
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 5, NO. 2, FEBRUARY 1996 398

u91

1201

1211

1221

~ 3 1

~ 4 1

S.-Z. Kiang, R. L. Baker, G. J. Sullivan, and C.-Y. Chiu, “Recursive
optimal pruning with applications to tree structured vector quantizers,”
IEEE Trans. Image Proc., v91..1, pp. 162-169, Apr. 1992.
G. V. Reklaitis, A. Ravindran, and K. M. Ragsdell, Engineering Opri-
mization. New York: Wiley, 1983.
K. Rose, D. Miller, and A. Gersho, “Entropy-constrained tree-structured
vector quantizer design by the minimum cross entropy principle,” in
Proc. Data Compress. Conf. Snowbird, UT, Mar. 1994.
K. Rose, E. Gurewitz, and G. C. Fox, “Statistical mechanics and phase
transitions in clustering,” Physical Review Letters, vol. 65, pp. 945-948,
1990.
-, “Vector quantization by deterministic annealing,” IEEE Trans.
Znj’orm. Theory, vol. 38, pp. 1249-1257, July 1992.
J. E. Shore and R. W. Johnson, “Axiomatic derivation of the principle of
maximum entropy and the principle of minimum cross-entropy,” ZEEE
Trans. Inform. Theory, vol. IT-26, pp. 26-37, 1980.

Fast Tree-Structured Nearest Neighbor
Encodinp; for Vector Quantization

Ioannis Katsavounidis, C.-C. Jay Kuo, and Zhen Zhang

Abstract-This work examines the nearest neighbor encoding problem
with an unstructured codebook of arbitrary size and vector dimension.
We propose a new tree-structured nearest neighbor encoding method that
significantly reduces the complexity of the full-search method without any
performance degradation in terms of distortion. Our method consists of
efficient algorithms for constructing a binary tree for the codebook and
nearest neighbor encoding by using this tree. Numerical experiments are
given to demonstrate the performance of the proposed method.

I. INTRODUCTION
Nearest neighbor (NN) encoding [I] is finding the nearest point

for an unknown input point from a set of fixed point--called the
codebook in vector quantization (VQ)-in a k-dimensional vector
space. Its fundamental role in the VQ area is indicated by the fact
that NN encoding is a synonym for vector quantizing. Moreover,
it constitutes the major computational task of the generalized Lloyd
algorithm (GLA), which is the most commonly used algorithm for VQ
codebook design. It is also used extensively in pattem classification
and decision-making problems. A straightforward solution to this
problem is the full-search method, which involves an exhaustive
search of the distances for all available points; in this way, the
complexity of encoding each component of a vector point with full
search is proportional exponentially to the dimension k and the bit
rate r .

Because of its importance, many researchers have looked into
this problem in an effort to find ways to accelerate the vector
quantization process. We can classify previous work into two groups.
The first group consists of methods that do not solve the nearest

Manuscript received June 30, 1994; revised June 19, 1995. This work was
supported by the National Science Foundation Presidential Faculty Fellow
(PFF) Award ASC-9350309.

I. Katsavounidis and C.-C. J. Kuo are with the Signal and Image Processing
Institute and the Department of Electrical Engineering Systems, University of
Southern California, Los Angeles, CA 90089-2564 USA.

2. Zhang is with the Communication Science Institute and the Department
of Electrical Engineering Systems, University of Southem Califomia, Los
Angeles, CA 90089-2565 USA.

Publisher Item Identifier S 1057-7149(96)01308-5.

neighbor problem itself but instead seek a suboptimal solution that
is almost as good in the sense of mean squared error (MSE). One
such method is to use a tree-structured codebook search. In tree-
structured VQ (TSVQ) [l], the search is performed in stages. In
each stage, a substantial subset of candidate vectors is eliminated
from consideration by a relatively small number of operations. In
a binary tree search, the input code vector is compared with two
predesigned test vectors at each stage or node of the tree. The nearest
test vector determines which of two paths through the tree to select
in order to reach the next stage of testing. At each stage, the number
of candidate code vectors is reduced to roughly half the previous
set of candidates. Efficient TSVQ design often requires simultaneous
design of the codebook and tree structure. Various methods for TSVQ
codebook design have been proposed, such as splitting [2] and single-
node-splitting [3]. Another recent approach is fine-coarse VQ [4]
that operates on arbitrary unstructured codebooks, claiming only a
slight increase in distortion over full search but with a substantial
improvement in speed.

