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Abstract—In this paper, we propose a new fast algorithm for
block motion vector (MV) estimation based on the correlations of
the MV’s existing in spatially and temporally adjacent as well as
hierarchically related blocks. We first establish a basic framework
by introducing new algorithms based on spatial correlation and
then spatio-temporal correlations before integrating them with
a multiresolution scheme for the ultimate algorithm. The main
idea is to effectively exploit the information obtained from the
corresponding block at a coarser resolution level and spatio-
temporal neighboring blocks at the same level in order to select
a good set of initial MV candidates and then perform further
local search to refine the MV result. We show with experimental
results that, in comparison with the full search algorithm, the
proposed algorithm achieves a speed-up factor ranging from 150
to 310 with only 2–7% mean square error (MSE) increase and a
similar rate-distortion performance when applied to typical test
video sequences.

Index Terms—Block matching, motion estimation, multiresolu-
tion, spatial correlation, temporal correlation, video coding.

I. INTRODUCTION

V IDEO image compression plays an important role in
transmission and storage of digital video data. The ap-

plications include multimedia transmission, teleconferencing,
videophone, high-definition television (HDTV), CD-ROM
storages, etc. The main idea to achieve compression is
to remove temporal and spatial redundancies existing in
video sequences. One effective method commonly used
in reducing temporal redundancy is motion-compensated
predictive coding, which is also employed in the MPEG
standard [3], [10], [11]. The key ingredient in motion-
compensated coding is motion vector (MV) estimation. The
block matching technique has been widely used for MV
estimation due to its simplicity. A straightforward way to
obtain MV is to perform the full-search block matching
algorithm (FBMA) by searching all locations in a given
search area and selecting the position where the matching
residual error is minimized. However, this procedure requires
an extremely large amount of computation. MV estimation
is known to be the main bottleneck in real-time encoding
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applications, and the search for an effective MV estimation
algorithm has been a challenging problem for years.

Fast block matching algorithms have been developed [12]
to reduce the computational cost. They can be categorized into
different groups as detailed below.

A. Fast Block Matching with Unimodal
Error Surface Assumption

Most fast block matching algorithms [4]–[6], [13]–[15]
restrict the number of search locations using the unimodal
error surface assumption, namely, the matching error increases
monotonically as the search moves away from the position of
the global minimum error. However, this assumption usually
does not hold, and as a result, the search could be trapped
to a local minimum with a relatively large matching error.
Moreover, these algorithms treat each block independently and
tend to result in a noisy motion field and create the blocking
effect in reconstructed images. Some well-known algorithms
in the class include the three-step search (TSS) [6] and the
two-dimensional logarithmic search (TDL) [5].

B. Fast Block Matching with Pixel Subsampling

Another interesting technique to reduce the complexity
of MV estimation is block matching with pixel subsam-
pling proposed by Liu and Zaccarin [9]. Instead of limiting
the number of search locations, the number of pixels used
in matching error computation is reduced. The technique
is called alternating 4 : 1 pixel subsampling in [9], since
there are four possible 4 : 1 pixel subsampling patterns to be
used alternatively. It was shown that using all four patterns
in a specific alternating manner gives a better result than
using only one 4 : 1 subsampling pattern. This technique
reduces the number of matching operations by a factor of
four. Furthermore, two other techniques were also presented
in [9] to enhance the performance. One is called subsam-
pled motion-field estimation which exploits the idea of block
subsampling, and the other is called subblock motion-field
estimation where a smaller block size is used. The first one
reduces the number of operations by a factor of two while the
second one has a reduction factor of four. Finally, two fast
algorithms based on the combination of the first (alternating
4 : 1 pixel subsampling) and the second (subsampled motion-
field) techniques and the combination of the first and the
third (sub-block motion-field) techniques were proposed. They
reduce the computational complexity by factors of 8 and
16, respectively. The above three techniques provide a set
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of good tools which can be incorporated in several existing
algorithms to obtain an additional amount of computational
reduction.

C. Fast Block Matching with Spatial/Temporal Correlations

Another direction for fast MV estimation approach is to
exploit information from adjacent blocks by using spatial
and temporal correlations of MV’s [18], [20]. The main idea
is to select a set of initial MV candidates from spatially
and/or temporally neighboring blocks and choose the best
one (according to a certain rule) as the initial estimate for
further refinement. Theoretically, the initial estimate can be
obtained by using an autoregressive (AR) model [18], [20].
For such a simple model, only one candidate is chosen and
used as the initial estimate in experiments. The refinement
process involves a full search with a reduced search area.
It turns out that the full search procedure still requires a
considerable amount of computation despite being performed
on the reduced search area.

A hybrid algorithm which uses both block-recursive and
block-matching methods was proposed in [17]. Although its
original motivation did not aim at the use of spatial and
temporal correlations, it did provide an interesting way to
use both correlations effectively. In the algorithm, the MV
candidates were selected from two spatially and one tempo-
rally neighboring blocks. In the refinement process, a block
recursive idea was explored to compute the gradient direction
for MV update. However, the gradient approach does not
work well for real-world fast motion image sequences since an
oscillation in the search direction may occur in refinement. It is
therefore limited to applications with relatively slow motion,
e.g. videoconferencing.

