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Fast Tree-Structured Nearest Neighbor 
Encodinp; for Vector Quantization 

Ioannis Katsavounidis, C.-C. Jay Kuo, and Zhen Zhang 

Abstract-This work examines the nearest neighbor encoding problem 
with an unstructured codebook of arbitrary size and vector dimension. 
We propose a new tree-structured nearest neighbor encoding method that 
significantly reduces the complexity of the full-search method without any 
performance degradation in terms of distortion. Our method consists of 
efficient algorithms for constructing a binary tree for the codebook and 
nearest neighbor encoding by using this tree. Numerical experiments are 
given to demonstrate the performance of the proposed method. 

I. INTRODUCTION 
Nearest neighbor (NN) encoding [I]  is finding the nearest point 

for an unknown input point from a set of fixed point--called the 
codebook in vector quantization (VQ)-in a k-dimensional vector 
space. Its fundamental role in the VQ area is indicated by the fact 
that NN encoding is a synonym for vector quantizing. Moreover, 
it constitutes the major computational task of the generalized Lloyd 
algorithm (GLA), which is the most commonly used algorithm for VQ 
codebook design. It is also used extensively in pattem classification 
and decision-making problems. A straightforward solution to this 
problem is the full-search method, which involves an exhaustive 
search of the distances for all available points; in this way, the 
complexity of encoding each component of a vector point with full 
search is proportional exponentially to the dimension k and the bit 
rate r .  

Because of its importance, many researchers have looked into 
this problem in an effort to find ways to accelerate the vector 
quantization process. We can classify previous work into two groups. 
The first group consists of methods that do not solve the nearest 
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neighbor problem itself but instead seek a suboptimal solution that 
is almost as good in the sense of mean squared error (MSE). One 
such method is to use a tree-structured codebook search. In tree- 
structured VQ (TSVQ) [l], the search is performed in stages. In 
each stage, a substantial subset of candidate vectors is eliminated 
from consideration by a relatively small number of operations. In 
a binary tree search, the input code vector is compared with two 
predesigned test vectors at each stage or node of the tree. The nearest 
test vector determines which of two paths through the tree to select 
in order to reach the next stage of testing. At each stage, the number 
of candidate code vectors is reduced to roughly half the previous 
set of candidates. Efficient TSVQ design often requires simultaneous 
design of the codebook and tree structure. Various methods for TSVQ 
codebook design have been proposed, such as splitting [2] and single- 
node-splitting [3]. Another recent approach is fine-coarse VQ [4] 
that operates on arbitrary unstructured codebooks, claiming only a 
slight increase in distortion over full search but with a substantial 
improvement in speed. 

The second group addresses an exact solution of the nearest neigh- 
bor encoding problem with less computation than that of exhaustive 
search. A very simple yet effective method is the partial distortion 
calculation reported by Bei and Gray in [5] .  It is important to note 
that this method requires no memory overhead, but only provides 
moderate acceleration-about four times over full exhaustive search. 
Other methods include the projection method [6] and its variants 
[7], [8]. Binary hyperplane testing [9] and its more general form, 
i.e., li - d trees [lo], [ l l ]  have also been widely used for fast 
search. The design of optimal search trees suffers the “curse of 
dimensionality,” which in this problem is expressed in the form of 
extremely high computational complexity. Thus, their applicability 
has been limited to small vector dimension and high-resolution 
cases. A recent work by Ramasubramanian and Paliwal [I21 on the 
optimization of IC-d trees provides a family of search algorithms that 
are quite promising. Unfortunately, they do not guarantee the nearest 
neighbor classification of an arbitrary vector. Other work on this 
problem is centered around the use of the triangle inequality property 
of metric spaces. For details about fast “-encoding algorithms built 
on this idea, see [13]-[15]. 

In this research, we focus on a fast tree-structured nearest neighbor 
encoder that significantly reduces the complexity of the full-search 
method without any performance degradation in terms of 
Both the construction of a binary tree-structured codebook and 
nearest neighbor encoding with such a tree-structured codebook are 
examined. The execution time of these two tasks is so small that it 
allows the application of the proposed method to slowly adaptive VQ 
schemes, where adaptation takes place after a number of vectors have 
been coded. One such case is the GLA, where a very large number 
of training vectors must be quantized for every iteration, while the 
update of the codebook only takes place once after every iteration. 