The second group addresses an exact solution of the nearest neigh-
bor encoding problem with less computation than that of exhaustive
search. A very simple yet effective method is the partial distortion
calculation reported by Bei and Gray in [5] . It is important to note
that this method requires no memory overhead, but only provides
moderate acceleration-about four times over full exhaustive search.
Other methods include the projection method [6] and its variants
[7], [8]. Binary hyperplane testing [9] and its more general form,
i.e., li - d trees [lo], [l l] have also been widely used for fast
search. The design of optimal search trees suffers the “curse of
dimensionality,” which in this problem is expressed in the form of
extremely high computational complexity. Thus, their applicability
has been limited to small vector dimension and high-resolution
cases. A recent work by Ramasubramanian and Paliwal [I21 on the
optimization of IC-d trees provides a family of search algorithms that
are quite promising. Unfortunately, they do not guarantee the nearest
neighbor classification of an arbitrary vector. Other work on this
problem is centered around the use of the triangle inequality property
of metric spaces. For details about fast “-encoding algorithms built
on this idea, see [13]-[15].

In this research, we focus on a fast tree-structured nearest neighbor
encoder that significantly reduces the complexity of the full-search
method without any performance degradation in terms of
Both the construction of a binary tree-structured codebook and
nearest neighbor encoding with such a tree-structured codebook are
examined. The execution time of these two tasks is so small that it
allows the application of the proposed method to slowly adaptive VQ
schemes, where adaptation takes place after a number of vectors have
been coded. One such case is the GLA, where a very large number
of training vectors must be quantized for every iteration, while the
update of the codebook only takes place once after every iteration.

This work is organized as follows. After introducing some basic
geometrical properties in Section 11, we present a new method where
a binary search tree with respect to an arbitrary codebook can be
obtained, and the nearest neighbor of an input vector can be located
effectively in Section 111. The performance of the proposed method
is reported in Section IV.

11. BASIC GEOMETRICAL PROPERTIES

Let C be a subset of the k-dimensional Euclidean space R‘
with cardinality IC1 = 1N. We denote the elements of C by e,,

1057-7149/96$05.00 0 1996 IEEE

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 5, NO. 2, FEBRUARY 1996 399

l O ~ [' ' ' ' ' ~ ' " " " ' I ' ' " " " I ' ' " ' " ' I ' 4

Codebook size N

Fig. 1. Plot of tree creation CPU time versus codebook size (solid line: 8 x 8
block size; dashed line: 4 x 4 block size; dashed-dotted line: 2 x 2 block size).

Block size: 4x4. vector dimension: 16

Fig. 2. Plot of tree creation MAC'S versus codebook size (solid line: CPU
time; dashed-dotted line: multiplications; dashed line: additions; dotted line:
comparisons; +: square roots; *: quick-sorts).

By augmenting vectors x and w with one additional component,
we can define vectors of dimension k + 1:

0 1 2 2 = (x , x , x , ..., zk) ,T where xo = 1,

and
k T w = (W O , w l , w2 , . . . , w).

It is easy to verify the following nearest neighbor encoding rule:

Thus, the problem of finding the closest distance between an arbitrary
input vector x and two given vectors c1 and e2 involves the
calculation of just one inner product instead of two. In fact, the k + 1
dimensional vector W defines a hyperplane in Rk

H (G) = { x E R k : (2 , 6) = 0}

which partitions the space Rk into two regions, where d(x, cl) <
d (x , ea) in one and d(z, c1) > d(z , c2) in the other. The above
derivation is a well-known fact and has been used in many decision
problems.

Furthermore, we can obtain the minimum distance between an
arbitrary vector x and the hyperplane H (G) as

d[x, H (G)] = I(?, G)1.

Motivated by the above equations, we define the signed distance from
a point x to a hyperplane H (G) as

d,[z, H(221)l = (2 , 6).

Note that the signed distance has the same magnitude as that of the
regular distance, and takes the minus (or plus) sign if x is closer to
c1 (or c2) as indicated in (2).

