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Abstract—In this paper, we propose a new fast algorithm for applications, and the search for an effective MV estimation
block motion vector (MV) estimation based on the correlations of algorithm has been a challenging problem for years.
the MV'’s existing in spatially and temporally adjacent as well as Fast block matching algorithms have been developed [12]

hierarchically related blocks. We first establish a basic framework ¢ d th tati | t Th b ¢ ized int
by introducing new algorithms based on spatial correlation and 0 reduce the computational cost. They can be categorized Into

then spatio-temporal correlations before integrating them with  different groups as detailed below.
a multiresolution scheme for the ultimate algorithm. The main
idea is to effectively exploit the information obtained from the . . .
corresponding block at a coarser resolution level and spatio- A. Fast Block Matchlng with Unimodal
temporal neighboring blocks at the same level in order to select Error Surface Assumption

a good set of initial MV candidates and then perform further Most fast block matching algorithms [4]-[6], [13]-[15]

local search to refine the MV result. We show with experimental trict th b f h locati ! th imodal
results that, in comparison with the full search algorithm, the restrict the number of search locations using thé unimoda

proposed algorithm achieves a speed-up factor ranging from 150 €rror surface assumption, namely, the matching error increases
to 310 with only 2-7% mean square error (MSE) increase and a monotonically as the search moves away from the position of

similar rate-distortion performance when applied to typical test the global minimum error. However, this assumption usually

video sequences. does not hold, and as a result, the search could be trapped
Index Terms—Block matching, motion estimation, multiresolu- to a local minimum with a relatively large matching error.
tion, spatial correlation, temporal correlation, video coding. Moreover, these algorithms treat each block independently and

tend to result in a noisy motion field and create the blocking
effect in reconstructed images. Some well-known algorithms

in the class include the three-step search (TSS) [6] and the

VIDEO image compression plays an important role ig, o qimensional logarithmic search (TDL) [5].
transmission and storage of digital video data. The ap-

I. INTRODUCTION

plications include multimedia transmission, teIeconferencing, ] ) ] )
videophone, high-definition television (HDTV), CD-ROMB: Fast Block Matching with Pixel Subsampling
storages, etc. The main idea to achieve compression isAnother interesting technique to reduce the complexity
to remove temporal and spatial redundancies existing afi MV estimation is block matching with pixel subsam-
video sequences. One effective method commonly usplihg proposed by Liu and Zaccarin [9]. Instead of limiting
in reducing temporal redundancy is motion-compensatéte number of search locations, the number of pixels used
predictive coding, which is also employed in the MPEGnh matching error computation is reduced. The technique
standard [3], [10], [11]. The key ingredient in motiondis called alternating 4:1 pixel subsampling in [9], since
compensated coding is motion vector (MV) estimation. Thiaere are four possible 4:1 pixel subsampling patterns to be
block matching technique has been widely used for MWsed alternatively. It was shown that using all four patterns
estimation due to its simplicity. A straightforward way tdn a specific alternating manner gives a better result than
obtain MV is to perform the full-search block matchingusing only one 4:1 subsampling pattern. This technique
algorithm (FBMA) by searching all locations in a giverreduces the number of matching operations by a factor of
search area and selecting the position where the matchfogr. Furthermore, two other techniques were also presented
residual error is minimized. However, this procedure requirés [9] to enhance the performance. One is called subsam-
an extremely large amount of computation. MV estimatiopled motion-field estimation which exploits the idea of block
is known to be the main bottleneck in real-time encodingubsampling, and the other is called subblock motion-field
estimation where a smaller block size is used. The first one
reduces the number of operations by a factor of two while the
Manuscript received October 16, 1995; revised April 26, 1996. Thisecond one has a reduction factor of four. Finally, two fast
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of good tools which can be incorporated in several existirgj a coarser level covers four corresponding blocks at the
algorithms to obtain an additional amount of computationakext finer level. Then, the MV of the coarser-level block
reduction. is either directly used as the initial estimate for the four
corresponding finer-level blocks [7] or interpolated to obtain
C. Fast Block Matching with Spatial/Temporal Correlations four MV's of the finer level [16]. In [19] and [21], different
block sizes are employed at each level to maintain a one-to-
ne correspondence between blocks in different levels. Then,
) X S e MV of each block is directly used as an initial estimate
gnd temporal correlauo.n.s.of MV's [18]’, [20]. The main ',de%r the corresponding block at the finer level. Methods in this
Is to select a set Of. |n|t|al_ MV candidates from SpatlallYzategory work relatively well and provide fast computation.
and/or templorally ne|ghbqr|ng blocks anq _c_hoose_ the b‘?—?&wever, they only use the information from coarser levels
one (acco_rdmg to a certain rule) as _th_e_ |n|t|al_ estimate 1o, yhe My refinement in finer levels without considering other
further refinement. Theoretically, the initial estimate can eful information such as spatial and temporal correlations
obtained by gsing an autoregressive (AR_) mo‘?'e' [18], [20 mong MV's at the same level. Furthermore, the refinement
For such a S|_m_p_le moglel, on_ly one C_andldate IS cho_sen cess is performed by using a full search algorithm with a
used as _the initial estimate in ex_penments. The refinem Bliuced search area which nevertheless requires a considerable
process involves a full search with a reduced search aréthount of computation.
It turns out that the full search procedure still requires a
considerable amount of computation despite being performEd
on the reduced search area. '
A hybrid algorithm which uses both block-recursive and Even though many fast MV estimation techniques have
block-matching methods was proposed in [17]. Although if3een proposed as reviewed before, we feel that the spatial
original motivation did not aim at the use of spatial an@nd temporal correlations of MV's have not yet been fully
temporal correlations, it did provide an interesting way téxploited in reducing the search time while maintaining a
use both correlations effectively. In the algorithm, the Myeasonable rate-distortion tradeoff. The use of an AR model
candidates were selected from two spatially and one temp@- characterize spatio-temporal correlations of the motion
rally neighboring blocks. In the refinement process, a blodield could provide an elegant theoretical result. However,
recursive idea was explored to compute the gradient directi® derivation requires a certain amount of computational
for MV update. However, the gradient approach does neemplexity and its practical value decreases. Our goal is
work well for real-world fast motion image sequences since 4 develop a sequence of fast MV estimation algorithms
oscillation in the search direction may occur in refinement. It ihich exploit the spatio-temporal correlations of MV’s in a
therefore limited to applications with relatively slow motioncomputationally simple way and yet work effectively in the
e.g. videoconferencing. sense of producing small residual errors. Furthermore, we
incorporate such correlations in a multiresolution framework
to improve the overall performance.
i i . ) ~ This paper is organized as follows. We first propose two
One family of fast block motion estimation algorithms relieg,g,, algorithms using only the spatial correlation. They are
on the idea of predicting an approximate large-scale My,jieq S1 and S2 (where S denosgmtia) and are introduced
in a coarse-resolution video and refining the predicted M gections 11 and IIl, respectively. Algorithm S1 provides the
in a multiresolution fashion to obtain the MV in the finef,gic framework while algorithm S2 is a modified version. To
resolution. They are called the hierarchical [1], [2] or thgchieve a better performance, we incorporate the information
multiresolution methods [7], [16], [19], [21]. The hierarchicakom the temporal domain and propose two fast algorithms
methods [1], [2] use the same image size but different blogjgseq on spatio-temporal correlations. They are called ST1 and
sizes at_each level. The underly|.ng assqmptlon is th_a.t.tng (where ST stands fampatial and tempora) and are de-
MV obtained from a larger block size provides a good initiadcriped in Sections IV and V, respectively. Then, we integrate
estimate for MV's associated with smaller blocks which arge gpatio-temporal technique with the multiresolution scheme
contained by thg larger block. This assumption is often ngy opiain the ultimate algorithm called MRST (where MR
true and the estimate can be very poor. Furthermore, a largef,qtesmultiresolution) in Section VI. The MV's obtained
block size |n_1pI|es a h|ghgr computanonal cost in performingsm 4l proposed algorithms are compatible with the MPEG
block matching. The multiresolution methods [7], [16], [19]giandard. The performance of all algorithms is demonstrated

