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Abstract 

A novel approach to automatic classification of quadrature amplitude modulated (QAM) signals is presented in this research. 
Modulation classification has been traditionally treated as a hypothesis test problem with input signals of a fixed sample size. 

By formulating it as a variable sample size test problem, we propose a new classification algorithm based on the sequential 
probability ratio test (SPRT). It is demonstrated that the new approach has several important merits, including ease of error 
rate control. lower computational complexity and lower decision delay. 0 1997 Published by Elsevier Science B.V. 

Zusammenfassung 

In diesem Artikel wird ein neuer Ansatz zur automatischen Klassifizierung eines Quadratur-Amplituden-Modulierten 
(QAM) Signals vorgestellt. Bisher wurde das Klassifizienmgsproblem modulierter Signale als Hypothesentest mit 
vorgegebener Datenlinge behandelt. Wir formulieren das Problem nun mit variabler Datenlinge und schlagen einen neuen 
Algorithmus zur Klassifizierung vor, der auf einem sequentiellen Wahrscheinlichkeitsquotiententest (SPRT) basiert. Es wird 
gezeigt, daR dieser neue Ansatz verschiedene wichtige Vorteile besitzt. Das sind z.B. eine einfache Fehlerratenkontrolle, ein 
geringerer Rechenaufwand und eine geringere EntscheidungsverzGgerung.0 1997 Published by Elsevier Science B.V. 

RCsumC 

Ce travail prCsente une nouvelle approche pour la classification automatique de signaux B modulation d’amplitude en 
quadrature (QAM). La classification de modulation est trait&e traditionnellement comme un problhme de test d’hypothhse 
avec des signaux d’entrte de longueur fixe. En le formulant comme un problkme de test de signaux de longueur variable, 
on propose un nouvel algorithme de classification basi: sur le test de rapport de probabilitk sCquentie1 (SPRT). On montre 
que cette nouvelle approche a plusieurs avantages importants, dont la facilitC de contr8le du taux d’erreur, une complexit& 
algorithmique plus faible ainsi qu’un dklai de dCcision plus faible. 0 1997 Published by Elsevier Science B.V. 
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1. Introduction 

Automatic modulation classification is an impor- 

tant research problem in the receiver design for non- 
cooperative communication systems. The modulation 

classifier usually serves as a preprocessing unit for 

monitoring or interception systems. When the modu- 
lation scheme of a received signal is recognized, an 
appropriate demodulator can be selected to recover the 
information. The automatic modulation classification 

technique can also be applied to the control of radio 
frequency bands. Such a control task has so far been 

done by human operators. However, it becomes more 
difficult due to higher signal densities over a fixed 

bandwidth in recent years. 
Two approaches to obtain the statistics of ex- 

tracted features have been reported in previous works. 
The first approach derives the exact statistical de- 

scriptions of received signals under certain given 

assumptions [l, 7,8, 15, 19,24,28]. This approach is 
often motivated by the receiver design of cooperative 
communication systems. It gives more insights into 
the cause-effect relationship among the performance 
and various uncertainty factors. An exact analysis 

of feature statistics is possible by imposing the syn- 
chronization assumptions, and the optimality can be 
theoretically guaranteed. The challenging part of this 
approach is the derivation of test statistics based 

on a set of reasonable assumptions. The second ap- 
proach obtains the test statistics empirically rather 

than analytically, i.e. to design the classifier by us- 
ing training data. Classifiers using features such as 
the periodogram, the bispectrum and the histograms 
of local frequency or phase estimates, have been re- 
ported in [5, 10, 11, 18,221. This approach is more 
realistic in the sense that it requires less a priori 
knowledge of received signals. However, the cor- 

responding theoretical performance bound is very 
difficult to analyze. 

Modulation classification has been traditionally for- 
mulated as a hypothesis test problem with a fixed size 
of samples, i.e. making decisions based on a fixed 
amount of received data. Classifiers using the fixed- 
sample-size test (FSST), which often operate in a 
batch mode, are suitable for bursty or packet type of 
data. For other applications, such as the transmission 
of continuum-type data, it is more natural to formu- 
late the problem as a sequential process since received 

data are collected in a temporal order and their amount 
can be quite large. In this context, a more appropri- 

ate optimality is the least amount of data required 

for decision making while the classification perfor- 

mance such as the error probability meets a certain 

requirement. 
This work focuses on the classification of signals 

with the quadrature amplitude modulation (QAM), 
which forms an important family of digital modulation 
schemes. We formulate this modulation classification 
problem as a variable-sample-size test problem, and 

propose a new classification algorithm based on the se- 

quential probability ratio test (SPRT). Compared with 
FSST, SPRT is known as the optimal test in the sense 
that it can provide the same decision error probability 

with the least amount of samples [27]. Since the deci- 
sion delay and the computational complexity increase 

as the number of samples used to make decisions in- 

creases, it is more favorable to use classifiers that use 
less samples to make decisions with the same error 
probability. Furthermore, SPRT can control the indi- 

vidual error probability given that one of the hypothe- 
ses is true. For some applications, it is an attractive 
feature to have the same decision quality regardless 

of the true hypothesis. It is possible to design a 
SPRT-based classifier that gives the same individual 
error probability. In contrast, FSST usually leads to 
very low error probabilities with ‘distinguishable’ 

hypotheses and high error probabilities with ‘similar’ 

hypotheses. 
It will be demonstrated by experiments that the 

new approach has the above mentioned merits, 
including ease of error rate control, lower com- 

putational complexity and lower decision delay. 
The derivation of a reference-phase-free FSST for 
QAM classification has been an important problem 
[15, 191. In this paper we incorporate SPRT with 

three different techniques, i.e. the transform, the gene- 
ralized likelihood and the averaging likelihood 

methods, to solve the problem of reference phase 
uncertainty. 

