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240 � 240 portion of the luminance (Y) component of the SVD-
filtered frame no. 75 (first field), with� = 12. (Magnified by a factor
of two). This figure is almost indistinguishable from the original.
For comparison, it also shows the normalized (from zero to 255)
error between the original frame and the output of the SVD-based
filter and the normalized error between the original frame and the
output of the 3� 3 median filter. As shown in Fig. 6, the median
filter extracts both image information and noise, thus causing image
blurring. Hence, such a filter is not suitable for our application,
which requires near lossless reproduction. In contrast, the SVD filter
preserves edge details and overall picture fidelity.

IV. CONCLUSIONS

We presented a novel noise estimation and filtering algorithm for
still images and video sequences based on the theories of SVD
and data compression. Our experiments show that the technique can
effectively filter noisy images with no prior knowledge of either
the image or the noise characteristics. This results in increased
compressibility when the filtered data is subsequently processed by
image and video compression schemes, such as JPEG and MPEG. For
still images, comparisons with other filtering schemes, such as But-
terworth filtering and wavelet-based filtering show that SVD-based
filtering is better in preserving edge details. For video sequences,
experiments have shown a 16% improvement in the compression
ratio achieved by nearly lossless MPEG or, equivalently, a visual
quality improvement of 1 dB at the same rate. This scheme can be
used in conjunction with traditional motion-compensated temporal
filtering techniques to further improve the overall performance of a
high-quality video processing system [11].
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A Multiscale Error Diffusion
Technique for Digital Halftoning

Ioannis Katsavounidis and C.-C. Jay Kuo

Abstract—A new digital halftoning technique based on multiscale error
diffusion is examined in this research. We use an image quadtree to
represent the difference image between the input gray-level image and the
output halftone image. An iterative algorithm is developed that searches
the brightest region of a given image via “maximum intensity guidance”
for assigning dots and diffuses the quantization error noncausally at
each iteration. To measure the quality of halftone images, we adopt a
new criterion based on hierarchical intensity distribution. The proposed
method provides very good results both visually and in terms of the
hierarchical intensity quality measure.

I. INTRODUCTION

Halftoning is one of the oldest applications of image processing,
since it is essential for the printing process. With the evolution of
computers and their gradual introduction to typesetting, printing, and
publishing, the field of halftoning that was previously limited to the
so-called halftoning screen [1] evolved into its successor—digital
halftoning. Today, digital halftoning plays a key role in almost every
discipline that involves printing and displaying. All newspapers,
magazines, and books are printed with digital halftoning. It is used in
image display devices capable of reproducing two-level outputs such
as scientific workstations, laser printers, and digital typesetters. It is
also important for facsimile transmission and compression.

There are many methods to perform digital halftoning. They can
be grouped in three major categories: 1) dithering [1]–[4], 2) error
diffusion [5]–[8], and 3) direct binarization [9], [10]. Dithering means
the addition of some kind of noise prior to the quantization of a
signal which, in our case, is an image. The amount of noise to
be added is simply determined by the order of the pixel, i.e., its
spatial coordinates. The ordered (or classical) dithering techniques
are attractive in the sense that they are very simple to implement,
especially in parallel architectures, and that they are computationally
inexpensive. This is because they involve a two-stage process that
can be performed independently for every pixel. However, their
performance is poor when compared to the error diffusion technique.
Error diffusion revolutionized the digital halftoning field and has
given the spark for the development of a great number of new
methods. Error diffusion is based on the simple principle that once
a pixel has been quantized, thus introducing some error, this error
should affect the quantization of the neighboring pixels. The way
the error is affecting the quantization of its neighboring pixels is
referred to asdiffusion, meaning that the error is split in a few
components and then added to the gray level values of the neighbors.
By diffusing the error, the system performs as a self-correcting,
negative feedback system. Direct binarization approaches attempt
to minimize a weighted least squares criterion directly, i.e., they
formulate halftoning as an optimization problem and apply standard
techniques for its solution.
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We propose a new digital halftoning technique based on multi-
scale error diffusion in this research. In comparison with classical
error diffusion methods, our method has the following three major
differences. First, all existing error diffusion methods are applied
to every pixel in a sequential predetermined order. Our approach
scans the image pixels in a way determined by their local intensity.
Roughly speaking, we first treat the brightest regions of a given
image that require more white dots. We achieve this deterministic
yet image-dependent scanning via “maximum intensity guidance.”
Second, existing methods distribute the error by using a causal
filter. Our method uses a generalized noncausal filter. Third, error
diffusion acts as a local deterring mechanism. Upon quantization of
an image pixel, the diffusion of the quantization error prohibits the
accumulation of the error locally. Our method achieves a more global
distribution of the quantization error. In other words, it acts as a local
and global deterring mechanism by prohibiting the accumulation of
the quantization error over a range of resolutions. To achieve the last
point, we utilize a multiresolutional treatment of the image data to
be quantized.

