract 

A generalized Papoulis-Gerchberg (PG) algorithm for signal extrapolation based on the wavelet representation has 
been recently proposed by Xia, Kuo and Zhang. In this research, we examine the convergence property and the 
convergence rate of several signal extrapolation algorithms in wavelet subspaces. We first show that the generalized PG 
algorithm converges to the minimum norm solution when the wavelet bases are semi-orthogonal (or known as the 
prewavelet). However, the generalized PG algorithm converges slowly in numerical implementation. To accelerate the 
convergence rate, we formulate the discrete signal extrapolation problem as a two-step process and apply the steepest 
descent and conjugate gradient methods for its solution. Numerical experiments are given to illustrate the performance of 
the proposed algorithms. 

Zusammenfassung 

Kiirzlich wurde von Xia, Kuo und Zhang ein verallgemeinerter Papoulis-Gerchberg (PG) Algorithmus zur Signal- 
extrapolation basierend auf der Wavelet-Darstellung vorgeschlagen. In dieser Arbeit untersuchen wir die Konvergenz- 
eigenschaft und die Konvergenzgeschwindigkeit von mehreren Signalextrapolationsalgorithmen in Wavelet- 
Unterriumen. Wir zeigen zunlchst da0 der verallgemeinerte PG-Algorithmus gegen die LGsung minimaler Norm 
konvergiert, wenn die Wavelet-Basen semi-orthogonal sind (such bekannt als prewavelet). Die Konvergenz von 
numerischen Implementierungen des verallgemeinerten PG-Algorithmus ist allerdings langsam. Urn die Konvergenz- 
geschwindigkeit zu verbessern, formulieren wir das diskrete Signalextrapolationsproblem als einen zweistufigen ProzeB 
und verwenden die Steepest-Descent-Methode und die Methode konjugierter Gradienten zu dessen Liisung. Numerische 
Experimente illustrieren die Leistungsftihigkeit der vorgeschlagenen Algorithmen. 

RCsumk 

Un algorithme de Papoulis-Gerchberg (PG) gCnCralist: pour l’extrapolation de signaux, bast: sur une reprCsentation en 
ondelettes, a Cti rtcemment proposk par Xia, Kuo and Zhang. Dans cette Ctude, nous examinons les propriktts de 
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convergence et le taux de convergence de plusieurs algorithmes d’extrapolation de signaux dans les sous-espaces 
d’ondelettes. Nous montrons tout d’abord que l’algorithme PG gCnkralisir converge vers la solution de norme minimale 
quand les bases d’ondelettes sont semi orthogonales (c.i.d. connues comme pr&ondelettes). Toutefois, l’algorithme PG 
gCn&ralisC converge lentement pour une implementation numCrique. Afin d’accttlkrer le taux de convergence, nous 
formulons le problkme d’extrapolation de signaux discrets comme processus B deux ktapes et appliquons les mirthodes de 
descente rapide et de gradient conjug& A sa resolution. Des expkrimentations numkiques sont fournies pour illustrer les 
performances des algorithmes proposks. 

Keywords: Signal extrapolation; Papoulis-Gerchberg algorithm; Wavelets 

1. Introduction 

Extrapolating a band-limited signal f(t) from its 
values in a finite interval [ - T, T] is a fundamental 
problem in signal reconstruction. Possible applica- 
tions of signal extrapolation include spectrum 
estimation, synthetic aperture radar, limited-angle 
tomography, beamforming and high-resolution im- 
age restoration. In 197Os, Papoulis [13] and Gerch- 
berg [S] proposed an iterative procedure for band- 
limited signal extrapolation. Numerous techniques 
to extend the interpolation scheme have been pro- 
posed, including the minimum norm least-squares 
(MNLS) solution [9], the discrete prolate sphe- 
roidal sequence (DPSS) expansion [16,17], and the 
weighted norm least-squares solution [l, 2, 43. 
However, all of them were derived from the Fourier 
transform viewpoint. 

More recently, multiresolution wavelet bases 
with a nice time-frequency localization property 

have been extensively studied [3, 6, 7, 121 and 
a generalized PG algorithm based on the wavelet 
representation has been proposed by Xia et al. [19]. 
Instead of using the band-limited signal model, Xia 
et al. considered a general class of scale-limited 
signal contained in a certain wavelet subspace. One 

potential advantage of the generalized PG algo- 
rithm is that it provides a more general class of 
bases for signal modeling. The time-localized 
wavelet basis should be more suitable than the 
Fourier basis in modeling signals with interesting 
transient information such as those arising from the 
electrocardiogram and radar applications. Further- 
more, the band-limited PG algorithm is very sensi- 
tive to noise even in the case where only a small 
amount of extrapolated data are desired [15]. 

