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Abstract. A new framework for cartoon animation is proposed in this work. By using the wavelet coefficients

as the control points, one can manipulate curves so that shape metamorphosis occurs along resolutions as well as
spatial locations. We model the motion of a cartoon character with the Lagrangian dynamic equation where the
multiscale curve is driven by relevant forces. The spatial and frequency localization property of the multiscale
curve model results in a sparse and diagonally dominant representation of the mass and stiffness matrices of the
Lagrangian equation and hence the computation can be greatly simplified. To further simplify this model, we
consider a model which consists of a decoupled system of ODEs. We then perform an experiment by capturing an
image sequence with the locomotion of a walking dog, selecting some key frames, and tracing the positions of limbs
between these key frames. The best motion parameters are determined by using the least squares approximation.
These extracted parameters are then be used to animate cartoon characters of a similar type of motion. The result
shows the proposed curve descriptor with multiscale structure and local control property is promising in cartoon
animation applications.
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1. Introduction

Cartoon animation [14], [27] and shape metamorphaosis [4], [13] between two or more
images has many potential applications in education and entertainment in the coming mul-
timedia era. These techniques interpolate intermediate frames from key frames to form an
image sequence so that the change of images evolves gradually and naturally. Traditionally,
to obtain a motion sequence usually requires intensive human/machine interaction and takes
atremendous amount of time. For example, it may take ten times as long to adjust morphing
parameters interactively before one can actually compute interpolated frames. To animate
cartoon characters usually takes even more skills and more tries. Instead of considering the
general animation of pictures, we focus on fast and robust contour animation and morphing
in this research.

Generally speaking, contour morphing is divided into two steps. The first step is to
construct a mapping from the vertices of the source shape to those of the destination shape.
Once the correspondences are established, a sequence of intermediate curves is generated
by interpolation in the second step. However, one major problem with this approach is
that we may obtain self-intersecting intermediate contours when the angles formed by
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vertices pass the zero degree to become negative at some interpolating frames. Sederberg
and Greenwood [18] proposed a physically based approach to cope with this problem,
where linear piecewise approximating curves are used. Their method requires massive
computation even in interpolating smooth shapes in key frames.

Human eyes and minds are sensitive to motion. While you may not recall exactly how
dogs walk, you can easily tell there is something wrong when you are watching a sequence of
cartoon. Hence, animation requires accurate description of positions and speeds of control
points during the process of motion while morphing does not. In practice, to create natu-
rally looking motion requires expertise in kinematics and a lot of interactive modifications
for fine-tuning the results. Although computationally more complex than the traditional
method, the physically based approach offers unsurpassed realism in the animation of nat-
ural phenomena. The key frames set up the initial conditions for the Lagrange’s equation
which can be solved at every time step. This numerical procedure generates intermediate
frames with little intervention from computer animators who do not necessarily know the
Newton'’s laws. The physically based model has been used to describe flexible objects in
computer graphics for years. Weil [26] proposed an approach for interpolating surfaces
between catenary curves to produce draped cloth effects. Terzopoulos et. al. [21] subse-
guently employed continuous elasticity theory to model shapes and motions of deformable
bodies. By including physical properties such as mass and damping, they simulated the
dynamics of nonrigid objects in response to relevant forces. This approach significantly
simplifies the animation of complex objects, yet brings highly realistic synthesized images.

Shape modeling is an important part in synthesizing and identifying contours, surfaces
and volumes. The primary factor is that a model should describe a shape effectively and
can handle details with different priorities. For example, the generalized splines are the key
ingredient of the dynamic shape modeling of the work of Terzopoulos and Metaxas [20].
To take the advantage of combining the descriptive power of local and global parameter of
shapes, they introduced a hybrid modeling scheme called the “deformable superquadrics”
which deform both globally like superquadric ellipsoids and locally like membrane splines.
However, this model does not possess a smooth transition between local and global defor-
mations. On the other hand, Pentland [16], [17] represented shapesdasdeformation
from a certain prototype object. By describing this deformation in terms of the eigenvectors
of the object’s stiffness matrix, they are able to obtain a frequency-ordered shape descrip-
tion. The way they handled the shape information in priority is that higher frequency modes
are discarded first, if necessary, to make shape identification less sensitive to local shape
variations. In general, this modal description provides a global-to-local ordering of shape
deformation at the expense that the dynamic equilibrium equation must first be decoupled
by an M-orthonormalized eigensystem calculation. The computational cost is significant
if the dimension of the stiffness matrix is large. Also the equilibrium equation can only
be decoupled for the materials with ‘proportional damping’ [3]. More recently, Vemuri
and Radisavljevic [24] introduced a shape modeling scheme that transform smoothly from
local to global models or vice versa by using a hybrid primitive called the deformable su-
perquadric constructed in an orthonormal wavelet basis. This scheme requires relatively
few parameters to describe a large class of shapes.