[21] use different image resolutions with a smaller image sizg, extensive experiments in Section VII. Concluding remarks
at a coarser level (i.e., of a pyramid form). They can be furthgfg given in Section VIII.

divided into two groups: constant block size and variable block

size.
In [7] and [16], the same block size is used at eacH' FAST ALGORITHM BASED ON SPATIAL CORRELATION: S1

Another direction for fast MV estimation approach is t
exploit information from adjacent blocks by using spati

Overview of Our Work

D. Hierarchical and Multiresolution Fast Block Matching

level. Thus, a block at the coarser level represents a largeiThe following framework is adopted in our discussion. Each
region than that at the finer level so that a smaller searthage frame is divided into nonoverlapping square blocks of
area can be used at coarser levels. If the image sizel® x 16 pixels as specified by MPEG. We us¥i, j, k) to
reduced by half as the level becomes coarser, one blaepresent a block of th&éth frame, wherei and j are block
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indexes along the row and column directions, respectively. Histogram of MV spatial differentials (horizontal)
For example, an image of size 352 240 pixels has block ' j ' ‘ ' ‘
indexesi = 0,1,---,14 andj = 0,1,---,21, and B(0, 5, k) i
and B(i,0, k) represent the blocks in the first row and first 200k E - x-component
column, respectively. We would like to determine the MV for - - - y-component
each block between two consecutive frames with a certain fast
MV estimation algorithm. Without loss of generality, when we
talk about the MV of blockB(i, j, k), it is calculated based on
forward prediction, i.e., the MV between frames- 1 andk.
However, the same idea can be applied to backward prediction
and generalized to bidirectional prediction.

It has been observed that the MV of a certain block is the 50}

150

number of occurrences
=
(=]

same or very close to the MV’s of its spatially adjacent blocks.

To illustrate the spatial correlation of MV’'s, we compute AN ) ,

the MV spatial differentials of consecutive blocks along the S0 e a0 1 ¢ st et 0 3 40
horizontal and vertical directions via full search for 30 frames

of the “football” sequence (frame 31 to 60), and plot the (@)

histograms of the averaged occurrence number-ofnd y- Histogram of MV spatial differential (vertical)

components of these differentials in Fig. 1. The high peaks #*°
at the zero differential value indicate that the MV field is '

highly correlated along both horizontal and vertical directions. ! —— X-~component
We also observe similar histogram plots for other frames in - - - y-component
any other image sequences. Such an observation suggestsg
that the MV of a given block can be predicted from its
spatially neighboring blocks. This is the main idea behind our
algorithm.

Based on this spatial correlation property of MV’'s, we
propose a fast MV estimation algorithm called S1 in this

section. It consists of two major building elements: 1) the MV s0f

o
=)
T

number of occuirrenct
7

candidate selection and 2) the MV refinement process. Before
a detailed discussion on each component, we would like to . L
define the following terms to make the discussion clear. % e 2 T 0. 10 20 3% 4

e . MV spatial differential
e The initial MV candidategepresent a set of MV can- b
didates selected from spatial (and temporal as well as ()

hierarchical in later sections) neighboring blocks with Big- 1. Histograms of the averaged number of MV spatial differentials of x-
certain selection rule and y-components along the (a) horizontal and (b) vertical directions for 30

. frames of the “football” sequence (ft31 to ft60).
e The best MV candidateepresents the one MV chosen a ( )

from the set of initial MV candidates to serve as the
starting point for the MV refinement process. subsampling technique. This gives a computational reduction
+ The final MVrepresents the final MV result obtained. by a factor of four in comparison with a straightforward
implementation of the MAD computation.
After the initialization step, we proceed to the next block
A. MV Candidate Selection according to a rowwise ordering, i.e., starting from the left
To begin the MV estimation process, we perform tht9 the right for the first row, then the second row, and so
full search block matching algorithm to determine then, and use the MV's of blockB(i,j — 1, k), B(i — 1,4, k),
MV’s of the four blocks at the top left corner, ie.,B(i—1,j—1,k), and B(i — 1,5 + 1,k) as the initial MV
B(0,0,k), B(0,1,k), B(1,0,k), and B(1,1,k). Since the candidates for blockB (i, j, k). Note, however, that blocks
search cannot go beyond image boundaries, MV’s of bound#ipng the boundaries have fewer initial candidates than the
blocks B(0,0, k), B(0,1,k), and B(1,0,k) are limited such inner blocks. Among the four initial MV candidates, the one
that all pixels referenced by them are within the imag#ith the smallest MAD (denoted by/ AD,) is chosen as the
area, and therefore, a full search at blogK1,1,k) will best MV candidatel) for block B(4,j, k) and used as the
provide a more accurate initial MV candidate for the followingtarting point for further MV refinement. In other words, let
estimation task. When performing a full search, an alternati6g= {C1,---,Cx} be the set of initial MV candidates, and
4:1 pixel subsampling technique [9] can be used to reduce theAD(C;) be the MAD corresponding to the vectoy. Then,
computational cost, i.e., for a block of size ¥616, only the the best MV candidaté; can be expressed as
values at 64 pixels are used to compute the mean of absolute
difference (MAD). It was shown in [9] that a reasonably

: . . . = argmin M AD(C).
good MV estimate can be obtained by using such a pixel Vo ueTee ©)
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required for a further refinement. Furthermore, even though
we have to compute the MAD for nine points at the first step,

OO OO OO OO - he first s

A the MAD has to be computed at only three or five positions
OO0 00-0-0 in the following steps due to the overlap of the neighborhoods
OO N S SN of consecutive centers.