In contrast, noise in the generalized PG algorithm 
can be detected via the time-localization property 

of wavelet bases and can be more easily removed 

[lOI. 
In implementing an iterative extrapolation algo- 

rithm, it is natural to ask two basic questions: 
whether the algorithm converges and what is the 
converged result. In [19], the convergence of 
the generalized PG algorithm with orthogonal 
wavelets was examined. The convergence proof 
given there only applies to a subset of orthogonal 
wavelets which excludes some popular bases such 
as the Daubechies bases. In this work, we provide 

more complete answers to the above questions. We 
give a convergence proof for the generalized PG 
algorithm with semi-orthogonal wavelets, which 
include all orthogonal wavelets as a subset and are 
known as the prewavelets, by utilizing the alternat- 
ing projection theorem. The convergence of the 
generalized PG algorithm with biorthogonal 
wavelet bases however does not hold in general. 
Furthermore, we show that the generalized PG 
algorithm converges to the minimum norm solu- 
tion of the extrapolation problem. 

The generalized PG algorithm converges slowly 
for the ill-conditioned problem in numerical imple- 
mentation. To accelerate the convergence rate, we 

formulate the discrete signal extrapolation problem 
as a two-step process and apply the steepest descent 
and conjugate gradient methods for the solution. 
As a result, we obtain two new iterative algorithms 
with a better convergence performance for discrete 
signal extrapolation. The convergence rate of these 
algorithms is analyzed. Numerical experiments are 
also given to illustrate the performance of the pro- 
posed algorithms. 
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This paper is organized as follows. We briefly 
review some basic results of wavelet theory in Sec- 
tion 2. In Section 3, a new signal model based on 
the wavelet representation is presented and used to 
derive a signal extrapolation algorithm called the 
generalized PG algorithm (or the scale-time-limited 
extrapolation). Then, we investigate the conver- 
gence of the generalized PG algorithm for semi- 
orthogonal wavelets. Two new iterative algorithms 
with faster convergence rates are proposed and 
some convergence analysis is presented in Section 

4. Numerical experiments are given in Section 5 to 
show the convergence behavior of the proposed 
algorithms. Concluding remarks and possible ex- 
tensions are given in Section 6. 

2. Results from wavelet theory 

We review some basic results of biorthogonal 
wavelet theory below, and refer interested readers 
to [4, 5, 71 for a more detailed discussion. Let 4(t) 

be a biorthogonal scaling function and Ii/(t) and 
,~j be its associated wavelet function and multi- 
resolution analysis (MRA), 4(t), $(t) and 8j be their 
duals, respectively, as follows: 

where the union of all subspaces 9j of L2(R) is 
dense in L’(R) and the intersection of all subspaces 
gj only contains the 0 function, i.e., 

y 9, = L’(R), n 4 = CO). 
.i 

Moreover, 

f(t) E pi if and only if f(2t) E Yj + 1 , 

and for a fixed integer j, $jk(t)g22j124(2jt - k), 
j E Z, form a biorthogonal basis of ~j with its dual 
Jik h2j/2&2jr - k) as 

where dkik2 = 1. when kl = k2 and 0 otherwise, and 

(.f; s> = Sf(t)g*(t)dt. 
If we let ICljk(t)~2ji2~(2jt - k) and $jk(t)’ 

2”2$(2.‘t - k), then $jk, j, k E Z, the set of all 
integers. form a biorthogonal basis for the space 

L2(R) as 

<$jlk13Jj>k2) = 6klkzfijlj2. 

When $(t) = g(t), the wavelet basis is orthogonal. 

A wavelet basis is called semi-orthogonal (or known 
as the prewavelet), if the wavelet basis function only 

satisfies 

($j,k,3$j;k~) = 0 forj, Zj2. 

If a biorthogonal wavelet basis is not orthogonal or 
semi-orthogonal, then it is called non-orthogonal. 

Clearly, the set of prewavelet includes the set of 
orthogonal wavelets as a subset, and the relation- 
ship ~j = ~j holds for both cases. For more details. 

see [4, 51. 
Any ,f(t) E L’(R) can be decomposed by 

.f(d = jj i hj,h$jk(t). (1) 
j=-r k=-r, 

For any f‘(t) E pJ, we have 

h=-& jiJ k=- 2 

where bj,k A (A $jh) and cj.k’( f; $jk). The hj,k ill 

(1) are called the wavelet series transform (WST) 
coefficients of f(t), and (1) provides the inverse 
wavelet series transform of bj,h. Multiresolution 
analysis leads naturally to a hierarchical and fast 
scheme for the computation of wavelet coefficients 
bj.k with j < J which can be obtained from coeffi- 
cients cJ,h by the recursive formulas: 

cj-l,k = 4 c,, h”,-2kCj3n, 

(3) 

bj- 1.k = SC, @n-2hCj.n* 

\ 

for j = J, J - 1, J - 2, . . , The synthesis formula 

which compute coefficients L’~.~ from cJ,,.k and 
bj,h with -I, <,j < J is 

"j+ 1.n = h,- 2kcj,k + c Snp z*bj.*) 
k 

forj=J,,JO+l ,..., J-1. (4) 

