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DFD have to be transmitted to the receiver, a well designed
video coder should balance the bits used in these twoA new motion field representation based on the boundary-

control vector (BCV) scheme for video coding is examined in parts. Other factors of consideration in video coder design
this work. With this scheme, the motion field is characterized include computational cost, hardware complexity and the
by a set of control vectors and boundary functions. The control domain of applicability.
vectors are associated with the center points of blocks to control We can roughly classify existing motion field representa-
the overall motion behavior. We use the boundary functions tion into block-based, pel-based, and model-based catego-
to specify the continuity of the motion field across adjacent

ries. The block-based representation has been widely usedblocks. For BCV-based motion field estimation, an optimization
and adopted by several standards such as H.261 [16] andframework based on the Markov random field model and maxi-
MPEG [6]. It divides an image frame into nonoverlappingmum a posteriori (MAP) criterion is used. The new scheme
blocks, and represents the motion field in each block witheffectively represents complex motions such as translation, ro-
a translation vector. This representation is generally appli-tation, zooming, and deformation and does not require complex

scene analysis. Compared with MPEG of similar decoded SNR cable and concise. A differential coding can be used to
(signal-to-noise ratio) quality, 15–65% bit rate saving can be further reduce the redundancy between motion vectors
achieved in the proposed scheme with a more pleasant visual by exploiting their spatial correlation. The block-based
quality.  1996 Academic Press, Inc. motion field can be estimated by using a straightforward

block matching algorithm (BMA) or its variants. However,
the block-based scheme has some limitations. The tradi-

1. INTRODUCTION
tional translation motion model does not well represent
complicated motion types such as rotation, zooming, andIn image sequence coding, image frames are often en-
deformation, neither does it give any considerations to thecoded by two parts, i.e., the motion field which represents
motion boundaries of moving objects. The block effectthe change in the sequence and the displacement frame
caused by inaccurate motion compensation and motiondifference (DFD) which represents the residual error after
discontinuity between two adjacent blocks is subjectivelymotion compensation. Since both the motion field and
annoying. The poor quality of the motion compensated
image requires more bits to encode the DFD. If a high

1 This work was supported in part by the Chinese National Science quality motion compensation scheme could be employedFoundation Grant 69272003, in part by the U.S. National Science Founda-
so that less subjective annoying patterns were shown intion Presidential Faculty Fellow (PFF) Award ASC-9350309, and in part

by the Rockwell International Corporation. the motion compensated image, the coding of DFD may
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be eliminated (at least in certain regions) so that the total points. In contrast with the block-based motion representa-
tion, the control vector does not represent the motion fieldbit rate could be decreased. Research has been performed

to overcome the above shortcomings. Orchard [17] incor- for every pixel within the block but only for the control
point. The motion vector at points other than control pointsporated motion discontinuity into the block-based motion

representation to obtain substantial quality improvement are obtained via interpolation. The boundary function in
the BCV scheme specifies the discontinuity of the motionalong moving object boundaries. Bergeron [1], Fuh [4],

Papadopoulos [18], and Seferidis [20, 21] used more com- field so that the unrealistic global smooth constraint can be
removed. The new boundary-control vector (BCV) schemeplex functions such as affine, perspective, bilinear, 2nd-

order polynomial transformations to represent the motion can describe many different complex motions such as trans-
lation, rotation, zooming, and deformation and is applica-field inside each block. The schemes require more bits in

the coding of a motion field. As an example, an affine ble to a wide variety of scenes with a very concise represen-
tation. Compared with the model-based scheme, the BCVrepresentation requires three vectors, instead of the con-

ventional one vector, to represent the motion field in a scheme does not require complicated scenery analysis. For
more details on the BCV motion field representation andblock.

For the pel-based representation, each pixel has its own the comparison of this new scheme with other traditional
representations, we refer to the discussion in Sections 2.2motion vector. An arbitrary motion field can be easily

represented by this scheme. The tradeoff is that it requires and 2.3.
This paper is organized as follows. The boundary-controla lot of bits in representing such a dense motion field. To

avoid the transmission of the bits for the dense motion vector motion field representation is introduced in Section
2. A framework is proposed to estimate the BCV motionfield, one approach [15] is to derive the motion field of the

current frame from that of the previous one in the encoder field based on the Markov random field model. The coding
of predicted error after BCV motion compensation is dis-as well as the decoder. Since the decoder contains a compli-

cated motion estimation unit, its cost and decoding time cussed in Section 4. Experimental results are given in Sec-
tion 5 to demonstrate the performance of our proposedbecome issues. Furthermore, since not all motion in a video

sequence can be well predicted and noise in the scenery method. Concluding remarks are presented in Section 6.
can greatly influence the estimation result, the predicted
gain is usually low. Due to these reasons, the pel-based 2. BOUNDARY-CONTROL VECTOR MOTION FIELD
motion estimation approach has not been widely used. REPRESENTATION