Inrecentyears, the wavelettransform became an active area of research for multiresolution
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image analysis and synthesis. One of the attracting properties of wavelets is that the basis
functions are simultaneously localized in both space and frequency domains. This property
tends to produce a sparse representations of some discretization of differential and integral
operators. Early work of Pentland [15] using wavelets in the context of shape modeling
was restricted to surface reconstruction. Instead of the regular nodal basis, he utilizes the
wavelet basis such that the minimization of energy function can be formulated by diagonally-
dominated matrices equation and some fast algorithms can be applied to approximate the
solution of surface interpolation problem.

In our previous work, we presented an automatic and robust contour morphing algorithm
in the sense that it achieves smooth morphing and does not need to adjust the morphing
parameters interactively. The algorithm is based on a multiscale planar curve descriptor
which extracts various scale parameters of a curve via the wavelet transform. Developed
independently, a work on multiresolution curve using wavelets was done by Finkelstein
and Salesin [10]. They proposed the presentation from the viewpoint of computer graphics
society (while our research started from signal processing aspect) and showed it supports a
variety of operations such as efficient smoothing, multiscale editing and scan conversion.
They also depicted how a curve, based on the proposed representation, possess the ability
to change the overall ‘'sweep’ while maintaining the fine details (or so called ‘character’)
of the curve. And, on the other hand, one can change the ‘character’ of a curve without
affecting its overall ‘sweep’. Their idea of ‘continuous level of smoothing’ and ‘multiscale
scan conversion and curve compression’ is similar to the research in our paper [6]. In
this work, the wavelet descriptor is used to implement curve morphing and animation
occurring at different resolutions and spatial locations. We formulate a deformation via
dynamic equation and use the multiscale structure of the wavelet descriptor for rendering
of pictures in computer animation. The property that the wavelet representation provides
a smooth transition between local and global deformations of shapes make our method a
sensible approach. We also utilize the spatial and frequency localization property of the
wavelets which results in a virtually decoupled Lagrangian equation and hence reduces the
computation significantly.

This paper is organized as follows. In Section 2, we briefly review the periodized wavelets
and derive awaveletrepresentation for planar curves. In Section 3, we introduce the mechan-
ics of deformable bodies and the Lagrangian dynamics. We then derive the representation of
deformation with respect to the wavelet basis and present a method to calculate the stiffness
matrix of dynamic equation. In Section 4, two examples of contour morphing are given
to demonstrate the potential of applying the suggested method to cartoon animation. To
facilitate the animation task, we model the motion of curves with a simplied (decoupled)
dynamic equation and extract some parameters from motions of real video images. The
model and the extracted parameters are then used to generate motion sequences of similar
nature. Some concluding remarks are given in Section 5.

2. Planar Curve Descriptor Using Wavelet Transform

The parametrized closed curves can be represented by periodic sequences. Wavelets defined
in L2(R) are not suitable for this representation. In this section, we will briefly review the
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theory ofperiodizedwavelets [9]. Each periodized wavelet can be expressed as a sum of
copies of periodically shifted continuous wavelets with reasonable decay. These functions
constitute an orthonormal basis in the spaég0, 1]). We will also present the fast forward

and inverse periodic wavelet transforms introduced by Getz [11].

2.1. Review of Periodized Wavelet Theory

We usep () to denote a scaling function such that, for a certaia Z, its translations form
an orthonormal basis for the wavelet subspaggsind that{Vy,} .z is a multiresolution
approximation of the spade?(R). For each scaling functiop(t), one can determine the
corresponding mother wavelet functignt) such that the collection of its dilations and
translations

Yt =222 ™ —n), mneZ,

form an orthonormal basis far?(R). The functionsp andys satisfy the following dilation
equations

Pt =v2) hep2t—n); Y1) =v2) gup(2t — ), (2.1)

The coefficientd andgk are related via
Ok = (—D*hy_. 2.2)

The periodized wavelets in the spac&(0, 1]) can be examined based on the multires-
olution analysis with the scaling functiap and the wavelety in L?(R). The periodic
scaling and wavelet functions are defined as

) =Y PN+ YW =D Yl +1). (2.3)
1eZ 1eZ

The corresponding periodic multiresolution approximation spaces are

VM = Spar¢m™ nez), and W™= SparyM;neZ}. (2.4)

Also, as in the non-periodic case, we hal®& 1 = V™ @ WM. It was proved in [9] that,
for negative integem, V™ is finite-dimensionald™ ., (t) = ¢m(t) for k € Z, andV™ is
spanned by the? functions withn € Z,, = {0,1, ..., 2™ — 1}. A similar result holds
for W™ with ¢™(t) replaced by (t).