This work is organized as follows. After introducing some basic 
geometrical properties in Section 11, we present a new method where 
a binary search tree with respect to an arbitrary codebook can be 
obtained, and the nearest neighbor of an input vector can be located 
effectively in Section 111. The performance of the proposed method 
is reported in Section IV. 

11. BASIC GEOMETRICAL PROPERTIES 

Let C be a subset of the k-dimensional Euclidean space R‘ 
with cardinality IC1 = 1N. We denote the elements of C by e,, 
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Fig. 1.  Plot of tree creation CPU time versus codebook size (solid line: 8 x 8 
block size; dashed line: 4 x 4 block size; dashed-dotted line: 2 x 2 block size). 

Block size: 4x4. vector dimension: 16 

Fig. 2. Plot of tree creation MAC'S versus codebook size (solid line: CPU 
time; dashed-dotted line: multiplications; dashed line: additions; dotted line: 
comparisons; +: square roots; *: quick-sorts). 

By augmenting vectors x and w with one additional component, 
we can define vectors of dimension k + 1: 

0 1 2  2 = ( x  , x , x , ..., zk) ,T where xo = 1, 

and 
k T  w = ( W O ,  w l ,  w2 ,  . . . , w ). 

It is easy to verify the following nearest neighbor encoding rule: 

Thus, the problem of finding the closest distance between an arbitrary 
input vector x and two given vectors c1 and e2 involves the 
calculation of just one inner product instead of two. In fact, the k + 1 
dimensional vector W defines a hyperplane in Rk 

H ( G )  = { x  E R k :  ( 2 ,  6) = 0} 

which partitions the space Rk into two regions, where d(x, cl) < 
d ( x ,  ea) in one and d(z,  c1) > d(z ,  c2) in the other. The above 
derivation is a well-known fact and has been used in many decision 
problems. 

Furthermore, we can obtain the minimum distance between an 
arbitrary vector x and the hyperplane H ( G )  as 

d[x, H ( G ) ]  = I(?, G)1. 

Motivated by the above equations, we define the signed distance from 
a point x to a hyperplane H ( G )  as 

d,[z, H(221)l = ( 2 ,  6). 

Note that the signed distance has the same magnitude as that of the 
regular distance, and takes the minus (or plus) sign if x is closer to 
c1 (or c2 ) as indicated in (2). 

Next, we present a theorem that will be needed in the tree-search 
algorithm given in Section 111-B. 

Theorem I :  Let x,  y E Rk and H ( 6 )  be defined as above. Then 
we have 

Proof: By definition, we have 

d s [ Z ,  H ( G ) ]  = ( 2 ,  2 2 1 )  

dsb, H(6)l = (yx, 6) 
and 

i E {I, . . . , N }  and the individual components of the vectors by 
e:, j E (1, ... , k } .  The nearest neighbor (NN) encoding problem 

vector c, such that 

so that 

can be stated as follows. For an arbitrary vector x E Rk,  find the &[x, H ( G ) ]  - d s [ Y ,  H ( l l ) ]  = ( 2 ,  6) - (G, 6) 

V C J  E c, j # i d (z ,  e,) 2 d(z, e.) 3=1 3 x 1  

k IC 
= x J w J  - y J w J .  

where d(x,  Y) can be any distance function between two vectors in 
Rk.  We focus on the Euclidean distance in this work. 

By squaring the above expression, we obtain 

Let c1, c2 E R k ,  e1 # c2, and define { d s b ,  H(6)l - ds[Y,  H(41)2 

and 
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By applying Schwartz's inequality to (3) we get 

{ds[x, H(611 - ds[Y, H(6)11-2 
k k 

and the proof is completed. 

111. FAST NEAREST NEIGHBOR ENCODING 

A. Binary Tree-Structured Codebook Design 
The most commonly used procedure for designing vector code- 

books from a set of training vectors is the so-called GLA, also referred 
to as the LBG algorithm after [2]. It is a two-step optimization 
algorithm that iteratively improves (in the sense of MSE) some initial 
codebook until it reaches a local minimum. 