The model-based approach [2, 7, 14, 25] has received a
2.1. Control Vectors and Boundarieslot of attention recently. Scenery is segmented into objects

and background by using image analysis tools in encoding. Consider an image of size N 3 N which can be divided
The shape, texture, and motion information of objects are into B 3 B nonoverlopping blocks of size K 3 K (i.e., N 5
then transmitted. Image scenery is regenerated from the B 3 K). We choose the center of each block as the control
transmitted shape, texture, and motion information with point so that the position of each control point can be
the computer graphic technique at the decoder. The model- expressed as
based coding scheme has two major advantages, i.e., high
compression efficiency and visually insensitive distortion.
Since the shape and texture of objects are relatively steady C(a, b) 5 SaK 1

K 1 1
2

, bK 1
K 11

2 D, 0 # a, b # B 2 1,
across multiple frames, we only have to transmit a small

(2.1)amount of motion information so that the compression
efficiency can be high. When the error occurs in estimation
or representation, the distortion leads to small changes in where, without loss of generality, K is assumed to be an

even number. These control points are fixed throughoutthe shape (geometrical deformation), texture, and position
of the object, which are less sensitive to human eyes in the entire image sequence. We use C to denote the set of

all control points. The motion vector at control pointcomparison with the block effect. The main shortcoming
of the model-based scheme is that it requires complex C(a, b) at time t is denoted by D(a, b, t). It is simply called

the control vector. We use Dt to denote the set of all controlscene analysis which is very expensive to implement. Cod-
ing scenery is usually restricted (e.g., the head-and-shoul- vectors at time t. Along the lower and right boundaries of

the block centered at C(a, b), we define, respectively,der video sequence) so that the image analysis can be
simplified. The restriction greatly limits the applicability binary functions Eh(a, b, t) and Ev(a, b, t) whose value is

1 if there is a discontinuity in the motion field along theof the model-based approach.
In this research, we develop a novel motion field repre- corresponding boundary. Otherwise, it is 0. We denote the

location of the boundary as Fh(a, b) and Fv(a, b). Forsentation scheme in which the motion field is characterized
by boundaries and control vectors on a predefined grid convenience, we say a boundary exists if its value is 1. We
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FIG. 1. Illustration of control points and boundaries with K 5 4, where the empty circle denotes the pixel position.

use the vector notation E(a, b, t) to denote the boundary by using the two control vectors associated with the region.
The 3-1 pair case can be further classified into modespair (Eh(a, b, t), Ev(a, b, t)) and Et is the set of all boundary

functions at time t. Correspondingly, we use F to denote A1, A2, and C, which are defined as follows: If there
is only one control vector associated with the region,the set of all boundaries. An illustration of control points

and boundaries is given in Fig. 1. the case is called mode C, in which all pixels inside take
the same constant value. If the pixel is surrounded by

2.2 BCV Motion Field three adjacent control vectors, the case is called mode
A1, in which linear interpolation is performed by usingIn BCV motion field representation, the control vector
the three associated control vectors. Finally, if the pixelD(a, b, t) does not represent the motion field for the whole
is associated by three control vectors, but it is outsideblock centered at (a, b) but only for the control point
the triangle formed by the three control vectors, the

C(a, b). The motion vector at points other than control
case is called mode A2, in which we adopt a simple linearpoints are obtained via interpolation. It was however ob-
weighting scheme. In developing the above interpolationserved [22] that most of the motion compensated errors
rules, we want to keep them as simple as possible sooccur around the boundaries of moving objects with the
that the motion vector of each pixel can be computedblock-based method; the DFD around moving object
effectively and, in the mean time, we ensure that theboundaries and the DFD inside the object can behave
discontinuity of the motion field only occurs at mo-quite differently. In this research, we introduce the motion
tion boundary.field boundary, so that we can locate motion discontinuity

An example of the interpolated motion field is shownand treat the two kinds of DFD separately. The unrealistic
in Fig. 3. We denote the interpolation process of theglobal smooth constraint of the motion field can therefore
dense motion field bybe removed to improve the overall video coding efficiency.