II. REVIEW OF EXISTING DIGITAL HALFTONING TECHNIQUES

Digital halftoning can be phrased as a problem of 1-b quantization
of a two-dimensional (2-D) signal as follows. LetX(i; j) be an
array of sizeK � L whose values are within [0, 1], corresponding
to a certain gray level, with 0 corresponding to a black pixel and 1
to a white pixel. We want to find an arrayB(i; j) of the same size
that takes binary valuesonly (0 and 1) such that the error introduced,
given by

E = X �B (1)

minimizes a certain criterion. What we normally require is thatE

is as “close” to a zero matrix as possible. Therefore, the problem of
defining a distance between matrices rises.

The choice of mean squared error (MSE) criterion leads to the
so-called fixed-level quantization scheme that compares the input
pixel value with the middle gray value (in this case, 0.5). If it is
higher, we quantize it to 1, if it is less we quantize it to 0. It is
straightforward to see that fixed-level quantization guarantees that
every element of the error matrix will be bounded (in absolute value)
by 0.5. This algorithm results in the minimum error for each element
so that it gives the minimum mean squared error solution. Although
the simplest of all, fixed-level quantization produces the worst result,
as can be seen in Fig. 1(a) and (i), due to the fact that areas of a
constant gray level are quantized as either all white or all black.
This results in a spatial accumulation of quantization error in areas
of constant gray level.

The dithering technique was invented to overcome the disadvantage
of the fixed-level quantization approach. Dithering means the addition
of some kind of noise prior to the quantization of an image. This
technique was introduced as a way of breaking the monotonicity of
error accumulation in areas of constant gray level. Depending on
the type of noise added, we get different types of dithering such
as the clustered and dispersed ordered dithering methods. For a more
detailed analysis of various types of dithering, we refer to [1] and [2].
In most dithering algorithms, a regular pattern is used to represent the
noise that is introduced at different pixel locations. Thus, the major
disadvantage of dithering is that it gives rise to regular error patterns.
The dispersed ordered dithering is claimed to produce a better result.
We were able to verify that, but also observed some defects, as seen
in Fig. 1(b) and (j). Dithering with a regular pattern is equivalent to
the addition of pseudorandom (periodic) noise, followed by fixed-
level quantization. Other techniques that generate halftones with an
error-diffusion-like appearance have been introduced, such as the one

that uses a blue-noise threshold array [3] and the “void-and-cluster”
method [4].

The idea behind error diffusion is very simple, yet attractive. After
quantizing a pixel to be either 0 or 1, it is almost certain that some
error is introduced—unless that pixel has a gray level of exactly 0 or
1. This error should affect the quantization of the neighboring pixels.
More precisely, if the error is positive, meaning that the current pixel
was quantized to 0, the gray level value of its neighbors should be
increased so that they are more probable to be quantized to 1 than they
would have been if the error were negative. This can be interpreted
as a way of keeping the local average intensity of the printed image
as close to that of the original image as possible. Now, an interesting
question arises, namely, which neighboring pixels should be affected
by the quantization error of a pixel at a given location of the input
image. The answer given by Floyd and Steinberg [5] is the filter

1

16

0 0 0
0 �16 7
3 5 1

: (2)

Jarviset al. [6], Stevenson and Arce [7], and Stucki [8] suggested
similar filters with a larger region of support. A common characteris-
tic of these filters is that they are causal, i.e., their region of support
is a wedge with an angle of less than 180� to ensure that these filters
can be applied in a sequential manner.