Most researchers have applied the GLA in codebook design. In this 
work, we use it as the main tool for building a binary tree-structured 
codebook from a given unstructured codebook. It is important to 
note that the first step in the GLA is nothing but "-encoding of all 
the training vectors with respect to the existing codebook. It is for 
this reason that the GLA is probably the perfect testbed experiment 
for all fast NN-encoding methods. It is also clear that the codebook 
changes at every iteration. Thus, in order to apply a fast NN-encoding 
algorithm to the GLA, the preprocessing time (i.e., the execution time 
needed by the algorithm to set up all necessary data structures for a 
given codebook) should be relatively small. 

Our tree construction algorithm is stated below. 
Algorithm 1-Tree-Construction Algorithm: 

Initialization: Store the entire codebook at the root of a binary 
tree. 
With the codebook stored at the node, run the GLA to obtain 
the two centroids CI and CZ that best represent it; determine 
the hyperplane H ( G )  that separates the two Voronoi cells; and 
calculate the signed distances between all the codewords and 
the hyperplane d s [ c z ,  H ( 6 ) ] ,  i = 1, . . . , N .  Create two child 
nodes. Store the indexes of the codewords that have negative 
distance from the hyperplane at the left node; store those with 
positive distance at the right node. 
We repeat the process in Step 2 until each leaf contains only 
one codeword. 

It is evident that the above algorithm leads to a binary tree that 
can be balanced or unbalanced depending on the input codebook. 
Our experiments have shown that even though the resulting tree 
is almost always unbalanced, it does not have a high degree of 
nonuniformity. A balanced binary tree of 1V items has a depth 
of log, N + 1 while the averaged depth with our algorithm is 
approximately log, N + 3. Thus, the computation time required to 
search this binary tree is still low. Since the tree is dependent on the 
input codebook, computational complexity is random and we can only 
consider average performance. Moreover, each step involves a call to 
the GLA, which is an iterative optimization procedure with unknown 
number of iterations, so that the problem of determining complexity 
becomes even more difficult. Fortunately, the GLA for the case of 
N = 2 requires significantly fewer iterations to converge than any 
other case. With conjunction to the maximum distance initialization 
technique [16] we observed that no more than five iterations are 

Block size: 4x4, vector dimension: 16 

10' 1 o* I o3 
Codebook size N 

Fig. 3. Plot of memory requirements versus codebook size (solid line: 
exhaustive VQ; dashed-dotted line: TSVQ; dashed line: the new algorithm). 

Block size: 4x4 

IO' 1 o2 1 o3 
Codebook size N 

Fig. 4. Performance comparison for Couple image (solid line: the new 
method; dashed line: TSVQ; dashed-dotted line: full-distortion exhaustive 
search; *: partial-distortion exhaustive VQ; +: structured VQ-"depth only"). 

necessary for convergence. Thus, computational complexity of the 
algorithm can be estimated as O ( k N  log, N ) .  Similarly, the memory 
requirements of the  algorithm are O ( N  log, N ) ,  since for every level 
of the binary tree we need to store the index and the signed distance 
of each codeword. More details on the computational complexity and 
memory requirements of the tree-structuring algorithm are given in 
Section IV. 

B. Nearest Neighbor Encoding with Tree-Structured Codebook 
We are now ready to present our nearest neighbor encoding based 

on the tree-structured codebook constructed in Section 111-A. For a 
given input vector x, we do the following. 

Algorithm 2-Tree-Search Algorithm: 
1) Perjorm a greedy binary search from root to lea$ Compute the 

signed distance of the input vector x to the hyperplane H ( 6 )  
associated with the node. If the signed distance ds[x, H ( G ) ]  5 
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(per pixel) 

3.131. lo-'' 

3.646. lo-'' 

4.633'10-'' 

5.210 lo-'' 

1.673. lO+" 

1.863. lo+'' 

2.074. 10+" 

2.317. 10foo 

7.241. 10"'' 

7.786. 10+oo 

8.407. 10+oo 

8.932. 10foo 
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Sqrts. 

(per vector) 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

TABLE I1 
PERFORMANCE OF TREE-STRUCTURED VQ ON HEATHER.5 12 

Block size: 4x4 
I ' " " I  1 

Block 

size 

Code. 

size 

Mult. 