Next, we present a theorem that will be needed in the tree-search
algorithm given in Section 111-B.

Theorem I : Let x, y E Rk and H (6) be defined as above. Then
we have

Proof: By definition, we have

d s [Z , H (G)] = (2 , 2 2 1)

dsb, H(6)l = (yx, 6)
and

i E {I, . . . , N } and the individual components of the vectors by
e:, j E (1, ... , k } . The nearest neighbor (NN) encoding problem

vector c, such that

so that

can be stated as follows. For an arbitrary vector x E Rk, find the &[x, H (G)] - d s [Y , H (l l)] = (2 , 6) - (G, 6)

V C J E c, j # i d (z , e,) 2 d(z, e.) 3=1 3 x 1

k IC
= x J w J - y J w J .

where d(x, Y) can be any distance function between two vectors in
Rk. We focus on the Euclidean distance in this work.

By squaring the above expression, we obtain

Let c1, c2 E R k , e1 # c2, and define { d s b , H(6)l - ds[Y, H(41)2

and

400 E E E TRANSACTIONS ON TMAGF PROCESSING, VOL 5, NO 2, FEBRUARY 1996

By applying Schwartz's inequality to (3) we get

{ds[x, H(611 - ds[Y, H(6)11-2
k k

and the proof is completed.

111. FAST NEAREST NEIGHBOR ENCODING

A. Binary Tree-Structured Codebook Design
The most commonly used procedure for designing vector code-

books from a set of training vectors is the so-called GLA, also referred
to as the LBG algorithm after [2]. It is a two-step optimization
algorithm that iteratively improves (in the sense of MSE) some initial
codebook until it reaches a local minimum.

Most researchers have applied the GLA in codebook design. In this
work, we use it as the main tool for building a binary tree-structured
codebook from a given unstructured codebook. It is important to
note that the first step in the GLA is nothing but "-encoding of all
the training vectors with respect to the existing codebook. It is for
this reason that the GLA is probably the perfect testbed experiment
for all fast NN-encoding methods. It is also clear that the codebook
changes at every iteration. Thus, in order to apply a fast NN-encoding
algorithm to the GLA, the preprocessing time (i.e., the execution time
needed by the algorithm to set up all necessary data structures for a
given codebook) should be relatively small.

Our tree construction algorithm is stated below.
Algorithm 1-Tree-Construction Algorithm:

Initialization: Store the entire codebook at the root of a binary
tree.
With the codebook stored at the node, run the GLA to obtain
the two centroids CI and CZ that best represent it; determine
the hyperplane H (G) that separates the two Voronoi cells; and
calculate the signed distances between all the codewords and
the hyperplane d s [c z , H (6)] , i = 1, . . . , N . Create two child
nodes. Store the indexes of the codewords that have negative
distance from the hyperplane at the left node; store those with
positive distance at the right node.
We repeat the process in Step 2 until each leaf contains only
one codeword.

It is evident that the above algorithm leads to a binary tree that
can be balanced or unbalanced depending on the input codebook.
Our experiments have shown that even though the resulting tree
is almost always unbalanced, it does not have a high degree of
nonuniformity. A balanced binary tree of 1V items has a depth
of log, N + 1 while the averaged depth with our algorithm is
approximately log, N + 3. Thus, the computation time required to
search this binary tree is still low. Since the tree is dependent on the
input codebook, computational complexity is random and we can only
consider average performance. Moreover, each step involves a call to
the GLA, which is an iterative optimization procedure with unknown
number of iterations, so that the problem of determining complexity
becomes even more difficult. Fortunately, the GLA for the case of
N = 2 requires significantly fewer iterations to converge than any
other case. With conjunction to the maximum distance initialization
technique [16] we observed that no more than five iterations are

Block size: 4x4, vector dimension: 16

10' 1 o* I o3
Codebook size N

Fig. 3. Plot of memory requirements versus codebook size (solid line:
exhaustive VQ; dashed-dotted line: TSVQ; dashed line: the new algorithm).