For f (t) € Vi, , we can express its finite-scale orthogonal wavelet expansion:

Mc

fh= Y a'gn ®= > adgtm+ Y Y dMnw, (2.5)

neZy, neZ . m=Mt neZ,,
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Figure 1. Schematic of the implementation of the discrete periodic wavelet transform, where tildes on thifilters
andg, means periodic convolutions are performed. Up/downward arrows denote sampling rate increase/decrease
by 2.

s[k]

with
1 B 1 -
cMe :/ f (OGN ()dt; d,TZ/ f (Y (®dt. (2.6)
0 0

A fast algorithm to compute the finite-scale wavelet transform due to Getz [11] is given
below. Let us define a pair of filter coefficients:

§" = Z 9 modam)+2mik; h" = Z Mimodzm+amie | € Z, (2.7)
keZ keZ

It is easy to verify thagj™ and ﬁ,m are periodic sequences with period2 Then, the

coefficientsd™ andcM can be computed from coefficiergs’ via the following recursive
formulas:

m+1l [m m,
Cn - Z hI—2ncl ’
IeZm

d'r1n+1 = Z glnl2nclm’
IeZm

m=Ms,...,Mc— 2, Mc — 1. (2.8)

One can also obtain the coefficienfs’ from d™ andcMe via the synthesis formula

o= Y (g™ a0 ad™h, m=Mc—1 M. —2... M. (2.9)

n
IeZm+1

Equations (2.8) and (2.9) are called the forward and inverse discrete periodic wavelet trans-
forms (DPWT), respectively. The schematic of the implementation of the DPWT is depicted
as Fig. 1. It have been shown by Getz that the DPWT is perfectly invertible when applied
to sequences of finite length.
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2.2. Coordinate-Based Wavelet Descriptor

Let us denote a clockwise-oriented closed plane curve with parametric coordiftatesd
y(t) by

X(t)
y(®)
where the parametéicorresponds to the normalized arc lengtis,the arc length along the

curve from a certain starting poityt, andL is the total arc length. By applying the wavelet
transform to the parameterized coordinates, we obtain

a(t)=|: :|, t)y=1/L, O=<l=<L,

x®) ] [ xM) M |: XT(t) ]
[ y® } B [ Ya' () ] * m=MZ—mo yi | (2.10)
where
'O =) al'al®. o= c'd'® (2.11)

are called the approximation coefficients at sddlend
XP® =Y rMrm, yro =y dina), (2.12)
n n

are called the detailed signals at scalevith m = M — mg the finest scale anth = M

the coarsest scale. Then, we can use the wavelet coeffigdnts)!, r™ andd™ given in
(2.11) and (2.12) as the planar curve descriptor. To give an example, we show the multiscale
representation of the outline of the digit 3 using wavelets in Fig. 2. We perform a six-level
decomposition of wavelet transform using the biorthogonal cubic B-spline wavelets [22],
[23] in Group (a) (the left five curves) of Figs. 2 and Daubechies wavelets in Group (b) (the
right five curves) of Figs. 2. The multiscale approximations in curves FiQ.i2(derived

from transforming the original curve using wavelets, discarding the detail signals, and finally
reconstructing from only 2¢ of the total samples. In this figure, curves Fig. 2(3)-(6) of
both groups are reconstructed fron23 to 1/2° of the total samples, respectively. The
original curve with 1024 samples are given in Fig. 2(0) of both groups. The approximations
at levelsk = 1 andk = 2 of the curve are similar to the original curve and are therefore
omited.

3. Physically-Based Contour Deformation and Animation

A new framework of physically based contour deformation and animation with the mul-

tiscale wavelet descriptor is proposed in this section. We formulate the problem of shape
deformation with the Lagrangian dynamic equation which simulates the deformation as a
process driven by a certain force. Then, we show the discretization of Lagrange’s equation
with respect to the wavelet representation, and derive the corresponding mass and stiff-
ness matrices. The entries of the stiffness matrix can be obtained by solving a system of
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Figure 2. Multiscale representation of the outline of the digit 3 using (a) biorthogonal cubic B-spline (the left five
curves) and (b) Daubechies wavelets (the right five curves.)

linear algebraic equations. Due to the multiscale representation capability of the wavelet
descriptor, the pictures in intermediate frames can be generated via multiresolution render-
ing. Experiments are conducted in the next section to demonstrate the performance of the
proposed physically based cartoon animation.