(per pixel) 

9.518. lo+'' 

1.117. 10"' 

1.433.10+" 

1.617. 10"' 

1.288.10+01 

1.440. 10"' 

1.609. 10"' 

1.804. 10f" 

Add. 

(per pixel) 

9.667. 

1.134. lo+'' 

1.455.10"" 

1.642. 10"' 

1.369. 10"' 

1.530.10+" 

1.710. 10"' 

l.917.1Of0' 

8 x 8  256 

512 

1024 

2048 

4 x 4  1024 

2048 

4096 

8192 

2 x 2  4096 

8192 

16384 

32768 

1.398. 10"' 

1.507. 10"' 

1.631. lo+'' 

1.736. lof0' 

l.748.1Of0' 

1.884.10+" 

2.039. 10"' 

2.171. lo+" 

J 
10' 1 o2 1 o3 

Codebook size N 

Fig. 5. Performance comparison for Elaine image with block size 4 x 4 with 
the new method (solid line: execution time; dashed line: multiplications; dotted 
line: additions; dashed-dotted line: comparisons; +: square roots per vector). The validity of the algorithm just presented is obvious. The nearest 

neighbor is chosen via two elimination processes. First, since we 
have d(x ,  e )  2 Id,[x, H ( G ) ]  - &[e,  H(W)]l from Theorem 1, if 
a codeword c satisfies the relation Id,[x, H ( G ) ]  - &[e,  H(W)]l 2 
d(x,  et), we can eliminate c as a candidate for the nearest neighbor 
codeword. The second elimination process comes from the partial- 
distance search method that is self evident. Note that the encoding 
algorithm can be implemented very efficiently by having the signed 
distances of the codewords precalculated, ordered, and stored at each 
node when the binary tree is constructed in algorithm 1. It should be 
noted that the first step of the search algorithm is identical to tree- 
structured VQ encoding. One can thus terminate the search algorithm 
at this point, obtaining a suboptimal solution to the nearest neighbor 
problem. In the following, we will refer to this variant of the search 
algorithm as the "depth-only'' structured VQ algorithm in order to 
differentiate it from TSVQ, since the former applies to arbitrary 
unstructured codebooks while the later requires the parallel design 
of the tree structure and the vector codebook. 

TABLE I 
PERFORMANCE OF FULL-SEARCH, PARTIALDISTORTION VQ ON cOUPLE.5 12 

~ 

Code. 

size - 
256 

512 

1024 

2048 

__ 
Block 

size 

Mult. 

8 x 8  7.906. 10"' 

1.533. 10t02 

2.852. 10+'' 

4 x 4  1024 1.867. 10+'' 3.734.10+'' 

2048 3.661.10+02 7.322.10+'' 

4096 7.221 10"'' 1.444, 

8192 1.518. loto3 3.036. 10f03 

3.129. 10"'' 

6.202. lo+'' 

1.232. 10'03 

2.540. 

2 x 2  3.191. 

6.356. 

1.266. lofo4 

2.522. lofo4 
IV. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Experimental Results 
To test our method, we used the "basic" VQ scheme, i.e., the 

simplest VQ scheme applied to image blocks where each component 
of the vectors is the intensity of an image pixel. It is, however, 
important to point out that our method can be applied to any VQ 
scheme such as predictive VQ, adaptive VQ, transform VQ, etc. 

We first used the GLA to obtain a number of codebooks of various 
dimensions ( k )  and sizes ( N ) .  The training vectors were obtained 
from the Baboon, Lenna, and Boat images taken from the USC 
image database. All these are monochrome images of the luminance 
(NTSC-Y) component. They have size 512 x 512 (in pixels) with 8 
b/pixel (256 grey levels). We partitioned these images into blocks 
of dimension 2 x 2, 4 x 4, and 8 x 8, and generated training 
vectors of dimensions IC = 4, 16, and 64, correspondingly. In the 
codebook design, we adopted the maximum distance method [I61 
for its initialization, performed a number of GLA iterations, and 
stopped the iterations when there was no significant reduction in 
the mean squared error (MSE) values. We chose codebook sizes of 
the form N = 2" with integer n in the experiments. The resulting 
codebook sizes are up to 2048, 8192, and 32768 for the cases of 

0, we move to the left node; otherwise, we move to the right. 
The same process repeats until a leaf with only one codeword 
e, is reached. The candidate codeword c, and its distance dmin 
from x are reported to the parent node. We move from the leaf 
node to its parent node. 

