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An Improved Method for 2-D 
Self-similar Image Synthesis 

Lance M. Kaplan, Member, IEEE, and 

Abstract-In this paper, we propose a new method ealled 
incremental Fourier synthesis to generate 2-D self-similar images 
based on a 2-D fractional Browninan motion (mm) model. With 
this method, the stationary increments of fBm are created by 
a Fourier synthesis method and the increments are added up 
to generate the nonstationary 2-D fBm process. Since the new 
method takes advantage of the FFT, its computational complexity 
is only O ( N 2  log,(N)), and its memory requirement is only 
O ( N 2 )  for a self-similar image of size N x N . 

1. INTRODUCTION 
RACTIONAL Brownian motion (fBm) is a useful non- F stationary stochastic model for describing many natural 

phenomena with a self-similar property [9]. In computer 
graphic applications, the generation of 2-D fBm realizations 
is used to create natural-looking landscapes and clouds [8] ,  
[ll]. The statistical self-similar property of fBm is a key to 
the natural-looking textured surface where the “roughness” 
of the surface is invariant to the scale and the increments 
are stationary. For some computer graphic applications, the 
exact roughness-invariant property is not crucial in generating 
natural-looking images, and as a result, methods loosely based 
on the statistics of fBm can be used to generate images with 
an approximate self-similar property. The two most common 
methods are midpoint displacement and Fourier synthesis 
[ 111. Other methods include more sophisticated variants of 
midpoint displacement [7], [12], [13], linear filtering El], 
wavelet synthesis [ 131, and procedural textures [ lo]. 

The midpoint displacement is the fastest fBm synthesis 
method with a complexity of O ( N 2 ) ,  where N 2  is the size of 
the image. The method uses simple recursive rules over scales 
analogous to deterministic fractals. However, midpoint dis- 
placement fails to create processes with stationary increments 
and suffers from creasing [8] .  The Fourier synthesis method 
tries to recreate the l/f spectrum via fast Fourier transform 
(FFT) with a computational complexity of O ( N 2  log, ( N ) ) ,  
but the method fails to consider the aliasing effect of a 
finite lattice. Moreover, Fourier synthesis actually renders a 
stationary process. Wavelet synthesis generates nearly I/ f 
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approximations to fBm that have uncorrelated wavelet coeffi- 
cients [14]. These nearly l/f processes, however, do not even 
have stationary increments. Finally, linear filtering methods 
approximate the power spectrum of fBm using only a finite 
number of poles, and these methods are unable to entirely 
capture the persistence of fBm. By persistence, we mean the 
long-term correlation of fBm, which provides an infinite pole 
at the origin in the frequency domain. 

While the above-mentioned synthesis methods do not gen- 
erate exact fBm samples, each method does have specific 
strengths and weaknesses for applications such as computer 
graphics and turbulence modeling. A discussion about the 
utility of various fBm-based synthesis techniques for landscape 
generation can be found in [lo]. This paper, on the other hand, 
focuses on a method to generate processes with almost perfect 
fBm statistics at a reasonable computational load. For some 
applications, it is important for the textures to be synthesized 
based on the exact statistics of fBm. For instance, an artist may 
want the roughness-invariant property of a texture to hold as 
a user zooms in to the texture. In other cases, one needs to 
use 2-D fBm images as test-case images. 

When the generation of true fBm is important, one could 
resort to very computationally complex methods. Hofer [2] 
et. a1 used the Cholesky decomposition to generate exact 2-D 
fBm realizations. Although the Cholesky method does generate 
processes with true fl3m statistics, the algorithm suffers from a 
computational complexity of O ( N 6 )  and requires a N 2  x N 2  
matrix, i.e., a memory complexity of O(N4),  to generate an 
image of size N x N . The high computational load and 
memory requirements make the Cholesky method impractical 
for synthesis of even moderate-size images. 

In this work, we propose a new method called incremental 
Fourier synthesis to generate 2-D fBm, where a periodic 
random field is created by Fourier synthesis such that the 
field’s statistics closely match those of fBm increments over 
half the field’s spatial period. The increments are then added up 
to generate the nonstationary 2-D fBm process. Since the new 
method takes advantage of the FFT, its computational com- 
plexity is only O ( N 2  log2(N)), and its memory requirement 
is only O ( N 2 ) .  Moreover, the method can generate processes 
whose statistics match almost perfectly to true fBm statistics. 