3.1. Mechanics of Deformable Bodies—The Lagrangian Dynamics

Mechanics of deformable bodies has been widely studied in continuum mechanics and
elasticity theory, where the kinematics describing the body displacement has been derived.
Let us consider a fixed rectangular Cartesian coordinate systenX,, X3) with origin
O = (0, 0, 0) and assume that deformation occurs at a fixed time interval frem0 to
Tt =1.

The deformation, or change of shape, can be described by the motion of each point in a
body relative to its neighbors. Suppose the position of a ppioh a deformable body is

represented by

Up = Ug+ U,

whereug is the position vector op in the undeformed state andis the deformation or
displacement vector of the point. Applying the Finite Element Method to this model, we
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can express the displacement as
u=Sgq,

whereq is the vector of elastic coordinates that contains only time-dependent coefficients
andS is the shape matrix whose entries are the space basis functions. We focus on the
deformation due to strain which is defined as the ratio of displacement to the actual length,
or simply the ratio of the change in length. The strain is a tensor defined as [19]:

e=Du (3.1)

whereD is the differential operator. The stress components can be related to the strain
components via the constitutive equation

o = Ee, (3.2)

whereE is the constitutive matrix of a certain material.
The Lagrangian dynamical equation for this model can then be derived [19] [20] as

Mq + Cq+ Kg = Qe, (3.3)

where the dot o denotes the differentiation with respect to time, &hdis a vector of
externally applied forces. The stiffness matfixs defined as

K = / (DSTEDSAV, (3.4)
\%

And the symmetric mass matrix of the equation is

M=p / S'sdv,

\%

wherep is the mass density of the deformable body. The integration is performed over the
entire volumeV of the deformable body. Finally, the damping magixs normally taken
to be

C =sM + sK. (3.5)
for some scalars;, s,. Whens; # 0, s, # 0 this is called Rayleigh damping; feg = 0 it
is called mass damping; and far= 0 stiffness damping. Note that the damping ma@ix

represents the velocity-proportional kinetic energy dissipation whereas the stiffness matrix
K determines the elastic properties of the prototype object.

3.2. Planar Curve Deformation with respect to Wavelet Bases

In this research, we focus on the deformation of planar curves which is a one-dimensional
problem. In particular, with a given wavelet basis, we can use (2.5) to expand the deforma-
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tion vectoru in wavelet form as

M
ue, o) =Y el @0+ Y Y di@mY 0. (3.6)
n m=M-mg n

Thus, the space and time-dependent deformation vector is decomposed into the time-
dependent wavelet coefficient#(r), d™(r) and the space-dependent wavelet functions
¢~>rﬁ" (X) andvﬁ;"(x). Equation (3.6) can be rewritten in matrix form as

u(x, 1) = S(X)qu (1), (3.7)

whereq, is the vector of wavelet coefficients ai8lis the matrix that consists of the
associated wavelet basis functions. To be more precise\ tkel vectorq,, consists of
wavelet coefficients with a global-to-local ordering as

dw =[@HT, @HT, @ HT, ..o@l ™.

where
gy = [eg's ooy cNyals
qp = [df, ... dl 41T, M—mo<m=<M,

and whereNy, is number of the wavelet coefficients at the saaleq! is the vector of
approximation coefficients at the scaie, andq]) are the vectors of detail coefficients at
the scalam.

The remaining task is determine the symmetric mass mistrithe stiffness matrix and
the damping matrix in (3.3) with respect to the wavelet basis. By using the orthogonality
property of the scaling and wavelet functions, we will illustrate later that the mass matrix
M = pl, wherel is anN x N identity matrix. For the 1-D case, both the strain tensor
and the differential operat® reduce to scalars. Thus, (3.1) becomes

ou
E = —.
0X

The matrixE is also reduced to scalag. Thus, we can simplify (3.4) to be

d_\"/d
K= —S —S ) dx,
[ (&) (&)
Due to the similarity of matricelk andC, we will examine the determination of the entries
of matrixK only.
Beylkin [5] proposed recently a method that reduces the operator, sd¢t asfractional
derivatives, Hilbert and Reisz transforms, to a simple system of linear algebraic equations.

It was shown that matricel§ andC with respect to the wavelet representation is sparse
and diagonally dominant. Thus, we can focus on the entries in the diagonal blocks. First,
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consider the first diagonal block corresponding to basis funciég6s, . . ., ¢n,-1(X). Its
entries can be written as

o dei (X) dg;j (x)
Kij _/eo dx  dx

dx, O0<i,j<Ny-—-1 (3.8)

For other diagonal blocks corresponding to basis functiggsc), .. ., ¥n,-1(X), their
entries can be written as

o dyi (X) dyj (x)
Kij _/eo dx  dx

dx, O0<i,j<Np—-1 (3.9

Furthermore, if the wavelet bas¢$x) or v (x) are compactly supported, we can use the
dilation equations to simplify (3.8) and (3.9) into a system of linear algebraic equations.
This procedure is motivated by a fast numerical algorithm proposed by Alpert [2]. Let us
define

