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with a camera geometry transformation and by incorporat-
ing the stereo data as an initial estimate were investigatedBased on the traditional problem formulation, it is difficult

to integrate the two important vision cues, i.e., shading and by Shao et al. [17] and Leclerc and Bobik [9], respectively.
stereo, for shape reconstruction due to conflicting albedo and Recently, Cryer et al. [2] proposed a method based on a
image projection assumptions. In this research, we propose a human visual model which integrates the low-frequency
novel scheme to integrate shading and stereo. First, by using the information from the stereo and high-frequency informa-
photometric ratio, we derive a new SFS (shape from shading) tion from SFS.
formulation where no albedo is needed for shape reconstruction.

However, there exist two major difficulties in their inte-Then, we establish a unified framework for the integration of
gration since the basic assumptions of the stereo methodphotometric ratio and stereo by employing perspective projec-
and the traditional SFS technique are conflicting. One istion on a parametric surface via minimizing a cost functional
due to the albedo assumption of the object surface. Thewhich consists of a weighted sum of shading and stereo errors.
stereo method utilizes the feature of highly textured (vary-Simulation results are given to show the performance of our

new robust algorithm.  1996 Academic Press, Inc. ing albedo or color) surfaces so that the correspondence
problem can be easily solved and a dense depth map can
be obtained. In contrast, traditional SFS methods exploit

1. INTRODUCTION the assumption of constant albedo across the entire surface;
it is difficult to apply them to surfaces with varying albedo

Among many techniques for the reconstruction of a 3D or multiple color. The other difficulty comes from the in-
shape of an object from its projected 2D images known as consistency of the projection model. The geometric stereo
the ‘‘shape from X’’ problem, two modules, i.e., shape from exploits the geometry of perspective projection, while most
shading (SFS) and geometric stereo method, have been conventional SFS methods assume the simple orthographic
considered the most important and have been studied in- projection model.
tensively in the computer vision community for last several In this research, we propose a new method to integrate
decades. Since the shading and stereo cues are inherently the depth information from the geometric stereo and shad-
complementary depth information, attempts have been ing in a single framework without any confliction. The
made by researchers to integrate these two information main idea of our approach is to use the ratio of photometric
sources together for more robust and accurate shape recon- stereo images to handle the varying albedo problem and
struction. Grimson [3] proposed to combine binocular employ a general parametric surface model under perspec-
shading and stereo data to determine the surface orienta- tive projection to provide a unified geometric framework
tion along feature points of contours. Ikeuchi [6] recon- for the integration of the depth information sources. The
structed a depth map by using dual photometric stereo integration is performed via a minimization procedure,
images and stereo region matching of the obtained surface where the cost functional consists of a weighted sum of
orientations. Methods of combining stereo and shading square error terms corresponding to the photometric ratio

and stereo depth error. We would like to point out that
Wolff and Angelopoulou [18] also proposed an algorithm* This work was supported by the National Science Foundation Presi-

dential Faculty Fellow Award ASC-9350309. recently by combining stereo and shading information
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based on photometric ratio. The main idea of their ap-
E 5 g

f
4 Sd

f D2

cos4 cLr 1 b, (2)proach is to utilize the stereo pairs of photometric ratio
values, instead of raw intensity values as considered in this
work, for robust and accurate correspondence of the shape

where d is the lens diameter, f is the lens focal length, andfrom stereo.
c is the angle of a ray from the object point to the centerThis paper is organized as follows. We briefly describe
of the lens. The bias b usually comes from backgroundthe general image formation model and the definition of
noise and can be easily eliminated by calibrating the cam-the photometric ratio and reflectance ratio map in Section
era properly. Now, consider two photometric stereo images2. The optical and geometrical properties of an ideal cam-
E1 and E2 without bias and taken under two differentera and a general parametric surface model are discussed
illumination directions i1 and i2, respectively. By using (1)in Section 3. The integration of depth source information
and (2), the ratio of the two intensity values correspondingis formulated as a minimization problem and the solution
to the same surface point with surface normal n can bemethod is given in Section 4. Simulation results of the
written asproposed algorithm and conclusion are presented in Sec-

tions 5 and 6, respectively.

Ẽr 5
E1

E2
5

[1 2 F(i1, n, h)](i1 ? n)
[1 2 F(i2, n, h)](i2 ? n)

.
2. PHOTOMETRIC RATIO

Due to the nature of the photometric invariance, the
Based on the observation that F is nearly constant untilphotometric ratio (or reflectance ratio) has been recently
the incident angle u 5 cos21(i ? n) approaches 908 for manyused as an important photometric feature for computer
surfaces [7], the above equation can be further simplified asvision tasks such as object recognition, segmentation, and

shape recovery [14, 18]. We briefly review the idea of
photometric ratio and then derive the irradiance ratio Ẽr 5

(i1 ? n)
(i2 ? n)

.
equation which relates the photometric ratio, surface ori-
entation, and illumination direction in this section.