11. FFWZTIONAL BROWNIAN MOTION 
FBm is a random process that was popularized by Man- 

delbrot and Van Ness [SI. In this paper, we consider the 
straightforward generalization on 1-D fBm signals to 2-D fBm 
images. A 2-D fBm process is a mean-zero Gaussian process 
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B( t,, tY) satisfying 

755 

B(0,O) = 0 (1) 

and 0 < H < 1. Equations (2) and (3) constitute the 2-D 
self-similarity condition. It implies that the variance of any 
increment is independent of orientation and dependent only 
on the length of the increment. The parameter H is known 
as the Hurst parameter, and each realization of 2-D fBm is a 
fractal with a dimension of D = 3 - H [ 111. 

In this paper, we want to generate samples of 2-D fBm on 
a discrete grid. One can show from (1) and (2) that 2-D fBm 
is a nonstationary isotropic process whose correlation function 
for a sampling period of Ax in both x and y directions is 

TB (wz, my; nz , .y ) 
= E[B(Axm,, AzmY)B(Axn,, AXTI,)] 

0 2  
= -IAxIZH[f(mz, 2 my) + f(%, .Y) 

- f (% - m x ,  ny - my)]. (4) 

Note that the shape of the correlation of discrete 2-D fBm 
is invariant to the chosen sampling rate or scale. This form 
of scale invariance is a direct result of the self-similarity 
condition. As a result, the textured appearance of 2-D fBm 
sampled every Ax units and scaled by a factor of ~ A x I - ~  is 
identical to the appearance of fBm sampled every one unit. 
Without loss of generality, we set Ax = 1. We define the 
first-order discrete increments of 2-D fBm as 

&(mz, m y )  =- B(m, + 1, m y )  - B(m,, my), and 
ly(m, ,my) =: B(mx,my + 1) - B(m,,my). 

The second-order increments of 2-D fBm are defined as 

-r2(mz,my) = Mmz,  my + 1) - L(m,, my) 
= Iy(m, -t 1, my) - I?/(% m y )  

= B(m, it- 1, my + 1) + B(m,, my) 
- B(m, t- 1, my) - B(m,,my + 1). (5)  

Note that samples of fBm B(m,,m,) can be calculated for 
m, 2 0 and my 2 0 by using the values of the second-order 
increments and the first-order increments along the x and y 
axes. The first and second-order increments are stationary. The 
correlation functions of these increments are 

Tz (m,, m y )  

0.2 
= y [ f ( m ,  + Lmy) + f ( m x  - Lmy)  - 2f(mz,m,)l 

(6) 
TY (mz, my) 

= -f(m,,m, + 1) + f(m,,my - 1) - 2f(mz,m,)l 
c.2 

2 
(7) 

0 0  

(b) 

Fig. 1. 
(b) experimental. 

Variance of the generated fBm images for H = 0.2: (a) Theoretical; 

U' 
= -P(f(m,  2 + Lmy)  + f (m, - 1,my) 

+ f(%, my + 1) + f(%, my - 1)) 
- (f(% + 1, m y  + 1) + f (m, + 1, my - 1) 
+ f(m, - L m y  + 1) 
+ f(m, - 1, my - 1)) - 4f(m,, my)]. (8) 

The above correlations are discrete functions. Their Fourier 
transforms are periodic, and it is, in general, difficult to 
compute these transforms analytically. However, by treating 
each correlation to be a continuous function, we can compute 
the Fourier transform more easily and observe some important 
properties of the actual periodic spectrum. By using the fact 
[3] that 
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and the "shifting" property of the Fourier transform, one can 
derive the Fourier transform of (8) (when integers m, and my 
are replaced by real variables t ,  and t,) to be 

s 2  (wle , w?I 1 

(9)' 
One must consider an aliased version of (9) due to the 
sampling of the second-order increment. As w, and wy go 
to zero at the same rate, (9) can be written as 

and since 0 < H < 1, one can say that the spectrum of the 
continuous increments has a value of zero at the origin (i.e., 
w, = wy = 0). Moreover 

S2(27rkX, 27rk,) = 0, VF,, Fy E z. (101 
Equations (9) and (10) indicate that the periodic spectrum of 
the sampled increments (sampled at intervals of one unit) has 
values of zeros whenever w, = 0 or wy = 0 and does not 
approach zero at any other points. The importance of this 
spectral property will be seen in Section IV. 