In practice, c~,~ can be viewed as a sequence of 
x[n], sampled of a signalf(n/2J). Then (3) and (4) 
are called the discrete wavelet transform (DWT) 
and the inverse discrete wavelet transform (IDWT), 
respectively. 
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Formulas (3) and (4) can be implemented as 
a biorthogonal quadrature mirror filter bank [7] 
and the sequences g, h, 5 and h are the impulse 
responses of the corresponding filters. By choosing 
these sequences carefully, we are lead to different 
biorthogonal wavelet bases [7]. The biorthogonal 
wavelet basis is reduced to the orthogonal one if 
g = 5 and h = h: 

3. Scale-time-limited signal extrapolation 

A new signal modeling scheme based on wavelet 
representation is described and applied to the sig- 
nal extrapolation problem in this section. 

3.1. Scale-time-limited signals 

We represent f(t) with the wavelet basis $jk in 
(1). Let us assume that IC/(t) is centered around 0 in 
time and f co in frequency and is well localized in 
both time and frequency domains. Then, by using 
the scaling property, $jk(t) is localized around 2-jk 
in the time domain and f2j&, in the frequency 
domain. Thus, we may interpret the wavelet coeffic- 
ient bj,k = ( f, $j,k) as the “information content” of 
f near 2-jk in time and f2j[, in frequency. This 
concept is illustrated in Fig. 1, where the dot ( j, k) in 
the upper plot denotes the time and scale indices of 
a certain wavelet coefficient while the dots in the 
lower plot denote its influence in the time and 
frequency domains. Now, suppose that the energy 
of f(t) is well concentrated in two rectangle regions 
as shown in Fig. 1, i.e. 

C-T,, TOI x c(-2J50, -2J”50)u(2J”5,~2J5,)1~ 

(5) 

in the sense that we can find a small E so that 

s Ifl’dt B (1 - 411fl12 
2Joy, < 151 < ZJ<o 

and 

s ,x,<Tolf12de41 -4IIf11’. 
. 

j 
. . _ _ ., 

4 

/I cu ,_ _ ‘, , . . . . . . . _, ) 

(2-jk. 2’40) 2~b 
/ 

c: . . . . . L . . . . . f.......... l ;. 
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Fig. 1. Lattice structure of the wavelet coefficients. 

Then, only the wavelet coefficients bj,k, (j, k) E D, 

where 

D = {(j,k) E Z2: J,, <j < J and 2-jlkl 6 To + te} 

is the set of dyadic points enclosed by the solid 
rectangle in Fig. 1 and t, is a constant, are needed 
for a good approximation of f(t). We refer to [7] 
for a more detailed discussion of this approxima- 
tion. 

It is easy to see from Fig. 1 that the wavelet 
representation gives a higher resolution to sharp 
varying components than smooth components. 
This feature is ideal for signals composed of 
high-frequency variations in short duration 
and low-frequency variations in long duration. 
This kind of signals occurs frequently in practice. 
Let X = {k: Ikl <K = 2J(To + t,)}. We have 
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from the above analysis that 

.f (t) = c 1 bj,k$jk(t). 

Jil<j<J kex 

Thus, the following space: 

V .I,,,J. Y = 
1 

.f(l): f(t) = 1 c bj,k$jk(t) 7 (6) 

JosjgJkeX I 

provides a good model for signals concentrated 
in (5). 

Assume that f(r) E vJ0,J,.x and CJ,k = 

l”,f(t)c$Jk(t)dt. Then, the DWT coefficients of 
cJ.k are b,i,, for Jo d j < J and k E X, and 0 other- 
wise. In other words, for x[k] = cJ,k, it satisfies 
that 

.xCk] = @J,.‘J~J, xDJ,.Jx)[kl, k E Z, 

where DJ,fJ and DJo.J are, respectively, the DWT 
and IDWT operators and TJ,, is the following 
projection operator: 

TJ.fUj.r = { 
Uj,k if J,,<j<J,k~x, 

0 otherwise. 

In general, since the behavior of 4(t) is like a 
low-pass filter, cJ.k z 2- J/2f (k/2J). By setting 
x[k] = 2-J12f(k/2J), we have 

xCk1 z PJ,!JTJ. xDJ,,Jx)[kl. 

We conclude from the above 
signal set 

discussion that the 

s Jo, J. iy = (x[k]: 

XCkl = (D~,!JTJ, xDJ,,.JX)[kl, kEZ} (7) 

provides a good approximation model for discrete- 
time signals with energy concentrated in (5). 