Block size: 4x4

IO' 1 o2 1 o3
Codebook size N

Fig. 4. Performance comparison for Couple image (solid line: the new
method; dashed line: TSVQ; dashed-dotted line: full-distortion exhaustive
search; *: partial-distortion exhaustive VQ; +: structured VQ-"depth only").

necessary for convergence. Thus, computational complexity of the
algorithm can be estimated as O (k N log, N) . Similarly, the memory
requirements of the algorithm are O (N log, N) , since for every level
of the binary tree we need to store the index and the signed distance
of each codeword. More details on the computational complexity and
memory requirements of the tree-structuring algorithm are given in
Section IV.

B. Nearest Neighbor Encoding with Tree-Structured Codebook
We are now ready to present our nearest neighbor encoding based

on the tree-structured codebook constructed in Section 111-A. For a
given input vector x, we do the following.

Algorithm 2-Tree-Search Algorithm:
1) Perjorm a greedy binary search from root to lea$ Compute the

signed distance of the input vector x to the hyperplane H (6)
associated with the node. If the signed distance ds[x, H (G)] 5

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 5 , NO. 2, FEBRUARY 1996

Comparisons

(per pixel)

3.131. lo-''

3.646. lo-''

4.633'10-''

5.210 lo-''

1.673. lO+"

1.863. lo+''

2.074. 10+"

2.317. 10foo

7.241. 10"''

7.786. 10+oo

8.407. 10+oo

8.932. 10foo

401

Sqrts.

(per vector)

0

0

0

0

0

0

0

0

0

0

0

0

TABLE I1
PERFORMANCE OF TREE-STRUCTURED VQ ON HEATHER.5 12

Block size: 4x4
I ' " " I 1

Block

size

Code.

size

Mult.

(per pixel)

9.518. lo+''

1.117. 10"'

1.433.10+"

1.617. 10"'

1.288.10+01

1.440. 10"'

1.609. 10"'

1.804. 10f"

Add.

(per pixel)

9.667.

1.134. lo+''

1.455.10""

1.642. 10"'

1.369. 10"'

1.530.10+"

1.710. 10"'

l.917.1Of0'

8 x 8 256

512

1024

2048

4 x 4 1024

2048

4096

8192

2 x 2 4096

8192

16384

32768

1.398. 10"'

1.507. 10"'

1.631. lo+''

1.736. lof0'

l.748.1Of0'

1.884.10+"

2.039. 10"'

2.171. lo+"

J
10' 1 o2 1 o3

Codebook size N

Fig. 5. Performance comparison for Elaine image with block size 4 x 4 with
the new method (solid line: execution time; dashed line: multiplications; dotted
line: additions; dashed-dotted line: comparisons; +: square roots per vector). The validity of the algorithm just presented is obvious. The nearest

neighbor is chosen via two elimination processes. First, since we
have d(x , e) 2 Id,[x, H (G)] - &[e, H(W)]l from Theorem 1, if
a codeword c satisfies the relation Id,[x, H (G)] - &[e, H(W)]l 2
d(x, et), we can eliminate c as a candidate for the nearest neighbor
codeword. The second elimination process comes from the partial-
distance search method that is self evident. Note that the encoding
algorithm can be implemented very efficiently by having the signed
distances of the codewords precalculated, ordered, and stored at each
node when the binary tree is constructed in algorithm 1. It should be
noted that the first step of the search algorithm is identical to tree-
structured VQ encoding. One can thus terminate the search algorithm
at this point, obtaining a suboptimal solution to the nearest neighbor
problem. In the following, we will refer to this variant of the search
algorithm as the "depth-only'' structured VQ algorithm in order to
differentiate it from TSVQ, since the former applies to arbitrary
unstructured codebooks while the later requires the parallel design
of the tree structure and the vector codebook.

TABLE I
PERFORMANCE OF FULL-SEARCH, PARTIALDISTORTION VQ ON cOUPLE.5 12

~

Code.

size -
256

512

1024

2048

__
Block

size

Mult.

8 x 8 7.906. 10"'

1.533. 10t02

2.852. 10+''

4 x 4 1024 1.867. 10+'' 3.734.10+''

2048 3.661.10+02 7.322.10+''

4096 7.221 10"'' 1.444,

8192 1.518. loto3 3.036. 10f03

3.129. 10"''

6.202. lo+''

1.232. 10'03

2.540.

2 x 2 3.191.

6.356.