D. Hierarchical and Multiresolution Fast Block Matching

One family of fast block motion estimation algorithms relies
on the idea of predicting an approximate large-scale MV
in a coarse-resolution video and refining the predicted MV
in a multiresolution fashion to obtain the MV in the finer
resolution. They are called the hierarchical [1], [2] or the
multiresolution methods [7], [16], [19], [21]. The hierarchical
methods [1], [2] use the same image size but different block
sizes at each level. The underlying assumption is that the
MV obtained from a larger block size provides a good initial
estimate for MV’s associated with smaller blocks which are
contained by the larger block. This assumption is often not
true and the estimate can be very poor. Furthermore, a larger
block size implies a higher computational cost in performing
block matching. The multiresolution methods [7], [16], [19],
[21] use different image resolutions with a smaller image size
at a coarser level (i.e., of a pyramid form). They can be further
divided into two groups: constant block size and variable block
size.

In [7] and [16], the same block size is used at each
level. Thus, a block at the coarser level represents a larger
region than that at the finer level so that a smaller search
area can be used at coarser levels. If the image size is
reduced by half as the level becomes coarser, one block

at a coarser level covers four corresponding blocks at the
next finer level. Then, the MV of the coarser-level block
is either directly used as the initial estimate for the four
corresponding finer-level blocks [7] or interpolated to obtain
four MV’s of the finer level [16]. In [19] and [21], different
block sizes are employed at each level to maintain a one-to-
one correspondence between blocks in different levels. Then,
the MV of each block is directly used as an initial estimate
for the corresponding block at the finer level. Methods in this
category work relatively well and provide fast computation.
However, they only use the information from coarser levels
for the MV refinement in finer levels without considering other
useful information such as spatial and temporal correlations
among MV’s at the same level. Furthermore, the refinement
process is performed by using a full search algorithm with a
reduced search area which nevertheless requires a considerable
amount of computation.

E. Overview of Our Work

Even though many fast MV estimation techniques have
been proposed as reviewed before, we feel that the spatial
and temporal correlations of MV’s have not yet been fully
exploited in reducing the search time while maintaining a
reasonable rate-distortion tradeoff. The use of an AR model
to characterize spatio-temporal correlations of the motion
field could provide an elegant theoretical result. However,
its derivation requires a certain amount of computational
complexity and its practical value decreases. Our goal is
to develop a sequence of fast MV estimation algorithms
which exploit the spatio-temporal correlations of MV’s in a
computationally simple way and yet work effectively in the
sense of producing small residual errors. Furthermore, we
incorporate such correlations in a multiresolution framework
to improve the overall performance.

This paper is organized as follows. We first propose two
new algorithms using only the spatial correlation. They are
called S1 and S2 (where S denotesspatial) and are introduced
in Sections II and III, respectively. Algorithm S1 provides the
basic framework while algorithm S2 is a modified version. To
achieve a better performance, we incorporate the information
from the temporal domain and propose two fast algorithms
based on spatio-temporal correlations. They are called ST1 and
ST2 (where ST stands forspatial and temporal) and are de-
scribed in Sections IV and V, respectively. Then, we integrate
the spatio-temporal technique with the multiresolution scheme
to obtain the ultimate algorithm called MRST (where MR
denotesmultiresolution) in Section VI. The MV’s obtained
from all proposed algorithms are compatible with the MPEG
standard. The performance of all algorithms is demonstrated
via extensive experiments in Section VII. Concluding remarks
are given in Section VIII.

II. FAST ALGORITHM BASED ON SPATIAL CORRELATION: S1

The following framework is adopted in our discussion. Each
image frame is divided into nonoverlapping square blocks of
16 16 pixels as specified by MPEG. We use to
represent a block of theth frame, where and are block
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indexes along the row and column directions, respectively.
For example, an image of size 352 240 pixels has block
indexes and , and
and represent the blocks in the first row and first
column, respectively. We would like to determine the MV for
each block between two consecutive frames with a certain fast
MV estimation algorithm. Without loss of generality, when we
talk about the MV of block , it is calculated based on
forward prediction, i.e., the MV between frames and .
However, the same idea can be applied to backward prediction
and generalized to bidirectional prediction.

It has been observed that the MV of a certain block is the
same or very close to the MV’s of its spatially adjacent blocks.
To illustrate the spatial correlation of MV’s, we compute
the MV spatial differentials of consecutive blocks along the
horizontal and vertical directions via full search for 30 frames
of the “football” sequence (frame 31 to 60), and plot the
histograms of the averaged occurrence number of- and -
components of these differentials in Fig. 1. The high peaks
at the zero differential value indicate that the MV field is
highly correlated along both horizontal and vertical directions.
We also observe similar histogram plots for other frames in
any other image sequences. Such an observation suggests
that the MV of a given block can be predicted from its
spatially neighboring blocks. This is the main idea behind our
algorithm.

Based on this spatial correlation property of MV’s, we
propose a fast MV estimation algorithm called S1 in this
section. It consists of two major building elements: 1) the MV
candidate selection and 2) the MV refinement process. Before
a detailed discussion on each component, we would like to
define the following terms to make the discussion clear.

• The initial MV candidatesrepresent a set of MV can-
didates selected from spatial (and temporal as well as
hierarchical in later sections) neighboring blocks with a
certain selection rule.

• The best MV candidaterepresents the one MV chosen
from the set of initial MV candidates to serve as the
starting point for the MV refinement process.

• The final MVrepresents the final MV result obtained.