Let x denote the vector of the sequence x [k]. We 
call x[k] a (Jo, J; X) scale-time limited sequence if 

XCkl = D,!JTJ, mDJ,,Jx[kl 

or 

x = DJo.‘~T~. x DJ,,, JX) (8) 

whereD_‘,DandT,,. in the second expression are 
all matrices of dimension co x co. Let 

LA[l,X/(J - Jo + l), 

which is the number of possible non-zero wavelet 
transform coefficients ofx[k]. Then, without loss of 
generahty, we can express TJ, x as 

TJ.p = lJrU, 

where U = I~ij} is an L x x, matrix operator 

1 if i=j, and 1 <i,j<L, 
Uij = 

i 0 otherwise. 

3.2. Generalized PG algorithm 

The generalized PG algorithms for continuous- 
and discrete-time proposed by Xia et al. in [ 191 are 

summarized below. 
We first examine the continuous-time case. Let 

PJ, PT, QJ, QT denote the projection operators 
which project functions onto the subspaces c?J, .?,., 

& and pi, respectively, where 2J is the wavelet 

subspace as defined in Section 2 and :Yr a set 
consisting of all functions f(t) E L2(R) with f(t) = 0 
outside [ - T, T]. We see from the representations 

(l)-(2) that for anyfe L2(R). 

PDF = f cJ,k$Jk(t) = c i bj.kd’jk(t) 

k=-x ,j’J k=- I 

and 

Q~f(t) = C f bj,klC/jk(f). 
j2Jk=-rrj 

Now, given a scale-limited function f(t) E V’,,,J, x, 

the generalized PG algorithm recovers f‘(t) from its 
segment g(t) = PTf(t) with T < T,, via the follow- 
ing iteration: 

.FO’(t) = s(r), 
(9) 

f’““(t) = QTPJf”‘(t) +,f’“‘(t), I = 0, 1,2, . . 

In [19], the following result on the convergence 
of the generalized PG algorithm was obtained for 
orthogonal wavelets. 

Proposition 1. Let 4(t) an orthogonal scalingfunc- 

tion. If 

QJ(s, t) A c $Jk(S)4Jk(t) 

k 

(10) 



56 L.-C. Lin et al. / Signal Processing 48 (1996) 51-65 

is continuous and positive dejnite in the region 

C-T, T] x C-T, T] and moreover $(t) can be 

uniquely determined in V, by any one of its segments 
4(t), t E [ - 2JT - k, 2JT - k], k E Z, then I/ f(l) -f II 
+Oasl--+co. 

The proof was based on theory of adjoint oper- 

ators corresponding to symmetric kernels &(s, t). It 
is in general not easy to check the convergence 
condition of this proposition for a given arbitrary 
orthogonal wavelet. Some non-trivial orthogonal 
wavelet bases were verified to satisfy the conver- 
gence condition [19], However, the convergence 
condition described only applies to a subset of 
orthogonal wavelets which excludes some popular 
bases such as the Daubechies bases. 

Next, we examine the discrete-time case. Let 

be the projection operator and I be the identity 
operator. Given a segment T,-x[n], n E N, of 
a scale-limited sequence x [n] E SJO,J,,f, the discrete 
generalized PG algorithm determines x[n] with 
n#N and can be stated as 

x’“‘[n] = T,. x[n], 

x(‘+l)[n] = T,.x[n] 

+ (I - Tjff )DJo,‘~TJ,~DJo,Jx(‘)[nl, 

l-0,1,2,... (11) 

A condition for the convergence of the above iter- 
ative procedure was also provided in [19]. 

3.3. Convergence of the generalized PG algorithm 

We will provide a more general convergence 

condition of the generalized PG algorithm, and 
examine the uniqueness of the corresponding ex- 
trapolated signal for semi-orthogonal wavelet 
bases in this subsection. 

For the continuous-time case, we have the fol- 
lowing convergence theorem. 

Theorem 1. Let 4(t) be a semi-orthogonal scaling 
function andf (t)(t) be the sequence offunctions gener- 

ated via iteration (9) with f E PJ for a certain J > 0. 

Then, when 1 + co, f ‘l’(t) converges to the minimum 
norm solution f + satisfying 

f+EyJ 

and 

Proof. Any f(t) E PJ and g(t) = PTf(t) can be 
written as 

f(t) = g + hl> 

where 

(14 

gEgT and h,EYi. 

Since hI = QTf and f = PJf, we can rewrite (12) as 

f = g + Q&(g + h,). 

By substituting hI with QrpJf and decomposing 
f into g + hI repeatedly, we have 

f= 9 + Q&s + (!&PJ)% ... 

+ (QTPJ)‘s + (Q&h 

=f (I) + (QTPJ)‘QT.L 1+ ~0, 

where the last equality is due to (9). By the defini- 
tion of semi-orthogonal wavelets, the operator PJ is 
an orthogonal projection. The operator QT is also 
clearly an orthogonal projection. By using the Al- 
ternating Projection Theorem ([18, Theorem 13.71, 
we have 

lim (Q&)‘QTf = Gf, 
I-m 

where G is the orthogonal projection operator onto 
gJnYi, which is a linear subspace of L2(R). 
Therefore, the generalized PG algorithm converges 
to 

f’=ii; f”‘=f-Gf. 