Even though causal filtering is an attractive feature, it is the
reason for one disadvantage of error diffusion known as directional
hysteresis. Error tends to be diffused to the right boundary of the
image with the filter given by (2). An easy fix for this is to use
serpentine scanning, which is done by using two versions of the
Floyd and Steinberg filter. The original one of (2) is used when the
direction of scanning is from the left to the right of the input image,
and its mirrored reflection

1

16

0 0 0
7 �16 0
1 5 3

(3)

is used when the direction is from the right to the left. The above
filters are applied alternately. This algorithm, known as error diffusion
with serpentine scanning, produces a very good result, as shown in
Figs. 1(c), 1(k), 2(a), and 2(c). There are variations based on the same
error diffusion idea, such as error diffusion with perturbed weights
[1], [11], dot diffusion [12], and diffusion with neural networks [13].
For a comparison of different halftoning approaches including error
diffusion, “void-and-cluster” and a direct binarization method using
various printers and eye models, we refer to [10].

A very nice work that uses an adaptive version of error diffusion
was proposed by Wong [14]. The same error diffusion idea is
applied with the modification that the error diffusion filter is adjusted
concurrently with the error diffusion process so that an error criterion
is minimized. One interesting feature of his method is its capability
for multiresolution rendering. The halftone image can be rendered at
multiple resolutions by subsampling. The resulting images resemble
the original image at certain resolutions. Our work also uses the
multiresolution concept to create halftones. The major difference is
that we do not address the issue of rendering the halftone at different
resolutions. Roughly speaking, Wong’s method obtains a pyramidal
representation of the output halftone image, while our method obtains
a pyramidal representation of the input image. Finally, Peli [15]
presented another multiresolution halftone algorithm. In his work, one
iteratively obtains the halftone by minimizing a weighted averaged
error criterion, where a pyramidal representation of both input and
output images is used.
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Fig. 1. Comparison of different digital halftoning techniques: (a)–(h) grayscale ramp image (256� 256); (i)–(p) Lenna image (256� 256). (a), (i) fixed-level
quantization; (b), (j) ordered dithering; (c), (k) Floyd and Steinberg’s error diffusion; (d), (l) multiscale error diffusion (MED), 1� 1 filter; (e), (m) MED,
3 � 3 filter; (f), (n) MED, 5 � 5 filter; (g), (o) MED, 7� 7 filter; (h), (p) MED, 9� 9 filter.

III. M ULTISCALE ERROR DIFFUSION ALGORITHM

Our method is based on the same principle as error diffusion. The
error introduced from the quantization of a given pixel is diffused
to its neighbors to guarantee that the local average intensity of the
printed halftone image will resemble the local average intensity of
the original gray-level image. The major difference is that the order

of scanning is determined through a “maximum intensity guidance
algorithm.” We can briefly say that the algorithm begins with the
lowest resolution image (the top of the image pyramid) and proceeds
by always selecting the quadrant with the highest average intensity.
This procedure ends when a pixel of the original image has been
reached. Thus, the order of scanning is deterministic with respect to
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one specific image, but it is random in the sense that it is image-
dependent. The next important point is that we use a noncausal
error-diffusion filter followed by an update of the image pyramid.

