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rithms have been developed under three simple but restric-
tive assumptions on the image formation model to simplifyMost conventional SFS (shape from shading) algorithms have

been developed under three basic assumptions on surface prop- the problem, namely, the ideal Lambertian surface, a dis-
erties and imaging geometry to simplify the problem, namely, tant point light source and orthographic projection [2, 8,
a Lambertian surface, a distant point light source and ortho- 11, 14, 15, 17, 18, 24, 30, 32, 39, 41], etc. We refer to [40]
graphic projection. In this research, we derive a physics-based for a detailed performance analysis and comparison of
generalized reflectance map model which includes diffuse and several important algorithms. By means of orthographic
specular reflection effects, a nearby point light source and per- projection and distant light source, the image intensity can
spective projection, and then we develop a new direct shape be simply characterized by a reflectance map which givesrecovery algorithm from shaded images. The basic idea of our

scene radiance as a function of only two variables (p, q), thesolution method is to discretize the image irradiance equation
gradient of the corresponding surface point, in a viewer-with a finite triangular element surface model, to express the
centered coordinated system [7]. With the Lambertian as-resulting nonlinear system of equations in terms of depth vari-
sumption, the reflectance map can be further simplifiedables only and to recover the object shape by linearizing the
to be independent on viewer’s direction. However, thesenonlinear equations and minimizing a quadratic cost func-
assumptions are not valid in practical environments fortional. We perform numerical experiments with one or multiple
the following reasons. First, surface reflection in generalphotometric stereo images to demonstrate the performance of

the derived physics-based reflectance map model and the pro- contains both the diffuse and the specular components.
posed SFS algorithm.  1997 Academic Press Second, the light source is often located in a finite distance

from the object so that the image brightness depends on the
distance between every object point and the light source.

1. INTRODUCTION Third, images are formed through a pin-hole camera which
should be modeled by perspective projection. Since con-

There has been a considerable amount of interest and ventional SFS algorithms do not use accurate physical and
effort on shape extraction from image intensities in com- optical models, apparent distortions of reconstructed sur-
puter vision research for the last several decades. The faces often occur in many real applications.
brightness of a pixel in an image is generated through an To make SFS algorithms practically useful, we have to
image formation process governed by the optical, physical, consider a more realistic model of surface reflection and
and geometrical factors including the object shape, the the imaging process. Several attempts to relax the above
surface reflectance property, and the illumination and sen- restrictive assumptions have been made so far [1, 5, 6, 10,
sor characteristics. Thus, to get an accurate reconstructed 13, 19, 20, 28, 33]. We summarize important developments
surface, it is crucial to understand and model the whole below. First, the use of more sophisticated non-Lambertian
complicated imaging process. Most conventional SFS algo- reflectance maps in the SFS problem has been studied by

quite a few researchers. Ikeuchi [10] used a double-delta
specular model to determine orientations of a specular* This work was supported by the National Science Foundation Presi-
surface with photometric stereo images generated by dis-dential Faculty Fellow Award ASC-9350309.

† E-mail: cckuo@sipi.usc.edu. tributed light sources. Coleman and Jain [1] used four light
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source photometric stereo images to extract the shape of the surface property parameters, the surface normal at that
point, the light source direction, specular direction, thetextured and specular surfaces. Healy and Binford [5] and

Tsai and Shah [36] employed the Torrance–Sparraw model viewer direction, and the distance between the surface
point and the light source. The SFS problem would bein their work to determine the shape of a specular surface

with a single image. Recently, Tagare and deFigueiredo very difficult if we attempted to determine the surface
orientation as well as the position of a surface point by[33] presented and analyzed a class of m-lobed non-Lam-

bertian reflectance maps and developed a photometric solving the nonlinear image irradiance equation with this
generalized reflectance map. However, the solution proce-stereo SFS method to determine the local surface normal

and the reflectance map parameters. Second, the nearby dure can be greatly simplified by introducing a triangular
element surface model for the discretization and parame-point light source for the SFS problem was examined by