This proves the convergence. Due to the ortho- 
gonality of G, we get 

llf-Gfll = min Ilf-fill. f,E.YJJn.& 

For any heYJ and 9,h=Brf=g, f-he 
YJn.!Y+. Then, since IIftll=llf-Gf/I< 
llf-(f-WI = Ilhll, f + is the minimum norm 
solution. 0 
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With this theorem, we have the following for certain y E l*. By using the orthogonality of the 
straightforward corollary. operator DJo fJTJ, x DJO,J, we have 

Corollary 1. If 9,,n& = (O}, ,f”‘(t) converges to 

f(t) in L*(R) as I + rx. 

If the semi-orthogonal scaling function 4(t) is 
band-limited, all signals in gJ are band-limited and 
therefore analytic. For this case, the condition in 

Corollary 1 is satisfied, and another corollary fol- 
lows. 

(x1, x2) = 0 for any y f5 /* 

Let b,, denote the (i, j) element of the matrix D,,,lJ. 

Let us partition all integers into two non-overlap- 
ping groups L 1 ‘1 and ../$“,. i.e. 2 = Z ‘, u. 1 ‘2 and 
1”, n ._t ‘z = 6 Then, this leads to 

C C bij,YCj,l 1 b~j,~[,i2] = 0 
i j,eI, j2t iI 

or 

Corollary 2. If the scaling function is semi-ortho- 

gonal and band-limited, f (‘j(t) converges to f(t) in 

L*(R) as I + a;. 

Note also that since all Meyer wavelets satisfy 
Corollary 2, Theorem 4 in [19] is in fact a special 
case of the result derived above. 

This equality implies 

Cbij,bi,i2=0 forjr #jz, jt.jzEZ. 
I 

(13) 

Next, we will examine the discrete-time case. 
When the wavelet basis is orthogonal, Oil,: in (11) 
is the transpose of DJo,J. Thus, the operator 

D&TJ. ;Y DJ, .I is an orthogonal projection. By ap- 
plying the Alternating Projection Theorem to (1 l), 
we can prove the convergence of the iterative pro- 
cedure ( 11). However, the operator DJ&TJ, x Ddo,J 
may not be an orthogonal projection when the 
wavelet basis is non-orthogonal. This is stated in 
the following theorem. 

since y can be any element in 1’ and I ‘1 can be any 
subset of Z. As a direct consequence of (13), ‘1,,,). J is 
orthogonal. 0 

For a non-orthogonal wavelet basis, the projec- 
tion PJ in algorithm (9) or (11) is a non-orthogonal 
projection. The generalized PG algorithm in both 
continuous- and discrete-time cases assume the 

form 

Theorem 2. For any,fi.xed Jo, J and X the operntor 

DJ~.!JT.I. iy DA,, J is an orthogonal projection if and 

only if the iuacelet basis is orthogonal. 

Proof. Since the sufficient part is straightforward, 
we only show the necessary part, i.e., to prove that if 

&,%I ~DJ~,.I is an orthogonal projection for any 
fixed Jo, J and X, the wavelet basis is orthogonal. 
This is equivalent to prove that DJ,,: is equal to the 
transpose DJ’,,.J of DJo,J for any fixed Jo and J. 

f”’ = f - (TP)‘,f, I = 0, 1,2, . , 

where T is a truncation operator and P is a non- 
orthogonal projection. To check the convergence of 
the above iterative procedure, it is important to 
examine the norm of the operator TP as stated in 
the following proposition. 

Proposition 2. If the operator P is a non-orthogonal 

projection, there is a truncation operator T such that 

IITPII ’ 1. 

Recall (6) that we use VJ,,J, x to denote the set of 
all (Jo, J; N) scale-time-limited sequences. Then. 
the operator D&,lJTJ. xDJO,J is an orthogonal pro- 

jection onto V’,,.J, ?. Thus, any x E l2 can be 
decomposed as 

Proof. We only have to prove that there is a non- 
zero signal x such that 1IPx // > I/ .K 11. Since P is 
a non-orthogonal projection, we can find an 

X = Px + _)’ with (P.x,y) < 0 such that 
2(Ps, y) + I( y I/* < 0. Then, 

x = .x1 + x2, where x1 = DJofJTJ ,y and 

-x2 = D,!, .Y - TJ, /Y) 3 ( 

/lXll2 = lIPx112 + /lyllZ + 2(Px,y) < IlPxll”. 

and the proposition is proved. 0 
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Because of Proposition 2, we do not expect the 
convergence of the generalized PG algorithm for 
continuous-time signal extrapolation with non-or- 
thogonal wavelet bases (not orthogonal or semi- 
orthogonal). Furthermore, because of Theorem 
2 and Proposition 2, we do not expect the conver- 
gence of the generalized PG algorithm for discrete- 
time signal extrapolation with non-orthogonal 
wavelet bases. 