A. Image Quadtree Representation

Let X, B, andE be arrays of dimensionK � L, corresponding
to the input image, output binary image, and the difference (or error)
image, as defined by (1). Without loss of generality, we consider the
case of square images, i.e.,K = L = N = 2

r, for the rest of this
paper. Our approach is to apply error diffusion to the pixels of the
error image, followed by an update of its quadtree representation. To
do so, we consider a collection of image arraysXk with 0 � k � r

and wherer = log
2
N . Thus,r + 1 is the total number of different

levels of the image arrayX to be viewed, andXr denotes the array
of the largest size of dimensionN � N , Xr�1 denotes that of size
N=2 � N=2, and so on. The collection of these image arrays of
different resolutions for the same image is called an image pyramid
or image quadtree. The pixels associated with the finest level of the
image, i.e.,Xr(i; j), i; j = 0; � � � ; N�1, are the actual pixels of the
X array. The elements of the coarser resolution arrays are defined by

Xk(ik; jk) =

1

i=0

1

j=0

Xk+1(2ik + i; 2jk + j);

ik; jk = 0; � � � ; 2
k
� 1; k = r � 1; � � � ; 0: (4)

These arrays correspond to different visualizations of the same
image at different resolutions, which correspond to different viewing
distances. The coarsest resolutionX0 is simply a one-element array,
whose value is the total intensity of the whole input image.

Similarly, we can represent the output dot distributionB of the
same sizeN �N with a pyramid formed by a number of arrays of
different resolutionsBk with k = 0; � � � ; r. The main difference is
that the elements of the output-image quadtree have integer entries;
namely,Bk(ik; jk) 2 f0; � � � ; 4

r�k
g. Thus,Br(�; �) can only take

binary values. Finally, we define in a similar way the error-image
pyramidEk(�; �) with k = 0; � � � ; r.

We require that the input and output pyramids are as close as
possible on all levels. That is

Ek = Xk �Bk (5)

minimizes a certain criterion for 0� k � r so that the printed image
resembles the original at every resolution. Since our multiscale error
diffusion algorithm uses this quadtree representation and multiscale
manipulation of the error values, we show very good performance
in terms of the multiscale error norm. One such criterion is the
hierarchical intensity distribution criterion introduced in Section IV.

B. Algorithm

To achieve this goal, we propose an iterative multiscale error
diffusion algorithm. In the beginning of the algorithm, the entire
output-image pyramid is blank (Bk = 0) and, thus, the error-image
pyramidEk is identical to the input-image pyramidXk. Remember
that the value at the root of this tree,E0(0; 0) = X0(0; 0), is just
the sum of the intensities of all the image pixels, which tells us how
many dots should be assigned to the output dot rasterBr in order for
this raster to resemble the original image at the coarsest resolution.
Unfortunately, this information alone is not sufficient to determine
the location of these dots. Similarly, the four values at the second-
coarsest level,E1(i; j), i; j 2 f0; 1g, tell us how many dots should
be assigned to each quadrant of the original image, but not their
exact location, and so on.

For the application of our halftoning algorithm we use the error-
image pyramid,Ek, with k = 0; � � � ; r, and the output-image array,

B. The input-image pyramid,Xk, and the output-image pyramid,
Bk, are not needed for the application of our algorithm; we will
later use them in Section IV for the evaluation of the hierarchical
intensity distribution quality measure. Using a two-step procedure,
we focus on the subimages that have the largest intensity, and thus
the greatest need for dots on the output imageB. At each iteration of
the algorithm, we introduce a white dot (value= 1) at some location
of the output imageB. The location is chosen in a greedy way by
traversing the error treeEk, top-to-bottom. We then diffuse the error
to the neighbors of that pixel in theEr array, ensuring that there is
no error leakage and also that the total decrease in theEr array is
equal to 1. Finally, we update the error-image pyramid with the new
error values, thus decreasing the values of each level in total by 1.
This procedure is applied iteratively until the intensity of the root of
the error tree is less than 0.5, which implies that the global error is
bounded in absolute value by 0.5.