It is known that the diffuse reflection of a smooth dielec- Note however that the ratio E1/E2 may be unbounded. To
tric surface is not ideal Lambertian and can be modeled make the concept computationally simple, we define a new
more accurately by direction [18]. photometric ratio function

(1)Lr 5 rE0[1 2 F(i, n, h)][1 2 F(v, n, h)](i ? n),

Er 5
1
2 S1 1

E1 2 E2

E1 1 E2
D5

(i1 ? n)
(i1 ? n) 1 (i2 ? n)

,
where Lr is the reflected irradiance at a surface point, F( )
is the Fresnel reflection coefficient, r is the surface albedo,
n is the surface normal, i and v are the vectors along the which is bounded between 0 and 1.
light source direction and viewer direction, and h is the Based on the above discussion, we obtain the following
refraction index of the dielectric surface. The image inten- irradiance ratio equation relating the photometric ratio Er
sity value recorded by a sensor in an image plane through and the reflectance ratio map Rr via
a lens system (see Fig. 1) can be described by the lens
collection [5] with sensor gain g and bias b as

(3)Er(x, y) 5 Rr(n),

where

Er(x, y) 5
E1(x, y)

E1(x, y) 1 E2(x, y)
, and

(4)

Rr(i1, i2, n) 5
(i1 ? n)

(i1 ? n) 1 (i2 ? n)
.

With the two given light source directions i1 and i2, the
reflectance ratio map Rr is only a function of the surface
normal n. It is independent of the surface albedo, camera

FIG. 1. Image formation through a lens system. characteristics, and viewing direction.
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where Vij is the control points in 2D notation and Ni,k

represents the kth-order basis function recursively deter-
mined via

Ni,1(t) 5H1, for ti # t # ti11,

0, otherwise,

and

Ni,k(t) 5
(t 2 ti)

(ti1k21 2 ti)
Ni,k21(t) 1

(ti1k 2 t)
(ti1k 2 ti11)

Ni11,k21(t).

Note that by ordering the 2D nodal indices (i, j) into a 1D
index sequence, (7) can be represented in a form givenFIG. 2. Geometric model.
by (6).

One can use the vector calculus to determine the surface
normal n as

3. PERSPECTIVE PROJECTION ON A
PARAMETRIC SURFACE

Consider a perspective image projection model as shown
in Fig. 2, where the image plane x 2 y is at Z 5 2f and n 5

­Q
­x

3
­Q
­y

5 |
i j k

­X
­x

­Y
­x

­Z
­x

­X
­y

­Y
­y

­Z
­y

|. (8)
f is the focal length of a camera. The relationship between
a surface point P(X, Y, Z) and the corresponding projected
image point p(x, y, 2f ) [ V, where V is the image domain,
can be written as

By substituting (5) and (6) into (8), we have

X(x, y) 5 2
x
f

Z(x, y), and Y(x, y) 5 2
y
f

Z(x, y). (5)

Let us use Q 5 (X(x, y), Y(x, y), Z(x, y)) to denote a
n 5

1
f

Z
­Z
­x

1
f

Z
­Z
­y

Z
f 2 SZ 1 x

­Z
­x

1 y
­Z
­yD

parametric surface. By dividing the whole image domain
V into simple subdomains, we can approximate Z(x, y),
which is projected to a certain submain, with a suitable
approximating function. In general, the approximating

3 4
(9)

function can be expressed as a linear combination of the
individual element basis functions fi as

Z(x, y) 5 OMn

i51
Zifi(x, y), (6)

5
1
f 2

f OMn

i51
OMn

j51
ZiZjfi

­fj

­x

f OMn

i51
OMn

j51
ZiZjfi

­fj

­y

OMn

i51
OMn

j51
ZiZj Sfifj 1 xfi

­fj

­x
1 yfi

­fj

­yD
.

where Zi are nodal variables and Mn is the total number
of nodes. When the FEM (finite element method) is used