4. Iterative algorithms for discrete signal 
extrapolation 

In this section, we formulate the discrete-time 
extrapolation problem as a two-step process and 
apply more efficient numerical algorithms such 
as the steepest descent and conjugate gradient 
methods to improve the convergence rate of the 
iteration. 

4.1. Problem formulation 

Let y = l’h x be a given segment of x. According 
to the discussion in Section 3.1, we have 

Y = TV~~&~J,.XJ?l,,Jx 

which is to be solved for x with a given y. Let 
p = UDJa,J~ be a vector consisting of L wavelet 
coefficients of x, and W = D,~JY’. We can rewrite 
the above equation as 

y= T,-Wp. 

By multiplying both sides with (Ty.W)T, we obtain 
the normal equation 

w’y = WTlyWp ) (14) 

where the equalities TNy = y and (Z’y)TTh = T/,, 
are used to simplify the result. Furthermore, note 
that since x is a scale-time-limited sequence, i.e. 

x = DJ,!JTJ,,,&,,.I~ = D,,f,UTIJR,,~x, 

we can obtain x fromp via 

x= wp. (15) 

Therefore, we can divide the solution procedure of 
determining x into two steps: first solving the nor- 
mal equation for p and then determining x from 
p as described by (14) and (15), respectively. 

In the following discussion, we assume that the 
L x L matrix WTTy.W is of full rank and that the 
wavelet basis under consideration is orthogonal. 
Some useful properties of the operators in (14)-( 15) 
are summarized below. 

Property 1. For the orthogonal wavelet bases, 

D&!J = D&J so that the scale-time-limited 
sequence x can be written as 

x = D&UTUDJO,J~ = WWTx. (16) 

Property 2. From the definition of W, we have 

WTW = UD,,,,D,;,U’ = UUT = IL, (17) 

where I, is an identity matrix of dimension L x L. 

Property 3. The operator WTT,-W is symmetric 
positive definite. The symmetric semipositive defi- 
niteness of WTT,-W can be easily seen. The posi- 
tiveness is due to the assumption that WTT, Wis of 
full rank. 

Property 4. Let A,,,(WTT, W) denote the largest 
eigenvalue of WTl’,-W. Then, 

&,,,,(WTT,, W) < 1 . (18) 

This can be proved by noting that 

~,,,( WTT, W) = max 
(z*)~ WTT~, W, 

ZfO (z*)Tz 

and 

(z*)~W’T,.,WZ = (z*)~UD~~,~T,~DJ,~_JJ~Z 

< (z*)~UD.,,,,.,D.&U~Z = (z*)~UU~Z = (z*)~z . 

There are two reasons to avoid solving (14) and 
(15) with direct methods. First, direct computation 
of the matrix Wis expensive. Second, if the matrix is 
ill-conditioned, the direct method is usually unsta- 
ble. Therefore, we consider the solution of (14) and 
(15) with iterative algorithms. 
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4.2. Steepest descent method 

The iterative process based on the steepest de- 
scent method to solve (14)-(15) can be stated as: 
with any given x,,, we perform the following iter- 
ation: 

xI, + 1 = xI, - cckrk for k = 0, 1,2, . . , (19) 

where 

r, = WW’(T, xk -y) 

and 

(20) 

I 
rh rh 

z(k= T 

rkT, rk. 
(21) 

We show below how the algorithm given by 
(19))(21) is directly related to the well-known 
steepest descent method. The application of the 

steepest descent method [ll, pp. 2151 to the solu- 
tion of the normal equation 

W’; = WTT, Wp 

is equivalent to the minimization of the cost func- 
tional 

.f’(p) = fpT(WTT, W)p -pT(WTy). 

The result can be written as 

pk+l =Pk - rkdk. 

where the vector 

(22) 

dk = Wl-Tc Wp, - W’J? 

is the gradient direction of the cost functional at 

point pk and 

(23) 

is determined by min,f(& + xdk). Premultiply- 
ing both side of (22) with Wand applying (15) we 
have 

xk+, =& - Y,WWT(T, xk +y). (24) 

Thus, we can -justify (20). Furthermore, due to 
W’W = IL (Property 2) we have 

dk“d,, 

= (W’T, .,& -- WTy)T(WTW)( WTT, xk - W’y, 

= (WWT(T, xk - Y))~W’~W(T, 4, -.v)) 

T = rk rk 

and 

d,TWTT, Wd, 

=(WTT, x,- WTy)T(WTT, W)(WTT,x,, - W’_y) 

= (WWT(T, XL -yHTT, (WW’(T, Xk -y)) 

=rlT, rk, 

so that (21) can also be justified. 
The discrete generalized PC algorithm des- 

cribed in Section 3.2 is in fact a special case of the 
steepest descent algorithm by choosing xk = 1. To 
see this, let xk = 1 in (20) then we have the iterative 

process 

Xk+, =Xk - WWTT, Xk + ww”y. 