Kim and Burger [13]. They derived a reflectance map with terization of the image irradiance equation. Through such a
procedure, we can express the resulting discrete nonlineara nearby point light source under the orthographic projec-

tion and Lambertian surface assumptions, and determined system of equations in terms of depth variables only, and
we recover the object shape by linearizing the equationslocal positions and orientations with photometric stereo

images. Finally, the perspective projection model has been and minimizing a quadratic cost functional. Since our
method recovers depth variables directly, no integrabilityapplied to the SFS problem by Penna [28, 29] and the

authors [18]. Penna presented a local SFS analysis of a constraint is required.
The paper is organized as follows. In Section 2, we derivesingle perspective image of a Lambertian polyhedron-

shaped surface and proposed an algorithm which recovers a generalized reflectance map model which takes the fol-
lowing factors into account: the specular and diffuse com-the local shape of the polyhedron by solving a nonlinear

system of algebraic equations. The potential extension of ponents of light reflection, a nearby point light source, and
perspective projection. We consider the discretization andhis method to a non-Lambertian object was also men-

tioned. However, this algorithm is practically unreliable parameterization of the nonlinear reflectance map based
on a triangular element surface model in Section 3. Wedue to its sensitivity to noise and numerical finite precision.

Lee and Kuo [18] developed a more robust SFS algorithm are able to simplify the discrete reflectance map for several
special cases, and these simplifications are examined alsobased on a triangular element surface model and a linear

approximation of a Lambertian reflectance map. It recov- in this section. The formulation and solution of the SFS
problem is studied in Section 4. We perform numericalers the shape of a Lambertian surface directly with single

or multiple photometric stereo images taken under per- experiments with one or multiple photometric stereo im-
ages to demonstrate the performance of the derived phys-spective projection. An effort trying to solve the SFS prob-

lem in a more general setting can be found in the original ics-based reflectance map model and the proposed SFS
algorithm in Section 5. Some concluding remarks are givenwork of Horn [6], in which he used a perspective projection

model, a nearby light source, and an arbitrary reflectivity in Section 6.
function. A first-order partial differential equation known
as the image brightness equation was derived in terms of 2. GENERALIZED REFLECTANCE MAP MODEL
five dependent variables (x, y, z, p, q), and then a set of
equivalent five ordinary partial equations were derived and The reflectance map was first defined by Horn [7] as a

function that relates reflected radiance to local surfacesolved by the characteristic strip method. However, this
method suffers from several practical problems including orientation in a viewer-centered coordinate. It is indepen-

dent of all other variables such as position in the image.noise sensitivity and error accumulation in numerical inte-
gration of the differential equations. This notion of reflectance map is not general enough for

describing the situation where there is perspective projec-In this research, we derive a physics-based generalized
reflectance map model which includes perspective projec- tion and a finite distant light source. In this section, by

incorporating more accurate surface reflectance phenom-tion, a nearby light source, and diffuse and specular reflec-
tion effects, and then we develop a new unified algorithm ena and image formation effects, we propose a generalized

reflectance map which depends on not only gradient vari-for recovering depth variables from shaded images with
such a generalized reflectance map. We employ the Tor- ables but also variables of the position and the distance of

light source. The radiance of the reflected light from arance and Sparrow BRDF (bidirectional reflectance distri-
bution function) to model diffuse and specular reflections surface patch is derived in terms of BRDF and the incident

irradiance due to a nearby point light source in Sectionof the reflectance map based on geometrical optics. Fur-
thermore, we incorporate the nearby point light source 2.1. By combining the imaging geometry with perspective

projection and the result in Sections 2.1, we obtain a phys-and perspective projection in the model. The complete
model is quite complicated where the brightness at a sur- ics-based generalized reflectance map model and the corre-

sponding image irradiance equation in Section 2.2.face point in an image depends on many factors including



SHAPE FROM SHADING 145

specular components. The Lambertian model and the
Torrance–Sparrow model have been widely used for the
diffuse and specular reflection in the community of com-
puter vision and computer graphics.