1.266. lofo4

2.522. lofo4
IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental Results
To test our method, we used the "basic" VQ scheme, i.e., the

simplest VQ scheme applied to image blocks where each component
of the vectors is the intensity of an image pixel. It is, however,
important to point out that our method can be applied to any VQ
scheme such as predictive VQ, adaptive VQ, transform VQ, etc.

We first used the GLA to obtain a number of codebooks of various
dimensions (k) and sizes (N) . The training vectors were obtained
from the Baboon, Lenna, and Boat images taken from the USC
image database. All these are monochrome images of the luminance
(NTSC-Y) component. They have size 512 x 512 (in pixels) with 8
b/pixel (256 grey levels). We partitioned these images into blocks
of dimension 2 x 2, 4 x 4, and 8 x 8, and generated training
vectors of dimensions IC = 4, 16, and 64, correspondingly. In the
codebook design, we adopted the maximum distance method [I61
for its initialization, performed a number of GLA iterations, and
stopped the iterations when there was no significant reduction in
the mean squared error (MSE) values. We chose codebook sizes of
the form N = 2" with integer n in the experiments. The resulting
codebook sizes are up to 2048, 8192, and 32768 for the cases of

0, we move to the left node; otherwise, we move to the right.
The same process repeats until a leaf with only one codeword
e, is reached. The candidate codeword c, and its distance dmin
from x are reported to the parent node. We move from the leaf
node to its parent node.

At
a given node, we search all codewords associated with the
node that have a signed distance from the hyperpIane with an
opposite sign to that of d,[x, H (G)] , starting with the one
that has the shortest distance from the hyperplane and con-
sidering only those code vectors cI satisfying i & [~ , H (G)] -
d,[c,, H(G)]l < d,,,. For each eligible candidate, apply the
partial distance calculation method, i.e., complete the distortion
calculation for as long as the partial sums DI satisfy Dl =
CL=, (c y - P)' < d21n to determine whether it is the
nearest neighbor of x. By doing so, we can find the best
candidate codeword with respect to this node. Then we move to
its parent node and repeat the process until the root is reached.

2) Search the best candidate codeword from leaf to root.

402 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 5 , NO. 2, FEBRUARY 1996

Block size: 4x4

3fock

size

- _ - _ - _
150-

100- 1

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
H(bits per pixel)

Fig. 6. Empirical rate-distortion function for the Couple image (solid line: the
new method; dashed line: TSVQ; dashed-dotted line: Structured-VQ "depth
only;" *: full-distortion exhaustive VQ; +: partial-distortion exhaustive VQ).

block-size 8 x 8, 4 x 4, and 2 x 2, respectively. In order to compare
our algorithm with tree-structured VQ, we also ran the single-node
splitting LBG algorithm [3] on the same training sequences and
obtained tree-structured codebooks of the same sizes and dimensions.

We implemented the following five VQ encoding options.
1) Exhaustive full-distortion search VQ
2) Exhaustive partial-distortion search VQ
3) Tree-structured VQ (TSVQ)
4) Fast codebook structuring and nearest neighbor (NN) searching

VQ (the new algorithm)
5) Fast codebook structuring and depth-only searching VQ (the

new algorithm terminated just after the first leaf of the tree is
reached)

In what follows, we maintain the following notation:
U input (original) image
6 output (quantized) image
p, empirical distribution

pz =
no. of vectors classified to codeword et

total no. of input vectors

For every experiment, we reported the following quantities:
1) Resulting average distortion (MSE) per pixel and entropy of

the encoded image (H) in bits per pixel based on the empirical
distribution of the code vectors. These quantities are calculated
as follows. . '

1 512
MSE = 7 E E[u(Z, j) - 6(Z, j)] '

r=l 3=1
512

and

where N is the codebook size and k is the vector dimension.
2) Execution time of the various algorithms in terms of seconds

of CPU on a Hewlett-Packard Apollo Series 700 workstation.
3) Number of multiplications, additions, and comparisons

(MAC's) per pixel; also the number of square root operations
per vector, since it is needed by the new algorithm.

4) Total memory requirements of the algorithms.