@ @ ] £ 1 @ @ As discussed above, there are three possible conditions for
OO @ o 2 QO the local search around procedure to stop. First, if it stops
6 6 b 2 | 1@@@ becauseM AD < TH;, the position corresponding to this

SRS A ; MAD value is chosen as the desired final MV. Second, if
@@@@ ; & & O the procedure stops because of reaching the maximum step

Ll number of iteration, it is likely that the MV of the current
@@Q@@G@G block may not be close to MV’s of its neighboring blocks. This
DO OO DO phenomenon often results from motion discontinuity, occluded

regions, or a certain type of mixed motion. Thus, we perform
a full search with alternating 4:1 pixel subsampling to find
Fig. 2. Local search around procedure: the search starts at the new ceﬂtlg MV for this block. Third, if the search stops because
(best MV candidate);, and its eight neighboring points, and moves frdn . ’ L . . )

to V; and toV; since the minimum points in the first two steps are not in thth€ minimum MAD occurs in the middle among nine points,
center and the new MAD’s are still greater tHai#l; . The search stops after it seems reasonable to choose that point as the final MV.
searching around> since the minimum is located at the centér. However. it is possible that the best MV candidiigs too far
from the desired final MV so that we actually get trapped to a

B. MV Refinement Process wrong local minimum. To avoid such a problem, we check the

The refinement process begins with the best MV candidd@AD value at that point. If its MAD value is not larger than a
(Vo) and its corresponding MAD valué{ AD,). A threshold threshold valuel’H (another threshold which is greater than
TH, is set so that ifM ADy, < TH;, the best MV candidate 1'H1), then we choose the corresponding position to be the
Vo is chosen as the final MV for blocB(4, 5, k). If M ADg > final MV. Otherwise, a full search algorithm with alternating
TH,, we use the spatial correlation property and assume tH4atl pixel subsampling is performed to determine the MV for
the best MV candidaté’, is close to the desired final MV. the current block. This completes our refinement process. Let
Even though the assumption that the matching error increag@ssummarize Algorithm S1 as follows.
monotonically as the searching point moves away from theAlgorithm S1
global minimum (i.e., the unimodal error surface assumption) 1) The algorithm is initialized by performing a full search
is generally not true, it seems reasonable to assume that the with an alternating 4:1 pixel subsampling technique

matching error surface is monotonic in a small neighborhood
around the global minimum. This assumption was used to
find small motion for low bit-rate coding applications in
[8]. It implies that if the initial search point is close to the
global minimum, there is a high probability to find the global 2)
minimum. In the current context, the best candid&feis
viewed as a new search center so that a search is performed
around its neighborhood. The search starts at the new center
and its eight neighboring points. If either the minimum MAD
among nine of them occurs in the middle (center), or the new
smaller MAD has the value< TH;, the procedure stops.
Otherwise, it keeps the same search procedure by using th8)
position with the new minimum MAD as the new search
center. The process iterates until either the stopping criterion
is satisfied or the preset maximum numbg) ¢f search steps 4)
is reached. We call the above search procedocal search
around and depict it in Fig. 2. As shown in the figure, eight
surrounding locations are searched at each step.

It is observed that the 4:1 pixel subsampling technique
gives an unacceptably coarse matching result in the current
context, since we consider nine search points at a time and
need an accurate local minimum point for the next step. It
is nevertheless possible to reduce computation in the MAD
calculation at each location. That is, we consider the checker-b)
board partitioning of 16< 16 pixels within each block and use
one half of the pixels beginning at top left pixel for matching.

It turns out that this reduction gives sufficiently good results

on four blocks located at the top left corner, i.e.,
B(0,0,k), B(0,1,k), B(1,0,k), and B(1,1,k). The
full search algorithm has the maximum displacement
+W along both horizontal and vertical directions.

We proceed the MV search for the block from the top left
to the bottom right with a rowwise ordering. For block
B(i,j,k), we use the MV’s from its four neighboring
blocks B(¢,5 — 1,k), B(i — 1,4,k), B(i — 1,5 — 1, k),
andB(i—1,j 4+ 1, k) as possible initial candidates and
choose the one with the smallest MABI(AD,) as the
best MV candidatel(y) for the block B(z, j, k).

If MAD, < TH,, the best MV candidat&, is chosen
as the final MV. Then, we move to the next block
(returning to Step 2). Otherwise, go to Step 4.

If MADy > TH;, perform the local search around
procedure until reaching one of the following three
stopping criteria:

i) the new minimum MAD< TH.;

i) the minimum MAD among nine points at one step
occurs at the middle (center) location;

ii) the search step number reaches the maximum limit

(5).

If the search stops because of condition i), the position
giving the minimum MAD is chosen as the final MV.
If the search stops due to condition ii), we check the
minimum MAD value in the center. If the MAD valug
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il sk 2t as initial MV candidates and choose the one with the smallest
l : - = - 3 l_, . - MAD as the best MV cgndidate for fu.rther refinemen.t. There

150 3 2 s O s O s [ { are ;:omeG2 blocks_, which I_|e along image boundaries anq
require some special attention. Following the above rule, its

1, o] 3 [ -
[ 2 e
. i H ! . } . } - 3 initial MV candidates come from one or two nonboundary
: 1 1 1 1 1 1 1 | = |

: ; 3 1 B blocks. However, the boundary blocks can only have a certain
. : . : . + . .- 3 range of MV’s so that their MV'’s may be quite different from
| { those of the inner blocks. Thus, we include the MV from the
A B RS Bl RN nearestG2 block located on the same boundary which has
_ L _ 1 ' 3 . } . i been obtained earlier as an additional initial MV candidate for
o boundaryG2 blocks. Finally, we perform the MV refinement
o 3. Block patt 4 the illustration of the MV candidate selecti process to obtain the final MV fo&2 blocks.
1.2 o0k patern and e, lstaon of e MV, candidate St The next step is to estimate the MV's f6f3 blocks. As
by 1, 2, and 3, respectively. shown in Fig. 3, we now have the initial MV candidates
from G1 and G2 blocks. To be more precise, for @3

TH, (another threshold greater thdiH, ), the position POk B(é,j, k), we use the four MV's from block®(i, j —
& k), B(i,j + 1,k),B(i — 1,j,k), and B(i + 1,j,k) as its

is accepted as the final MV. Otherwise, switch to the

full search mode with alternating 4 : 1 pixel subsamplin itial MV candidates. These MV candidates come from blocks
to determine the MV. If the sear;:h stops because lg;cated at the same row or the same column, and they tend to

condition iii), a full search with alternating 4: 1 pixelprOVide a better candidate set than fthe ones provided by f0L_1r

subsampling is performed to obtain the final MV. corner blocks. Blocks _along boundaries can a_Iso be_ handl_ed in
6) Proceed to the next block by returning to Step 2. Aftcdt stralghtforwgrq fashion. The best MV candidate is obtained

all the blocks in a frame are processed, go to the ndkpm the one giving the smallest MAD and used for the further

frame with Step 1. refinement.

I1l. M ODIFIED SPATIAL-BASED ALGORITHM: S2 B. MV Refinement Process

The spatial correlation of MV’s was exploited to develop Th€ refinement process for blocks in grou@s and G2 is
a fast MV estimation algorithm known as S1 in Section |P€rformed in the same way as that in S1 (see Section II-B)
In this section, we propose another algorithm called S2 witljth a slight modification foiz3 blocks. As mentioned above,
the objective to speed up the search computation while maffs blocks tend to have a better set of initial MV candidates
taining a similar performance in the resulting MSE (or ratdha@n G1 and G2 blocks so that the MV of eacli3 block
distortion). The new algorithm is motivated by the observatigshould be clos_e to one of its surroundl_ng initial MV can_d|dates.
that, in many cases, the MV’s have a long range spatiEh‘_JS’ _the refinement for73 blocks is performed without
correlation. That is, the MV's associated with 2 : 1 horizontallgWitching to the full search mode. In other words, after
or vertically subsampled blocks still have a strong spatig©0sing the best MV candidat&y) with the smallest MAD
correlation. Thus, by using block subsampling, we classi§mong initial MV candidates, i/ ADo < T H, the vectory
blocks into several different types. Then, the MV of a certaity Chosen to be the final MV. Otherwise, we perform the local
type of block can have its initial MV candidates coming frong€@rch around. Whatever condition stops the search, we accept
four noncausal spatial directions rather than causal directidi§ POSition with the last minimum MAD as the final MV.
(i.e., upper and left) only as occurred in S1. The resulting !N the next section, we will show how to incorporate
scheme provides a faster search for these blocks since a bé%grmformatlon from the temporal direction to improve the
set of initial MV candidates is used. Consequently, we obtaftfrformance.
an overall performance improvement.