This paper is organized as follows. In Sections 
2 and 3, we examine modulation classification al- 
gorithms using FSST and SPRT, respectively. In 
Section 4, three techniques are discussed to derive 
the reference-phase-invariant classifiers. Experimen- 
tal results are shown in Section 5 and the concluding 
remarks are presented in Section 6. 
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2. Fixed-sample-size test (FSST) 

2. I. Problem fivmulution 

We assume that the received waveform r.(t) is a 

QAM modulated signal x(t; SN, k,p) buried in AWGN 
n(t) with zero mean and two-sided power spectral 

density of NO W/Hz, where s.~ represents the symbol 
sequence (so, sr . ,s,+ 1 j, N is the total number of 

received symbols, k indicates a different modulation 
format and p denotes a vector of communication pa- 

rameters. Therefore, the received N symbol-periods 
waveform can be written as 

r(t)=x(t;s,y,k,p)+n(t), O<t<NT. (1) 

where T is the symbol duration. Here we assume that 
symbol timing is synchronized so that the signal is 

received at the beginning of each symbol period. 
If the transmitted signal waveform x(t; s,+t, k,p) is 

known, we can write down the a posteriori probabil- 

ity of the transmitted signal waveform based on the 
received signal r(t) by using Bayes’ rule as 

p(x(t;sy,k,P))P(r(t)lx(t;sN,k,p)) 

p(r(t)) 

By assuming that p is known or can be measured ac- 

curately from preprocessors, we can drop it for dis- 
cussion in Sections 2 and 3. (Three methods will be 

described to handle the case of unknown p, especially 
in resolving reference phase uncertainty, in Section 4.) 

We further assume that there is no preference for any 

particular symbol sequence or modulation format so 
that p(x(t; s, k,p)) and p(r(t)) are simply normaliza- 
tion terms which are independent of s or k. Then, the 

a posteriori probability of x(t; SN, k) can be expressed 
as the following well-known form [26]: 

p(x(t;.v!\,k)lr(t)) 

=Cexp -1 
{ J 

./VT 

2No o 
[r(t) - x(t; s,\‘, k)]’ dt 

1 
(2) 

A QAM signal x(t; s,v, k) can be written as, for 
O<t<NT, 

x(t;sN.k) =~,(t;~,y,k)~0~(2~~f,t ~ &j 

+XQ(t; shf, k) sin(2x,f, t - O,), (3) 

where ,f, and 0, denote the carrier frequency and the 
carrier reference phase, respectively, and 

N 

X,(t;s,v,k) = xx,(i;kju(t - iTj. 

i=o 

X,(t;s,\,,k) = ~,q(i;k)u(t - iT), 
I = 0 

are the information bearing waveforms for I- and Q- 
channels, and where u(t) is the spectrum shaping pulse 

function which is assumed to be known and absorbed 
into the communication parameter vector p. In partic- 

ular, we let u(t) be a rectangular unit pulse function. 

u(t)= 
{ 

1 ifOdt<T, 
0 otherwise. 

The I-. Q-channel sample sequences {xr(i; k); i = 

I, 2,. .} and {xo(i; k); i = 1,2,. .} can be represented 

by{(x~(i;k),xQ(i;k))EY~.; i= 1,2,...},whereY;g 
{(st(m; k),sg(m; k)); m = I,. . , M} denotes the con- 
stellation or the symbol set of the modulation type k. 

The resulting two-dimensional plot of these M vectors 

(sl(m; k),sQ(m; k)), m = 1,. ,M, is called the con- 
stellation or signal space diagram, where each point in 
the diagram is called a constellation point. Examples 

are given in Fig. 1 to illustrate different constellation 
diagrams for QAM signals. 

By imposing the assumptions of independent and 

identically distributed (i.i.d.) symbol sequences and an 
equal probable symbol set, we can derive the following 
equations from (2): 

p(X(t; k)lr(t)) = C’ fi p(li, Qilk). 
i=l 

Note that I, and Q; are the ith one-symbol 
of I-, Q-channel and 

P(~L PI Ik 1 

(4) 

ntegration 

+ (Q; - Q(W k))‘] 
> 

. (5) 

where (s,(m; k),sg(m; k)) is the mth constellation 
point of the kth modulation scheme and 0; = NOT/~. 
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Fig. 1. Examples of QAM constellations. 



2.2. MAP clussijirr 

Suppose that there are K possible modulation 
schemes in association with an N-symbol received 

waveform. Let us construct a multihypothesis test by 
associating each of the K hypotheses HI, Hz,. , HK 
with one modulation scheme. The a posteriori proba- 
bility p(x(t; k)]r(f)) under Hk is specified by Eq. (4). 

Based on the maximum a posteriori (MAP) princi- 
ple, one can minimize the total (or average) error 
probability 

P, = 5 P(H;)i:,. 
i=l 

where the individual decision error E, is defined by 

C, = 1 Prob(decided on H, 1 H; is true), 

by deciding on H,- whenever its a posteriori probability 

is the largest. In other words, the modulation type k 
is chosen by using the following criterion: 

2= arg~~~p(x(t;h)l~(t)). 

Note that the MAP classifier makes decision based on 

the probability calculation using a fixed number N of 
received symbols. 

3. Variable-sample-size test with SPRT 

A statistical test that uses a random number of 
samples is called the sequentid test [ 12, 13,201. One 
important advantage of the sequential test is the flex- 

ibility in controlling the individual error probability 

C; for a multihypothesis test problem. The MAP test 
discussed above minimizes the total error probability, 

but has no control over the individual error proba- 

bility conditioned on a given hypothesis. In a binary 
hypothesis test, the Neyman-Pearson test maximizes 
the correct probability of one hypothesis (i.e. the 

detection probability) while keeping the false alarm 
probability under a certain level. Although it is pos- 
sible to generalize the NeymanPearson test to the 
multihypothesis case, this technique is not widely 
used in practice [26]. In this section, we propose the 
use of the sequential probability ratio test (SPRT) 

for QAM classification for binary as well as multi- 
hypothesis cases. With the sequential test, we can 

keep performing the test with more observations 
until a certain performance or stopping criterion is 

achieved. 