8 x 8

4 x 4

2 x 2

~

Code.

size

256

512

1024

2048

1024

2048

4096

8192

4096

8192

16384

32768
~

TABLE 111
PERFORMANCE OF FAST NEAREST NEIGHBOR

TREE-STRUCTURED VQ ON ELAINE.512

Mult.

(per pixel)

1.934 10"'

2.593. 10"'

3.432. 10"'

5.142. 10co'

2.565.

3.478. 10"'

5.218. 10"'

8.493. 10'O'

2.654 - lo+''

3.427. 10'''

4.475.10+0'

5.594.10+01

Add.

(per pixel)

2.624 10"'

3.800.10+0'

5.321 . l O f O '

8.233 lo+''

Comparisons

(per pixel)

6.964. lo+''

1.340. 10'O'

2.254. 10"'

3.861. 10"'

3.740. lo+''

5.502.10+"

8.853. lof0'

1.526. 10toZ

4.568.10"'

6.099.10+"

8.175~10"'

1.036. lo+''

1.833. 10"'

3.686. 10"'

7.210. 10"'

1.392. 10+''

4.126. lo+''

6.714. 10"'

1.030 10f02

1.397 10fO'

Sqrts.

(per vector)

1.479. 10+"

1.636. 10+Oo

1.775 10+"

1.875 10+oo

1.460. 10too

1.672 10too

1.816. lo+''

2.048 10'oo

1.769 10+oo

1.807 10foo

1.852 10+Oo

1.874, 10+Oo

After obtaining various codebooks as stated above, we ran the tree-
construction algorithm, i.e., algorithm 1, to build a binary tree for each
codebook. Execution time versus codebook size for various vector
dimensions is plotted in Fig. 1. One can verify the O (k N log, N)
behavior as claimed in Section 111-A. We also present overall perfor-
mance, i.e., multiplications, additions, comparisons (MAC's), square-
root operations, and quick-sort counts (needed for the sorting of
the code-vector distances from the hyperplanes) in Fig. 2. They
demonstrate the same relationship. It is worthwhile to point out that
the execution time for the largest experiment, which has a block size
2 x 2 and a codebook size 1V = 32 768 = 215, required approximately
100 seconds of CPU time to build the binary search tree. This is
significantly less than the time required by existing algorithms that
build a binary tree from an arbitrary codebook using the Monte-Carlo
techniques by an order of magnitude.

The plot of the overall memory requirements of the various
algorithms is presented in Fig. 3. The O[iV log, (N)] overhead can
be observed as predicted in Section 111-A. Furthermore, it can be seen
that the memory overhead of both the new method and that of tree-
structured VQ is decreasing in comparison to the memory needed for
storage of the codebook.

Next, we tested all five algorithms by encoding three different
monochrome images: Couple, Elaine, and Heather of size 512 x 512.
The execution times obtained for the Couple image is given in Fig. 4
as functions of the codebook size N with a vector dimension equal to
16. A similar performance is also observed for the other two images.
In addition, the MAC's for various algorithms are listed on Tables
I, E, and ID. To show a general trend, we plot the data for the case
of the Elaine image in Fig. 5. Based on these execution times, we
list the speed-up factor, which is defined as the ratio of CPU time
needed by exhaustive full-distortion VQ over CPU time needed by
the other four algorithms in Table IV for various vector dimensions
and codebook sizes. We see a similar general behavior from this table.

B. Discussion
It is important to note the degradation in performance (in terms

of MSE and entropy) when using TSVQ instead of full-search
VQ presented in Fig. 6 in the form of operational rate-distortion
function for various methods. This is the cost paid to gain the
advantage of the very low complexity of TSVQ. On the other hand,
we can immediately see from the conesponding plots and tables

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 5, NO. 2, FEBRUARY 1996 403