A. MV Candidate Selection

To begin the MV estimation process, we perform the
full search block matching algorithm to determine the
MV’s of the four blocks at the top left corner, i.e.,

and . Since the
search cannot go beyond image boundaries, MV’s of boundary
blocks and are limited such
that all pixels referenced by them are within the image
area, and therefore, a full search at block will
provide a more accurate initial MV candidate for the following
estimation task. When performing a full search, an alternating
4 : 1 pixel subsampling technique [9] can be used to reduce the
computational cost, i.e., for a block of size 1616, only the
values at 64 pixels are used to compute the mean of absolute
difference (MAD). It was shown in [9] that a reasonably
good MV estimate can be obtained by using such a pixel

(a)

(b)

Fig. 1. Histograms of the averaged number of MV spatial differentials of x-
and y-components along the (a) horizontal and (b) vertical directions for 30
frames of the “football” sequence (ft31 to ft60).

subsampling technique. This gives a computational reduction
by a factor of four in comparison with a straightforward
implementation of the MAD computation.

After the initialization step, we proceed to the next block
according to a rowwise ordering, i.e., starting from the left
to the right for the first row, then the second row, and so
on, and use the MV’s of blocks

and as the initial MV
candidates for block . Note, however, that blocks
along the boundaries have fewer initial candidates than the
inner blocks. Among the four initial MV candidates, the one
with the smallest MAD (denoted by ) is chosen as the
best MV candidate ( ) for block and used as the
starting point for further MV refinement. In other words, let

be the set of initial MV candidates, and
be the MAD corresponding to the vector. Then,

the best MV candidate can be expressed as
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Fig. 2. Local search around procedure: the search starts at the new center
(best MV candidate)V0 and its eight neighboring points, and moves fromV0
to V1 and toV2 since the minimum points in the first two steps are not in the
center and the new MAD’s are still greater thanTH1. The search stops after
searching aroundV2 since the minimum is located at the centerV2.

B. MV Refinement Process

The refinement process begins with the best MV candidate
( ) and its corresponding MAD value ( ). A threshold

is set so that if , the best MV candidate
is chosen as the final MV for block . If

, we use the spatial correlation property and assume that
the best MV candidate is close to the desired final MV.
Even though the assumption that the matching error increases
monotonically as the searching point moves away from the
global minimum (i.e., the unimodal error surface assumption)
is generally not true, it seems reasonable to assume that the
matching error surface is monotonic in a small neighborhood
around the global minimum. This assumption was used to
find small motion for low bit-rate coding applications in
[8]. It implies that if the initial search point is close to the
global minimum, there is a high probability to find the global
minimum. In the current context, the best candidate is
viewed as a new search center so that a search is performed
around its neighborhood. The search starts at the new center
and its eight neighboring points. If either the minimum MAD
among nine of them occurs in the middle (center), or the new
smaller MAD has the value , the procedure stops.
Otherwise, it keeps the same search procedure by using the
position with the new minimum MAD as the new search
center. The process iterates until either the stopping criterion
is satisfied or the preset maximum number () of search steps
is reached. We call the above search procedurelocal search
around and depict it in Fig. 2. As shown in the figure, eight
surrounding locations are searched at each step.

It is observed that the 4 : 1 pixel subsampling technique
gives an unacceptably coarse matching result in the current
context, since we consider nine search points at a time and
need an accurate local minimum point for the next step. It
is nevertheless possible to reduce computation in the MAD
calculation at each location. That is, we consider the checker-
board partitioning of 16 16 pixels within each block and use
one half of the pixels beginning at top left pixel for matching.
It turns out that this reduction gives sufficiently good results

required for a further refinement. Furthermore, even though
we have to compute the MAD for nine points at the first step,
the MAD has to be computed at only three or five positions
in the following steps due to the overlap of the neighborhoods
of consecutive centers.

As discussed above, there are three possible conditions for
the local search around procedure to stop. First, if it stops
because , the position corresponding to this
MAD value is chosen as the desired final MV. Second, if
the procedure stops because of reaching the maximum step
number of iteration, it is likely that the MV of the current
block may not be close to MV’s of its neighboring blocks. This
phenomenon often results from motion discontinuity, occluded
regions, or a certain type of mixed motion. Thus, we perform
a full search with alternating 4 : 1 pixel subsampling to find
the MV for this block. Third, if the search stops because
the minimum MAD occurs in the middle among nine points,
it seems reasonable to choose that point as the final MV.
However, it is possible that the best MV candidateis too far
from the desired final MV so that we actually get trapped to a
wrong local minimum. To avoid such a problem, we check the
MAD value at that point. If its MAD value is not larger than a
threshold value (another threshold which is greater than

), then we choose the corresponding position to be the
final MV. Otherwise, a full search algorithm with alternating
4 : 1 pixel subsampling is performed to determine the MV for
the current block. This completes our refinement process. Let
us summarize Algorithm S1 as follows.

Algorithm S1
1) The algorithm is initialized by performing a full search

with an alternating 4 : 1 pixel subsampling technique
on four blocks located at the top left corner, i.e.,

and . The
full search algorithm has the maximum displacement

along both horizontal and vertical directions.
2) We proceed the MV search for the block from the top left

to the bottom right with a rowwise ordering. For block
, we use the MV’s from its four neighboring

blocks
and as possible initial candidates and
choose the one with the smallest MAD ( ) as the
best MV candidate ( ) for the block .

3) If , the best MV candidate is chosen
as the final MV. Then, we move to the next block
(returning to Step 2). Otherwise, go to Step 4.