IV. FAST ALGORITHM BASED ON

A. MV Candidate Selection SPATIO-TEMPORAL CORRELATION: ST1

We classify each block into one of the three typ@s, In addition to the spatial correlation, MV’s are also highly
G2, and GG3 as shown in Fig. 3. We first treat the imageorrelated in the temporal direction. We observe that the
as if it consists only ofG1 blocks, and perform the MV histogram of MV temporal differentials is similar to that of
estimation for blocks in thez1 group with Algorithm S1. MV spatial differentials as shown in Fig. 1 with a high peak
That is, for block B(i, j, k) in G1, we use the MV's from appearing at the zero differential value. The temporal corre-
blocks B(i,j — 2,k), B(i — 2,4,k), B(« — 2,7 — 2,k), and lation property provides additional information for selecting
B(i — 2,5 + 2,k) to be initial MV candidates as shown ina better set of initial MV candidates and leads to an overall
Fig. 3, and the one with the smallest MAD is chosen as tlimprovement in the search speed and the resulting MSE. In
best MV candidate for further MV refinement to obtain th¢his section, we modify Algorithm S1 by including temporal
final MV. information. The resulting algorithm is called Algorithm ST1.

EachG2 block is surrounded by fouf?1 blocks at its four A simple way to incorporate the temporal information in
corner positions. We use the MV’s from the foGil blocks Algorithm S1 is to include the MV of the block at the same
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location from the previous frame (i.eB(¢, 5,k — 1)) in the
set of initial MV candidates. Furthermore, we can obtain
information from noncausal directions by including two more
initial MV candidates obtained from the blocks in the previous 3
frame, i.e.,.B(i+1,j,k—1) andB(¢,j+ 1,k — 1). Finally, it ﬂ.
is natural to include MV's ofB(4 — 1,4, k) and B(¢,j — 1, k).
Thus, for blockB(%, j, k), there are five initial MV candidates
from blocks

B(ivj_]-vk)v B(i_]-vjvk)v B(ivjvk_l)v
Bli,j+1,k-1), B(i+1,5,k-1)

Hal w

- -
b
TREw
LB B e

except for the first predicted frame where the temporal infor- --':.T 1 "I
mation is not available and Algorithm S1 can be performecilf_,* e |g vl
to find the MV’s. g

Note that the basic idea of choosing the initial MV candiig- 4. The MV candidate selection procedure for Algorithm ST2.
dates from the above five blocks is to obtain the information

from all surrounding directions as well as from different block The 2 plocks have more MV information available for
locations. For example, blockS(i,j—1,k) andB(i—1,j,k)  their spatially neighboring blocks thafi1, since eachG2
are selected from the current frame, therefore, we do nghck is surrounded by fouG1 blocks at its four corner
choose the same block locations, i.B(i,j — 1,k — 1) and  pqsitions. We use the MV’s from four spati@ll blocks and

B(i—1,5,k—1) from the previous frame. Even though thergne temporats2 block on the same location from the previous
are more than five vectors available to serve as the initial My me as initial MV candidates as shown in Fig. 4.

candidates, we should not select too many vectors due to th&nijar 1o Algorithm S2,G:3 blocks have initial MV can-
additional computation required in calculating the MAD valugiqates from¢1 and G2 blocks which are located in either
for each vector. o o ) the same row or column. Thus, for@3 block B(i, j, k), we
Recal_l that we initialize the MV estimation process in S1 byca the four MV's from spatial blockB(i, j — 1,k), B(i,j +
performing a fu!I_search for _the four blpcks at the l_Jpper.Ief1t7 k),B(i — 1,4,k), and B(i + 1,5,k) and one MV from
corner by .explomn.g the spatial correlation only: By 'nCIPd'nQemporaI blockB(4, j, k — 1) as its initial MV candidates. The
temporgll !nformatlon, we can use temporal mformat!on Qalection rule is shown in Fig. 4.
select |n|t|a_1l MV c_ano_lldates for thes_e four bIOCI_(S_ _W'thOUt Note that eacli72 or G3 block is surrounded by four spatial
full st_aarch in initialization. After s_el_ectlng a set of initial MV candidates with one temporal candidate in the middle location.
candidates, we choose the one giving the smallest MAD Val%ﬁch a candidate pattern suggests a simple modification on the
(M.ADO) as the best MV candidaté/{) and pgrform further decision rule. That is, if all five initial candidates are the same,
'reflnement 10 Improve the MV result. The refmgment PrOCeSBich a vector can be used as the final MV without any further
is performed in exactly the same way as stated in Section II'%ﬁnement. This modification saves a certain amount of MAD
computation with little sacrifice in the performance. If they are
V. MODIFIED SPATIO-TEMPORAL BASED ALGORITHM: ST2  not the same, we employ the original rule where the best MV
With the framework of the modified algorithm S2, wecandidate is set to the candidate with the smallest MAD. Then,
propose the new spatio-temporal correlation based algorithvg perform the same local refinement as that in Algorithm S2
ST2 by incorporating the temporal correlation information téor each group.
improve the speed of Algorithm ST1. The proposed MV selection procedure of ST2 provides a
In Algorithm ST2, each block is assigned to one of thregcheme to use spatial and temporal information in a com-
groups in the same pattern as in Algorithm S2 (Fig. 3plement way. For examplé&;1 blocks do not have as many
For G1 blocks in Algorithm S2, the only available initial good spatial candidates as @ andG3 blocks do, therefore,
MV candidates come from spatially subsampled blocks they need more information from the temporal direction. For
causal (upper left) directions. In ST2, we include candidaté&2 and G3 blocks, we give a higher priority to noncausal
from blocks in lower, right, and the same locations fronnformation from the spatial domain than the temporal do-
the previous frame. Thus, for blocB(i, s, k) in the G1 main as reflected from the fact that four (noncausal) spatial
group, we select the MV's from two spatially adjacent blockseighboring MV’s and one temporal MV are used €2 and
B(i,j—2,k) and B(i — 2, j, k), and three temporally adjacentG3 blocks.
blocks B(¢,j,k—1), B(i,j+1,k—1),andB(i+1,j,k—1) We have seen so far that all proposed algorithms S1,
to be initial MV candidates as shown in Fig. 4. Note that thei®2, ST1, and ST2 require threshold paramet€rg; and
is no need to perform full search for the initialization @i 7T'H,. These parameters are preset as certain fixed numbers.
blocks at the upper left corner due to availability of temporddowever, it would be desirable if such parameters can be
information. The best MV candidate is obtained by choosirthosen or adjusted automatically from the algorithm itself. In
the one with the smallest MAD. Then, we perform furthethe next section, we propose a new fast algorithm based on
refinement. multiresolution-spatio-temporal correlations, which not only
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solves the threshold problem but also improves the over "

performance. #F
VI. FAST MV ESTIMATION USING i’- 1‘
MULTIRESOLUTION-SPATIO-TEMPORAL CORRELATIONS:MRST [ Kyt ‘lﬂ 3
The multiresolution approach has been recently studi ’ iﬂ #Mmu”
and applied to motion estimation problem [7], [16], [19] il ’ TR