3.1. SPRT.fiw binar?~ hypothr.si.\ 

A binary sequential test [20] can be stated as fol- 
lows. By assuming that the observed sequence of ran- 

dom variables Xi, X*,X,, . . are i.i.d., we would like to 

determine which one of the two hypothesized distri- 
butions the observed sequence comes from. In math- 

ematics, this test can be written as 

H,: Jt’--P,, k=1,2 . . . . . 

HI: X,-P,, k= 1,2 ,..., 

where the notation ‘N’ denotes ‘obtained from a cer- 
tain distribution’, and PI and P2 represent the hypoth- 

esized distributions. A sequential test is characterized 
by a set of stopping rules and a set of decision rules. 
The stopping rule at time IZ tells us whether we should 

stop the experiment with observations Xi.. . ,X, or 
continue the experiment for one more additional ob- 

servationX,+i The decision rule performs the hypoth- 
esis test based on all available data. Note that FSST 
of size n is in fact a special case of a sequential test, 

namely, it always stops at n. 
The sequential probability ratio test (SPRT) pro- 

vides a very effective sequential test. With SPRT, we 
compute the likelihood ratio 

i(X,,X 2,..., X,)= fi L!?!cfw 
kz, Plvi) 

based on samples {Xi ,X2,. . . .X,,}, where pi and p2 
are probability densities associated with distributions 
PI and PI, respectively. Then, this ratio is com- 
pared with some threshold values u and b, where 
O<u<b<m. The test continues until the ratio 

j. (Xl > x2 , . . .,X,,) falls outside (a. b), and the decision 
rule is 

if j(Xi,X2,.... X,)<a + Hi, 

if i(Xi,Xl...., X,)>h + Hz. 
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Fig. 2. Four snapshots of SPRT for BPSK/QPSK classification with symbol SNR = -7 dB. 

To explain SPRT better, we consider an example 

of classifying BPSK/QPSK and show four snapshots 
in Fig. 2 conditioned on that the source signals are 
actually BPSK modulated. The x- and y-coordinates 
of the figure represent the time and the log-likelihood 
ratio value, respectively, and the two parallel lines 
in each snapshot represent the decision thresholds of 
SPRT. Note that the decision thresholds are log a and 
log b because we compute the log-likelihood ratio. 
The four sample curves provides different variations 

of the log-likelihood ratio along the time axis. SPRT 
will not stop until the log-likelihood ratio hits one of 
the two decision boundaries. If the upper (or lower) 
boundary is hit first, we decide on BPSK (or QPSK). 
Time required for decision making depends on the 
data statistics as well as decision boundaries. If input 
data are clearly in favor of one of the two hypotheses 
or decision boundaries are close to zero, it requires a 
smaller number of samples (or, equivalently, shorter 
time delay) in decision making. On the contrary, if 
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input data are more uncertain or decision boundaries 

are away from zero, more time is needed to reach a 
decision. 

3.1.1. Optimality of SPRT 
SPRT with likelihood ratio i and interval (a, b) is 

usually denoted by SPRT(a, b,L). The optimality of 

SPRT can be characterized by the well-known Wald- 

Wolfowitz theorem [27]. This theorem says that on 
the average SPRT requires the minimum amount of 

samples to achieve a given level of performance (i.e. 

the error probability). Thus, the average sample size 

of SPRT is not greater than that of FSST with the 

same performance. 
Furthermore, we can control the decision interval 

(a, b) to adjust the error probabilities of SPRT. Wald 
showed that as long as the error decision probabilities 

are reasonably small, we can choose 

a=&?/(1 -&I) z E2 and b=(l -E~)/EI z I/E,, 

where cl (or ~2) denotes the error decision probability 
given that HI (or Hz) is true. The values a and b are 
called the Wald boundaries. 

3.1.2. Average stopping time 
The average stopping times for HI and HZ can be 

approximated as [20] 

1 - E2 
+ El log ~ , &I 1 

E{7’+2) = i E2 log 
1 - E2 

&+(I -E2)lOgp 
I 1 El ’ 

where 

p,=lZ{log1(X)IHi} and pj#O, forj= 1,2. 

(6) 

The above approximations can be tirther simplified 

to be 

E{NIH,} M % and E{NIH2} =_F (7) 

for reasonably small ~1 and ~2. 

3.1.3. Ejkiency 
Efficiency of SPRT relative to FSST is defined as 

the ratio of their average sample sizes with respect to 
the same error level &j [14], i.e. 

d&j> 
Rj= E(N,Hjj for j= 1,2, 

where n(&j) is the number of samples required by 

FSST to achieve the error level Ej when the hypothesis 
Hj is true. Let us use S, to denote the log-likelihood 

ratio of i.i.d. distributed sequence XI, X2, ,X,. 

S, = e log $$ = 2 log 3,(X,). 

i=l 
I 

i=l 

The error probability given that Hj is true can be writ- 

ten as Ej = P(S, >,OJHj). Assume n >> 1, we can apply 
the central limiting theorem to S, so that 

where Q(x)= & J,” e-y212dy, pj is given by 

Eq. (6), and C$ = Var{log i(X)IHj}. 

We may further simplify Q(x) as [23] 

, 
Q(x) M &eCxe;1 for x > 0, 

so that the log of error probability can be approximated 

by 

2 

log lj E-n-$ fOr&j<l. 