Several comprehensive models for diffuse reflection
have been recently examined. Oren and Nayar [25] pro-
posed a generalized Lambertion model for rough diffuse
surfaces by taking into account complex geometrical ef-
fects. The Oren–Naylar model has been used not only for
vision but also graphics [26] and visual psychophysics [22,
27]. The accuracy and generality of the model was well
illustrated by the experimental results in their work. Wolff
[37, 38] also presented an accurate diffuse reflectance
model for the smooth dielectric surface. Even though being

FIG. 1. Reflection geometry model. highly nonlinear involving functions of the viewing direc-
tion, interreflection, and Fresnel coefficient, the above two
models are able to capture the reflectance of real-world sur-
faces.2.1. Reflection Due to a Nearby Point Light Source

Furthermore, Wolff [37] showed that the proposed
We illustrate the reflection geometry used in this paper model can be well approximated by the Lambertian model

in Fig. 1, where r is the distance between a surface point when both the angles of incident and emittance are simulta-
P and a point light source S, n is the unit surface normal neously less than 508 and the angle between the viewer
at P, i is the unit vector toward the light source, v is the direction and the illumination direction is less than 608.
unit vector toward the camera, and h is the unit vector Under these assumptions, we employ the Lambertian
along the specular direction. By definition [34], the bisector model for the diffuse component, and the Torrance–
of i and v specifies the specular direction so that we have Sparrow model for the specular components, respectively,

in this paper. That is,

h 5
i 1 v

ii 1 vi
.

fd(i, n, v) 5 1/f

The qi , qv , and a denote the angles between n and i, n
and v, and n and h, respectively. The zenith and azimuth and
angles (u, f) with a proper subscript represent a unit vector
in a given polar coordinate system.

The light reflection depends on the radiance of the light fs(i, n, v) 5
1

cos qi cos qv
exph2ka2j

source and the bidirectional reflectance distribution func-
tion (BRDF). The BRDF proposed by Nicodemous et al.
[23] is a useful tool for characterizing light reflection from 5

1
(iTn)(vTn)

exph2k[cos21(hTn)]2j,
solid surfaces and it provides the information of the bright-
ness of a surface patch with given viewing and illumination
directions. By definition, it is written as where k is the surface roughness parameter.

As indicated in (2.1), the reflected radiance L depends
f 5 L/E (2.1) on the incident irradiance E as well as the BRDF f.

Since the amount of light energy falling on a surface
where L and E denote the reflected radiance in the emitting patch is proportional to the foreshortened area, the
direction and the irradiance in the direction of incident irradiance E at that patch is proportional to a cosine
light, respectively. function of the angle between the surface normal direc-

The model general light reflection from surfaces, the tion and the light source direction. Moreover, since the
BRDF f consists of both the diffuse component fd and the distance between the surface patch and the light source
specular component fs [21, 33]; i.e., is finite, the irradiance is inversely proportional to square

of the distance. Assume that the point light source has
f 5 rd fd 1 rs fs , (2.2) isotropic radiance I0 . Then, it is easy to derive the

irradiance E at a surface point from a point light source
in the direction i or ((ui , fi).where rd and rs are the weighting factors of diffuse and
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E(x, n, r) 5
I0

r2 max[0, iTn]dg(x 2 i), (2.3)

where dg is a solid angle delta function [33] defined by

dg(x 2 i) 5 dg(ux 2 ui , fx 2 fi) 5
d(ux 2 ui)d(fx 2 fi)

sin ui
,

where d is the Dirac delta function.
Given a BRDF f of a surface and a point light source,

the radiance of reflected light along the viewer direction
v can be computed as

L(i, n, v r) 5 E
gx

f(x, n, v)E(x, n, r) dgx

(2.4)

5 f(i, n, v)
I0

r2 max[0, iTn]. FIG. 2. Imaging geometry model.

By substituting (2.2) into (2.4), we can represent the re-
flected hybrid radiance as x 5 2f

X
Z

, y 5 2f
Y
Z

. (2.7)

The irradiance E at an image point of the film is obtainedL(i, n, v, r) 5 [rd fd(i, n, v) 1 rs fs(i, n, v)]
I0

r2 max[0, iTn]

(2.5) through the lens system via the radiance L of the corre-
sponding surface point. It was shown in [9] that not all,5 rdLd(i, n, v, r) 1 rsLs(i, n, v, r),
but only a portion of reflected light comes through the
lens system which is known as the lens collection [4]. It iswhere
described by

Ld 5
I0

r2f
max[0, iTn],

(2.6)
E 5

f
4 Sd

fD2

cos4 cL, (2.8)

Ls 5
I0

r2

exph2k[cos21(hTn)]2j
(iTn)(vTn)

max[0, iTn] where d is the diameter of the lens and c is the angle
between the ray from the object point to the center of
projection and the optical axis.

are the diffuse and specular radiance components, respec- In general, the converted image intensity or gray
tively. value through an electronic sensor device can be writ-

ten as
2.2. Derived Reflectance Map Model and Image

Irradiance Equation I 5 gE 1 b, (2.9)
The general perspective projection, which models the

where g and b are the sensor gain and the bias, respectively,ideal pinhole camera, is employed in this work. As depicted
which can be determined by proper camera sensor calibra-in Fig. 2, we consider a camera-centered Cartesian coordi-
tion. As a direct consequence of (2.9), we can define thenate system with the lens at the origin called the center of
generalized reflectance map functionprojection and the optical axis aligned with the 2Z-axis.