[21]. It provides a relatively fast computational speed whil
giving a reasonably good prediction. With this approach, ¢
image frame is decomposed into different resolutions. TI
multiresolution nature provides a hierarchical motion fiel
obtained at different scales, and a smaller search area is u
at a coarser level. The MV estimation is first performed on tt
coarsest resolution, and then the MV’s of finer resolutions a
refined based on the motion information obtained at coars
resolutions. Most existing algorithms use only informatio

from coarser levels to refine the MV in finer levels and d ﬁ ’ .

Ve

e

N o

not exploit spatio-temporal correlations of the MV’s at thi
same level. In the section, we propose a new fast algoritt
called MRST by combining the multiresolution, spatial, an
temporal correlation properties.

In this work, a coarser resolution image is obtained k
computing the mean of X% 2 pixels from finer levels to vkl
represent a pixel in the next coarser level so that the |ma'ge
size is reduced by half along both horizontal and vertical’
directions. Note that since we focus on the MV estimation
problem without worrying about the residual coding, only &caled to serve as the initial candidate in the finer level. For
simple averaged mean is used here to obtain coarser resolugisample, if a block at levelhas the motion vectdr’, then the
images. We also employ different block sizes at different levegorresponding block at levél+ 1 uses2V as its initial MV
as presented in [19] and [21], and blocks of smaller sizes @@ndidate. The set of initial MV candidates can be expressed as
used in the coarser levels so that each level has the same (CL, Cs Oty Chrrgn }
number of blocks. Thus, there is a one-to-one correspondence T ’
of blocks between coarser and finer levels. The MV's athereCy,---,Cy, are initial MV candidates obtained from
different levels are highly correlated since they represent tttee MV selection procedure specified in ST2 aig . ; is the
same motion activities at different scales. initial candidate from the corresponding coarser level. Since

In the proposed algorithm MRST, each image frame ike available temporal MV candidate is the final predicted MV
decomposed into four resolution levels with a block of sizieom the previous frame (i.e., MV with the finest resolution),

2 x 2 at the coarsest level and a block of a sizex186 at the vector has to be scaled in order to be used as the initial
the finest level. The level numbers are ordered from 0 to Gandidate in the middle levels. That is, 18 denote the
where levels 0 and 3 represent the coarsest and finest levidmporal MV candidate in the finest level 3. We use the vector
respectively. We begin with the coarsest level by performinig /23! with a proper truncated value as the initial candidate
a full search to obtain the MV for each block. Due to théor levels/ = 1,2 (middle levels). A graphic explanation of the
coarse scale of the MV, the maximum search displacement\Mi¥ selection procedure for Algorithm MRST is illustrated in
the coarsest level is reduced frahi¥ to £WW/8 so that only Fig. 5.

a small amount of computation is required. The best MV candidate is obtained by using the same rule as

For each of the finer resolution levels (levels 1 to 3), wkhat described in ST2. Similar to Algorithm ST2, we also adopt
adopt the framework of Algorithm ST2 (except for the firsh majority checking rule to select best MV candidate ¢t
predicted frame for which Algorithm S2 is applied) by usin@ndG3 blocks. According to the above selection process, each
the MV information from the coarser level as well as spatiallgz2 or G3 block has a total of six candidates (four from spatial,
and temporally neighboring blocks at the same level. Moshe from temporal, and one from the coarser level). The new
existing algorithms rely only on the initial information fromchecking rule is that if at least five candidates are the same,
the corresponding coarse-scaled MV's for further refinemethis value is the final MV and no further refinement is required.
However, the coarse-scaled MV's for some blocks may not Béis allows us to save a certain amount of computation with
accurate enough and could cause some errors which propagjtite sacrifice in MSE increase.
along the hierarchical structure. Our algorithm exploits the Note that when the MV information from the coarse level
information from both multiresolution and spatio-temporak used, we can only have the MV of an even number of
adjacent blocks to select a number of initial MV candidatekength as the initial candidate. On the other hand, if only the
Note that the MV from the coarser level has to be properbpatio-temporal information is used as in ST2, there are some
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5. The MV candidate selection procedure for Algorithm MRST.
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blocks that still require a full search (those having the MAD TABLE |

greater tharl’H, or reaching the maximum iteration limit). By EXPERIMENTAL RESULTS OF FIVE TEST VIDEO SEQUENCES

incorporating the coarser level information, the MV obtained WITH THE LOG SEARCH AND THE FULL SEARCH

from full search in the coarsest level provides a better set of “Video Log search FBMA

candidates so that the full search mode is not needed at finer Speed- MSE MV || MSE | MV

levels. The new algorithm is more robust in the sense that the up (% increase) | bits bits

second threshold’H. is no longer needed. Bicycle || 48.6 | 535.9 (27.7%) | 2695 || 419.5 | 2405
One important issue in the refinement process is the selec-_Cheer 56.4 | 542.6 (16.9%) | 1856 || 464.3 | 2121

tion of thresholdZ’H;. It is one main factor to determine the _Llower 54.0 | 250.1 (13.2%) | 1297 || 221.0 | 1080

computational speed since it indicates whether to choose the Feotball |} 45.6 | 231.3 (32.5%) | 3149 || 174.6 | 2450

Mobile 62.6 | 349.0 (7.0%) | 893 | 326.3 | 840

best MV candidate as the final MV (according to the criterion
MADy < TH,). In Algorithms S1, S2, ST1, and ST2, the
thresholdT’H; is a fixed number for every frame throughout coarser-scaled MV by a factor of two. The temporal
the entire estimation process. It would be more desirable tofind  \1y candidates have to be properly scaled as well. The

a rule such tha’H; can be adjusted adaptively for different refinement process is performed in the same way as done
frames to provide a higher computational speed. Such a rule i, ST2 except the adoption of full search in any case for
should be related to the knowledge of matching error (MAD)  gny plock type G1, G2, or G3).

information. In Algorithm MRST, we obtain the values of 4) After the MV's at finest level are obtained, move to the
minimum MAD’s via full search at the coarsest level. Such ~ pext frame beginning with Step 1.