At 
a given node, we search all codewords associated with the 
node that have a signed distance from the hyperpIane with an 
opposite sign to that of d,[x, H ( G ) ] ,  starting with the one 
that has the shortest distance from the hyperplane and con- 
sidering only those code vectors cI satisfying i & [ ~ ,  H ( G ) ]  - 
d,[c,, H(G)]l  < d,,,. For each eligible candidate, apply the 
partial distance calculation method, i.e., complete the distortion 
calculation for as long as the partial sums DI satisfy Dl = 
CL=, ( c y  - P)' < d21n to determine whether it is the 
nearest neighbor of x. By doing so, we can find the best 
candidate codeword with respect to this node. Then we move to 
its parent node and repeat the process until the root is reached. 

2) Search the best candidate codeword from leaf to root. 
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Block size: 4x4 

3fock 

size 

- _  - _  - _  
150- 

100- 1 

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 
H(bits per pixel) 

Fig. 6.  Empirical rate-distortion function for the Couple image (solid line: the 
new method; dashed line: TSVQ; dashed-dotted line: Structured-VQ "depth 
only;" *: full-distortion exhaustive VQ; +: partial-distortion exhaustive VQ). 

block-size 8 x 8, 4 x 4, and 2 x 2, respectively. In order to compare 
our algorithm with tree-structured VQ, we also ran the single-node 
splitting LBG algorithm [3] on the same training sequences and 
obtained tree-structured codebooks of the same sizes and dimensions. 

We implemented the following five VQ encoding options. 
1) Exhaustive full-distortion search VQ 
2) Exhaustive partial-distortion search VQ 
3) Tree-structured VQ (TSVQ) 
4) Fast codebook structuring and nearest neighbor (NN) searching 

VQ (the new algorithm) 
5) Fast codebook structuring and depth-only searching VQ (the 

new algorithm terminated just after the first leaf of the tree is 
reached) 

In what follows, we maintain the following notation: 
U input (original) image 
6 output (quantized) image 
p, empirical distribution 

pz = 
no. of vectors classified to codeword et 

total no. of input vectors 

For every experiment, we reported the following quantities: 
1) Resulting average distortion (MSE) per pixel and entropy of 

the encoded image (H) in bits per pixel based on the empirical 
distribution of the code vectors. These quantities are calculated 
as follows. . '  

1 512 
MSE = 7 E E[u(Z, j )  - 6(Z, j)] '  

r=l  3=1 
512 

and 

where N is the codebook size and k is the vector dimension. 
2) Execution time of the various algorithms in terms of seconds 

of CPU on a Hewlett-Packard Apollo Series 700 workstation. 
3) Number of multiplications, additions, and comparisons 

(MAC's) per pixel; also the number of square root operations 
per vector, since it is needed by the new algorithm. 

4) Total memory requirements of the algorithms. 

8 x 8  

4 x 4  

2 x 2  

~ 

Code. 

size 

256 

512 

1024 

2048 

1024 

2048 

4096 

8192 

4096 

8192 

16384 

32768 
~ 

TABLE 111 
PERFORMANCE OF FAST NEAREST NEIGHBOR 

TREE-STRUCTURED VQ ON ELAINE.512 

Mult. 

(per pixel) 

1.934 10"' 

2.593. 10"' 

3.432. 10"' 

5.142. 10co' 

2.565. 

3.478. 10"' 

5.218. 10"' 

8.493. 10'O' 

2.654 - lo+'' 

3.427. 10''' 

4.475.10+0' 

5.594.10+01 

Add. 

(per pixel) 

2.624 10"' 

3.800.10+0' 

5.321 . l O f O '  

8.233 lo+'' 

Comparisons 

(per pixel) 

6.964. lo+'' 

1.340. 10'O' 

2.254. 10"' 

3.861. 10"' 

3.740. lo+'' 

5.502.10+" 

8.853. lof0'  

1.526. 10toZ 

4.568.10"' 

6.099.10+" 

8.175~10"' 

1.036. lo+'' 

1.833. 10"' 

3.686. 10"' 

7.210. 10"' 

1.392. 10+'' 

4.126. lo+'' 

6.714. 10"' 

1.030 10f02 

1.397 10fO' 

Sqrts. 