> d d
i =/_ &¢(X—I)&¢(X)dx, leZ,

o0

and
*d d
V= /_Oo &w(x—l)&w(x)dx, | e Z.
By inserting the dilation equation (2.1) into the above equations, we have
o d d
W= 2;; hmhin /m 2. h(@x =2 —m2. —p(2x —ndx (3.10)

= 42 Z hmbnit2i tm-n
m n

We also definer, = 23, hih;, to be the autocorrelation coefficientsidf Now, we can
move further by using the property 8f; hihion = 80 (Which implies even indices of
an are zero excepto) and by substitutinge = m — n into the above equation. It follows
immediately that

k=B+U

U
w =4 Z Z Nmbm—k 42 k-

m=—B k=—B-U

By changing the order of summation and using the facthiat 0 fork < —Bork > U,
we get

k=B+U

=4z +2 Y ax(ua—k+ na. (3.11)
k=1

If the scaling functionp is compactly supported and has a support wigtht is obvious
by the definition thaty = 0 for |I| > P since the integrand vanishes. It is also easy to see
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thatw, = w_;. Combining these two properties, (3.11) becomes a linear sy&jerm: 0

of P equations withP unknowns in the vectopr = [uo, 1, ..., up_1]". Due to the
homogeneity, the rank of the system is deficient by one, and the sojutibthe system is

a vector that spans the null space of the mairiXx\We need another equation to determine
the scale of the:. The rule of integration by parts yields

/oo d (x)d X)) dx = +/OO (X) o (x)dx

_m& ¢ &¢ = Ko _OO¢ W‘P .

The left-hand-side term equals to zero if the scaling function is compactly supported. Hence,
the scale of the vectqk can be determined by

00 d2
o = —[m¢<x)ﬁ¢(x>dx.

The integration can be calculated with the numerical method proposed by Beylkin [5]
Similarly, vy can be solved by the linear algebraic equation

V= 42 Z OmOn M2 +m-n- (3-12)
m n

By defining8n, = 2); 6iGi+n to be the autocorrelation coefficients®f and using (2.2),
we have

> GGn =) _(=Dhihisy (3.13)

i.e. for oddn, we haves, = —an and for evem, 8, = an = 25,,0. Finally, (3.12) can be
rewritten as

k=B+U

v =4py +2 Z B (o —x + p2i4x)-
k=1

Furthermore, by (3.11) and (3.13), it can be simplified furthermore as
v = 8ua — . (3.14)

So we are ready to find out all diagonals of the stiffness matrix. The same idea can be
used for the derivation of the off-diagonal blocks. An example of the calculation of the
multiscale stiffness matrix in wavelet bases is conducted the following. We solve the system
(3.11) and (3.14) with respect to the Daubechies and Coiflet wavelets. This method can
however be applied to any other orthogonal wavelet bases. For the Daubechies wavelet, we
consider theDg wavelets with a compact support of length 7. Then, we know from Section
3,ui #0onlyfor0O<i < 6. We can use (3.11) to formulate a linear system = 0,
whereu = [uo, . . . ug], and determings, which is the eigenvector & corresponding to
the zero eigenvalue. For our convenience, we normalize the vacsorch thatuy = 1.

The normalized values qf; andy; for |i| < 6 are listed on Table 1, wheyg andv; are
symmetric about O.
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Table 1.Autocorrelation coefficients;, and normalized; andv; for
the Daubechie®g wavelet.

i Qa Wi Vi

2.000000000000 1.000000000000 1.000000000000

1.196289062500 —0.634202334430 0.282047701976

0 0.167516447426 —0.021030490453

0
1
2
3  —0.239257812500 —0.036239523491 0.005172706977
4 0 0.002537876782 —0.000362553826
5
6
7

0.047851562500 0.000391355545—-0.000055907935

0 —0.000003821831 0.000000545976

—0.004882812500 0 0

Table 2. Autocorrelation coefficients;, and normalizeg; andv; of
the K, Coiflet wavelet.

i o7 Hi Vi

0 2.000000000000 1.000000000000 1.000000000000
1 1.200356164723 —0.632970245318 0.282556453372
2 0 0.168115616035 —0.019065712435
3 —0.247533711568 —0.039535740096 0.005642288176
4 0 0.004331953624 —0.000618851965
5 0.054015945115 0.000061489440—0.000008784206
6 0 —0.000004965358 0.000000709337
7 —0.007246984423 0.000001893038 —0.000000270434
8 0 —0.000000001267 0.000000000181
9 0.000432201936 —0.000000000089 0.000000000013
10 0 0.000000000000 0.000000000000
11 —0.000023615772 0 0