In the BCV scheme, the individual motion vector of
d(x, y, t) 5 InterpolatehDt , Etj. (2.2)each pixel is interpolated from the control vector and the

motion boundary. The interpolation process is classified
A motion field is uniquely specified by the sets Dt andinto four different modes, which are summarized in Fig. 2.
Et through (2.2).When no boundary exists among four neighboring control

points, a bilinear interpolation is applied. In this case, it
2.3. Comparison of Motion Field Representations

is called the basic mode. When boundaries exist, some
motion field discontinuity is present and the four neigh- It is worthwhile to comment on the unique features of

the proposed BCV scheme in comparison with the threeboring control points can be divided into 2-2 or 3-1 pairs
as shown in Fig. 2. The 2-2 pair case is called mode B, and other motion field representations, i.e., pel-based, block-

based, and model-based representations.a linear interpolation is performed at the pixel of interest
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FIG. 2. Summary of interpolation rules for BCV motion field representation, where A, B, C and D denote four control points, DA ,
DB , DC , and DD are the associated control vectors, and a solid line indicates the presence of boundary discontinuity.

With respect to the pel-based motion representation,
the motion boundary of the BCV scheme is relatively
coarse, i.e, only represented in block accuracy. This is due
to a trade-off between the predicted gain that can be
achieved and the bits required to transmit the boundary
information. For example, with pel-accurate boundaries,
we still cannot describe all interframe changes, say, the
exposure region. The estimation from the pel-based ap-
proach can be easily affected by noise, and the estimation
error in the object boundary can cause degradation in the
displacement frame. Even though the distortion is re-
stricted to a very small region, it is visually annoying. Pieces
of the background may move with the object while pieces
of the object remain on the background. Hence in the BCVFIG. 3. An example of BCV motion field interpolation where

different patterns represent different interpolation modes. scheme, we compromise the bits between DFD coding
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and the boundary representation. We use the coarse-level 3. ESTIMATION OF CONTROL VECTORS AND
BOUNDARY FUNCTIONSboundaries and allow some significant DFD to exist

around boundaries in the displacement frame. Although
3.1. Problem Formulationmore bits are required to encode the DFD, the bits used

to encode the motion information can be greatly saved. In this section, we focus on the estimation problem for
The motion field in the block-based representation is the BCV representation scheme presented in the previous

a constant over each block and in general not continuous section. The parameters to be estimated include the control
along the block boundary. In contrast, the BCV-based vectors and the boundary functions. We use
motion field is continuous if there is no boundary between
neighboring control points. The continuity of the motion ft 5 h f (x, y, t) u 0 # x , N, 0 # y , N, x, y [ Ij (3.1)
field removes the visually annoying block effect in the
displacement frame. Although the bilinear interpolation to denote the image of size N 3 N at time instance t. Let
only provides an approximation of a complex motion Dt be the time interval between two successive frames.
field and the control vectors may have errors, the deriva- Then, the estimation problem can be stated mathematically
tive object in the displacement frame only deforms as: given ft and ft2Dt , we want to determine the set Dt of
slightly. This is a desired feature because human eyes control vectors and the set Et of boundary functions. Once
are less sensitive to these smooth errors. Along the Dt and Et are specified, the motion vector at every pixel
object boundary, since only coarse boundary is used in can be uniquely determined via interpolation.
BCV, the block effect remains and the DFD in these To calculate the BCV-based motion field, the following
regions is large. However, boundary regions constitute maximum a posteriori (MAP) criterion [19] is considered:
only a small portion of the whole scenery so that the
coding efficiency of the BCV scheme is still higher. More P(E*t , D*t u ft , ft2Dt) ; max

Et,Dt

P(Et , Dt u ft , ft2Dt). (3.2)
importantly, the BCV-based motion field can represent
a large class of complicated motions more accurately.
The translation and rotation of objects formed by 3-D By applying the Bayes rule [11], we have
planar surfaces can be well described by BCV. For
the more complicated object movement, the bilinear

P(Et , Dt u ft , ft2Dt) 5
P(ft2Dt u Et , Dt , ft)P(Et , Dt u ft)