(per vector) 

1.479. 10+" 

1.636. 10+Oo 

1.775 10+" 

1.875 10+oo 

1.460. 10too 

1.672 10too 

1.816. lo+'' 

2.048 10'oo 

1.769 10+oo 

1.807 10foo 

1.852 10+Oo 

1.874, 10+Oo 

After obtaining various codebooks as stated above, we ran the tree- 
construction algorithm, i.e., algorithm 1, to build a binary tree for each 
codebook. Execution time versus codebook size for various vector 
dimensions is plotted in Fig. 1. One can verify the O ( k N  log, N )  
behavior as claimed in Section 111-A. We also present overall perfor- 
mance, i.e., multiplications, additions, comparisons (MAC's), square- 
root operations, and quick-sort counts (needed for the sorting of 
the code-vector distances from the hyperplanes) in Fig. 2. They 
demonstrate the same relationship. It is worthwhile to point out that 
the execution time for the largest experiment, which has a block size 
2 x 2 and a codebook size 1V = 32 768 = 215, required approximately 
100 seconds of CPU time to build the binary search tree. This is 
significantly less than the time required by existing algorithms that 
build a binary tree from an arbitrary codebook using the Monte-Carlo 
techniques by an order of magnitude. 

The plot of the overall memory requirements of the various 
algorithms is presented in Fig. 3. The O[iV log, ( N ) ]  overhead can 
be observed as predicted in Section 111-A. Furthermore, it can be seen 
that the memory overhead of both the new method and that of tree- 
structured VQ is decreasing in comparison to the memory needed for 
storage of the codebook. 

Next, we tested all five algorithms by encoding three different 
monochrome images: Couple, Elaine, and Heather of size 512 x 512. 
The execution times obtained for the Couple image is given in Fig. 4 
as functions of the codebook size N with a vector dimension equal to 
16. A similar performance is also observed for the other two images. 
In addition, the MAC's for various algorithms are listed on Tables 
I, E, and ID. To show a general trend, we plot the data for the case 
of the Elaine image in Fig. 5. Based on these execution times, we 
list the speed-up factor, which is defined as the ratio of CPU time 
needed by exhaustive full-distortion VQ over CPU time needed by 
the other four algorithms in Table IV for various vector dimensions 
and codebook sizes. We see a similar general behavior from this table. 

B. Discussion 
It is important to note the degradation in performance (in terms 

of MSE and entropy) when using TSVQ instead of full-search 
VQ presented in Fig. 6 in the form of operational rate-distortion 
function for various methods. This is the cost paid to gain the 
advantage of the very low complexity of TSVQ. On the other hand, 
we can immediately see from the conesponding plots and tables 
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8 x 8  4 x 4  

Method f f c  ( Y c  

TABLE IV 

VARIOUS METHODS: P = PARTIALDISTORTION FULL-SEARCH VQ; 
T = TREE-STRUCTURED VQ; S = STRUCTURED FULL-SEARCH 

SPEED-UP FACTOR OVER EXHAUSTIVE, FULL-DISTORTION VQ FOR 

VQ; D = DEFTH ONLY-FIRST STAGE OF STRUCTURED VQ 

2 x 2  

(Y 

dim 

8 x 8  
~ 

4 x 4  

- 
2 x 2  

S L Z ~  P T S 0 P 1 

256 2 6 1  3 6 6  1046 27.0 3.16 38.1 

512 2 73 644 13 80 53.4 3.37 64.E 

1024 2.98 109.7 18.17 102.6 3 64 114.9 

2048 2 62 194.2 21.66 157.4 3.15 201.6 

1024 3 37 110.83 3094 90.0 3 60 113.3 

2048 3.42 197.74 39.20 176.5 3.67 200.8 

4096 3.41 355.00 46 64 331.8 3 61 357.9 

8192 3 20 643.90 50.79 625.2 3 4 1  6568 

4096 1 8 3  315 103.1 296 183 319 

8192 1.83 579 1376 584 183 597 

16384 1.77 1068 162.0 1131 1.77 1034 

32768 1.77 1966 200.6 1958 1.77 1884 

'3 23 1 101.7 55.8 /I 3.89 4 15 ~ 115.4 72 6 ! 35.9 48.4 1 52.6 90.9 

40.54 

50.74 

59 14 

62.63 

105.9 

146.8 

266.1 

Block size: 4x4 

0'g2 

?OO 10' 1 o2 1 o3 
Codebook size N 
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Entropy versus codebook size (solid line: Elaine; dotted line: Couple; 