8 x 8 4 x 4

Method f f c (Y c

TABLE IV

VARIOUS METHODS: P = PARTIALDISTORTION FULL-SEARCH VQ;
T = TREE-STRUCTURED VQ; S = STRUCTURED FULL-SEARCH

SPEED-UP FACTOR OVER EXHAUSTIVE, FULL-DISTORTION VQ FOR

VQ; D = DEFTH ONLY-FIRST STAGE OF STRUCTURED VQ

2 x 2

(Y

dim

8 x 8
~

4 x 4

-
2 x 2

S L Z ~ P T S 0 P 1

256 2 6 1 3 6 6 1046 27.0 3.16 38.1

512 2 73 644 13 80 53.4 3.37 64.E

1024 2.98 109.7 18.17 102.6 3 64 114.9

2048 2 62 194.2 21.66 157.4 3.15 201.6

1024 3 37 110.83 3094 90.0 3 60 113.3

2048 3.42 197.74 39.20 176.5 3.67 200.8

4096 3.41 355.00 46 64 331.8 3 61 357.9

8192 3 20 643.90 50.79 625.2 3 4 1 6568

4096 1 8 3 315 103.1 296 183 319

8192 1.83 579 1376 584 183 597

16384 1.77 1068 162.0 1131 1.77 1034

32768 1.77 1966 200.6 1958 1.77 1884

'3 23 1 101.7 55.8 /I 3.89 4 15 ~ 115.4 72 6 ! 35.9 48.4 1 52.6 90.9

40.54

50.74

59 14

62.63

105.9

146.8

266.1

Block size: 4x4

0'g2

?OO 10' 1 o2 1 o3
Codebook size N

Fig. 7.
dashed line: Heather).

Entropy versus codebook size (solid line: Elaine; dotted line: Couple;

that both TSVQ and the depth-only version of the new algorithm
are much faster than exhaustive full-distortion and partial-distortion
VQ and also faster than the proposed "-encoding algorithm. This
is expected, since it is known that the complexity for both these
algorithms is proportional to the average depth of the binary tree,
which is essentially O(log N) . These two suboptimal algorithms
are comparable in terms of performance (MSE,H), having almost
identical memory and CPU requirements. Thus, the tree-structuring
algorithm (algorithm 1) provides an alternative to TSVQ design, with
the additional advantage that it is applicable to any unstructured VQ
codebook.

Another important observation is the significant variance in the
execution time of the proposed algorithm for the same codebook
size and vector dimension among different images. This variance
in execution time is coupled by the variance we observe on the
performance of the algorithm in terms of (MSE,H). This can be
clearly seen in Fig. 7 where we plotted the entropy of the output image
(measured in bits per pixel) versus codebook size for the three images.
Each plot shows the entropy obtained for the three different images
and their relationship to the theoretical vector quantizer resolution,
defined as r = log, N / k . Fig. 8 presents encoding time as a function
of codebook size for the three images with block size 4 x 4 by
using our algorithm. The resemblance is apparent; based on this, we

Block size 4x4

1

Fig. 8.
Couple; dashed line: Heather).

Execution time versus codebook size (solid line: Elaine; dotted line:

TABLE V
PARAMETERS Q AND C FOR THE THREE IMAGES AND VARIOUS VQ METHODS

Image: Couple.512

Image: Heather.512

STRUCT-VQ

C

0.3393

0.2998

0.8346

0.8270

0.8039

-
~

-

conclude that execution time relates to entropy H of the output more
than it does to the codebook size N .

The shape of the graphs motivates us to model the logarithm of
the execution time linearly with respect to entropy. By performing a
simple linear regression, we can model execution time as a function

404 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 5, NO. 2, FEBRUARY 1996

of entropy as

T = CaHk

where the parameters C and a are listed in Table V. The table clearly
shows the gain provided by our new algorithm. While the encoding
complexity of full search grows as a function O(cy.Bk), the proposed
algorithm grows as O(cyF‘), where the ratio of 011 and a2 is in the
range 1.7 5 c y ~ / c y 2 5 3.5. Thus, the proposed method performs
increasingly faster than full search as codebook size increases. It
provides a clear advantage in satisfying the need for large codebook
sizes and vector dimensions leading to better compression.

v. CONCLUSION AND EXTENSION
In this work, we proposed a tree-constmction algorithm and a

tree-search algorithm to achieve fast nearest neighbor encoding. The
superior performance of the proposed method was demonstrated by
a set of numerical experiments.