Each iteration of the algorithm consists of the following two steps.
Step 1) “Maximum Intensity Guidance” in an Image Pyramid:

Start from the coarsest levelE0, which consists of one element
E0(0; 0). Consider the four subimagesE1(i1; j1), wherei1 = 0; 1

and j1 = 0; 1, at level 1, each of which covers an array of size
N=2 � N=2 of the original array, and choose the subimage with
the highest value, i.e., the quadrant with the highest local intensity.
Next, consider its four subimages at level 2, i.e.,E2(i2; j2), and
find the subarray with the highest value. Continue this procedure
until the finest resolutionEr(ir; jr) is reached. At the end of this
procedure, we have chosen and kept the location(̂ir; ĵr) of one pixel
of the original image and the valueEr (̂ir; ĵr) at the corresponding
location of the error-image pyramid.

Step 2) Multiscale Error Diffusion in an Image Quadtree:In this
step, we apply quantization followed by multiscale error diffusion in
the constructed error-image quadtree. Given the pixel chosen in Step
1, we quantize this pixel by settingB(̂ir; ĵr) = 1, i.e., we assign
a white dot at the corresponding location of the output raster. The
quantization error is given by

eq = Er (̂ir; ĵr)� 1: (6)

We setEr (̂ir; ĵr) = eq and diffuse the error to(̂ir; ĵr)’s neighbors
in the errorEr by using a noncausal diffusion filter. The algorithm
works with any choice of filter, producing different results. For the
rest of this section, we consider the following 3� 3 diffusion filter,
which has provided good halftones for our algorithm.

Hcenter =
1

12

1 2 1

2 �12 2

1 2 1

: (7)

This filter is only applicable to pixels in the interior region of the
error image. For the side and corner (i.e., boundary) pixels we apply
the following filters and their reflections to fit all possible side and
corner orientations.

Hcorner =
1

5

0 0 0

0 �5 2

0 2 1

Hside =
1

8

0 0 0

2 �8 2

1 2 1

: (8)

It is easy to see that, as a result of the error diffusion, the error value of
the pixel just visited takes the new value 0, i.e.,Er (̂ir; ĵr) = 0, while
the error values of the neighboring pixels are decreased according to
their position relative to the center pixel and also in proportion to
the quantization error. Moreover, since all the above filters have zero
mean, it follows that the total decrease in the error imageEr is equal
to 1, i.e., there is no error leakage.
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Fig. 2. Comparison of different digital halfoning techniques. (a) Boat image (512� 512), Floyd and Steinberg’s error diffusion. (b) Boat image (512
� 512), multiscale error diffusion, 9� 9 filter. (c) Baboon image (512� 512), Floyd and Steinberg’s error diffusion. (d) Baboon image (512� 512),
multiscale error diffusion, 9� 9 filter.

After the quantization and error distribution for a given pixel has
been done, we have to update the error-image quadtreeEk, so that the
values at all resolutions are in accordance with the new error-diffused
values at the finest resolution.

It is obvious that the determination of the maximum intensity value
at a certain level of the error-image tree requires three comparisons
among the four error values. Since there are exactlyr+ 1 levels of
the error-image tree, the computational complexity of the whole Step

1 is 3 log
2
N (in binary comparisons). To determine the complexity

of Step 2, note that each pixel affects the value of just one element at
every resolution level, since a given pixel belongs to exactly one 2�

2 region of the original image and one 4� 4 region, and so on. Thus,
we need to update exactlylog

2
N+ 1 elements of the error-image

tree for every pixel whose value is affected via error diffusion. There
are at most 9 pixels (for the case of 3� 3 diffusion filter) whose
error value is changed for every pixel quantized, thus the complexity
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Fig. 3. Comparison of different digital halftoning techniques based on the multiscale MSE vector. (a) Gray-scale image (256� 256). (b) Lenna image (256
� 256). (c) Boat image 512� 512. In (a)–(d), the dotted, dash-dotted, dashed, and solid lines are used to represent the fixed-level quantization, ordered
dithering, Floyd and Steinberg’s error diffusion,and multiscale error diffusion with the 9� 9 filter, respectively. The multiscale error diffusion method with
other filter sizes are also plotted in (a) and (b), where the “+,” “*,” “�;” and “x” lines denote filters of sizes 1� 1, 3� 3, 5� 5, and 7� 7, respectively.