111. PERIODIC RANDOM FIELDS 

To describe the synthesis algorithm, we must first discuss 
some properties of periodic stationary Gaussian random fields 
(PSGRF). A PSGRF has a correlation function that satisfies 

R(m, + FN, my + IN)  = R(m,, my), VF, I E z. (11) 

Each realization of this random field is also periodic with a 
period of N in both the x and y directions. Thus, it is only 
necessary to know the values of the field over an N x N 
lattice of points, and the correlation function only needs to be 
considered for time lags that lie on an N x N grid. Due to 
symmetry of the correlation function about the origin, we have 

(12) 
For cases where the correlation function is symmetric around 
both the x and y axes, i.e. 

R(m,, my) = R(N - m,, my) and 

R(m,, my) = R(N - m,, N - my). 

R(mz, my) = q m , ,  N - my) (13) 

the correlation function can be uniquely defined by lags with 
m,,m, = O,...,N/2 . The other values of the correlation 
function can be determined through (12) and (13). 

The importance of periodic random fields is due to the fact 
that 2-D DFT is the Karhunen-Lo6ve transform (KLT) for 
such fields. A nice result of this property is that realizations 
of periodic random fields are easy to generate because one 
just needs to scale white noise by the square root of the 
field's power spectrum and then calculate the inverse 2-D DFT. 
In fact, this generation procedure is used in normal Fourier 
synthesis of fBm where the power spectrum is assumed to be 

2H+2 

R ( F x , F y )  = C / J m  'v"k,,k, = O,...,N/2 . 
(14) 

The other values of the power spectrum are determined by 
symmetrically expanding A(F,, F,). Usually, the first N / 2  x 
N/2  values of the generated field are taken as the fBm image 
in order to avoid artifacts from the periodicity of the field. 

IV. INCREMENTAL FOURIER SYNTHESIS 

The idea to create samples of fl3m over an ( M  + 1) x 
( M  + 1) grid is to generate the stationary increments over an 
M x M grid. We exploit the fact that the DFT represents the 
KLT for a PSGRF. Ideally, we generate an N x N PSGRF 
(where N = ZM) whose correlation function over the region 
[ -M,M]  x [ -M,M]  matches the correlation of the fBm 
increments. The synthesis is accomplished by scaling white 
noise by the square root of the desired power spectrum (i.e., 
the DFT of the correlation function) and then applying the 
inverse DFT. Next, we cut an M x M segment out from 
the PSGW so that the correlation function for the segment 
matches the true fJ3m increment correlations for lags ( I , ,  ly ) E 
[-M, M ]  x [-M, MI. In addition, the M x M segment avoids 
the wraparound effect of the periodic correlation function for 
the PSGRF. 

Unfortunately, a few problems arise in the above synthesis 
procedure that limits the creation of exact fBm increments. 
One problem to consider is that the target (or desired) periodic 
correlation function may not be positive definite. This could 
happen because periodically extending a truncated correlation 
function is equivalent to convolving the actual power spectrum 
by a sinc and then sampling to create the power spectrum of the 
periodic random field. Due to the Gibbs phenomenon, some of 
the values of the DFT of the periodic correlation function may 
be negative. By considering these bad values to be zero, we 
create the actual power spectrum that generates the increments. 
Because the negative values will occur near frequencies where 
the original power spectrum is zero, the difference between 
actual and target correlation functions will be small. Another 
point to consider is that the first- and second-order increments 
cannot be generated independently or else major creasing 
will appear. The dependence of 1 2  (m, , my), I, (m, , my), 
and IY(m,,my) is due to (5), where the subtraction is taken 
modulo N .  In fact, by taking the DFT of (5 ) ,  we see that 
the DFT coefficients of the first-order increments when the 
frequencies are nonzero (i.e., F ,  > 0, Fy > 0) are completely 
determined by the corresponding DFT coefficients of the 
second-order increments. Moreover, the DFT coefficients for 
12(mz, my) must be zero for the zero frequencies (i.e. F ,  = 0 
or IC, = O), and thus, the actual power spectrum of I ,  (m,, my) 
is forced to zero at the zero frequencies. Because the power 
spectrum of the nonperiodic field is zero at the zero frequencies 
(see Section II), the change to the power spectrum will not 
greatly affect the difference between the actual and target 
correlation functions. Now, we describe the new algorithm 
in detail below. 