We would like to mention some related research work to be
carried out in the future. The study of existing methods has so
far been very enlightening as to various alternatives for the partial-
distortion elimination of codewords, which at this point appears to
be the computational bottleneck of our encoding algorithm. Pre-
liminary results, reported in [17], are quite promising. We can
also augment existing tree codebook structures with the indexes
and the signed distances from the hyperplanes as described by
algorithm 1, and use the new algorithm as a refinement to TSVQ
for cases where the improvement in the (MSE,H) substantiates
increased memory and CPU complexity. In addition, we believe that
there is much more to the relationship between entropy, distortion,
computational complexity, and memory capacity than this work
is able to address. A more complete analysis that provides the
operational rate-distortion function, i.e., the achievable rate-distortion
pair under some constraints of bounded computational complexity
and/or memory capacity should be of great interest.

REFERENCES

[l] A. Gersho and R. M. Gray, Vector Quantization and Signal Compression
Boston: Kluwer, 1992.

[2] Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector quantizer
design,” ZEEE Trans. Commun., vol. COM-28, pp. 84-95, Jan. 1980.

[3] J. Makhoul, S. Roucos, and H. Gish, “Vector quantization in speech
coding,” in Proc. IEEE, vol. 43, no. 11, pp. 1551-1587, Nov. 1985.

[4] N. Moayeri, D. L. Neuhoff, and W. E. Stark, “Fine-coarse vector qum-
tization,” ZEEE Trans. Signal Processing, vol. 39, no. 7, pp. 1503-1515,
July 1991.

[5] C.-D. Bei and R. M. Gray, “An improvement of the minimum distortion
encoding algorithm for vector quantization,” IEEE Trans. Commun., vol.
COM-33, no. 10, pp. 1132-1133, Oct. 1985.

[6j D. Y. Cheng, A. Gersho, B. Ramamurthi, and Y. Shoham, “Fast search
algorithms for vector quantization and pattem matching,” in Proc. Int.
Conf Acoust., Speech, Signal Processing, San Diego, Mar. 1984, pp.
9.11.1-9.11.4.

[7] J. H. Friedman, F. Baskett, and L. J. Shustek, “An algorithm for
finding nearest neighbors,” IEEE Trans. Comput., vol. C-24, no. 10,
pp. 1OOG1006, Oct. 1975.

[8] S.-W. Ra and J.-K. Kim, “A fast mean-distance-ordered partial codebook
search algorithm for image vector quantization,” IEEE Trans. Circuits
Syst. II, vol. 40, no. 9, pp. 576-579, Sept. 1993.

[9] D. Y. Cheng and A. Gersho, “A fast codebook search algorithm for
nearest-neighbor pattem matching,” in Proc. Int. Con$ Acoust., Speech,
Signal Processing, Tokyo, vol. 1, Apr. 1986, pp, 265-268.

[lo] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Comm. ACM, vol. 18, no. 9, pp. 509-517, Sept. 1975.

[ll] A. Lowry, S. Hossain, and W. Millar, “Binary search trees for vector
quantization,” in Proc. Int. Con$ Acoust., Speech, Signal Processing,
Dallas, 1987, pp. 2205-2208.

1121 V. Ramasubramanian and K. K. Paliwal, “Fast I;-dimensional tree algo-
rithms for nearest neighbor search with application to vector quantization
encoding,” IEEE Trans. Signal Processing, vol. 40, no. 3, pp. 518-531,
Mar. 1992.

[13] M. Orchard, “A fast nearest neighbor search algorithm,” in Proc. Znt.
Con$ Acoust., Speech, Signal Processing, Toronto, Canada, May 1991,
pp. 2297-2300.

[14j M. R. Soleymani and S. D. Morgera, “A fast “se encoding technique
for vector quantization,” ZEEE Trans. Commun., vol. 37, no. 6, pp.
65-59, June 1989.

[15j L. Torres and J. Huguet, “An improvement on codebook search for
vector quantization,” IEEE Trans. Commun., vol. 42, nos. 2 4 , pp.
208-210, 1994.

[16] I. Katsavounidis, C.-C. J. Kuo, and 2. Zhang, “A new initialization
technique for generalized lloyd iteration,” ZEEE Signal Processing Lett.,
vol. 1, no. 10, pp. 144-146, Oct. 1994.

[171 __, “Fast generalized lloyd iteration for vq codebook design,” in I995
IS&T/SPIE Symp. Electron. Imaging: Sei. Technol., San Jose, CA, Feb.
1995.