Since xL is a scale-time-limited sequence, the above 

iteration is equivalent to 

X;+,=Xk-T,Xk+y, 

i Xk = wwTX;. 

As a consequence, we have 

x;+~ =(I- T, )WWTx; +y. 

This is exactly the discrete generalized PG algo- 
rithm. Although both the discrete generalized PG 
algorithm (10) and the steepest descent method (19) 

search along the gradient direction of the cost func- 
tional, the steepest descent method adjusts the step 
size xI at each iteration for minimization so that the 
convergence rate can be improved. This is con- 
firmed by numerical experiments as given in 

Section 5. 

4.3. Conjugate gradient method 

It is well known that the convergence rate of the 

steepest descent method can be further improved 
by that of the conjugate gradient method. 

We summarize the conjugate gradient method 
for solving the system Qz = b, where Q is symmetric 
positive definite below [l 1, p. 2441. Given any 
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z. and do = b - Qz,, we perform the following iter- 
ation for k = 0, 1,2, . : 

g,=Qzk-6, 

Zk+l =Zk+@kdk, 

T 
gk gk 

c(k = - d;Qdk > 

dk+l = -gk.1 + bk‘&> 

Pk = ““;gk+ 1 . 

We can derive the conjugate gradient method by 
setting z = p, Q = WTTA Wand b = WTy. Since the 
derivation is straightforward, we simply summarize 
the result below. 
Initialization: 

X0 = 0, lZo = WWTy, do = -Jo, 

For k = 0,1,2, . . . . 

xk+l =xk + MkJkk, 

ik+l = WWT(&.Xk+l -y), 

Jk:,,, = PkJk -gk+l, 

4.4. Convergent rate analysis 

To simplify the discussion, we use the notation 

Q=WTTcW and b=WTy. 

Let us first examine the convergence rate of the 
discrete generalized PG algorithm. To solve QJ = b 
is equivalent to 

min $p’Qx - pTb , 
P 

which is again equivalent to 

mm E(p) = rnp &p - j?)TQ(p - $) , (25) 

wherep* be the solution vector Pr; = b. It is easier to 
analyze the convergent rate for (25). The gradient of 
E is d = $IJ - b. Since the discrete generalized PG 
which can be regarded as the special case of the 
steepest descent with ak = 1, we have from (22) 

pktl =Pk -dk. 

By direct computation, we have 

-&c) - E(P,+ I) 2dkTQuk - d%?dk 
E(Pk) = 

T 
Uk@k ’ 

where uk = pk - $. By defining the convergent rate 

+E(Pk+ 1) 

E(P,) 

and using the equality dk = Quk, we have 

r= 
l&&k - 2U;Q2Uk + U:Q3Uk 

d-f& 

Since Q is symmetric, it is unitarily diagonalizable 
with ordered diagonals denoted by 12,in = A1 f 
12 ... 6 & = All,,, which are also eigenvalues of Q. 
Therefore, we have 

= i$l Pi(l - AI2 2 

where 

liUf 

so that Cf= 1 pi = 1. Consequently, the convergent 
rate r can be bounded by 

r f max (1 - /?i)2 = (1 - ~mi”)2. 
li 

For the convergence rate results of the steepest 
descent and conjugate gradient method, we can 
take them directly from [ 111. They are listed below 
for comparison. The rate of the steepest descent is 
bounded by 

(Al,, - /2min)2 
r(steepest descent) G cn,,, + A,inj2, 
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where jbrnax and 3”,i” is the maximum and minimum 

eigenvalues of Q. The conjugate gradient method 
converges in at most L steps, where L is the rank of 
the matrix Q. 

5. Experimental results 

Numerical examples are given in this section to 
illustrate the convergence performance of the three 

,. ,. I I q 
I 

-2 - II J 

-2.5 I I I , 
-80 -60 -40 -20 20 40 60 80 

3r 

.- 
-80 -60 -40 -20 20 40 60 80 

Fig. 2. Original signals in (a) Test problem 1 and (b) Test problem 2 
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Fig. 3. Convergence history of three iterative algorithms for Test problem 1 with (a) M = 15 and (b) M = 50, where the number of 
observed data points is 2M + 1. 
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iterative signal extrapolation algorithms. We use 
the orthogonal and compact coiflet basis of order 
N = 10 [7] in our experiments. The basis function 
is nearly symmetric around the y-axis so that the 
filter bank implementation consists of almost lin- 

ear-phase filters. The high order of vanishing mo- 
ments (i.e. 10) implies its smoothness, and the com- 
pact support property makes its implementation 

easy. Since the convergence behavior heavily de- 
pends on the minimum and maximum eigenvalues 
of the matrix Q = WTT, W, we consider two test 
problems with different eigenvalue distributions 
of Q. 