P(ft2Dt u ft)
. (3.3)interpolation scheme used by BCV serves as a good first

order approximation of the true motion field. The BCV-
based motion field can be stored or transmitted almost The denomenator term P(ft2Dt u ft) is independent of Et
as efficiently as the block-based motion field. In addition and Dt and can be ingored in the optimization procedure.
to control vectors, only a small number of bits are Thus, the above MAP problem is equivalent to the maximi-
required to encode the boundary information. To illus- zation of the numerator
trate the visual difference by using the BCV and block-
based methods, we show two coded displacement frames P(ft2Dt u Et , Dt , ft)P(Et , Dt u ft). (3.4)
for the TREVOR image sequence in Fig. 4. Even though
the displacement frames only differ by 1.77 dB in Fig. The P(ft2Dt u Et , Dt , ft) and P(Et , Dt u ft) are related,
4, the subjective quality of the BCV-based displacement respectively, to the displacement frame difference and a
frame is much better. This is a very visible block effect priori-distribution of the control vector set Dt and the
in the block-based method, e.g., the region of the right motion boundary set Et as detailed below.
hand and fingers. In contrast, the BCV-based displace- Let us first focus on the term P(ft2Dt u Et , Dt , ft). When
ment frame is smoother with no visible block effect. the motion field is generated via

The BCV motion field representation is quite different
from the object or model-based coding scheme, in which d(x, y, t) 5 InterpolatehEt , Dtj, (3.5)
objects in the scene have to be analyzed first. No complex
image analysis is required by BCV, and no a priori the displacement frame at time t is obtained by translating
knowledge about the image scenery is needed. The BCV the image at t 2 Dt, i.e.,
scheme is applicable to a wide variety of scenes. A
related video coding scheme known as the active mesh DF(x, y, t) 5 f (x 2 dx(x, y, t), (3.6)
[24] uses a deformable mesh structure to describe the

y 2 dy(x, y, t), t 2 Dt),motion field, where complex image analysis is required
to track the changes of the structure, say, the merge
and creation of the mesh. and the difference between the frame ft and the displace-
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FIG. 4. Comparison of displacement frames with (a) BCV scheme (0.0159 bbp, 31.57 dB) and (b) block-based scheme (0.0186 bpp,
29.80 dB).
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ment frame is called the displacement frame difference The pair hS, G (S)j is called a graph.
and denoted by

We assume that every control vector D(a, b, t) and
boundary element E(a, b, t) only correlates with others inDFD(x, y, t) 5 f (x, y, t) 2 DF(x, y, t). (3.7)
a small neighborhood for the BCV scheme. A first-order
neighborhood system G (S) is illustrated in Fig. 5, which

The vector forms of the displacement frame and displace-
consists of two parts: the neighborhood system of control

ment frame difference are given by DFt and DFDt , respec-
point G(C(a, b)) and the neighborhood system of bound-

tively. It is straightforward to derive that
ary G(F(a, b)). Thus, the control vector set Dt and the
boundary set Et can be treated as a coupled MRF with

P(ft2Dt u Et , Dt , ft) 5 P(DFt u Et , Dt , ft) joint sites S:
5 P(ft 2 DFDt u Et , Dt , ft) (3.8)

S 5 C < F. (3.12)
5 P(2DFDt u Et , Dt , ft).

DEFINITION 2. A subset C , S is a clique, if C satisfiesEmpirically speaking, the displacement frame difference
DFDt is independent of Et , Dt , and ft and can be modeled

;r, s [ C, r ? s ⇒ s [ G(r). (3.13)as a white Gaussian function

All cliques for the BCV scheme are depicted in Fig. 6.P(DFDt) 5 (2fs 2)2N2/2

(3.9)
We use C (S) to denote the set of all cliques in S.

DEFINITION 3. Let X 5 hx(s) u s [ Sj denote a familyexpH2
1

2s 2 O
(x,y)

DFD2(x, y, t)J,
of random variables indexed by S, Vk 5 hg(sk) u sk [ Sj
the configuration space of x(sk) and V 5 hg 5 (g(s1),

where the deviation s can be predicted via g(s2), ? ? ?, g(sN))j the configuration space of the random
variable set X. Then, X is a Markov random field (MRF)
with respect to G (S), if

s 5 ! 1
N2 O

(x,y)
DFD2(x, y, t 2 Dt). (3.10)

1. P(X 5 g) . 0 ;g [ V,
2. P(x(s) 5 g(s) u x(r) 5 g(r), r ? s) 5 P(x(s) 5 g(s)

Based on (3.8) and (3.9), we conclude that u x(r) 5 g(r), r [ G(s)),

or the probability distribution of random variable x(s) isP(ft2Dt u Et , Dt , ft) 5 (2fs 2)2N2/2

(3.11)
only relevant to its neighborhood G(s).

expH2
1

2s 2 O
(x,y)

DFD2(x, y, t)J. There is an important theorem regarding the probability
distribution of the MRF.