J 

Therefore, the sample size required to achieve the error 
level of cJ via FSST is 

20? 
4&j 1 Z- flog&j. (9) 

pj 

By plugging (9) and (7) into (8), we obtain the effi- 
ciency of SPRT as 

2 

R,j = - 2 for j = 1,2. 

Thus, efficiency can be approximated by the mean and 
variance of log I&Y). 
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Fig. 3. Examples of decision boundaries: (a) Wald’s decision boundary, (b) decision boundary of truncated SPRT, (c) converging decision 

boundary, (d) Read’s decision boundary and (e) Baruah-Bhattacharjee’s decision boundary. 

3.1.4. Decision bounduries 
The standard SPRT by Wald compares the likeli- 

hood ratio with two parallel boundary lines so that one 
of the hypotheses is accepted whenever the likelihood 
ratio reaches one of the boundaries. This condition is 
illustrated in Fig. 3(a). Although Wald’s SPRT is op- 

timal in the sense that it requires the smallest amount 
of samples for decision making with a given individ- 
ual error probability, there have been criticisms and 
modifications of Wald’s SPRT [9,25]. For example, 
although it has been proved that the sample size is 
finite with probability one, the size can be too long 
to be practical. In practice, we may be forced to stop 
even though the stopping criterion has not been met 
yet, and the resulting performance is not as good as 
Wald’s SPRT. This is known as truncated SPRT as 

depicted in Fig. 3(b), where we show an example 
of SPRT truncated at nr samples and C denotes the 
threshold value for decision making after nr samples 
are observed. Another example proposed in [2] is the 
converging boundaries as shown in Fig. 3(c), where 
decision boundaries are dynamically changing with 

time. This kind of decision strategy makes it easier 
to reach a conclusion for longer observation time by 
relaxing the requirement of making correct decisions. 
Figs. 3(d) and (e) are methods proposed by Read [21] 
and Baruah and Bhattacharjee [6], respectively. Read 
suggested to apply SPRT only after 110 samples. Deci- 
sion boundaries in Fig. 3(e) are in fact a combination 
of boundaries in Figs. 3(c) and (d). In our experiments 
given in Section 5, we follow Read’s work as shown 
in Fig. 3(d). 
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Tantaratana [25] reviewed several decision bound- 

aries to reduce the average sample size for a non- 
perfect statistical model [25]. The general approach 
is to combine the fixed-sample-size and the sequen- 

tial tests so that the sequential test is invoked after 
a fixed amount of data have been collected. The 

purpose of this mixture design is to maintain the 

performance at least close to FSST when the param- 

eters are mismatched but still keep average sample 
size as small as Wald’s SPRT when parameters are 

correctly tuned. 

3.2. Multil~.ypothesis test 

As mentioned before, one of the major drawback 
of FSST is that even though it provides the solution 

to the lowest average error probability, there is no as- 
surance in minimizing the individual error probability. 
SPRT was derived for the binary hypothesis case in 

the previous subsection, and the relationship between 

individual error probabilities and Wald’s boundaries 
provides important insights into the multihypothesis 

problem. Several multihypothesis sequential tests have 
been proposed in the past. Most of them divide the test 
into a couple of binary tests. We may classify them 

into [ 131 ( 1) the positive approach, which considers 
simultaneously all possible binary hypothesis tests and 
(2) the negative approach, which eliminates the un- 
likely hypotheses along the process until there is only 
one left. Another way to classify different approaches 

is to see how the alternative hypothesis is constructed 

by using binary hypothesis tests. There are three ap- 
proaches to represent the test statistics of alternative 
hypothesis: ( 1) maximum-likelihood, (2) geometric 

mean and (3) algebraic mean. These approaches are 

explained below. 

3.2. I. Positive approach 

The Armitage test [3, 131 generalizes the binary 
to M-ary hypothesis test by constructing pair-wise 
SPRT for all hypotheses. For example, if there are 

m hypotheses Hl,Hz,..., H, and their corresponding 

probability density functions are PI, ~2,. . , pm, re- 
spectively. This approach stops the test at n samples 
and accepts Hi if 

” Pi(& ) 
(10) 

where Xl, X2 , . . . ,X, are i.i.d. samples. The decision 

error probability E; given that hypothesis Hi is true can 
be controlled by adjusting bi,i and it is bounded by 

Cl =Ch.j 6 5 $,3 

iif I ‘>I 

where Ei,,, is the error probability of claiming Hj given 

that hypothesis H; is true. 

3.2.2. Negative approach 

The negative approach, denoted by m-SPRT 
[ 13, 171, is based on the principle that one can reject 

H; if it is unlikely to be the answer compared with the 

current best candidate Hj* . We stop the test and decide 
Hi if H, is the only hypothesis left. Let Hi* denote 

the hypothesis that gives the maximum-likelihood 

values of X1,X2, . . . ,X,. m-SPRT constructs binary 

SPRT (ai,a, pi/p,*) for if j” such that we reject 
H, if 

n Pi(&) 

k=, Pj*(&) <“’ 
n- (11) 

The error probability E, of rejecting H, can also be 

specified by {al, a2,. . . , a,} such that 

Comparing this approach with the previous one, we 
see that m-SPRT has substantial saving on computa- 

tion, since the number of hypotheses decreases once 

some hypothesis has been rejected. On the other hand, 
the number of hypotheses for the positive approach 

remains the same all the time. For this reason, we 
choose m-SPRT in our experiments. 