4) If , perform the local search around
procedure until reaching one of the following three
stopping criteria:

i) the new minimum MAD ;
ii) the minimum MAD among nine points at one step

occurs at the middle (center) location;
iii) the search step number reaches the maximum limit

( ).

5) If the search stops because of condition i), the position
giving the minimum MAD is chosen as the final MV.
If the search stops due to condition ii), we check the
minimum MAD value in the center. If the MAD value



CHALIDABHONGSE AND KUO: FAST MOTION VECTOR ESTIMATION 481

Fig. 3. Block pattern and the illustration of the MV candidate selection
procedure for Algorithm S2, where groupsG1; G2; and G3 are denoted
by 1, 2, and 3, respectively.

(another threshold greater than ), the position
is accepted as the final MV. Otherwise, switch to the
full search mode with alternating 4 : 1 pixel subsampling
to determine the MV. If the search stops because of
condition iii), a full search with alternating 4 : 1 pixel
subsampling is performed to obtain the final MV.

6) Proceed to the next block by returning to Step 2. After
all the blocks in a frame are processed, go to the next
frame with Step 1.

III. M ODIFIED SPATIAL-BASED ALGORITHM: S2

The spatial correlation of MV’s was exploited to develop
a fast MV estimation algorithm known as S1 in Section II.
In this section, we propose another algorithm called S2 with
the objective to speed up the search computation while main-
taining a similar performance in the resulting MSE (or rate-
distortion). The new algorithm is motivated by the observation
that, in many cases, the MV’s have a long range spatial
correlation. That is, the MV’s associated with 2 : 1 horizontally
or vertically subsampled blocks still have a strong spatial
correlation. Thus, by using block subsampling, we classify
blocks into several different types. Then, the MV of a certain
type of block can have its initial MV candidates coming from
four noncausal spatial directions rather than causal directions
(i.e., upper and left) only as occurred in S1. The resulting
scheme provides a faster search for these blocks since a better
set of initial MV candidates is used. Consequently, we obtain
an overall performance improvement.

A. MV Candidate Selection

We classify each block into one of the three types,
, and as shown in Fig. 3. We first treat the image

as if it consists only of blocks, and perform the MV
estimation for blocks in the group with Algorithm S1.
That is, for block in , we use the MV’s from
blocks and

to be initial MV candidates as shown in
Fig. 3, and the one with the smallest MAD is chosen as the
best MV candidate for further MV refinement to obtain the
final MV.

Each block is surrounded by four blocks at its four
corner positions. We use the MV’s from the four blocks

as initial MV candidates and choose the one with the smallest
MAD as the best MV candidate for further refinement. There
are some blocks which lie along image boundaries and
require some special attention. Following the above rule, its
initial MV candidates come from one or two nonboundary
blocks. However, the boundary blocks can only have a certain
range of MV’s so that their MV’s may be quite different from
those of the inner blocks. Thus, we include the MV from the
nearest block located on the same boundary which has
been obtained earlier as an additional initial MV candidate for
boundary blocks. Finally, we perform the MV refinement
process to obtain the final MV for blocks.

The next step is to estimate the MV’s for blocks. As
shown in Fig. 3, we now have the initial MV candidates
from and blocks. To be more precise, for a
block , we use the four MV’s from blocks

and as its
initial MV candidates. These MV candidates come from blocks
located at the same row or the same column, and they tend to
provide a better candidate set than the ones provided by four
corner blocks. Blocks along boundaries can also be handled in
a straightforward fashion. The best MV candidate is obtained
from the one giving the smallest MAD and used for the further
refinement.

B. MV Refinement Process

The refinement process for blocks in groups and is
performed in the same way as that in S1 (see Section II–B)
with a slight modification for blocks. As mentioned above,

blocks tend to have a better set of initial MV candidates
than and blocks so that the MV of each block
should be close to one of its surrounding initial MV candidates.
Thus, the refinement for blocks is performed without
switching to the full search mode. In other words, after
choosing the best MV candidate () with the smallest MAD
among initial MV candidates, if , the vector
is chosen to be the final MV. Otherwise, we perform the local
search around. Whatever condition stops the search, we accept
the position with the last minimum MAD as the final MV.

In the next section, we will show how to incorporate
the information from the temporal direction to improve the
performance.

IV. FAST ALGORITHM BASED ON

SPATIO-TEMPORAL CORRELATION: ST1

In addition to the spatial correlation, MV’s are also highly
correlated in the temporal direction. We observe that the
histogram of MV temporal differentials is similar to that of
MV spatial differentials as shown in Fig. 1 with a high peak
appearing at the zero differential value. The temporal corre-
lation property provides additional information for selecting
a better set of initial MV candidates and leads to an overall
improvement in the search speed and the resulting MSE. In
this section, we modify Algorithm S1 by including temporal
information. The resulting algorithm is called Algorithm ST1.

A simple way to incorporate the temporal information in
Algorithm S1 is to include the MV of the block at the same
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location from the previous frame (i.e., ) in the
set of initial MV candidates. Furthermore, we can obtain
information from noncausal directions by including two more
initial MV candidates obtained from the blocks in the previous
frame, i.e., and . Finally, it
is natural to include MV’s of and .
Thus, for block , there are five initial MV candidates
from blocks

except for the first predicted frame where the temporal infor-
mation is not available and Algorithm S1 can be performed
to find the MV’s.