Algorithm: Incremental Fourier Synthesis Method 
1) Create white-noise processes such that for F ,  = 

0 , . . . , N ,  and k,  = 0,...,N/2 , l@(kx,ky) - 
N(O,l), $(Fx,Fy) - Uniform[O,Z.ir), and 4 ( 0 , 0 )  = 
4(N/2 ,  N/2) = 4(N/2 ,0)  = 4(0 ,  N / 2 )  = 0. 
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Calculate R:! (m,, m,) (the desired correlation function 
of 12(m,, my)) by (8) for m,, my = 0, .  . . , N/2,  and 
symmetricallly expand the correlation function via (12) 
and (13). 
Calculate the power spectrum by 

m, =O m, =O 

(15) 

Define the actual positive semidefinite power spectrum 
as 

k ,  ,= 0 or k,  = 0, 
&(k,, ky)l = 0, if R2(k,, k,) < 0, ("; &(IC,,  k,), otherwise. 

Synthesize the DFT coefficients of 12(m, ,  m,)by scal- 
ing the white noise from Step 1 as shown in the 
expression a.t the bottom of the page. 
Calculate the second-order increments for m, , my = 
0, .  . . , M - 1 as follows: 

I2(mz,m,) 

I .  

k,=O k,=O 

Create whitie noise processes such that for k,, k ,  = 

& ( k z )  N lJniform[O, 2n), q5,(kY) N Uniform[O, 2n), 
and &(O)  == &(0) = 4 , (N/2 )  = & ( N / 2 ) .  
Calculate &(k,, k,) and R,(k,, k,) for k,, k ,  = 
0 , .  . . , N / 2  using (6) and (7). Symmetrically expand 
the correlation functions using (12) and (13). 
Compute the desired power spectrum of the first-order 
increments at the zero frequencies via 

0, ... , N / 2 ,  W,(k,) N ( 0 ,  I), W,(ky) W O ,  11, 

N-1 N--1 

m,=O m,=O 

m,=Om,=O 

10) Define the actual positive semidefinite power spectrum 
of the first-.order increments at the zero frequencies via 
the first case shown at the bottom of the next page. 

11) Synthesize the DFT coefficients of the first-order in- 
crements by scaling white noise from Step 7, as shown 
in the second group of cases at the bottom of the next 
page. 

0-0 

(b) 

Fig. 2. Variance of the generated fBm images for H = 0.8: (a) 
Theoretical; (b) experimental. 

12) Compute the first-order increments along the image 
boundaries for m,, my = 0 ,  . ' . , M - 1, as follows: 

k,=O k,=O 

13) Add up the increments to calculate the fBm field for 
m,, my = 0 , .  . . , M via 

B(0,O) = 0, 

B(m,, 0) = B(m, - 1 , O )  + I,(m, - 1, O), 
B(0, m,) = B(0, my - 1) + 1,(0, my - 11, 
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Fig. 3. 
(b) structure functions; (c) generalized Hurst values. 

Theoretical values for the statistics of the two Fourier synthesis methods and fBm given 512 x 512 realizations when H = 0 2: (a) Correlations; 

B(m,, my)  = B(m,, my - 1) + B(m, - 1, my) of fBm uses close to exact statistics of fl3m with only twice 
the computational cost of standard Fourier synthesis. - B(m, - l,my - I) 

+ 12(m, - l,my - 1). 

V. EXPERIMENTAL RESULTS 

the FFT is ( M  4- '1 to generated 256 realizations of 17x 17 fBm processes with 

to compute (15) and (16) and four FTT's Of size calculated the variance at all pixels over the 256 independent 

4M + 8 1-D FFT's of size 2M . In contrast, the usual Fourier 
synthesis takes one 2-D inverse DFT that requires 2(M + I) should be d m 2 H .  The theoretical and experimental 
1-D FFT's. In other words, the incremental Fourier synthesis variances are displayed in Figs. 1 and 2. Note that the usual 

when the algorithm, the low Of We use the proposed incremental Fourier synthesis method 
To generate an ( M  + '1 

image, the algorithm 4(2M + 1) 1-D m ' s  of size 2&? H = 0.8 and H = 0.2, where g2 = 1 for both we 
2M to colnpute (17)-(20). In the requires images, Based on (4), the of pixe] location (mx, m y )  
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(C) (4 
Fig. 4. Zooming into a texture generated by standard Fourier synthesis 
with H = 0.2: (a) 'Sampled every 8 units ( s = 3) ;  (b) sampled every 
4 units (s = 2); (c) sampled every 2 units (s = 1); (d) sampled every 
unit (s = 0). 