For the case of Coiflet wavelets, it is known that a Coiflet wikh Zanishing moments
typically has a compact support of widtK6- 1, as compared tod — 1 for the Daubechies
wavelet. The stiffness matrik corresponds to a Coiflets wavelet with= 2 is plotted in
Fig. 3 with size 64x 64. This matrix is a sparse and symmetric matrix. Since the support
width is 6K — 1 = 11, the coefficients; are zero for alli| > 11. The normalized values
of i andvy; for |i| < 10 are listed on Table 2. More details can be found in [8].
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Figure 3. Stiffness matrix of the K, Coiflet wavelet. The case of two scal (= 2) is shown.

By using the concept of multiresolution decomposition, we can represent the deformation
in a coarser-to-finer structure and use this property for multiresolution rendering. In some
cases, we solve the dynamic equation in coarser scale with low computational cost, while in
other cases, we increase the resolution to meet the picture quality requirement. The major
advantages of this wavelet description is that it provides a smooth transition from low to
high-resolution deformation representation. Examples used to depict this point are in the
experiments.

3.3.  Numerical Implementation of the Dynamic Equation

To solve the Lagrangian dynamical equation numerically, we rewrite the equation (3.3) into

[g‘}:%[&}r%[—i —Ic][g} (3.15)

The original second-order equation is thus reduced to a sedirgt-order differential
equations. In this experiment, we consider exclusively the initial value problem for bound-
ary conditions. We use the fourth-order Runge-Kutta formula and an adaptive stepsize
controller for the integration of this ODE. The Runge-Kutta method propagates a solution
over an interval by combining the information from several Euler steps, and then using
the information obtained to match a Taylor series expansion up to some higher order. The
accuracy required can be adjusted by specifying a parameter to the stepsize controller.
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Inapplications involving the fitting of model to measured data such as shape reconstruction
and geometric design. We can simplify the Lagrange’s equation while preserving the useful
dynamics by setting the mass densitio zero to obtairCq + Kq = Q.. This ODE can be
solved by Euler’'s method which approximates the temporal derivatives with forward finite
difference, i.e.

q(t+At) — q(t) + At (C)_l(Qg) _ Kq (t))‘

Though less accurate, this method is simple and can be implemented parallelly. Since the
matrix C is a sparse matrix, it may be rapidly inverted using the quadratically convergent
Schulz algorithm [1]. The algorithm can be briefly described as following: Initially set
Xo = CT7/||ICTC||, then use the recursion

Xn+1 = 2Xpn — XpCX,

X, will converge toC~1 quadratically.

It was shown that matricés andC with respect to the wavelet representation is diagonally
dominant. In numerical experiments we have found that for a typical stiffness matrix the
summed energy of the off-diagonal entities is less than 15% of the total energy of entities.
In morphing, motion, or other graphics synthesis applications, we expect to incur only
small errors by discarding off-diagonals, and the equation (3.3) can be decoupléd into
second-order differential equations. Thddesecond-order linear differential equations
can be easily solved by analytical methods. In particular, the solutions for homogeneous
equations are

q(t) = a€'* + be?*, (3.16)

wherea andb are yet undetermined constants andr, are the two distinct roots of
of +eof + for = 0. Some experiments using these numerical methods will be conducted
in the next section.

4. Experiments
4.1. Linear Contour Morphing

Interpolation based contour metamorphosis often yields self-intersecting intermediate con-
tours. In our previous work [7], we presented an highly automatic algorithm to achieve
non-self-intersecting contour morphing. The basic idea of our approach is to represent a
planar curve with the wavelet descriptor which allows the metamorphosis to take place
at different resolutions as well as spatial locations. The linear cartoon morphing will be
investigated in the following.

Consider two planar curved® andC¢ called the source and destination shapes, respec-
tively. To achieve contour morphing fro@° to CY, we convert the curves into their lower
resolution counterparts denoted®§andC? via the wavelet transform, perform linear in-
terpolation between their coarse scale wavelet representations, and reconstruct intermediate
curves via the inverse wavelet transform.
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We choose the control vertices of the source c@%¢o be
AS=[A} AL ... A} 4],

where A} = [a,-M, ciM]T, 0<i < N —1,istheith coarsest scale (i.e. scdl) coefficient
(see (2.11)) of the wavelet descriptor for the source curve. Similarly, the control vertices
of the destination curv€? is

A =[Ad AY LAY )
Thus, the linearly interpolated control vertices can be determined by
[Ao(0), A1), ..., ANa(@] = A(D) = L- DA +7AY 0<t <l (41)

wherer is the parameter of normalized elapse time (or morphing clock). Notéitrat=
0) = ASandA(r = 1) = AY are the vertices o€s and CY. The aforementioned
interpolation can be performed in any scale. In coarse scale, less control points are involved
so the whole computation can be finished quickly. While in finer scale, good quality of
images can be achieved.