that both TSVQ and the depth-only version of the new algorithm 
are much faster than exhaustive full-distortion and partial-distortion 
VQ and also faster than the proposed "-encoding algorithm. This 
is expected, since it is known that the complexity for both these 
algorithms is proportional to the average depth of the binary tree, 
which is essentially O(log N ) .  These two suboptimal algorithms 
are comparable in terms of performance (MSE,H), having almost 
identical memory and CPU requirements. Thus, the tree-structuring 
algorithm (algorithm 1) provides an alternative to TSVQ design, with 
the additional advantage that it is applicable to any unstructured VQ 
codebook. 

Another important observation is the significant variance in the 
execution time of the proposed algorithm for the same codebook 
size and vector dimension among different images. This variance 
in execution time is coupled by the variance we observe on the 
performance of the algorithm in terms of (MSE,H). This can be 
clearly seen in Fig. 7 where we plotted the entropy of the output image 
(measured in bits per pixel) versus codebook size for the three images. 
Each plot shows the entropy obtained for the three different images 
and their relationship to the theoretical vector quantizer resolution, 
defined as r = log, N / k .  Fig. 8 presents encoding time as a function 
of codebook size for the three images with block size 4 x 4 by 
using our algorithm. The resemblance is apparent; based on this, we 

Block size 4x4 

1 

Fig. 8. 
Couple; dashed line: Heather). 

Execution time versus codebook size (solid line: Elaine; dotted line: 

TABLE V 
PARAMETERS Q AND C FOR THE THREE IMAGES AND VARIOUS VQ METHODS 

Image: Couple.512 

Image: Heather.512 

STRUCT-VQ 

C 

0.3393 

0.2998 

0.8346 

0.8270 

0.8039 

- 
~ 

- 

conclude that execution time relates to entropy H of the output more 
than it does to the codebook size N .  

The shape of the graphs motivates us to model the logarithm of 
the execution time linearly with respect to entropy. By performing a 
simple linear regression, we can model execution time as a function 
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of entropy as 

T = CaHk 

where the parameters C and a are listed in Table V. The table clearly 
shows the gain provided by our new algorithm. While the encoding 
complexity of full search grows as a function O(cy.Bk), the proposed 
algorithm grows as O(cyF‘), where the ratio of 011 and a2 is in the 
range 1.7 5 c y ~ / c y 2  5 3.5. Thus, the proposed method performs 
increasingly faster than full search as codebook size increases. It 
provides a clear advantage in satisfying the need for large codebook 
sizes and vector dimensions leading to better compression. 

v. CONCLUSION AND EXTENSION 
In this work, we proposed a tree-constmction algorithm and a 

tree-search algorithm to achieve fast nearest neighbor encoding. The 
superior performance of the proposed method was demonstrated by 
a set of numerical experiments. 

We would like to mention some related research work to be 
carried out in the future. The study of existing methods has so 
far been very enlightening as to various alternatives for the partial- 
distortion elimination of codewords, which at this point appears to 
be the computational bottleneck of our encoding algorithm. Pre- 
liminary results, reported in [17], are quite promising. We can 
also augment existing tree codebook structures with the indexes 
and the signed distances from the hyperplanes as described by 
algorithm 1, and use the new algorithm as a refinement to TSVQ 
for cases where the improvement in the (MSE,H) substantiates 
increased memory and CPU complexity. In addition, we believe that 
there is much more to the relationship between entropy, distortion, 
computational complexity, and memory capacity than this work 
is able to address. A more complete analysis that provides the 
operational rate-distortion function, i.e., the achievable rate-distortion 
pair under some constraints of bounded computational complexity 
and/or memory capacity should be of great interest. 
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