Test problem 1. Consider a scale-time-limited se- 
quence x[n] which is generated by randomly 
choosing the wavelet coefficients bj,k with j = 1 and 
-3 d k d 4 (while other wavelet coefficients are 

set to zero) for the coiflet basis functions and ob- 
served at the scale J, = 4. The synthesized signal is 

plotted in Fig. 2(a). For signal modeling, we assume 
that the scale-time-limited information is available 

to us, i.e. only bj,k with j = 1 and -3 d k < 4 are 
non-zeros. Consequently, the degree of the freedom 
of the problem is L = 8. 

The convergence histories of three signal extra- 
polation algorithms with 31 and 101 (i.e. A4 = 15 
and 50) observations are shown in Figs. 3(a) and 
(b), respectively. For the case M = 15, the matrix 
has a small minimum eigenvalue and a large condi- 

tion number as indicated in Table 1, the conver- 
gence performance of the steepest descent is as poor 
as that of generalized PG algorithm. In contrast, 
the conjugate gradient method has a much better 
convergence performance. For M = 50, we see 

from Fig. 3(b) that the steepest descent method 
converges more rapidly for this case where the 
matrix Q has a smaller condition number. It per- 
forms better than the generalized PG method as 

expected from Table 1 and converges almost as fast 
as the conjugate gradient method. Generally speak- 
ing, matrix Q has an decreasing condition number 
as the number of observations increases. and the 
convergence rate improvement of the steepest de- 
scent and the conjugate gradient methods over the 
generalized PG method becomes more obvious. 

We observe (2M + 1) data points x[n] with 
1111 d M, and want to extrapolate the values of x [n] 
for 1111 > M. By calculating the matrix Q explicitly, 
we can determine the maximum and minimum 
eigenvalues of Q and calculate the bounds on the 
convergence rate of the generalized PG and the 
steepest descent methods. These values are given in 
Table 1 with A4 = 15 and 50. It is clear from the 
table that if we observe more data points, the con- 
dition number of the matrix Q becomes smaller and 

both the generalized PG and the steepest descent 
methods have faster convergence rates. The im- 
provement of the convergence rate is more signifi- 
cant in the steepest descent case. 

Test problem 2. In this problem, we use the same 
wavelet basis as in Test problem 1, but increase the 
number of non-zero wavelet coefficients so that the 
degree of freedom of this problem is L = 12. The 
test signal x [n] is generated by randomly choosing 
the wavelet coefficients bj,k with J, = 0, J = 1 and 
-3 d k d 4 (while other wavelet coefficients are 

set to zero) and observed at the scale J, = 4 as 
plotted in Fig. 2(b). The maximum and minimum 
eigenvalues of Q and the bounds on the conver- 
gence rate of the generalized PG and the steepest 
descent methods for M = 25 and 55 are given in 
Table 2. Finally, the convergence histories of the 
three methods are given in Fig. 4. We see from Fig. 
4(a) that the conjugate gradient method converges 
much faster than the generalized PG and the 
steepest descent methods which have about the 

Table I Table 2 

The maximum and minimum eigenvalues and the convergence The maximum and minimum eigenvalues and the convergence 

rate bounds for Test problem 1 rate bounds for Test problem 2 

&llin &II,” rEJe TSd 

M = 15 0.0000081 0.6263491 0.9999838 0.9999482 

M = 50 0.2212905 0.9985423 0.6063885 0.4059970 

&I” &XIX r@Y red 

M = 25 0.0000033 0.8854048 1.0 1.0 

M = 55 0.2092635 0.9991635 0.6252642 0.4272709 
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Fig. 4. Convergence history of three iterative algorithms for Test problem 2 with (a) M = 25 and (b) A4 = 55, where the number of 
observed data points is 2M + 1. 
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same convergence rate of small value of M. For 

A4 = 55, the steepest descent and the conjugate 
gradient methods have a very similar performance 
while the generalized PG works poorly as shown in 
Fig. 4(b). 

We may conclude from the two test problems 
that the conjugate gradient method performs the 
best among the three methods, the steepest descent 
method has a good performance when we have 
more observed data points, and the generalized 

PG algorithm in general converges very slowly. 
This observation is consistent with the theoretical 
derivation given in Section 4. 

6. Conclusions and extensions 

This research examined signal extrapolation 
schemes based on the wavelet model of scale-time- 
limited signals. We showed that the generalized PG 

algorithm converges for orthogonal and semi-or- 
thogonal wavelets in the continue-time case as well 
as for orthogonal wavelets in the discrete-time case, 
and its solution can be viewed as a minimum norm 
solution. Practically, the discrete-time implementa- 
tion is needed, and two new effective algorithms 
have been proposed and studied. There are several 
interesting topics worth further study. For example, 
it is important to compare the performance of dif- 
ferent wavelet bases. and study the optimal basis 
for some particular applications. Besides, we as- 
sume that the J and K values of the scale-time- 
limited sequence are known a priori. However, they 
are usually not available and have to be estimated 
in practice. 
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