3 4
in surface modeling, the image domain V is divided into
triangles, parallelograms, or quadrilaterals, while linear,
quadratic, or higher order polynomials can be used as the It is worthwhile to point out from the above expression
basis function [8, 16]. One commonly used example is the that, given the camera focal length f and a suitable interpo-
spline model, where a general uniform kth-order B-spline lating function f, the normal vector n at a surface point
can be expressed as corresponding to an image point (x, y, 2f ) is parameterized

by the nodal variables Zi, i 5 1, . . . , Mn. Therefore, by
using (9), we can represent the reflectance ratio map RrZ(x, y) 5 Om

i51
On
j51

VijNi,k(x)Nj,k(y), (7)
in (4) with the surface nodal variables so that the right-
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FIG. 3. The spherical surface test problem: (a) the ground truth of the spherical surface with varying albedo; two synthetic Lambertian
textured images illuminated with (b) (tilt, slant) 5 (208, 408) and (c) (tilt, slant) 5 (2008, 408); and (d) the 3-plot of the corresponding
photometric ratio values.

hand side of the image irradiance equation (3) is discretized d(xm, ym), m 5 1, . . . , Md, where Md is the total number of
the data point. Then, surface reconstruction by integratingand parameterized in terms of Zi, i 5 1, . . . , Mn, i.e.,
photometric ratio and stereo depth cues comes to deter-
mine the surface nodal parameters Zi, i 5 1, . . . , Mn,Er(x, y) 5 Rr(Z1, . . . , ZMn

). (10)
which satisfy following system of equations simultaneously:

4. COMBINING SHADING AND STEREO DEPTH
Er(x, y) 2 Rr(Z1, . . . , ZMn

) 5 0,
(11)

INFORMATION

Z(xm, ym) 2 d(xm, ym) 5 0, m 5 1, . . . , Md.In general, the geometric stereo provides sparse depth
information at the feature points where the albedo varies

Usually, the number of unknown Mn is less than the num-rapidly on the object surface. Most of the stereo methods
ber Md 1 1 of equations so that the system is overdeter-can be classified into two groups, i.e., feature-based meth-
mined and can be solved by the least-squares method.ods [1, 12] and area-based methods [13, 4]. The feature-
That is, one natural way to combine the photometric ratiobased technique attempts to find correspondence of sparse
information and the depth information obtained by geo-and more abstract features such as edgels or segments,
metric stereo method is to minimize the cost functionalwhile the area-based technique tries to find matches of

features such as intensity at each pixel or the correlation
(12)% 5 %r 1 %d,of a local window of intensities. Let us assume that we

have depth information at some feature points obtained
by suitable stereo method, and denote the depth data as where %r and %d are the square error terms corresponding
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the photometric ratio and the stereo data, respectively. where
They are represented as

ai(x, y) 5
­Rr(x, y, Z1, . . . , ZMn

)

­Zi
U

(Zn21
1 , ..., Zn21

M
n

)

,
%r 5 E E

V
(Er(x, y) 2 Rr(x, y))2 dx dy

5 E E
V

(Er(x, y) 2 Rr(Z1, . . . , ZMn
))2 dx dy,

(13) and

%d 5 E E
V

w(x, y)(Z(x, y) 2 d(x, y))2 dx dy
j n(x, y) 5 Rr(x, y, Zn21

1 , . . . , Zn21
Mn

) 2 OMn

i51
ai(x, y)Zn21

i .

5 E E
V

w(x, y)SOMn

j51
Zjfj(x, y) 2 d(x, y)D2

dx dy,
By substituting (14) into (13) and rearranging it, we can
represent %r in matrix form as

where Z(x, y) is the estimated height, d(x, y) is the depth
value at point (x, y) obtained from stereopsis, and w(x, y)

%r 5
1
2

(Zn)TAnZn 2 (bn)Tz 1 Cn
ris a weighting function. If no height data are available at

point (x, y), we choose w(x, y) 5 d(x, y) 5 0.
The standard nonlinear optimization methods such as and express the stereo data term in (13) as

the Newton–Raphson method and the Levenberg–
Marquardt method can be used for minimizing (12) [15].

%d 5
1
2

(Zn)TFZn 2 hTz 1 Cd,In this research, we employ a simple effective method
called the successive linearization method in which the
nonlinear function Rr is linearized with respect to the nodal where the element of matrices A and F, and vectors b and
variables Zi successively so that (12) can be solved by h are
linear least squares. We outline the procedure below. For
implementation details, see [10, 11].