4. Reference phase invariant classifiers 

The a posteriori probabilities of received QAM 
waveforms given in previous sections are parameter- 
ized by p, i.e. a vector of communication parameters 
such as the carrier frequency, carrier phase, etc. 
In practice, p is unknown and has to be estimated 
from received data. For the QAM classification 
problem, research effort has focused on deriving a 
reference-phase-free test statistics [ 15, 191. The study 
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of how the reference-phase effects the test statistics 

is valuable because an incorrect carrier frequency 

estimate will result in error in the phase term. This 

section will concentrate on how a reference-phase 

invariant test statistic is derived, and how it can be 
modified to be less sensitive to the frequency esti- 

mate error. From the perspective of statistics, a test 
with unwanted parameters is known as a test with 

nuisance parameters which is denoted by 0 in the 

following. 

4.1. Nuisance-parameter-free test 

There are three approaches reported to solve this 

problem [4]. One approach is to replace the unwanted 

parameter 0 by its maximum-likelihood estimate 

e= argmp p;(x~,x~,...,xk;Q) (12) 

and 

H;: p;(xt,Xz ,..., Xk;e), for i= 1,2 ,..., m, (13) 

where p;(xl ,x2,. . . , Xk; 6) is the probability density 

function parameterized by a nuisance parameter f3 if 
H; is true. 

Wald suggested to use the average probability den- 
sity function by introducing a weighting function to 
average out the unwanted parameter, i.e. 

H;: P;(X) = J P;(x; 0)~,(0) dB, for i = 1,2,. . .,wz, 
0 

where 

J w;(QdQ= 1. 
0 

Usually, w;(0) is chosen to be equally weighted if 
there is no prior knowledge of the unwanted parameter 
8. For example, we may assign ~(0,) = 1/27t, where 
0, is the unknown reference phase of the received 

signal. In particular, if the average of reference phase 
is taken by one symbol period, the phase information 
is lost and the resulting probability density represents 
the amplitude distribution. Therefore, the averaging 
process has to be taken for a several-symbol period in 
order to keep the phase information, i.e. 

K:P;(xl,x2,...,xk) 

=I o PdXI,X2,. . . txk; ~)wi(~) do. (14) 

The third approach is to transform the sample se- 

quencexl,xz,... to another sequence yt , ~2,. . . so that 

the resulting likelihood function of the new sequence 

is not parameterized by the nuisance parameter. For 

example, the phase difference classifier for MPSK sig- 
nals discussed in [ 161 uses the transformation 

a8; = 0; - B;-1 (mod 2~c) 

to obtain the phase difference sequence ad;, where 0; 

is the phase of the received signal sampled at the ith 
symbol period. 

4.2. Practical classifiers based on windowed data 

In practice, the carrier frequency might be un- 

known and has to be estimated from the received 
signals. The frequency offset due to the estimation 

error causes the rotation of signal constellation so 
that the constant reference-phase assumption can be 
violated. Depending on the degree of the frequency 
estimate error, we can still assume a constant ref- 

erence phase for a period of time, e.g. k-symbol 
period. The immunity to frequency estimate error is 
determined by the degree that the constant reference 
assumption is violated in classifier design. The pro- 

posed classifiers segment the received waveform into 
several windows. Data within each window are used 

to calculate the ML phase estimate by using (12) 

and/or the likelihood for each hypothesis by (13) or 
(14). The final test statistic is the product of those 
test statistics calculated for each set of windowed 
data. A smaller window size gives a lower correct 
classification rate since the test statistic contains 

more reference-phase uncertainty. However, it gives a 
slower degradation of the correct rate in the presence 
of larger frequency estimate error. The selection of 
window size is a tradeoff between robustness and per- 

formance. In practice, an appropriate window size can 

be selected based on the knowledge of the receiving 
environment. 

The new algorithms based on the windowed 
data and the decision/stopping rules discussed in 
Section 3.2 are summarized as follows. 

Algorithm 1. Positive approach. 
1. Initialize the corresponding log of likelihood L; for 

hypothesis H;, i.e. L; = 0, Vi. 
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Collect k samples XI, x2,. . . , XX, where k is the given 

window size. 
Calculate the likelihood of hypothesis H; for the k 

samples XI .x1, ,x,4 : 
p,*(xl,x2 ,..., xk),‘di,by(13)or(14). 
Update the log of likelihood L; by L, +log pl(.xt , ~2, 
. . ..Xk). vi. 
Stop the test and accept H; if L, ~ L, > log 6,, j, bj 
# i, where h,,.i is the decision boundary described 

in ( 10). Otherwise, go to Step 2 and collect another 
k samples. 

Algorithm 2. Negative approach. 

1. 

2. 

3. 

4. 

5. 

6. 

-Initialize the corresponding log of likelihood L, for 

hypothesis H,, i.e. L, = 0, ‘di. Initialize the candi- 

date set to include all hypotheses. 

Collect k samplesxr,xz,. ,.q, where k is the given 
window size. 

Calculate the likelihood of hypothesis H; fork sam- 
ples .rr ,x1,. ..yk: 

p:cQ ,.x2,. . .1 xk), vi, by (13) or (14). 
Update the log of likelihood L, by Litlog p;(xt . x2, 

q ), ‘Vi. .)d 
Update the candidate set by removing H; from the 
set if L, ~ Lie < log n,, where L,- = rnaxv; L, and u, 

is the rejection decision boundary in ( 11) for H,. 
Stop the test and decide H,* if H,* is the only hy- 
pothesis left in the candidate set. Otherwise, go to 

Step 2 and collect another k samples. 