Note that the basic idea of choosing the initial MV candi-
dates from the above five blocks is to obtain the information
from all surrounding directions as well as from different block
locations. For example, blocks and
are selected from the current frame, therefore, we do not
choose the same block locations, i.e., and

from the previous frame. Even though there
are more than five vectors available to serve as the initial MV
candidates, we should not select too many vectors due to the
additional computation required in calculating the MAD value
for each vector.

Recall that we initialize the MV estimation process in S1 by
performing a full search for the four blocks at the upper left
corner by exploiting the spatial correlation only. By including
temporal information, we can use temporal information to
select initial MV candidates for these four blocks without
full search in initialization. After selecting a set of initial MV
candidates, we choose the one giving the smallest MAD value
( ) as the best MV candidate () and perform further
refinement to improve the MV result. The refinement process
is performed in exactly the same way as stated in Section II-B.

V. MODIFIED SPATIO-TEMPORAL BASED ALGORITHM: ST2

With the framework of the modified algorithm S2, we
propose the new spatio-temporal correlation based algorithm
ST2 by incorporating the temporal correlation information to
improve the speed of Algorithm ST1.

In Algorithm ST2, each block is assigned to one of three
groups in the same pattern as in Algorithm S2 (Fig. 3).
For blocks in Algorithm S2, the only available initial
MV candidates come from spatially subsampled blocks in
causal (upper left) directions. In ST2, we include candidates
from blocks in lower, right, and the same locations from
the previous frame. Thus, for block in the
group, we select the MV’s from two spatially adjacent blocks

and , and three temporally adjacent
blocks and
to be initial MV candidates as shown in Fig. 4. Note that there
is no need to perform full search for the initialization of
blocks at the upper left corner due to availability of temporal
information. The best MV candidate is obtained by choosing
the one with the smallest MAD. Then, we perform further
refinement.

Fig. 4. The MV candidate selection procedure for Algorithm ST2.

The blocks have more MV information available for
their spatially neighboring blocks than , since each
block is surrounded by four blocks at its four corner
positions. We use the MV’s from four spatial blocks and
one temporal block on the same location from the previous
frame as initial MV candidates as shown in Fig. 4.

Similar to Algorithm S2, blocks have initial MV can-
didates from and blocks which are located in either
the same row or column. Thus, for a block , we
use the four MV’s from spatial blocks

and and one MV from
temporal block as its initial MV candidates. The
selection rule is shown in Fig. 4.

Note that each or block is surrounded by four spatial
candidates with one temporal candidate in the middle location.
Such a candidate pattern suggests a simple modification on the
decision rule. That is, if all five initial candidates are the same,
such a vector can be used as the final MV without any further
refinement. This modification saves a certain amount of MAD
computation with little sacrifice in the performance. If they are
not the same, we employ the original rule where the best MV
candidate is set to the candidate with the smallest MAD. Then,
we perform the same local refinement as that in Algorithm S2
for each group.

The proposed MV selection procedure of ST2 provides a
scheme to use spatial and temporal information in a com-
plement way. For example, blocks do not have as many
good spatial candidates as the and blocks do, therefore,
they need more information from the temporal direction. For

and blocks, we give a higher priority to noncausal
information from the spatial domain than the temporal do-
main as reflected from the fact that four (noncausal) spatial
neighboring MV’s and one temporal MV are used for and

blocks.
We have seen so far that all proposed algorithms S1,

S2, ST1, and ST2 require threshold parameters and
. These parameters are preset as certain fixed numbers.

However, it would be desirable if such parameters can be
chosen or adjusted automatically from the algorithm itself. In
the next section, we propose a new fast algorithm based on
multiresolution-spatio-temporal correlations, which not only
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solves the threshold problem but also improves the overall
performance.

VI. FAST MV ESTIMATION USING

MULTIRESOLUTION-SPATIO-TEMPORAL CORRELATIONS:MRST

The multiresolution approach has been recently studied
and applied to motion estimation problem [7], [16], [19],
[21]. It provides a relatively fast computational speed while
giving a reasonably good prediction. With this approach, an
image frame is decomposed into different resolutions. The
multiresolution nature provides a hierarchical motion field
obtained at different scales, and a smaller search area is used
at a coarser level. The MV estimation is first performed on the
coarsest resolution, and then the MV’s of finer resolutions are
refined based on the motion information obtained at coarser
resolutions. Most existing algorithms use only information
from coarser levels to refine the MV in finer levels and do
not exploit spatio-temporal correlations of the MV’s at the
same level. In the section, we propose a new fast algorithm
called MRST by combining the multiresolution, spatial, and
temporal correlation properties.

In this work, a coarser resolution image is obtained by
computing the mean of 2 2 pixels from finer levels to
represent a pixel in the next coarser level so that the image
size is reduced by half along both horizontal and vertical
directions. Note that since we focus on the MV estimation
problem without worrying about the residual coding, only a
simple averaged mean is used here to obtain coarser resolution
images. We also employ different block sizes at different levels
as presented in [19] and [21], and blocks of smaller sizes are
used in the coarser levels so that each level has the same
number of blocks. Thus, there is a one-to-one correspondence
of blocks between coarser and finer levels. The MV’s at
different levels are highly correlated since they represent the
same motion activities at different scales.