An
ij 5 E E

V
ai(x, y)aj(x, y) dx dy,The successive linearization of Rr can be accomplished

by the Taylor series expansion. Suppose that we have an
estimated solution Zn21 5 (Zn21

1 , Zn21
2 , . . . , Zn21

Mn
)T at bn

i 5 E E
V

ai(x, y)(Er(x, y) 2 j n(x, y)) dx dy.
(n 2 1)th iteration, then the approximated reflectance map
ratio at nth iteration becomes Fij 5 E E

V
w(x, y)fi(x, y)fj(x, y) dx dy,

hi 5 E E
V

w(x, y)d(x, y)fi(x, y) dx dy.Rr(x, y) P OMn

i51
ai(x, y)Zn

i 1 j n(x, y), (14)

FIG. 4. Reconstructed surfaces with: (a) photometric ratio information only (Dt 5 1808); (b) combined stereo and photometric ratio
information (Dt 5 1808).
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FIG. 5. Reconstructed surfaces with: (a) noise-corrupted photometric ratio (Dt 5 308); (b) combined stereo and noise-corrupted
photometric ratio (Dt 5 308); (c) noise-corrupted photometric ratio (Dt 5 1808); and (d) combined stereo and noise-corrupted photometric
ratio (Dt 5 1808).

Therefore, the overall cost functional can be represented as 5. EXPERIMENTAL RESULTS

In this section, we present some simulation results to
% 5

1
2

(Zn)TMnZn 2 (mn)TZn 1 Cn, (15) demonstrate the performance of the proposed algorithm.
A simple linear model with triangular subdomains is used
for the surface approximation in this test. The test object is

where M 5 An 1 F, m 5 bn 1 h, and Cn 5 Cn
r 1 Cd. The a spherical surface as shown in Fig. 3a, where two different

minimization of the quadratic functional in (15) with re- albedo values are assigned to the surface to generate syn-
spect to the nodal variables Zn is equivalent to the solution thetic Lambertian textured images. A pair of photometric
of the following linear system of equations: stereo images are generated by illuminating from the direc-

tions of (tilt, slant) 5 (208, 408) and (2008, 408) as shown
Mnzn 5 mn. in Figs. 3b and 3c. Figure 3d shows the 3D plot of the

photometric ratio values of Figs. 3b and 3c which are deter-
Since the stiffness matrix Mn is sparse and symmetric, the mined via (4). The focal length of the camera f is set to
system can be efficiently solved by iterative linear solvers. 100. The depth values along the texture boundaries are
The successive linearization scheme starts with an arbitrary determined with synthesized geometric stereo images and
initial estimate z0 and iteratively refines the surface until used as the stereo depth constraint throughout the test.

First, we tested the effect of relative illumination direc-it satisfies a termination criterion.
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6. CONCLUSION
TABLE 1

The RMS Error of the Reconstructed Surface Depth Values In this work, we propose a new algorithm to integrate
with Various Tilt Angle Differences (Dt 5 it2 2 t1i) of the Two depth sources from shading and stereo depth information.
Light Sources By utilizing the ratio of two photometric stereo images of

an object, we eliminate the varying albedo and cameraDt (8) PR PR 1 stereo PR (w/noise) PR (w/noise) 1 stereo
characteristic problem for the SFS. Moreover, by em-

30 0.0020 0.0009 0.3601 0.3546 ploying a perspective projection model, we establish a com-
60 0.0015 0.0003 0.2425 0.2135 mon geometrical and optical framework for both SFS and
90 0.0009 0.0002 0.1340 0.1307

stereopsis so that the depth information from stereo can be120 0.0004 0.0001 0.1201 0.1084
readily integrated with that from shading. By introducing a150 0.0002 0.0001 0.1238 0.1044

180 0.0001 0.0001 0.0740 0.0695 parametric surface model, we approximate the surface with
a linear combination of suitable basis functions and discre-

Note: PR 5 photometric ratio.
tize and parameterize the photometric ratio irradiance
equation with the nodal depth coefficients. The integration
of photometric ratio (shading) and stereo information istions of the two light sources for several cases in which
obtained by considering an objective functional as aa single photometric ratio, combined stereo depth, and
weighted sum of stereo depth and photometric ratiophotometric ratio as well as the noise added photometric
components. We then reconstruct the surface directly bystereo information are used for the reconstruction. We
determining all nodal depth variables through a minimiza-observed that the accuracy of the reconstructed surface is
tion process of the objective functional. Our algorithmless dependent on the slant angles while it is heavily af-
refines the reconstructed surface iteratively by applyingfected by the tilt angles. The RMS error of the recon-
a successive linearization scheme to the nonlinear re-structed surfaces with respect to the relative difference of
flectance map.the tilt angles, (Dt 5 it2 2 t1i) of the two light sources

are summarized in Table 1. The first column represents
the difference of the tilt angles, and the second and third REFERENCES
columns show the corresponding RMS errors when the

1. S. Barnard and W. Thompson, Disparity analysis of images, IEEEphotometric ratio only and the combined photometric ratio
Trans. Pattern Anal. Machine Intell. 2, 1980, 333–340.
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