The methods apply the yemralixd nusimum- 

likrlil~ood approach or the musimum ucrruye- 

likelihod approach depending on Eqs. ( 13) or (14) 
used in Step 3. These algorithms have three advan- 

tages: ( 1) a sequential test is feasible; (2) the window 
size is adjustable to improve the performance for var- 
ious channel conditions; 

test is feasible. 

and (3) a multihypothesis 

5. Experimental results 

Example 1. 8-PSK/ 16-PSK classification. 
We show in Fig. 4 the required average sample 

size (ASN) of SPRT compared with FSST (MAP) 
to classify 8-PSK/l6-PSK for symbol SNR ranging 
from 8 to 17 dB. Their constellations are shown in 

Figs. 1 (c) and (d). The desired performance is to 
achieve 99% individual correct rate when the input 
modulation schemes are either 8-PSK or 16-PSK for 

SPRT and 99% average correct rate for FSST. We 

see that the efficiency of SPRT is about 3 dB for all 

SNR values. This means that we only need about one- 

half of the samples on the average to make decision 

to reach the same correct level with SPRT rather than 
FSST. 

Example 2. 8-PSK/V.29 (7200 bps)/Star 8-QAM 
classification. 

The test set is composed of three X-QAM constel- 

lations: 8-PSK, V.29 (7200 bps) and Star 8-QAM. 
The corresponding constellation diagrams are given 

in Figs. l(c), (d) and (f). Two thousand sets of data 
were simulated for every constellation. The average 

and individual correct rates for using 100 symbols for 
classification is shown in Fig. 5. We can see from the 

figure that the individual error rates are not evenly 
distributed. The low SNR correct rate is very low for 
V.29 but high for 8-PSK in comparison with the av- 
erage correct rate. The reason why V.29 is difficult 

to identify can be explained by the fact that V.29 
has two amplitude levels, which is the same as Star 
8-QAM. and 8 phase angles. which is the same as 
8-PSK. As a result, V.29 has a greater chance to 
be misclassified. This experiment represents a typi- 

cal challenge to multihypothesis FSST. This problem 
could be resolved by adjusting the decision thresh- 

old of test statistics so that errors can be more evenly 

distributed. 

To demonstrate the performance of SPRT, we gen- 

erate 1000 sequences of a maximum length of 50 000 
symbols for each of the three modulation schemes. By 
enforcing the maximum number of samples used to 
make decisions to be finite, we basically adopt trun- 
cated SPRT. Furthermore, the following three cases 
using the negative approach are examined: 
l Test Case 1: symbol SNR 4dB, known reference 

phase, up = uv = us = 0.01; 
l Test Case 2: symbol SNR 4dB, known reference 

phase, up = uv = as = 0.05; 
l Test Case 3: symbol SNR OdB, known reference 

phase, up = av = as = 0.0 1. 
Note that the subscripts P, V and H denote the 
three modulation schemes S-PSK, V.29 (7200 bps) 



274 Y.-C. Lin, C.-C. Jay Kuol Signal Processing 60 (1997) 263-280 

Identification of 6-PSK against 16-PSK 

Identification of 16-PSK against 6-PSK 
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Fig. 4. The number of symbols required to achieve error level of 0.01 is plotted as a function of symbol SNR in 8-PSK/16-PSK classification 

with the input is (a) S-PSK and (b) I6-PSK modulated. 
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Fig. 5. Correct classification rates in classifying $-PSK, V.29 (7200bps) and Star R-QAM using FSST 
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and Star &QAM, respectively. Also, the choice of 

boundary decision parameter up = a implies a correct 

classification rate close to I - 2a when the input 
signal is 8-PSK modulated. Thus, without truncation, 

the correct rates for Test Cases 1 and 3 should be 
about 98% while the correct rate for Test Case 2 is 
about 90%. 

Results for Test Case 1 are summarized in Table I, 
where RR and AST represent the rejection rate and 
the average stopping time, respectively. For exam- 
ple, the last two columns in Table l(a) tells that, 

with 1000 Star 8-QAM trial sequences, it takes, on 
the average, 120 samples (symbols) to reject HP (8 

PSK) and the rejection rate is 99.8%, and takes on 
the average 1448 samples to reject Hv (V.29) and 
the rejection rate is 98.6%. Finally, only 1.6% of 
the trials make mistakes by rejecting the underlying 
Hs while the average stopping time is 961 samples. 
Note that to make the final decision among the three 

hypotheses, we have to reject two hypotheses. The 
average sample size required to make the final deci- 
sion is listed at the bottom row for each input signal 
type. It is clear that we need six times more samples 
to recognize Star 8-QAM and V.29 than 8-PSK. This 

is consistent with our previous experience in FSST 

that 8-PSK is the most recognizable constellation 
among the three test modulations. The predicted av- 
erage reject time by using Wald’s approximations is 

shown in Table l(b) for comparison. The predictions 
are very close. Table l(c) shows the decision results 
of using truncated SPRT. The ‘correct rate’ column 

shows the individual average correct classification 
rate. We observe correct rates around 98% via de- 
sign. The column P + V denotes that only Hypothesis 

S is rejected after 50000 samples and P + V + S 
indicates that no hypothesis has been rejected. It 
turns out that none of these cases exist in the current 

experiment. 
Test Case 2 is used to show how the values of 

up, av and as control the desired performance. By 
changing their values from 0.01 to 0.05, we see from 
Table 2 that the correct rate is reduced from 98% 
to 90%. However, the average sample size is also 
reduced by a factor of 60-75%. For comparison, we 
also performed FSST which is comparable with Test 
Case 2 by fixing the sample size to be 900 symbols. 
The average correct rate is 91.6% and the individual 
correct rates for 8-PSK, V.29 and Star 8-QAM are 
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Table 1 

(a) Rejection rates (RR), average rejection time (ART) and average sample sizes (ASN) 

Input signals 

Hypothesis 

8-PSK 

V.29 7200 bps 

Star I-QAM 

8-PSK 

RR (%) 

0.6 

99.4 

100.0 

ART 

199 

229 

122 

V.29 7200 bps Star 8-QAM 

RR (%) ART RR (%) ART 

99.2 207 99.8 120 

1.4 1066 98.6 1448 

99.4 1435 1.6 961 

ASN 231 1465 1445 

(b) predicted average rejection time (ART) 