In the proposed algorithm MRST, each image frame is
decomposed into four resolution levels with a block of size
2 2 at the coarsest level and a block of a size 1616 at
the finest level. The level numbers are ordered from 0 to 3,
where levels 0 and 3 represent the coarsest and finest levels,
respectively. We begin with the coarsest level by performing
a full search to obtain the MV for each block. Due to the
coarse scale of the MV, the maximum search displacement at
the coarsest level is reduced from to so that only
a small amount of computation is required.

For each of the finer resolution levels (levels 1 to 3), we
adopt the framework of Algorithm ST2 (except for the first
predicted frame for which Algorithm S2 is applied) by using
the MV information from the coarser level as well as spatially
and temporally neighboring blocks at the same level. Most
existing algorithms rely only on the initial information from
the corresponding coarse-scaled MV’s for further refinement.
However, the coarse-scaled MV’s for some blocks may not be
accurate enough and could cause some errors which propagate
along the hierarchical structure. Our algorithm exploits the
information from both multiresolution and spatio-temporal
adjacent blocks to select a number of initial MV candidates.
Note that the MV from the coarser level has to be properly

Fig. 5. The MV candidate selection procedure for Algorithm MRST.

scaled to serve as the initial candidate in the finer level. For
example, if a block at levelhas the motion vector , then the
corresponding block at level uses as its initial MV
candidate. The set of initial MV candidates can be expressed as

where are initial MV candidates obtained from
the MV selection procedure specified in ST2 and is the
initial candidate from the corresponding coarser level. Since
the available temporal MV candidate is the final predicted MV
from the previous frame (i.e., MV with the finest resolution),
the vector has to be scaled in order to be used as the initial
candidate in the middle levels. That is, let denote the
temporal MV candidate in the finest level 3. We use the vector

with a proper truncated value as the initial candidate
for levels (middle levels). A graphic explanation of the
MV selection procedure for Algorithm MRST is illustrated in
Fig. 5.

The best MV candidate is obtained by using the same rule as
that described in ST2. Similar to Algorithm ST2, we also adopt
a majority checking rule to select best MV candidate for
and blocks. According to the above selection process, each

or block has a total of six candidates (four from spatial,
one from temporal, and one from the coarser level). The new
checking rule is that if at least five candidates are the same,
this value is the final MV and no further refinement is required.
This allows us to save a certain amount of computation with
little sacrifice in MSE increase.

Note that when the MV information from the coarse level
is used, we can only have the MV of an even number of
length as the initial candidate. On the other hand, if only the
spatio-temporal information is used as in ST2, there are some
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blocks that still require a full search (those having the MAD
greater than or reaching the maximum iteration limit). By
incorporating the coarser level information, the MV obtained
from full search in the coarsest level provides a better set of
candidates so that the full search mode is not needed at finer
levels. The new algorithm is more robust in the sense that the
second threshold is no longer needed.

One important issue in the refinement process is the selec-
tion of threshold . It is one main factor to determine the
computational speed since it indicates whether to choose the
best MV candidate as the final MV (according to the criterion

). In Algorithms S1, S2, ST1, and ST2, the
threshold is a fixed number for every frame throughout
the entire estimation process. It would be more desirable to find
a rule such that can be adjusted adaptively for different
frames to provide a higher computational speed. Such a rule
should be related to the knowledge of matching error (MAD)
information. In Algorithm MRST, we obtain the values of
minimum MAD’s via full search at the coarsest level. Such
values should give us some rough idea about the range of
smallest MAD’s for each frame. Therefore, we compute the
averaged mean of smallest MAD’s over all blocks at the
coarsest level for each frame (denoted aswhere is the
frame number) and use it to determine the value of .
We also observe that tends to have a small increase as
the resolution level goes finer for most frames. Based on the
observation, we choose the threshold value by adding
0.5 to every time as the level becomes finer, i.e.,

at level . Although we know the smallest MAD of each block
at the coarsest level, there is no direct relationship among the
smallest MAD’s of blocks at different levels. Therefore, it is
difficult to adopt any specific rule for value of each block
separately since it could give a large error to some blocks.
Instead, we use the averaged mean value as described above
so that the threshold is good enough in the average sense
and would not produce a significantly large error. Based on
the above rule, threshold is automatically chosen from
the MAD information of the coarsest level. The new algorithm
MRST is summarized as follows.

Algorithm MRST
1) Obtain the coarser resolution images by computing the

averaged mean of the nonoverlapping 22 pixels from
finer-level images for each pixel in coarser-level images
until the block size at the coarsest level becomes 2

2. Let the total number of resolution levels be.
The image at resolution is divided into blocks of size

, where ( ) is the block size
of the finest resolution and .
( in the current case).

2) At the coarsest level, perform a full search with the
maximum search displacement to obtain
the MV for each block.

3) For each finer level, perform Algorithm ST2 (except for
the first predicted frame for which S2 is applied) by
including one more candidate from the corresponding
block in the previous coarser level by multiplying the

TABLE I
EXPERIMENTAL RESULTS OF FIVE TEST VIDEO SEQUENCES

WITH THE LOG SEARCH AND THE FULL SEARCH

coarser-scaled MV by a factor of two. The temporal
MV candidates have to be properly scaled as well. The
refinement process is performed in the same way as done
in ST2 except the adoption of full search in any case for
any block type ( or ).

4) After the MV’s at finest level are obtained, move to the
next frame beginning with Step 1.