THEOREM 1. The random variable set X is a MRF withWe use the Markov random field (MRF) model to deter-
respect to G (S) if and only ifmine a priori probability distribution P(Et , Dt u ft), which

is detailed below.

P(X 5 g) 5
1
A

expH2 O
C[C(S)

VC(g)J, (3.14)3.2. Markov Random Field Model

The Markov random field model has been successfully
used in image restoration [5], motion detection [23], and where each VC(g) is a potential function depends only on
motion estimation [3, 10]. In this work, it is used for BCV- those x(s) for which s [ C, and A is a normalizing constant
based motion field estimation. In this subsection, we give so that
a brief description of the MRF model.

DEFINITION 1. Let S 5 hs1 , s2 , . . . , sNj be a set of sites E
g[V

P(X 5 g) dg 5 1. (3.15)
and G(s) the set of neighbors of s [ S. We call G (S) 5
hG(s) u s [ Sj a neighborhood system if the following three

The proof of the theorem can be found in [8].conditions are satisfied:

1. G(s) , S, In the application of MRF, we are often required to
determine the probability distribution of X. By using2. s Ó G(s),

3. s [ G(r) ⇔ r [ G(s). Theorem 1, we can define the probability distribution
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FIG. 5. The neighborhood system for the BCV scheme: (a) neighborhood system G(C(a, b)) of control point C(a, b) and (b)
neighborhood system G(F(a, b)) of boundary F(a, b).

P(X 5 g) by designating the potential function VC(g) for irrelevant to the surrounding boundary elements. And so
can the clique (f), (j), (m), (o). For the remaining cliques,each clique C [ C (S) given in Fig. 6. Although there are

altogether 16 clique forms in Fig. 1, some of them can some are subsets of others, we can optionally merge them
based on whether they represent independent entities. Asbe merged or eliminated. For example, clique (p) can be

eliminated. The potential of clique (p) is just the sum of an example, let us consider clique (n), which is a subset
of clique (e). The potential description of clique (n) canpotential (e) and (a), because the value of control vector

D(a, b, t) only correlate with its neighbor vector and is be included in the potential description of clique (e), and

FIG. 6. All possible cliques for the BCV scheme.
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they are both shape descriptions for the boundary element, edgeh(a, b, ft)
so that clique (n) can be merged into clique (e). With the
same reason, clique (l) can be merged into clique (e), 5 U O

(x,y)[B(a,b)<B(a,b21)
Q[ f (x, y, t), f (x, y 1 1, t)]U. (3.20)

cliques (h), (i), (k) can be merged into clique (d), and
clique (g) can be merged into clique (c). On the other
hand, although clique (b) is a subset of clique (c), they Q(a, b) is the number of large positive or negative transi-
represent different entities. That is, clique (b) can be inter- tion between pixel a and b:
preted as the correlation of boundary element with the
intensity edges, clique (c) can be interpreted as the correla-
tion between neighbor control vectors. Therefore, we keep
them separated. After carefully merging and eliminating
the unnecessary clique forms, we chose five clique forms Q(a, b) 5 5 Kb 2 a

b 1 a
? TeH b . a

2Ka 2 b
b 1 a

? TeH b , a,

(3.21)
(a)–(e) for representing the a priori distribution of the
motion field P(Et , Dt u ft), with each carrying its own inde-
pendent entity. We explain the entity and the potential of
clique (a)–(e) in the following:

where x is the maximum integer value not greater than x.(a) Ca 5 hC(a, b)j: The probability distribution of the
single control vector D(a, b, t). The potential of clique (a) is (c) Cc 5 hC(a, b), Fh(a, b), C(a, b 2 1)j or hC(a, b),
determined by the a prior distribution of the single control Fv(a, b), C(a 2 1, b)j: The correlation between neighbor
vector D(a, b, t). If we assume D(a, b, t) to be Gaussian control vectors. Note that the boundary element E(a, b, t)
distribution, the potential of clique (a) will be between two neighbor control vectors has substantial in-