We show in Fig. 4 an example of shape morphing applicable to cartoon animation. For
this case, the cartoon plot is first keyed in interactively by tkei&’ curves tool provided
by the software packages, e.g. IslandDraw. TlegiBf curves can be converted into the
hierarchical wavelet description by performing even sampling and wavelet transforms on
the curves. Furthermore, the face of the cartoon character is described by a collection of
closed or open planar contours in different layers with one on top of the other. In this
case, the contours of faces of the cartoon characters are at the lower layers which are
partly recovered by outlines of eyes and nose. The animator assigns the correspondence of
source to destination layers, and the proposed contour morphing is used for the generation
of intermediate frames. The morphing sequence can be easily viewed with some software
package such as MATLAB. We see that the proposed method provides a smooth and natural
transition.

4.2. Physically Based Motion and Cartoon Animation

Linear morphing is simple to implement and easy to analyze, but it may lead to a morphing
which is not so compliant with the physical phenomena in our visual experience. In this
experiment, we demonstrate physically based motions. In a word, we solve the Lagrange’s
equation for the motion at each morphing clock betweerdJ@&nd obtain intermediate
frames by reconstructing from wavelet domain.

A comparison of the linear morphing to the physically based morphing method is given
in Fig. 5, where we see that the physically based morphing can be performed with different
constitutive, damping, and mass parameters of the Lagrange’s equation. This often results
in a more realistic animation. In Figure 6, we show an example that a deformed hoop is
transformed to its rest state due to the release of the strain energy. In this case, we assume
the external forc€). and the frictional force are zero so the deformed hoop can be restored
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Figure 4. An example of cartoon morphing by the wavelet descriptor, where the source frame is at the upper-left
corner and the destination frame is the lower-right one. The intermediate frames are generated by the proposed
linear morphing method.

to its natural shape completely. We let the natural shepef the deformable hoop be the

curve in the destination frame. The displacemein the difference of the source curve

to the destination curve. Once the initial conditions are set up for the ordinary differential
equation, the intermediate shapes can be reconstructed from the solution of the Lagrange’s
equation at each time step. Note that the external force can be a nonzero constant, e.g. the
gravity on the earth, the attractive forces of objects, or a function of the spatial coordinates.
The external force can be imposed to simulate the realism in practice.

By using the concept of multiresolution decomposition, we can represent the deformation
in a coarser-to-finer structure and use this property for multiresolution rendering. An
example used to depict this is in Fig. 7. In the case of Fig. 7(a), we solve the dynamic
equation in coarser scale with low computational cost, while in Fig. 7(b) and Fig. 7(c) we
increase the resolution to meet the picture quality requirement. The major advantages of
this wavelet description is that it provides a smooth transition from low to high-resolution
deformation representations.

Motion of animals has attracted extensive attention in the computer animation society
these days. We consider the walk of a dog in this experiment. A simple observed rule
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0.8 R S‘cﬁlid. line : physically-based with eqg =2, fg = 1,p = 0.4.

A\ Dash line physically-based with e =4, fog = 1,p = 0.2.
\ Dash-dot line -physically-based with eg =4, fg = 1,p = 0.4.
06F |\ N 4

Dot line : Linear.

0.2 ' T 1

Displacement: source to destination

-0.2F N < .

0.4 L 1 1 1 1 L I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Morphing clock

Figure 5. Comparison of the conventional linear morphing to physically-based motion with different parameters.
The kinematic information (e.g. positions and speeds of control points) are essential to curve animations.

of the walking progress of a dog is that its limbs do not move at a constant speed; they
move most rapidly near the middle of their swing, slow down to the reverse direction at
the end of their range of movement, and then speed up again. In contrast to the traditional
articulated structure approach [12], [25], which require extensive computations for joint
and link manipulations, we use a very simple scheme to catch the kinematics of control
points, i.e. to model and regenerate the shape changes regardless of the driving force. We
first capture a image sequence from a video about the locomotion of a dog, select some
key frames, and trace the contours of limbs between these key frames. Then, we perform
the wavelet transform on the contours of limbs for different phases of the locomotion and
get a database for the control points of the contours. By taking only some basic terms,
in this experiment three terms are chosen, of the Taylor series expansion of the solution
(as in equation (3.16)) of the decoupled dynamic equation and chodgiity = 1 and

fm(1) = 0 as boundary conditions, we apply the mofiglr) = 1 — (14 y)t + y 2 tofit

the kinematics of control points.