values should give us some rough idea about the range of

smallest MAD'’s for each frame. Therefore, we compute the

averaged mean of smallest MAD’s over all blocks at the VII. EXPERIMENTAL RESULTS

coarsest level for each frame (denotedugswherek is the  Experimental results using all proposed algorithms S1, S2,
frame number) and use it to determine the valueZ@i;. ST1, ST2, and MRST are reported in this section. They are
We also observe that; tends to have a small increase agpplied to five MPEG test videos: bicycle, cheer (leaders),
the resolution level goes finer for most frames. Based on thewer, football, and mobile. Each video contains 150 frames
observation, we choose the threshold valiff; by adding and each frame has a size of 352 240 pixels obtained
0.5 tow, every time as the level becomes finer, i.e., by subsampling CCIR601 728 480 luminance component
TH. (1) = up, + (0.5 x 1) only. These sequences provide a variety of motions including
slow and fast movements (cheer and football), camera panning
at levell. Although we know the smallest MAD of each block(flower and mobile), and zooming (bicycle). A 2616 square
at the coarsest level, there is no direct relationship among #igck is used as a macroblock for MV estimation as specified
smallest MAD’s of blocks at different levels. Therefore, it iy MPEG. Only forward prediction is implemented in the
difficult to adopt any specific rule fdf H; value of each block experiments. The maximum horizontal and vertical search
separately since it could give a large error to some blockfisplacement ist16 (¥ = 16) so that the maximum search
Instead, we use the averaged mean value as described alygigtions for one block is 3% 33 (33 = (2 x 16) + 1). We
so that the threshold@ 4 is good enough in the average sensgse MAD as the error measure in performing block matching,
and would not produce a significantly large error. Based @fhile the MSE per pixel is computed between the original
the above rule, thresholdH; is automatically chosen from and the resulting motion-compensated frames as the quality
the MAD information of the coarsest level. The new algorithimeasure. For Algorithms S1, S2, ST1, and ST2, the threshold
MRST is summarized as follows. parameters used ar6€H; = 4 and TH, = 35, and the

Algorithm MRST maximum step number for local search aroundSis= 10.

1) Obtain the coarser resolution images by computing tAdgorithm MRST does not requir§’ H; and T'H,, and the
averaged mean of the nonoverlapping 2 pixels from maximum search step number for each finer level is two.
finer-level images for each pixel in coarser-level images Note that the values of threshold parametEf¢, andT H,
until the block size at the coarsest level becomes a@e empirical numbers. Although their optimal values should
x 2. Let the total number of resolution levels e be different for various sequences, we use the same values for
The image at resolutiohis divided into blocks of size all sequences to show the robustness of our algorithms. That
-1+ p x 2=+l B whereB (= 16) is the block size is, by using fixed threshold values, our algorithms still give
of the finest resolution. — 1 and! = 0,1,---,L — 1. reasonably good results for all test sequences. As mentioned in
(L = 4 in the current case). the previous section, the problem of selecting a proper thresh-

2) At the coarsest level, perform a full search with theld value can be completely avoided when using Algorithm
maximum search displacemest(W/25~1) to obtain MRST, which is our ultimate algorithm.
the MV for each block. For comparison, we show in Table | the results obtained

3) For each finer level, perform Algorithm ST2 (except fofrom the FBMA and the two-dimensional (2-D) logarithmic
the first predicted frame for which S2 is applied) byearch [5]. To demonstrate the performance of our algorithms,
including one more candidate from the correspondinge present various results with all five proposed algorithms
block in the previous coarser level by multiplying thén Tables 1I-VI. All values in the tables are the averaged
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values by using data obtained from 149 predicted frames. The TABLE I
meaning of each column is explained below. EXPERIMENTAL RESULTS OFFIVE TEST VIDEO SEQUENCES WITHALGORITHM S1
* Speed-upepresents the speed-up factor gained from the Video Proposed algorithm S1
algorithms. To be more precise, a speed-up faetoP Speed- MSE Search | FS MV
means that thanatching operations are reduced by a _ up | (% increase) | step | bks | bits
factor of P from full search. For example, with-16 Bicycle || 7.3 | 458.8 (94%) | 1.81 | 119 | 1946
search displacement in the full search case, each block Slheer 151"0'12 ;z;g (S.Zoﬁ)) (1)'2; 179‘34 199.—074
of size 16 x 16 (= 256) pixels is searched for 38 Fo(;VtVE;u w5 3055 ((17‘ 6(;)) o Tiog 19091
. . . . . . (¢} - .

33 (= 1089) locations in order to obtain the MV. Thus, Mobile 1284 | 3306 (1.3%) | 087 | 56 | 807

there are 256< 1089 operations in total for each block.

Let us say that in our proposed algorithm, if we use only
50% of pixels (128 pixels) in a block and search for
locations, then the number of operations is 228, and

TABLE 1l
EXPERIMENTAL RESULTS OFFIVE TEST VIDEO SEQUENCES WITHALGORITHM S2

the corresponding speed-up factor ig 2089/ N for such Video Proposed algorithm S2

a block. However, since we have a total of 330 blocks, Speed- MSE Search | FS | MV
we need to add the number of operations together for all — up (% increase) | step | bks | bits
blocks before computing the speed-up factor. Bicycle || 85.8 | 463.6 (10.5%) | 1.81 | 8.2 | 1934

i X Cheer 70.6 | 512.4 (10.3%) | 1.57 | 13.0] 1863
[ ] 0 -
MSE (% increase)yepresents the increased MSE of re Flower 128.9 | 228.6 (3.4%) | 0.85 | 5.5 | 981

constructed motion-compensated frames with the MSE o555 207.9 (19.1%) | 1.50 | 8.4 | 2039
obtained via full search as the reference, which is ex- oo 133.0 | 3315 (1.6%) | 086 | 4.8 | 802
pressed in terms of percentage.

e Search steprepresents the averaged step number in
performing the local search around (presented ":[}(PERIMENTAL RESULTS OFFIVE
Tables 11-V). This includes step number O withA Dy <

TABLE IV
TESTVIDEO SEQUENCES WITHALGORITHM ST1

TH, (i.e., the best MV candidate is used as the final MV~ Video Proposed algorithm ST1
without MV refinement). Speed- MSE Search | FS | MV
+ FS bksshows the averaged number of blocks requiring up | (% increase) | step | bks | bits
full search for each frame (presented in Tables 1I-V). Bicycle || 110.7 | 450.1 (7.3%) | 1.56 | 5.7 | 1997
« MV bitsrepresents the number of bits used in the coding _Cheer [ 844 | 489.9 (5.5%) | 131 | 114 ]| 1911
of MV's, where the differential coding scheme adopted 11ower || 1781 | 224.6 (L7%) | 0.75 | 3.0 | 954
by the MPEG standard [10] is applied. Football || 1515 | 1952 (11.8%) | 1.24 | 3.7 | 2031
Mobile || 217.5 | 3304 (1.3%) | 0.80 | 1.2 | 808

By comparing Algorithms S1 and ST1, and Algorithms
S2 and ST2, we can see a significant improvement in the
speed-up factor by using both spatial and temporal correlatio&gERIMENTAL ReSULTS OFFIVE T
rather than using the spatial correlation only. Furthermore,
we see from Tables II-V that the averaged speed-up factors Video Proposed algorithm ST2
of ST2 (or S2) are higher than those of ST1 (or S1) in all Speed- M3E Search | FS | MV
five sequences. The main reason for gaining a high speed-up —. P (% increase) | step | bks | bits