fluence on the correlation of the control vectors. If there
VCa

(Et , Dt , ft) 5 VCa
(Dt) 5 aa ? iD(a, b, t)i2. (3.16) is a boundary between the two neighbor control vectors,

the two vectors will belong to different interpolation object
Oi . As a consequence, they will have no correlation. Other-If we assume D(a, b, t) to be Laplacian distribution, the
wise the two vectors will belong to the same object, andpotential of clique (a) will be
therefore have strong correlations. We define the potential
of clique (c) as

VCa
(Et , Dt , ft) 5 VCa

(Dt) 5 aa ? iD(a, b, t)i. (3.17)

VCc
(Et , Dt , ft) 5 VCc

(Et , Dt)
If we assume D(a, b, t) to be uniform distribution, the
potential of clique (a) will be

5 HuD(a, b, t) 2 D(a, b 2 1, t)u Eh(a, b, t) 5 0

0 Eh(a, b, t) 5 1
(3.22)

VCa
(Et , Dt , ft) 5 VCa

(Dt) 5 0. (3.18)
Fh(a, b) [ Cc .

In the paper, we chose the uniform distribution model
(d) Cd 5 hFh(a, b), Fh(a 2 1, b), Fv(a, b), Fv(a,in (3.18).

b 2 1)j and
(b) Cb 5 hF(a, b)j: The correlation of the boundary (e) Ce 5 hFh(a, b), Fv(a, b), Fh(a, b 1 1), Fv(a 1 1,

element E(a, b, t) with the intensity edges. We define the b)j: The a prior knowledge of the boundary set Et . The
potential of clique (b) to the inverse proportional to the potential of clique (d) and (e) are set according to a priori
intensity edge factor distribution of the boundary set Et in Figs. 7 and 8.

VCb
(Et , Dt , ft) 5 VCb

(E(a, b, t), ft)
(3.19) VCd

(Et , Dt , ft) 5 VCd
(Et) and

(3.23)
VCe

(Et , Dt , ft) 5 VCe
(Et).

5 5
Eh(a, b, t)

edgeh(a, b, ft)

Ev(a, b, t)
edgev(a, b, ft)

The considerations in selecting the potential value in Figs.
7 and 8 include the suppression of boundaries to reduce
the number of interpolation regions and the smoothness
and closeness of the boundary set Et to form a reason-where edgeh(a, b, ft) or edgev(a, b, ft) measures the degree

of discontinuity in the intensity image, and can be ex- able object.
By using Theorem 1 and the potentials of cliques (a)–(e)pressed as



BOUNDARY-CONTROL VECTOR MOTION FIELD REPRESENTATION 239

cliques. The value of ab is related to the degree of correla-
tion between the motion boundary and the intensity edge,
the value of ac is related to the degree of correlation be-
tween neighbor control vectors, and the value of ad is
related to a priori restriction of the boundary set Et . By
substituting (3.8), (3.24), (3.25) in (3.4), we obtain

P(ft2Dt u Et , Dt , ft)P(Et , Dt u ft)

5
1
A

exph2U(Et , Dt , ft , ft2Dt)j,

(3.26)

where A is a normalization factor and

FIG. 7. Potential VCd
(for rotational aliases, only one is listed in U(Et , Dt , ft , ft2Dt) 5

1
2s 2 O

(x,y)[I
DFD2(x, y, t)the figure).

1 ab ?O
Cb

VCb
(Et , ft)

(3.27)defined above, we can obtain a priori distribution of the
boundary set Et and the control vector set Dt as

1 ac ?O
Cc

VCc
(Et , Dt) 1 ad ?FO

Cd

VCd
(Et)

P(Et , Dt u ft) 5
1

A1
exph2U1(Et , Dt , ft)j, (3.24)

1 O
Ce

VCe
(Et)G.

where A1 is a normalization factor and

The four terms in (3.27) are called, respectively, the dis-U1(Et , Dt , ft) 5 O
C[C(S)

VC(Et , Dt , ft)
placement frame difference, the correlation between the
motion boundary (motion discontinuity) and the intensity5 ab ?O

Cb

VCb
(Et , ft) 1 ac ?O

Cc

VCc
(Dt , Et)

edges, the correlation between neighbor control vectors,
and the a priori restriction of the boundary set Et .