of this update is bounded by 9 (log2 N+ 1) for every quantized
pixel. The total number of quantized pixels is roughly proportional
to the average intensity of the input imageX and in any case is upper
bounded by the total numberN2 of image pixels. It is easy to see
that the complexity of our algorithm is bounded by O(N

2 log N). For
comparison, most existing methods are O(N

2). The storage required
by our method is bounded by O(N2), since the number of elements
of a full quadtree withN2 = 4r terminal nodes is

r

i=0

jEij =

r

i=0

4
i
=

4r+1 � 1

4� 1
� 4

3
� 4

r
= 4

3
�N2

: (9)

C. Discussion

The image quadtree plays a fundamental role in our algorithm.
During the “maximum intensity guidance” step, we perform a top-
to-bottom descent along the tree. During the error diffusion step,

we perform the bottom-to-up ascent in updating the values at the
nodes of the tree. The two-step procedure is performed sequentially
on the image quadtree that is kept updated. What makes our approach
distinct from existing ones is that we seek via maximum intensity
guidance at each iteration the subregions ofEk that have the largest
value, and thus the greatest need for dots onB, while existing
methods trace all pixel locations in a predetermined fashion. We
do not concentrate on one part of the image, quantize it, and then
move to another part of the image in a deterministic manner. Instead,
depending on the input image, we jump from one pixel location
to another, which may be spatially quite far away. The criterion is
always to bring the average local intensities of the output image (as
measured by a multiresolution representation) as close to those of the
original image as possible. Note that, in some sense, our approach
is closer to the way painters create artwork. By using the maximum
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intensity guidance, we throw ink (i.e., assign 1’s) to the regions that
have the most need of it, just like a painter starts using, say, his
blue-colored brush by painting the region that has the darkest shade
of blue of all. All existing algorithms processall pixels of the input
image in order to determine whether they will be assigned a 0 or 1.
Our method processes only the pixels that will be assigned 1; the rest
of the pixels have (by default) a 0 value, just like a painter works
only on the part of the canvas that has a different color than that of
the background. It is thus easily understood that our algorithm has
the smallest processing time for an all black image, since no dots
need to be assigned.

The choice of filters in (7) and (8) can be justified as follows. First,
the distance between the center of a 3� 3 filter mask to its four
nearest neighbors can be taken to be 1 (in normalized units) while
the distance from the center to the other four diagonal neighbors
would be

p
2. By considering an isotropic diffusion process, which

is proportional tod�2 at distanced, we conclude that the filter
coefficient of the diagonal positions should be half of that of the
four nearest neighbor positions. Second, the sum of all the filter
coefficients should be zero to ensure that the quantization error is
fully taken into consideration. That is, it is completely diffused and
compensated for the subsequent application of the algorithm. Third,
the filter coefficient for the center pixel is normalized to be�1.
Using these three principles, we can obtain filters with larger region
of support (5� 5, 7 � 7, 9 � 9, etc.) that produce similar but
still different results. A very interesting variation of the algorithm
presented above can be obtained by using a 1� 1 diffusion filter,
i.e., without performing any error diffusion on the neighbors of the
selected pixel. Thus, after we choose a pixel using Step 1 of the
presented algorithm, we set a dot on the output raster and subtract
1 from the value of the error-image pyramid, followed by an update
of the error-image pyramid. The effects of different filter choices are
presented and discussed in Section V.