The repetition of a gait sequence is called a gait cycle where every leg alternately supports
the weight, thrusts forward, decelerates, and finally plants on the ground to support the
weight again. To take advantage of the symmetry of left and right limbs in a gait sequence,
we divide the gait cycle into four subcycles, derive the key frames 1’ and 2’ directly from
key frames 1 and 2 and duplicate the kinematic information of right limbs from left limbs.
Fig. 9 depicts a gait cycle, which is divided into four subcycles, and the idea of symmetry
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Figure 6. Shape transformation of a deformed hoop by releasing the strain energy. The sequence is to be read in
the order of left to right and top to bottom.

of left and right limbs. Now, as long as we have the kinematic information of right limbs
or left limbs, we are ready to generate the entire cycle of walking from two key frames and
the animation model.

By using a Macintosh computer with the frame grabbing hardware ‘Radius VideoVision’,
we captured aimage sequence (refer to Fig. 8) about the motion of a dog from thé®ideo
Dalmatiansand trace the positions of limbs of frames. We then choose two key frames as in
Fig. 10 (refer alsoto Fig. 9), where Key Frame 1 shows right-fore and left-hind limbs support
the dog’s weight while Key Frame 2 with left-fore and right-hind feet lift off and thrust
forward. The parameters are extracted from the contours of limbs of all available frames
from and inbetween these two key frames. We perform wavelet transforms on all contours.
Now we are ready to find the best paramefeby using the least square approximation. An
example isin Fig. 11, where we find the best parampetirat minimizes the error squares.

In the plot, ‘0’ is the positions of limbs in Subcycle A (the subcycle from Key frames 1
to Key frames 2) and ‘X’ is the positions in Subcycle B. According to the model and the
parameters, the control points of intermediate frames of motions are generated for each

0 < 7 < 1. Finally, the contours of limbs are synthesized from the control points using
inverse wavelet transforms. Fig 12 shows a full gait cycle of frames of the synthesized
locomotion generated by the model with extracted parameters and key frames. Fig. 13
shows only frames in Subcycle A with more details about the animation of the dog.

Again, using the concept of multiresolution rendering, we depict an example in Fig. 14.
In the first row of Fig. 14, we solve the dynamic equation in coarser scale with low com-
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Figure 7. Shape transformation of a deformed hoop rendered at the resolution of (a) 4 points, (b) 8 points, (c) 16
points (d) 32 control points.

putational cost, while in the second and third rows we increase the resolution to meet the
picture quality requirement.

5. Conclusion

We provided a framework of planar curve morphing and demonstrated its potential applica-
tionin cartoon animation. The proposed algorithm is highly automatic and applicable to any
convex and concave key shapes. With multiresolution bases, the wavelet descriptor gives
steady transition of intermediate curves along resolutions and provides smooth animation
between key frames.

The proposed method uses the Lagrangian dynamic equation to formulate the shape
deformation driven by the force of elasticity and damping. We shown the discretization of
Lagrange’s equation with respect to the wavelet representation, and derive the corresponding
mass and stiffness matrices. We also computed of entries of the stiffness matrix by solving
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Figure 8. The picture sequence that forms a gait cycle of an Afghanistan dog from the original clip. The sequence
is to be read in the order of left to right and top to bottom.
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Key frame 1

key frames 1 key frames 1’
subcycle D subeycle A
O O @
Gait O ® e O
Key frame 2’ Cf_\"('le Key frame 2
o O 0Oe
subcycle C subcycle B O . . O

key frames 2 key frames 2’

Key frame 1’

() (1)

Figure 9. Gait cycle (a) and limb positions (b) of a walking dog. Netdenotes a leg in its support phase and
denotes a leg in its lift off phase. Also the arrow head indicates the direction of the movement.

Figure 10.Limb positions of all frames in Subcycle A, where dash lines are traced from Key frame 1, solid lines

are traced from Key frame 2, and dot lines are traced from all inbetween frames which will be used to extract
parameters for animation.
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Parameter extraction from limb positions of a walking dog
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Figure 11.Parameters are extracted from fitting data using least square approximations.
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Figure 12. The synthesized locomotion of a dog. The sequence is generated by the extracted parameter and the
two key frames. Subcycle A to D, which together form a full gait cycle, are shown on the 1st, 2nd, 3rd, and 4th
rows, respectively. More intermediate pictures of Subcycle A are shown in the next figure.
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Figure 13.The synthesized locomotion of a dog. Only frames in Subcycle A are shown.
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a system of linear algebraic equations. Finally, a synthesis method using some parameters
extracted from a sequence of real motion was presented. Since the multiresolution bases
provide a powerful tool for local-to-global shape description, we believe it is promising to
the applications of computer graphics and computer vision.
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