1 ad ?O
Cd

VCd
(Et)

(3.25)

3.3. Estimation via Optimization

1 ad ?O
Ce

VCe
(Et), By using the analysis given above, the problem of finding

the MAP estimation of the motion field d*(x, y, t) 5
InterpolatehE*t , D*t j is converted to the determination of

and where ab , ac , ad are the weighting factors for different the minimum point of the potential U(Et , Dt , ft , ft2Dt), i.e.,

U(E*t , D*t , ft , ft2Dt) 5 min
Et[Et ,Dt[Dt

U(Et , Dt , ft , ft2Dt), (3.28)

where the potential U(Et , Dt , ft , ft2Dt) is given by (3.27).
To obtain the global minimum of the potential function
U(Et , Dt , ft , ft2Dt) is not an easy task. On one hand, since
the configuration space hEt , Dtj of the BCV motion field
is extremely large, it is impractical that we search the whole
space for the minimum point. On the other hand, since
the potential U(Et , Dt , ft , ft2Dt) is a highly nonconvex
function with many local extrema and the boundary ele-
ment E(d, a, b, t) takes a binary value, we cannot adopt
a gradient-based algorithm to find the minimum point.
Since the problem formulation involves the MRF, a stan-FIG. 8. Potential VCe

(for rotational aliases, only one is listed in
the figure). dard simulated annealing [9] process is used to solve this



240 LI, LIN, AND KUO

TABLE 1
Bit Rates and Gains for the Coding of the Motion Field

Item Claire Missa Sales Trevor Football Flower

Rate in bpp (full block match) 0.0075 0.0108 0.0136 0.0186 0.0488 0.0320
Rate in bpp (BCV) 0.0063 0.0114 0.0101 0.0159 0.0418 0.0290

Rate in bpp (BCV 2 Et) 0.0002 0.0003 0.0003 0.0005 0.0003 0.0003
Rate in bpp (BCV 2 Dt) 0.0061 0.0111 0.0098 0.0154 0.0415 0.0287

Gain in dB (full block match) 34.46 33.83 28.11 29.80 25.19 22.33
Gain in dB (BCV) 35.68 34.37 28.57 31.57 25.55 23.83

problem. We update the control vector D(a, b, t) and the of an object, the distortion is similar to that of the block-
based scheme. It is desirable to find a distortion measureboundary element E(a, b, t) once at a time, and a decreas-
that helps to select the DFD for encoding to enhance theing temperature sequence Tk is used to control the update
overall performance of the encoder. We develop a criterionalong the process. For each update, the change in the
called the pixel threshold (PT) criterion which evaluatespotential U is evaluated together with the temperature Tk

the DFD of each block by two factors: the position factorto determine whether the update is accepted or not. In the
p(a, b) and the error factor e(a, b).beginning, the temperature Tk is high so that the update

When the block is located at an object boundary, itsis very random to allow the algorithm to select a good
position factor p(a, b) takes value 1; otherwise, it is 0.starting point to avoid being trapped into a local minimum.
Thus, p(a, b) 5 1 (or 0) means that block B(a, b) is aAs time proceeds, the temperature Tk is decreasing and
boundary (or internal) block. The value e(a, b) is the sumthe update tends to accept lower potential and the system
of the absolute value of DFD above a certain thresholdis gradually running toward the global minimum. The origi-
Q within a given block. Mathematically, it can be written asnal simulated annealing is very slow. In this paper, several

novel techniques are used to accelerate the annealing pro-
cedure. They include the selection of a good initial motion

e(a, b) 5 O
(x,y)[B(a,b)

KuDFD(x, y, t)u
Q H, (4.29)field by using a multiresolution tree (MRT)-based algo-

rithm [13], the logarithmic rate temperature reduction, the
stochastic relaxation of the control vector set Dt , a fast where Q is a threshold and x means the largest integer
control vector search, etc. We refer to [12] for more details. value that is not greater than x. The PT decision is
By using all the acceleration techniques, we can get a BCV
motion estimation algorithm which requires about twice
of the computational cost of the exhaustive block search. 5

p(a, b) 5 0 and e(a, b) . T0 to be encoded

p(a, b) 5 1 and e(a, b) . T1 to be encoded

other cases not to be encoded.