Input signals 

Hypothesis 

I-PSK 

Predicted ART 

V.29 7200 bps 

Predicted ART 

Star I-QAM 

Predicted ART 

I-PSK NA 224 118 

V.29 7200 bps 231 NA 1484 

Star 8-QAM 123 1493 NA 

(c) decision results and correct rates (CR) for Test Case 1 

Decisions 

Input signals CR P V S p+v p+s v+s p+v+s 

8-PSK (P) 99.4 99.4 0.6 0.0 0.0 0.0 0.0 0.0 

V.29 7200 bps (V) 98.6 0.8 98.6 0.6 0.0 0.0 0.0 0.0 

Star I-QAM (S) 98.4 0.2 1.4 98.4 0.0 0.0 0.0 0.0 

99.9%, 88.0% and 86.8%, respectively, as shown in 
the last column in Table 2(c). The average correct rate 
of FSST is slightly lower than that of SPRT (92.9%). 
The average ASN for FSST and SPRT are 900 and 
626, respectively. We see that, on the average, SPRT 
needs only about 5 of symbols required by FSST 
with almost identical average correct rates in this 
experiment. 

Results for Test Case 3 are given in Table 3. The 
average stopping time conditioned on a particular 

hypothesis and the average sample size to make 
decision increase significantly due to the lower sym- 
bol SNR value. Furthermore, there exists more than 
one non-rejected hypotheses after 50000 samples. 
For example, there are 4.6% of the V.29 simula- 
tion sequences which cannot be distinguished from 
Star S-QAM. In computing the final correct rate, 
we are forced to make decision by comparing their 
probabilities based on 50000 samples. It turns out 
the final correct rate is only slightly less the sum 
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Table 2 

(a) Rejection rates (RR), average rejection time (ART) and average sample sizes (ASN) 

Input signals 

Hypothesis 

8-PSK 

RR (%) ART 

V.29 7200 bps 

RR (%) ART 

Star 8-QAM 

RR (%) ART 

8-PSK 5.6 114 96.8 I31 99.7 81 
V.29 7200 bps 94.4 148 8.0 554 92.5 916 
Star 8-QAM 100.0 88 95.2 789 7.8 619 

ASN 157 820 90 I 

(b) predicted average rejection time (ART) 

Input signals 

Hypothesis 

R-PSK V.29 7200 bps Star 8-QAM 

Predicted ART Predicted ART Predicted ART 

8-PSK NA 146 80 
V.29 7200 bps I51 NA 965 
Star X-QAM 77 971 NA 

(c) decision results and correct rates (CR) for Test Case 2 

Input signals 

X-PSK (P) 

V.29 7200 bps (V) 

Star R-QAM (S) 

SPRT 

CR 

94.4 

92.0 

92.2 

P 

94.4 

3.2 

0.3 

V 

5.6 

92.0 

7.5 

S 

0.0 

4.8 

92.2 

p+v 

0.0 

0.0 

0.0 

p+s 

0.0 

0.0 

0.0 

v+s 

0.0 

0.0 

0.0 

p+v+s 

0.0 

0.0 

0.0 

FSST 

CR 

99.9 

88.0 

86.8 

of the actual correct rate and the probability of the 
ambiguity case. For example, as indicated in the 
row for V.29 of Table 3(c), the final correct rate 

is 97.5% which is approximately equal to the sum 
of 93.5% (the correct rate) and 4.6% (ambiguity 

between V + S). Thus, a direct probability com- 
parison based on 50000 samples is in favor of the 
right decision. The same statement applies to Star 
8-QAM test sequences. This is consistent with our 
intuition. 

Example 3. Reference phase invariant SPRT. 
This experiment includes 11 QAM modulation 

schemes: BPSK (2P), QPSK (4P), S-PSK (SP), 
16-PSK (16P), V.29 7200 bps (SV), V.29 9600 bps 

(16V), 16-QAM (16Q), 32-QAM (32Q), 64-QAM 

(64Q), 128-QAM (128Q) and 256-QAM (256Q), 
where names in the parentheses are their simplified 
notations. One thousand symbol sequences are gen- 
erated for every modulation scheme at 10 dB symbol 
SNR. Results of using SPRT to achieve 99% correct 
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Table 3 

(a) Rejection rates (RR), average rejection time (ART) and average sample sizes (ASN) 

Input signals 

Hypothesis 

I-PSK 

RR (%) ART 

V.29 7200 bps 

RR (%) ART 

Star R-QAM 

RR (%) ART 

8-PSK 1.4 2714 99.1 2785 100.0 1545 

V.29 7200 bps 98.6 2952 I .9 11311 94.0 19541 

Star 8-QAM 100.0 1736 94.4 18393 2.3 7496 

ASN 2996 20218 20 429 

(b) predicted average rejection time (ART) 

Input signals 

Hypothesis 

8-PSK 

V.29 7200 bps 

Star I-QAM 

8-PSK 

Predicted ART 

NA 

3068 

1675 

V.29 7200 bps 

Predicted ART 

2979 

NA 

21 650 

Star 8-QAM 

Predicted ART 

1609 

21477 

NA 

(c) decision results and correct rates (CR) for Test Case 3 

Decisions 

Input signals CR P V S PfV p+s v+s p+v+s 

I-PSK (P) 98.6 98.6 1.4 0.0 0.0 0.0 0.0 0.0 

V.29 7200 bps (V) 97.5 0.9 93.5 1.0 0.0 0.0 4.6 0.0 

Star R-QAM (S) 97.5 0.0 2.3 94.0 0.0 0.0 3.7 0.0 

rejection rate with the maximum average-likelihood 

approach over a 100 symbol window are given in 
Table 4. Read’s decision boundaries are used by ap- 
plying SPRT after receiving 100 symbols. Therefore, 
the minimum stopping time is 100 symbol periods. 
The rejection rate (RR) for every hypothesis and 
modulation source, the average rejection time (ART) 
by simulation, and the average correct rate (ACR) 
and the decision confusion matrix are shown in 
Table 4(a)-(c), respectively. 