VII. EXPERIMENTAL RESULTS

Experimental results using all proposed algorithms S1, S2,
ST1, ST2, and MRST are reported in this section. They are
applied to five MPEG test videos: bicycle, cheer (leaders),
flower, football, and mobile. Each video contains 150 frames
and each frame has a size of 352 240 pixels obtained
by subsampling CCIR601 720 480 luminance component
only. These sequences provide a variety of motions including
slow and fast movements (cheer and football), camera panning
(flower and mobile), and zooming (bicycle). A 1616 square
block is used as a macroblock for MV estimation as specified
by MPEG. Only forward prediction is implemented in the
experiments. The maximum horizontal and vertical search
displacement is 16 ( ) so that the maximum search
locations for one block is 33 33 ( ). We
use MAD as the error measure in performing block matching,
while the MSE per pixel is computed between the original
and the resulting motion-compensated frames as the quality
measure. For Algorithms S1, S2, ST1, and ST2, the threshold
parameters used are and , and the
maximum step number for local search around is .
Algorithm MRST does not require and , and the
maximum search step number for each finer level is two.

Note that the values of threshold parameters and
are empirical numbers. Although their optimal values should
be different for various sequences, we use the same values for
all sequences to show the robustness of our algorithms. That
is, by using fixed threshold values, our algorithms still give
reasonably good results for all test sequences. As mentioned in
the previous section, the problem of selecting a proper thresh-
old value can be completely avoided when using Algorithm
MRST, which is our ultimate algorithm.

For comparison, we show in Table I the results obtained
from the FBMA and the two-dimensional (2-D) logarithmic
search [5]. To demonstrate the performance of our algorithms,
we present various results with all five proposed algorithms
in Tables II–VI. All values in the tables are the averaged
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values by using data obtained from 149 predicted frames. The
meaning of each column is explained below.

• Speed-uprepresents the speed-up factor gained from the
algorithms. To be more precise, a speed-up factor
means that thematching operations are reduced by a
factor of from full search. For example, with 16
search displacement in the full search case, each block
of size 16 16 ( 256) pixels is searched for 33
33 ( 1089) locations in order to obtain the MV. Thus,
there are 256 1089 operations in total for each block.
Let us say that in our proposed algorithm, if we use only
50% of pixels (128 pixels) in a block and search for
locations, then the number of operations is 128 , and
the corresponding speed-up factor is 21089 for such
a block. However, since we have a total of 330 blocks,
we need to add the number of operations together for all
blocks before computing the speed-up factor.

• MSE (% increase)represents the increased MSE of re-
constructed motion-compensated frames with the MSE
obtained via full search as the reference, which is ex-
pressed in terms of percentage.

• Search steprepresents the averaged step number in
performing the local search around (presented in
Tables II–V). This includes step number 0 with

(i.e., the best MV candidate is used as the final MV
without MV refinement).

• FS bksshows the averaged number of blocks requiring
full search for each frame (presented in Tables II–V).

• MV bits represents the number of bits used in the coding
of MV’s, where the differential coding scheme adopted
by the MPEG standard [10] is applied.

By comparing Algorithms S1 and ST1, and Algorithms
S2 and ST2, we can see a significant improvement in the
speed-up factor by using both spatial and temporal correlations
rather than using the spatial correlation only. Furthermore,
we see from Tables II–V that the averaged speed-up factors
of ST2 (or S2) are higher than those of ST1 (or S1) in all
five sequences. The main reason for gaining a high speed-up
factor in ST2 (or S2) is due to computational reduction in
and blocks, especially in blocks where the number
of blocks counts for one half of the total number of blocks.
In Table VI, we see that the speed-up factors of MRST are
higher than those of S1, S2, ST1, ST2, and log search. Due
to multiresolution and spatio-temporal correlations, we can
obtain a better set of initial MV candidates so that there is no
need to perform full search at finer levels (no ). Note,
however, that for “mobile” sequence, MRST gives a little
lower speed-up factor than ST2 with a similar MSE result.
This is because the MV’s of “mobile” sequence have very
strong spatial and temporal correlations so that very few blocks
require full search in ST2 (only the average of 0.7 block in
“FS bks” column). For this case, multiple levels in MRST
seem to add a little more computation which causes a lower
speed-up factor than that of ST2. For “cheer” and “football”
sequences which have a larger number of “FS bks,” we see
that Algorithm MRST results in a much higher speed-up factor
than ST2.

TABLE II
EXPERIMENTAL RESULTS OFFIVE TEST VIDEO SEQUENCES WITHALGORITHM S1

TABLE III
EXPERIMENTAL RESULTS OFFIVE TEST VIDEO SEQUENCES WITHALGORITHM S2

TABLE IV
EXPERIMENTAL RESULTS OFFIVE TEST VIDEO SEQUENCES WITHALGORITHM ST1

TABLE V
EXPERIMENTAL RESULTS OFFIVE TEST VIDEO SEQUENCES WITHALGORITHM ST2

TABLE VI
EXPERIMENTAL RESULTS OF FIVE TEST

VIDEO SEQUENCES WITH ALGORITHM MRST

To gain more insights, we plot the frame-by-frame speed-
up factor by using the log search, S2, ST2, and MRST
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(a)

(b)

Fig. 6. The plot of the speed-up factor as a function of the frame number
with log search, S2, ST2 and MRST: (a) football and (b) flower.

for “football” and “flower” sequences in Fig. 6(a) and (b),
respectively. We see that MRST provides the highest speed-
up factor for most frames in both sequences. Besides, we
observe from the plots that ST2 has a high fluctuation in the
speed-up factor. This is due to the use of a fixed for all
frames, where the value of may be too small or too big
for some frames. On the other hand, MRST gives a smaller
fluctuation in the plot due to the adaptive nature of for
each frame.