(4.30)
4. CODING OF DISPLACEMENT

FRAME DIFFERENCE

As discussed in Section 2, the BCV-based displacement Note that in the above T0 and T1 denote two different
thresholds for internal and boundary blocks, respectively.frame difference is different from that of the conventional

block-based scheme. Inside each object, there is no block We often choose T0 @ T1 , since the distortion of the inter-
nal block in the BCV scheme is mainly a geometrical defor-effect and the main distortion is geometrical deformation

which is less sensitive subjectively. Around the boundaries mation which allows a larger value of error tolerance.

TABLE 2
Bit Rates and PSNR Values for Video Sequence Coding

Item Claire Missa Sales Trevor Football Flower

Rate in bpp (MPEG-I) 0.0237 0.0251 0.0886 0.0819 0.2652 0.6028
PSNR in dB (MPEG-I) 35.31 34.49 28.77 31.04 29.67 26.15
Rate in bpp (BCV) 0.0080 0.0138 0.0679 0.0481 0.2196 0.4497
PSNR in dB (BCV) 35.81 34.62 28.86 31.77 29.92 26.84
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5. EXPERIMENTAL RESULTS

Experiments are performed to compare the BCV
scheme with the traditional block-based method used in
the MPEG standard. The test video data include Claire,
Missa, Trevor, Sales, Football, and Flower sequences.
The Claire, Missa, Trevor, and Sales sequences have a
spatial resolution of 352 3 288 pixels and a frame
rate of 10 frames per second. The Football and Flower
sequences have a spatial resolution of 352 3 240 pixels
and a frame rate of 30 frames per second. We apply
the exhaustive search to determine the motion vector
for each block in the block-based method and use full- FIG. 9. Comparison of coding rate between BCV scheme and
pel accuracy motion estimation for both the MPEG and MPEG-I scheme.
BCV simulation. We do not implement the rate control
for the video coder, instead, we set a constant MQUANT
of 16. For the proposed BCV scheme, the control vectors

the BCV-based video coding scheme with the MPEG-Iand the displacement frame differences (DFD) are en-
algorithm [6]. The results are shown in Table 2, wherecoded by using the MPEG-I bit stream. Each boundary
the rate is the average number of coding bits per pixelelement is encoded by a predictive arithmetic coding
and the peak signal-to-noise ratio (PSNR) is calculatedscheme similar to the one used in the JBIG standard.
as the average of the instantaneous PSNRWe set the threshold for internal block quantization T0

to be 3 and the threshold for boundary block quantization
T1 to be 16. We split the DFD into macroblocks and

PSNR(t) 5 10 log
2552

o [ f (x, y, t) 2 f (x, y, t)]2 , (5.2)encode them according to the pixel threshold criterion
as detailed in Section 4. It is worthwhile to point out
that although the bit stream of the BCV video coder is

where the summation is over all pixels in an image. Onesimilar to that of the MPEG standard, they are essentially
can clearly see from Table 2 that, compared with MPEG-different in the motion field representation. Due to the
I, BCV video coding achieves a saving of 15–65% inincorporation of the boundary element, the BCV video
the bit rate with nearly the same PSNR value. To furthercoder/decoder is not compatible with the MPEG stan-
compare the performance of the MPEG-I and BCV, wedard. However, it can be implemented by slightly modi-
plot the bit rate and the PSNR value as a function offying the MPEG code.
the frame number for the Claire and Trevor test videoWe show in Table 1 the average numbers of bits
sequences in Figs. 9 and 10, respectively.required to encode the motion field by using the block

Compared with the MPEG-I coded video, the BCVmatching and BCV methods, in the first and second
coded sequence appears to be smoother and clearer withrows respectively. Since the motion field in the BCV
less noisy patterns.scheme consists of two components, the set Et of bound-

ary element functions and the set Dt of control vectors,
we list the individual rate in the third and fourth rows
in Table 1. The predictive gain listed in Table 1 is
calculated as the average of the following instanta-
neous gain

Gain(t) 5 10 log
2552

o DFD2(x, y, t)
, (5.1)

where the summation is over all pixels. We see from
Table 1, the predictive gain of the BCV motion field is
higher than the traditional full block matching method
from 0.4 to 1.8 dB. This demonstrates that the BCV
motion representation is superior to the block-based
representation. FIG. 10. Comparison of coding PSNR between BCV scheme and

MPEG-I scheme.Experiments have also been performed to compare
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