. . . . Bicycle 131.8 5.2 (8.5%) | 1.54 | 3.1 | 1960
factor in ST2 (or S2) is due to computational reductior:i# Cheer 119.6 000 7(8.9%) | 1.23 | 6.4 | 1860
and G3 blocks, especially inG3 blocks where the number Flower 2715 | 2255 (2.0%) | 057 | 14| 951
of blocks counts for one half of the total number of blocks. R Gran 1 177.3 | 198.3 (13.6%) | 1.23 | 2.1 | 2035
In Table VI, we see that the speed-up factors of MRST are Jobile 356.7 | 331.8 (L.7%) | 0.55 | 0.7 | 793
higher than those of S1, S2, ST1, ST2, and log search. Due
to multiresolution and spatio-temporal correlations, we can

TABLE V
EST VIDEO SEQUENCES WITHALGORITHM ST2

obtain a better set of initial MV candidates so that there is no ExpemMENTALTARE:;I;Eu\Q oF Five TesT
need to perform full search at finer levels (dtH;). Note, VIDEO SEQUENCES WITHALGORITHM MRST
however, that for “mobile” sequence, MF_RST gives a little Video || Proposed algorithm MRST
lower speed-up factor than ST2 with a similar MSE result. Speed- MSE MV
This is because the MV’'s of “mobile” sequence have very up (% increase) | bits
strong spatial and temporal correlations so that very few blocks Bicycle 150.4 | 448.7 (7.0%) | 2107
require full search in ST2 (only the average of 0.7 block in Cheer 231.5 | 492.8 (6.1%) | 1957
“FS bks” column). For this case, multiple levels in MRST Flower 287.8 | 224.6 (1.6%) | 958
seem to add a little more computation which causes a lower Football || 208.4 | 186.7 (6.9%) | 2219
speed-up factor than that of ST2. For “cheer” and “football” Mobile || 314.5 | 332.6 (1.9%) | 786

sequences which have a larger number of “FS bks,” we see
that Algorithm MRST results in a much higher speed-up factor To gain more insights, we plot the frame-by-frame speed-
than ST2. up factor by using the log search, S2, ST2, and MRST
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Fig. 6. The plot of the speed-up factor as a function of the frame numbeiy. 7. The plot of percentage of MSE increase as a function of the frame
with log search, S2, ST2 and MRST: (a) football and (b) flower. number with log search, S2, ST2 and MRST: (a) football and (b) flower.

for “football” and “flower” sequences in Fig. 6(a) and (b),football,” MRST gives a better result in terms of a higher
respectively. We see that MRST provides the highest speageed-up factor and a lower MSE value. Note also that
up factor for most frames in both sequences. Besides, Wwe MSE difference between ST1 and ST2 is very small.
observe from the plots that ST2 has a high fluctuation in tHeis justifies the idea of exploiting the block subsampling
speed-up factor. This is due to the use of a fi&d; for all technique in ST2. The frame-by-frame plots of percentage
frames, where the value @fH; may be too small or too big of MSE increase with the log search, S2, ST2, and MRST
for some frames. On the other hand, MRST gives a smallggorithms for “football” and “flower” are given in Fig. 7(a)
fluctuation in the plot due to the adaptive natureltf; for and (b), respectively. It is clear that the percentages of MSE
each frame. increase from MRST is much smaller than those from other
As a tradeoff of fast MV estimation in MRST, we observalgorithms. Algorithm MRST not only gives smaller MSE
only small MSE increase (between 2—7%) in comparison withcreases in average but also provides smaller deviations in
full search. It supports our claim that the multiresolutionMSE increase. This implies that the quality of the output
spatio-temporal correlations can be effectively used to redugeeo obtained from MRST should be better in consecutive
the computational cost without sacrificing much in MSHlisplays.
For “flower” and “mobile” sequences, the results of ST2 In Tables II-V, the search step number gives us information
and MRST are similar, while for “bicycle,” “cheer,” andabout how close the best MV candidate is to the final MV. It
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is also clear that a smaller number of search steps implies R-D plot from Football
a higher speed-up factor. Even though the maximum step % " " " " " PR "
numbers$ is set to ten, most blocks require only a few steps
to reach the final MV. The “flower” and “mobile” sequences
have the averaged step number even less than one, since therg,|
are many blocks witll/ ADy < T H; that do not require the
local search around process. 335k
For the column of “FS bks,” we see that the numbers arg
relatively small compared to the total number of blocks (330§ 33
used in full search. The “FS bks” number gives us a rough

T

x--x full search

. . . . . . ’ 0—-0 log search
idea of the occurrence of motion discontinuity or regions that 325¢ I s ]
S S§T2

cannot be well represented by those in neighboring blocks or
frames due to occlusion, zooming, mixed motions, etc. The ’
“FS bks” and search step numbers are two main factors which81 5—>(' .‘
determine the speed-up factor. For example, even though the" S

“cheer” sequence has a search step less than that of the,, i : l . . . . .
“bicycle” sequence, it has a larger number in “FS bks” and, ©2 0% 03 03 04 S 0 0% 08 0%
therefore, a lower speed-up factor. @

Next, we examine the column of MV bits. We see from
tables that all five proposed algorithms use fewer bits in the R-D plot from Flower
coding of MV’s than full search. This is a direct consequence **® ' ' ‘ ' '
of a smooth motion field by using the spatial correlation for 53
MV estimation. The temporal correlation does not play an
important role in MV coding since the coding is based on s2sr
spatial differentials as specified by MPEG. Neither full search sz
nor log search uses the MV information from neighboring
blocks. In both methods, each block is treated independently gf“'
others. This may cause MV’s to jump around in some region§ 3t
and result in a higher number of MV bits. We also observé
that, for “bicycle,” “cheer,” and “football,” the MV bits of
MRST are a little larger than those from ST2, which could 3o}
have resulted from the use of MV's obtained from full search .
at the coarsest level.

Finally, we consider the coding of residual errors to obtain 29}
the rate-distortion (R-D) plot. We do not go through the whole ., ol , s . , . .
coding process of MPEG which contains bit stream syntax, °*  ®4 05 08 O e ! 1
layered structure, and so on. Instead, we only perform MV b)
differential coding and DCT residual error coding, and add

: « » ,4Eig. 8. Comparison of the rate-distortion performance with full search, log
the numbers of bits together to represent the "rate” wi arch, S2, ST2, and MRST, where the rate is represented by bits per pixel

the unit of b/p (bits per pixel). The distortion is represente@pp) while distortion is represented by PSNR (dB): (a) football and (b) flower.
by PSNR, which is computed via MSE measured from the

final reconstructed images (with residual coding). Two R-D
plots for “football” and “flower” sequences are demonstrated
in Fig. 8(a) and (b), respectively. In both R-D plots, we blin this work, we first introduced two fast MV estimation
see a small deterioration from the results of our algorithnadgorithms S1 and S2 based on spatial correlation of MV’s
in comparison with full search while the results of the lofpetween adjacent blocks and then incorporated the temporal
search are much worse. The results of MRST and ST2 anformation to obtain Algorithms ST1 and ST2. We finally
very similar, and they are both better than that of S2. Fproposed the ultimate algorithm MRST by combining the
the “football” sequence, the R-D plot of ST2 is in fact anultiresolution scheme with spatio-temporal correlations.
little better than that of MRST despite a larger MSE. Th&he initial MV candidates of MRST are selected from
reason could be that in some regions the ST2 gives highbe corresponding coarser-level block as well as spatially
correlated residual errors so that fewer bits are required agd temporally neighboring blocks at the same level.
DCT. For the “flower” sequence, the results of ST2 and/e showed with experimental results that the proposed
MRST are so similar that they appear to coincide with eaatgorithm MRST has a speed-up factor ranging from 150
other. To conclude, the proposed algorithm MRST providesta 310 with only 2-7% MSE increase and a similar rate-
very fast MV estimation procedure while maintaining a goodistortion performance in comparison with full search.
performance in terms of MSE as well as the rate-distortiorherefore, this algorithm can be very useful for real-time
tradeoff. video encoding applications. Theoretical analysis of the