The actual film is located at Z 5 f, where f is the focal
length behind the lens. However, to avoid the sign reversal R(i, n, v, r) 5 g

f
4 Sd

fD2

cos4 cL(i, n, v, r) 1 b, (2.10)
of the coordinates, we assume without loss of generality
that the image plane x 2 y is located at Z 5 2f in front
of the lens. With this model, the mapping between a surface so that the image intensity I at a point p in the image

plane can be characterized by the image irradiancepoint P 5 (X, Y, Z)T and the projected image point p 5
(x, y, 2f )T obeys the relationship equation
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I(p) 5 R(i(S, P), n(P), v(P), r(S, P)), (2.11) in the image plane are specified, R reduces to a function
of three variables, i.e., depth Z and the gradients p and q,

where the relationship between the image point p and the since the components of P can be represented in terms of
corresponding surface point P is defined by the perspective Z by the perspective law with known p. Thus, we are led
law in (2.7). The cosine function of off-axis angle c can be to a problem of solving three dependent variables, Z, p,
written as and q, characterizing the underlying surface with one given

equation. To solve them uniquely, conventional photomet-
cos c 5 2vTnz , ric stereo methods use additional image irradiance equa-

tions due to other light sources as constraints [13, 33]. This
where ns 5 (0, 0, 1) is the unit normal of X-Y plane. approach has one difficulty, namely, since the variables Z,
By substituting (2.5) and (2.6) into (2.10), the generalized p, and q are viewed as independent variables, the recovered
reflectance map can be written as depth variables and surface normals are often inconsistent.

This is known as the integrability problem. Note also that
R(i, n, v, r) the idea of using discrete approximations of p and q by a

straightforward finite difference method, which has been
5 g

I0

r2 (vTnz)4 f
4 Sd

fD2

applied to the orthographic SFS problem [15, 35], is no
longer applicable in this context since the position compo-
nents (X, Y) are in fact functions of the depth Z.

? Srd

f
1 rs

exph2k[cos21(hTn)]2j
(iTn)(vTn) Dmax[0, iTn] 1 b By introducing a triangular element surface model, we

represent the surface normal as functions of the nodal
depth. Consequently, the reflectance map R can be discret-
ized and parameterized with only the nodal depth vari-
ables. Such a procedure greatly simplify the SFS problem

55
g

I0

r2 (vTnz)4

? SbdiTn 1 bs
exph2k[cos21(hTn)]2j

vTn D1 b, iTn $ 0,

0, otherwise,

formulation and its solution.

3.1. Discretization and Parameterization with
Triangular Element Surface Model

Our basic idea of discretization and parameterization iswhere the diffuse and specular albedo, bd and bs , are con-
to approximate a smooth object surface by the union ofstants of proper dimension that makes R a valid reflectance
triangular surface patches called triangular elements suchmap. We note that in order to make our algorithm work
that the approximating surface can be written as a linearproperly and reconstruct accurate surfaces, the generalized
combination of a set of nodal basis functions of compactreflectance map parameters, bd , bs , and k of an object
support. Let us triangulate a square image domain V byshould be known a priori. Several algorithms for estimating
dividing it into a set of Mt nonoverlapping triangles Ti ,these parameters of hybrid reflection have been proposed
i 5 1, . . . , Mt , with Mn nodal points pi , i 5 1, . . . , Mn ,in the literatures, and we refer to [12, 33] for more detailed
so that the intensity within each triangle is almost homoge-discussion. Methods for estimating the albedo and illumi-
neous. Then, we approximate a smooth object surface bynation direction for Lambertian surface can be found in
a piecewise linear surface consisting of triangular surface[16, 41].
patches Si with nodal points Pi in such a way that Si and
Pi are perspectively projected to Ti and pi , respectively, in