6. Conclusions 

Several QAM classification algorithms based on the 
likelihood statistics were examined in this research. 
In particular, we proposed a new QAM classification 
algorithm based on the sequential probability ratio 
test (SPRT) and demonstrated that SPRT has several 
advantages over the classical fixed sample size test 
(FSST). FSST guarantees the minimum total error 
probability solution by choosing the hypothesis which 
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Table 4 

(a) Rejection rates (RR) 

Hypotheses RR (%) 

Source 2P 4P 8P 16P xv 16V l6Q 

2P 0.0 100.0 100.0 

4P 100.0 0.0 100.0 

8P 100.0 100.0 I .4 

16P 100.0 100.0 99.2 

8V 100.0 100.0 100.0 
16V 100.0 IOO.0 100.0 

160 100.0 100.0 100.0 

32~ 100.0 100.0 100.0 

644 100.0 100.0 100.0 

l28Q 100.0 100.0 100.0 

2564 100.0 100.0 100.0 

100.0 

100.0 

98.6 

0.X 

100.0 

100.0 

100.0 

IOO.0 

IOO.0 

100.0 

100.0 

100.0 

100.0 

100.0 

0.4 

IOO.0 

100.0 

100.0 

100.0 

100.0 

100.0 

100.0 100.0 

100.0 100.0 

100.0 100.0 

100.0 100.0 

IOO.0 99.6 

I .o 100.0 

99.0 4.0 

100.0 100.0 

100.0 99.0 

100.0 100.0 

100.0 100.0 

32~ 64Q 

100.0 100.0 

100.0 100.0 

100.0 100.0 

100.0 100.0 

100.0 IOO.0 

100.0 100.0 

99.0 98.0 

I .4 100.0 

100.0 5.0 

99.0 IOO.0 

100.0 Y8.0 

l28Q 2560 

100.0 100.0 

100.0 100.0 

100.0 100.0 

100.0 100.0 

IOO.0 100.0 

100.0 99.0 

100.0 100.0 

99.4 99.2 

98.0 94.0 

2.0 99.0 

9X.8 3.2 

(b) average reject time (ART) 

Hypotheses ART (simulation) 

Source ASN 2P 4P 8P l6P 8V l6V 16Q 32~ 64Q l28Q 2560 

2P 100 NA 100 100 100 I00 100 100 100 100 100 100 

4P IO1 100 NA 100 100 IO1 100 100 100 I00 100 IO0 

8P 6222 IO0 100 6375 6218 100 IO1 109 II3 I05 II0 105 

l6P 6863 100 IO1 6852 8900 100 102 107 II2 104 109 104 

8V 146 100 100 100 100 100 II8 144 I05 135 IO6 I32 

l6V 717 100 100 100 100 II0 320 367 315 653 403 582 

32Q 9799 100 100 106 106 IO1 420 416 I I 850 632 965 I 56X 

640 34 385 100 100 103 I03 I I9 556 1417 615 15540 540 31403 

l28Q 9312 100 100 107 106 103 450 312 9298 633 2550 663 

256Q 33 OX6 100 100 104 104 I I4 516 976 534 32 970 547 25 261 

(c) decision results by using reference phase invariant SPRT 

Decisions (%) 

Source ACR 2P 4P 8P l6P 8V l6V l6Q 324 

2P IOO.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

4P 100.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 

UP 98.6 0.0 0.0 98.6 I .4 0.0 0.0 0.0 0.0 

I6P 99.2 0.0 0.0 0.8 99.2 0.0 0.0 0.0 0.0 

XV 99.6 0.0 0.0 0.0 0.0 99.6 0.0 0.4 0.0 

l6V 99.0 0.0 0.0 0.0 0.0 0.0 99.0 0.0 0.0 

j6Q 96.0 0.0 0.0 0.0 0.0 0.0 I .o 96.0 I .o 

320 9X.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 98.6 

64Q 95.0 0.0 0.0 0.0 0.0 0.0 0.0 I .o 0.0 

l2RQ 98.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 I .o 

2560 96.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

64Q 1280 256Q 

0.0 0.0 0.0 

0.0 0.0 0.0 

0.0 0.0 0.0 

0.0 0.0 0.0 

0.0 0.0 0.0 

0.0 0.0 I .o 

2.0 0.0 0.0 

0.0 0.6 0.8 

95.0 2.0 2.0 

0.0 98.0 I.0 

2.0 I .2 96.8 
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gives the maximum a posteriori probability (MAP). 

However, it does not have the control of the individ- 

ual error probability given that one of the hypotheses 
is true. In contrast, SPRT provides an effective way to 

control the individual error probability. The number 
of samples required to make decision represents the 

delay to establish communication links. SPRT guar- 

antees the minimum average delay with a certain level 
of error probability. The merit of the proposed method 
was supported by extensive experimental results. 

Practical algorithms based on windowed data and 
the sequential test were presented to classify signals 

with an unknown reference phase. The selection of 

the window size is a tradeoff between the robustness 
and the performance in the presence of the frequency 

offset. In practice, an appropriate window size can 
be selected based on the knowledge of the receiv- 
ing environment. However, it would be interesting to 

investigate an adaptive algorithm that can automati- 
cally adjust the window size according to the channel 

condition. A more detailed analysis is expected to be 
performed in future research. 
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