IV. QUALITY MEASURE VIA HIERARCHICAL INTENSITY DISTRIBUTION

To measure how well a digital halftoning algorithm works, we
propose the following quality criterion. Once we obtain some output
image from a halftoning algorithm, we calculate the corresponding
image pyramids as described in Section III-A and calculate the mean
squared error (MSE) at each resolution of the error array

MSEk =
1

N2

2

i=1

2

j=1

Ek(i; j)
2

=
1

N2

2

i=1

2

j=1

[Xk(i; j)�Bk(i; j)]
2
; k = 0; � � � ; r: (10)

We form a vector of dimensionr+1 = log
2
N+ 1 of these

MSE values from different resolutions, that presents the difference
between the input and output images at different resolutions. To
compare two different halftoning methods, we compare the two
corresponding MSE vectors. We say that a method is clearly better
if the corresponding error vector has components that are all smaller
than those of another method. However, if some components are
smaller for one method while others are higher, then the application
determines which method is better. In the digital halftoning area,
because of the integration performed by the human visual system,
it seems that the coarser the resolution level is, the more important
the MSE. We caution the reader that this is a general qualitative
statement. A generalized MSE value obtained by assigning weights to
the components of the MSE vector may be a more appropriate choice
for an error criterion, and further experiments are needed to determine

proper weighting parameters in different spectral bands. Supporting
evidence for this statement is that the fixed-level quantization method,
which achieves the smallest MSE at the finest resolution with a
threshold of 0.5, is known to be the worst halftoning method.

The hierarchical intensity distribution quality measure can be
naturally obtained by applying the Haar wavelet transform to the
error image. In this case, the energy values of the different lowpass
filtered error images give the MSE values defined above. Note also
that different resolutions use lowpass filters of different length. The
highest resolution image is obtained by being convolved with the 1�
1 identity filter, while the coarsest resolution image is obtained with a
filter of sizeN�N . The other resolutions are obtained by convolution
with filters that have widths 1/2 of the others. This logarithmic law,
underlying the hierarchical intensity distribution quality measure,
makes it a very good candidate as a substitute for the “subjective
quality measure” that has been used almost exclusively in evaluating
halftoning algorithms.

V. EXPERIMENTAL RESULTS

The test image used to produce Fig. 1(a)–(h) is a 256� 256 gray-
scale ramp of 64 levels. It is interesting to see the differences among
Fig. 1(d)–(h) obtained using multiscale error diffusion with filters of
various sizes. Fig. 1(i)–(p) were obtained by using the Lenna image
of size 256� 256. It is obvious from these results that the two
competitors are the error diffusion method with serpentine scanning
and our multiscale error diffusion method. It is again interesting to
see the differences among Fig. 1(l)–(p) due to the use of filters of
various sizes. As the filter size increases, the overall sharpness of
the output image decreases, from an oversharpened unnatural-looking
image produced with the 1� 1 filter to a very nice and pleasing image
produced with the 9� 9 filter. Combining this observation with the
very good gray-level rendition in Fig. 1(h), we decided to use the 9
� 9 filter in our multiscale error diffusion algorithm.

We present the results obtained from the Boat and the Baboon
8-b grayscale images, both of size 512� 512, for a more detailed
comparison in Fig. 2. No preprocessing was performed, since we
would like to compare the methods without the effect of edge
crispening or contrast stretching. We deliberately printed all the
results using a high-quality laser printer, but tuned to its medium
resolution (150 dpi) so that the individual dots can be clearly printed
and the effect of dot overlapping is not dominant. By comparing these
figures, we can say that the proposed method produces more clear
and crisp halftones than traditional error diffusion, while keeping
all the desirable characteristics of the latter, mainly excellent gray-
level rendition and no periodic patterns. Examples include the hair
of Lenna or the letters on the Boat are significantly more clear; lines
in the Boat image such as poles and ropes between poles are better
represented and the textured pattern of the Baboon image is better
treated. Furthermore, the overall contrast of the result produced by
the new method is higher and more pleasing.