Fourier synthesis method generates a stationary process, and 
consequently, the variance is constant over all pixel values. 

The theoretical statistics of images created by standard 
and incremental Fourier synthesis are compared in Fig. 3 for 
512 x 512 images when H is set to 0.2. First, we calculate 
the correlations of the first-order increments by applying the 
inverse FFT to the power spectrums that were used to scale 
white noise. For instance, the actual correlation function for 
the process I, (m3:, my) generated by incremental Fourier 
synthesis is 

(C) (d) 
Fig. 5 .  Zooming into a texture generated by incremental Fourier synthesis 
with H = 0.2: (a) Sampled every 8 units; ( s = 3); (b) sampled every 4 units 
(s = 2); (c) sampled every 2 units (s = 1); (d) sampled every unit (s = 0). 

where 

and Sx(kx, 0) is given by Step 10 of the algorithm. Fig. 3(a) 
compares the correlations of both synthesis procedures with 
true fBm. One can then calculate the theoretical values for the 
normalized variance as the displacement size of the 2 directed 
increments of the generated picture grows, i.e. 

- VAR[B(mx + d, my) - Wmz, 4 1  
E z+ ' ( d l  = VAR[B(m, + 1, m,) - B(m,, my)] ' 

to be [4], as follows: 

IO, otherwise. 
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TABLE I 
AVERAGE HURST ESTIMATES FOR THE 64 x 64 IMAGES 

for incremental Fourier synthesis. The function f(d) is known 
as the structure function. Since the defining feature of self- 
similar processes is a hyperbolic structure function (see (2) 
and (3)), the quality of a synthesis procedure is measured by 
how closely the structure function of its realizations match the 
desired hyperbolic function. For normal Fourier synthesis, the 
structure function is 

R(0, 0) - R(d, 0) m = R(0,O) - R(1,O) 

where R(m,,m,) is provided by the inverse DFT of 
k(,k,,ky) as given by (14). Fig. 3(b) shows the structure 
functions for both synthesis procedures and fBm. To better 
visualize the hyperbolic growth rate of f x (d) ,  we plot the 
generalized Hurst parameters defined as 

1 
H ( s )  = 2 log,(fx(a”+’)/fl(a’)) 

for both synthesis procedures and fBm in Fig. 3(c). The figure 
shows that the actual process generated by incremental Fourier 
synthesis has a nearly constant k ( s ) ,  i.e., virtually self-similar. 
Moreover, it is clear that images generated by standard Fourier 
synthesis are not statistically self-similar. In fact, the figure 
suggests that the generated images will be a little smoother at 
finer scales since the value of a ( s )  becomes larger. Note that 
an analysis of the y-directed increments will yield the same 
results due to the isotropy of both generating algorithms. 

To demonstrate the drawback of standard Fourier synthesis, 
we generated two realizations of 2-D fBm of size 512 x 512 
using the two Fourier methods with H = 0.2. Figs. 4 and 5 
show the images generated by the standard and incremental 
Fourier methods, respectively, at different scales. At each 
scale, the resolution of the picture is 64 x 64, and each 
picture is scaled so that the dynamic range of the pixel values 
cover all 64 grey-level values. The statistical self-similarity is 
evident for the fBm realization created by our new method. 
As predicted by the generalized Hurst parameters, the fBm 
realization generated by traditional Fourier synthesis is a bit 
more blurred (or cloudy) at the finest scale as compared to the 
coarser scales. Moreover, we applied a wavelet-based fractal 
estimator presented in [5] to all horizontal and vertical strips 
for each of the 64 x 64 images. The average Hurst estimates 
are shown in Table I. 

VI. CONCLUSIONS 

A new method called incremental Fourier synthesis was 
proposed to synthesize self-similar images based on a 2-D 
EBm model. The advantage of the method is that it is a 
relatively fast algorithm while it generates processes whose 

statistics virtually match those of true B m .  Some interesting 
extensions to the algorithm can be investigated. For example, 
with the incremental Fourier method, one can also choose an 
arbitrary structure function and substitute the new f ( d )  in (8), 
(6), and (7). By choosing alternative forms of the structure 
function, an artist has precise control of the “roughness” of 
the texture with respect to scale as shown in [6]. Furthermore, 
the algorithm can be extended to generate 3-D (video) and 
even higher dimension B m  at the expense of 0 ( N d  log, ( N ) )  
computations where d is the dimension. 
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