As a tradeoff of fast MV estimation in MRST, we observe
only small MSE increase (between 2–7%) in comparison with
full search. It supports our claim that the multiresolution-
spatio-temporal correlations can be effectively used to reduce
the computational cost without sacrificing much in MSE.
For “flower” and “mobile” sequences, the results of ST2
and MRST are similar, while for “bicycle,” “cheer,” and

(a)

(b)

Fig. 7. The plot of percentage of MSE increase as a function of the frame
number with log search, S2, ST2 and MRST: (a) football and (b) flower.

“football,” MRST gives a better result in terms of a higher
speed-up factor and a lower MSE value. Note also that
the MSE difference between ST1 and ST2 is very small.
This justifies the idea of exploiting the block subsampling
technique in ST2. The frame-by-frame plots of percentage
of MSE increase with the log search, S2, ST2, and MRST
algorithms for “football” and “flower” are given in Fig. 7(a)
and (b), respectively. It is clear that the percentages of MSE
increase from MRST is much smaller than those from other
algorithms. Algorithm MRST not only gives smaller MSE
increases in average but also provides smaller deviations in
MSE increase. This implies that the quality of the output
video obtained from MRST should be better in consecutive
displays.

In Tables II–V, the search step number gives us information
about how close the best MV candidate is to the final MV. It
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is also clear that a smaller number of search steps implies
a higher speed-up factor. Even though the maximum step
number is set to ten, most blocks require only a few steps
to reach the final MV. The “flower” and “mobile” sequences
have the averaged step number even less than one, since there
are many blocks with that do not require the
local search around process.

For the column of “FS bks,” we see that the numbers are
relatively small compared to the total number of blocks (330)
used in full search. The “FS bks” number gives us a rough
idea of the occurrence of motion discontinuity or regions that
cannot be well represented by those in neighboring blocks or
frames due to occlusion, zooming, mixed motions, etc. The
“FS bks” and search step numbers are two main factors which
determine the speed-up factor. For example, even though the
“cheer” sequence has a search step less than that of the
“bicycle” sequence, it has a larger number in “FS bks” and,
therefore, a lower speed-up factor.

Next, we examine the column of MV bits. We see from
tables that all five proposed algorithms use fewer bits in the
coding of MV’s than full search. This is a direct consequence
of a smooth motion field by using the spatial correlation for
MV estimation. The temporal correlation does not play an
important role in MV coding since the coding is based on
spatial differentials as specified by MPEG. Neither full search
nor log search uses the MV information from neighboring
blocks. In both methods, each block is treated independently of
others. This may cause MV’s to jump around in some regions
and result in a higher number of MV bits. We also observe
that, for “bicycle,” “cheer,” and “football,” the MV bits of
MRST are a little larger than those from ST2, which could
have resulted from the use of MV’s obtained from full search
at the coarsest level.

Finally, we consider the coding of residual errors to obtain
the rate-distortion (R-D) plot. We do not go through the whole
coding process of MPEG which contains bit stream syntax,
layered structure, and so on. Instead, we only perform MV
differential coding and DCT residual error coding, and add
the numbers of bits together to represent the “rate” with
the unit of b/p (bits per pixel). The distortion is represented
by PSNR, which is computed via MSE measured from the
final reconstructed images (with residual coding). Two R-D
plots for “football” and “flower” sequences are demonstrated
in Fig. 8(a) and (b), respectively. In both R-D plots, we
see a small deterioration from the results of our algorithms
in comparison with full search while the results of the log
search are much worse. The results of MRST and ST2 are
very similar, and they are both better than that of S2. For
the “football” sequence, the R-D plot of ST2 is in fact a
little better than that of MRST despite a larger MSE. The
reason could be that in some regions the ST2 gives higher
correlated residual errors so that fewer bits are required by
DCT. For the “flower” sequence, the results of ST2 and
MRST are so similar that they appear to coincide with each
other. To conclude, the proposed algorithm MRST provides a
very fast MV estimation procedure while maintaining a good
performance in terms of MSE as well as the rate-distortion
tradeoff.

(a)

(b)

Fig. 8. Comparison of the rate-distortion performance with full search, log
search, S2, ST2, and MRST, where the rate is represented by bits per pixel
(bpp) while distortion is represented by PSNR (dB): (a) football and (b) flower.

VIII. C ONCLUSIONS

bIn this work, we first introduced two fast MV estimation
algorithms S1 and S2 based on spatial correlation of MV’s
between adjacent blocks and then incorporated the temporal
information to obtain Algorithms ST1 and ST2. We finally
proposed the ultimate algorithm MRST by combining the
multiresolution scheme with spatio-temporal correlations.
The initial MV candidates of MRST are selected from
the corresponding coarser-level block as well as spatially
and temporally neighboring blocks at the same level.
We showed with experimental results that the proposed
algorithm MRST has a speed-up factor ranging from 150
to 310 with only 2–7% MSE increase and a similar rate-
distortion performance in comparison with full search.
Therefore, this algorithm can be very useful for real-time
video encoding applications. Theoretical analysis of the
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proposed algorithms may be performed based on a certain
model such as the AR model to characterize correlations
of the motion field, which is an interesting topic for future
research.
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