We calculate the error energy at various resolutions for these four
images and plot them in Fig. 3(a)–(d). The method that achieves
the smallest MSE at the finest resolution is fixed-level quantization,
as explained in Section II. However, as the resolution becomes
coarser, the accumulation of error over large regions becomes more
severe. By comparing the other three methods, i.e., ordered dithering,
traditional and multiscale error diffusion, one can verify that our
method outperforms the other two onevery resolution level. An
interesting observation is that, for the grayscale ramp and Lenna
images, the filter that achieves the smallest MSE values is the 1
� 1 filter, which, however, produces the worst visual result among
them. This indicates that the choice of a simple averaging for the
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creation of the error-image pyramid may not be the best and other
weighted averaging filters may be more appropriate.

VI. CONCLUSIONS

In this research, we proposed a new digital halftoning algorithm
based on multiscale error diffusion. The method performs signifi-
cantly better than some of the best existing methods in terms of
hierarchical intensity matching. Almost all of the existing methods
require some preprocessing of the input image (usually contrast
stretching and/or edge crispening) in order to give their best result.
Our method requires no such preprocessing since it preserves the
contrast of the original image, and it does not tend to oversmooth
the image. By changing the size of the diffusion filter, the amount of
sharpness of the output image can also be controlled.

ACKNOWLEDGMENT

The authors thank the anonymous reviewers who have contributed
to a much improved manuscript.

REFERENCES

[1] R. A. Ulichney,Digital Halftoning. Cambridge, MA: MIT Press, 1987.
[2] W. F. Schreiber,Fundamentals of Electronic Imaging Systems: Some

Aspects of Image Processing.New York: Springer-Verlag, 1986.
[3] T. Mitsa and K. Parker, “Digital halftoning using a blue-noise mask,”

in Proc. SPIE, Image Processing Algorithms and Techniques II,1991,
vol. 1452, pp. 47–56.

[4] R. A. Ulichney, “The void-and-cluster method for dither array genera-
tion,” Proc. SPIE, Human Vision, Visual Processing and Digital Display
IV, vol. 1913, pp. 332–343, 1993.

[5] R. W. Floyd and L. Steinberg, “An adaptive algorithm for spatial grey
scale,” inProc. SID Int. Symp. Digest of Technical Papers.New York,
1975, pp. 36–37.

[6] J. F. Jarvis, C. N. Judice, and W. H. Ninke, “A survey of techniques
for the display of continuous-tone pictures on bilevel display,”Comput.
Graphics Image Processing,vol. 5, pp. 13–40, 1976.

[7] R. L. Stevenson and G. R. Arce, “Binary display of hexagonally sampled
continuous-tone images,”J. Opt. Soc. Amer. A.,vol. 2, pp. 1009–1013,
1985.

[8] P. Stucki, “Mecca—A multiple-error correcting computation algorithm
for bilevel image hardcopy reproduction,” IBM Res. Lab., Res. Rep.
RZ1060, 1981.

[9] T. Pappas and D. L. Neuhoff, “Least-squares model-based halftoning,”
in Proc. SPIE, Human Vision, Visual Processing and Digital Display III,
1992, vol. 1666.

[10] M. Schulze and T. Pappas, “Blue noise and model-based halftoning,”
in Proc. SPIE, Human Vision, Visual Processing and Digital Display V,
1994, vol. 2179, pp. 181–194.

[11] R. A. Ulichney, “Dithering with blue noise,” inProc. IEEE, vol. 76,
pp. 56–79, Jan. 1988.

[12] D. E. Knuth, “Digital halftones by dot diffusion,”ACM Trans. Graphics,
vol. 6, pp. 245–273, Oct. 1987.

[13] S. Kollias and D. Anastassiou, “A unified neural network approach to
digital image halftoning,”IEEE Trans. Signal Processing,vol. 39, pp.
980–984, Apr. 1991.

[14] P. W. Wong, “Adaptive error diffusion for multiresolution rendering,”
in Society for Information Display, Proc. SID ’94,San Jose, CA, June
1994, pp. 801–804.

[15] E. Peli, “Multiresolution, error-convergence halftone algorithm,”J. Opt.
Soc. Amer. A.,vol. 8, pp. 625–636, Apr. 1991.