321

x—-x full search 1

s’ o--0 log search

VIIl. CONCLUSIONS



488 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 7, NO. 3, JUNE 1997

proposed algorithms may be performed based on a certdigi S. zafar, Y.-Q. Zhang, and J. S. Baras, “Predictive block-matching

model such as the AR model to characterize correlations motion estimation for TV coding—Part I: Inter-block predictiohZEE
Trans. Broadcast.vol. 37, pp. 97-101, Sept. 1991.

of the motion field, which is an interesting topic for futureg] s. zafar, Y. Q. Zhang, and B. Jabbari, “Multiscale video representation
research. using multiresolution motion compensation and wavelet decomposi-
tion,” IEEE J. Select. Areas Communrol. 11, pp. 24-35, Jan. 1993.
[20] Y.-Q. Zhang and S. Zafar, “Predictive block-matching motion estimation
REFERENCES for TV coding—Part II: Inter-frame prediction|EEE Trans. Broadcast.
vol. 37, pp. 102-105, Sept. 1991.

[1] M. Bierling, “Displacement estimation by hierarchical block matching, 1211 » “Motion-compensated wavelet transform coding for color video
in Proc. SPIE Visual Communications and Image Processing v&& compression,”IEEE Trans. Circuits Syst. Video Technolol. 2, pp.
1001, pp. 942-951. 285-296, Sept. 1992.

[2] F. Dufaux and M. Kunt, “Multigrid block matching motion estimation
with an adaptive local mesh refinement,”Rnoc. SPIE Visual Commun.
and Image Processing '92/0l. 1818, pp. 97-109.

[3] D. LeGall, “MPEG: a video compression standard for multimedia
applications,”"Commun. ACMvol. 34, pp. 46-58, Apr. 1991.

[4] M. Ghanbari, “The cross-search algorithm for motion estimatidBEE
Trans. Commun.vol. 38, pp. 950-953, July 1990.

[5] J.R.Jain and A. K. Jain, “Displacement measurement and its applicati
in interframe image coding,/EEE Trans. Communvol. COM-29, pp.
1799-1808, Dec. 1981.

[6] T. Koga, K. linuma, A. Hirano, Y. lijima, and T. Ishiguro, “Motion
compensated interframe coding for video conferencing,Pioc. Nat.

Junavit Chalidabhongse(S'91-M’96) received the
B.E. degree from the Chulalongkorn University,
Bangkok, Thailand, in 1988 and the M.S. and Ph.D.
degrees from the University of Southern California,
Los Angeles, in 1989 and 1996, respectively, all in
electrical engineering.

He is currently working as a Research Asso-
ciate in the Department of Electrical Engineering

Telecommunication Confpp. G5.3.1-5.3.5, Nov. 29-Dec. 3, 1981. at the University of Southern California, Los An-
[7] J. Li, X. Lin, and Y. Wu, “Multiresolution tree architecture with l geles. His research interests include image and

its application in video sequence coding: A new result,” Rroc. - ~ video compression, low bit-rate video coding, visual

SPIE Visual Communications and Image Processing \@8. 2094, pp. communication, and image processing.

730-741.

[8] R. Li, B. Zeng, and M. L. Liou, “A new three-step search algorithm
for block motion estimation,JEEE Trans. Circuits Syst. Video Technol.
vol. 4, pp. 438-442, Aug. 1994. ) a2 MIQA._GN .
[9] B. Liuand A. Zaccarin, “New fast algorithms for the estimation of block g.SC.di?;elgufcr)o(n? ?F?e l\l/l\lgt(iior?elt\l/l '?'gi)\lvfr?elh\;ei\(/je:rs]ﬁy
?4°8tf)f5¥eig:s’llggf Trans. Circuits Syst. Video Technalol. 3, pp. Taipei, in 1980 and the M.S. and Ph.D. degrees
[10] MPEGL1, “Coding of moving pictures and associated audio,” Tech. Rej from the Massachusetts Institute of Technology,
Committee Draft of Standard ISO 11172, 1990. Clanlb.”dlge* in 1985 and 1987, respectively, all in
[11] MPEG?2, “Information technology—generic coding of moving picture: electrical engineering.
and associated audio,” Tech. Rep., ISO/IEC 13818-2, Committee Dre From O_ctober 1987 to December 19.88' he was
Computational and Applied Mathematics (CAM)

Mar. 1994. ; .
[12] H. G. Musmann, P. Pirsch, and H.-J. Grallert, “Advances in pictu Research Assistant Professor in the Department of
Mathematics at the University of California, Los

coding,” Proc. IEEE vol. 73, pp. 523-548, Apr. 1985. . A

[13] M. T. Orchard, “A comparison of techniques for estimating block motion ~ Angeles. Since January 1989, he has been with the
in image sequence coding,” Proc. SPIE Visual Communications and Department of Electrical Engineering—Systems and the Signal and Image Pro-
Image Processing '§vol. 1199, pp. 248-258. cessing Institute at the University of Southern California, where he currently

[14] A. Puri, H.-M. Hang, and D. L. Schilling, “An efficient block matching has a joint appointment as Associate Professor of Electrical Engineering and
algorithm for motion-compensated coding,”foc. IEEE ICASSP '87 Mathematics. His research interests are in the areas of digital signal and
pp. 25.4.1-25.4.4. image processing, video coding, wavelet theory and applications, multimedia

[15] R. Srinivasan and K. R. Rao, “Predictive coding based on efficietchnologies, and large-scale scientific computing. He has authored more than
motion estimation,1EEE Trans. Communyol. COM-33, pp. 888-896, 200 articles.
Aug. 1985. Dr. Kuo is a member of Sigma Xi, SIAM, ACM, and a Fellow of SPIE.

[16] K. M. Uz, M. Vetterli, and D. LeGall, “Interpolative multiresolution He serves as Associate Editor for IEEEANSACTIONS ONIMAGE PROCESSING
coding of advanced television with compatible subchanndBEE and IEEE RANSACTIONS ONCIRCUITS AND SYSTEMS FORVIDEO TECHNOLOGY
Trans. Circuits Syst. Video Technolol. 1, pp. 86-99, Mar. 1991. and is on the editorial board of th#ournal of Visual Communication and

[17] K. Xie, L. V. Eycken, and A. Oosterlinck, “A new block-based motionimage RepresentatiorHe received the National Science Foundation Young
estimation algorithm,’Signal Processing: Image Communol. 4, pp. Investigator Award (NYI) and Presidential Faculty Fellow (PFF) Award in
507-517, 1992. 1992 and 1993, respectively.