3. DISCRETE GENERALIZED REFLECTANCE MAP
the image plane. The approximating surface can be

PARAMETERIZED BY DEPTH VARIABLES
uniquely specified by Pi , or equivalently by the sur-
face nodal depth variables Zi associated with pi , i 5The SFS problem can be viewed as a problem of solving
1, . . . , Mn .the image irradiance equation (2.11) with given (observed)

Let us now focus on a triangular surface patch Sk andimage intensity at p. The generalized reflectance map R
the corresponding projected triangle Tk on the image planein (2.10) is a function of the light source position S, the
as shown in Fig. 3. We denote the nodal vectors (controlposition of a surface point P and the surface normal at
points) of three vertices of Sk asthat point which can be expressed as

Pi 5 (Xi , Yi , Zi), Pj 5 (Xj , Yj , Zj), Pl 5 (Xl , Yl , Zl),
n 5

(2p, 2q, 1)

Ïp2 1 q2 1 1
, where p 5

­Z(X, Y)
­X

, q 5
­Z(X, Y)

­Y
.

and the corresponding projected nodal points in the image
plane asOnce the light source position and the projected point p
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depends only on the depth values of three nodal points Zi ,
Zj , and Zl . The unit vector ik of the light source direction at
the center of the surface patch Sk can be written as

ik 5
1
rk

(S 2 Pkc) 5
1
rk

(Sx 2 Xkc , Sy 2 Ykc , Sz 2 Zkc),

where

rk 5 iS 2 Pkci
(3.1)

5 [(Sx 2 Xkc)2 1 (Sy 2 Ykc)2 1 (Sz 2 Zkc)2]1/2

is the distance between the light source S and Pkc . Similarly,
the unit vector vk along the viewing direction from the
surface patch Sk can be represented by

vk 5
O 2 Pkc

iO 2 Pkci
(3.2)

FIG. 3. Image formation on a triangular surface patch. 5
1

(X2
kc 1 Y2

kc 1 Z2
kc)1/2 (2Xkc , 2Ykc , 2Zkc).

The unit vector hk along the specular direction on Sk canpi 5 (xi , yi , 2f ), pj 5 (xj , yj , 2f ), pl 5 (xl , yl , 2f ).
also be determined by

The center of Sk is

hk 5
ik 1 vk

iik 1 vki
.Pkc 5 (Xkc , Ykc , Zkc)

Besides, the surface normal nk of the triangular surface5 SXi 1 Xj 1 Xl

3
,
Yi 1 Yj 1 Yl

3
,
Zi 1 Zj 1 Zl

3 D.
patch Sk can be uniquely determined by its three nodal
vectors Pi , Pj , and Pl via

By using the perspective relationship in (2.7), we can re-
write the components of Pkc in matrix form as

nk 5
(Pj 2 Pi) 3 (Pl 2 Pi)
u(Pj 2 Pi) 3 (Pl 2 Pi)u

5
(Xj 2 Xi , Yj 2 Yi , Zj 2 Zi) 3 (Xl 2 Xi , Yl 2 Yi , Zl 2 Zi)
u(Xj 2 Xi , Yj 2 Yi , Zj 2 Zi) 3 (Xl 2 Xi , Yl 2 Yi , Zl 2 Zi)u

.1
Xkc

Ykc

Zkc
25

21
3f 1

xi xi xl

yi yj yl

2f 2f 2f
21

Zi

Zj

Zl
2.

(3.3)

By using the perspective relationship in (2.7), we can re-We assume that f is known and the points (xi , yi), (xj , yj),
and (xi , yl) are observed in the image plane. Then, Pkc write nk in terms of the location of the image points as

nk 5

S1
f

(xiZi 2 xjZj),
1
f

(yiZi 2 yjZj), Zj 2 ZiD3 S1
f

(xiZi 2 xlZl),
1
f

(yiZi 2 ylZl), Zl 2 ZiD
US1

f
(xiZi 2 xjZj),

1
f

(yiZi 2 yjZj), Zj 2 ZiD3 S1
f

(xiZi 2 xlZl),
1
f

(yiZi 2 ylZl), Zl 2 ZiDU
5

(2wk , 2nk , ek)T

(w2
k 1 n2

k 1 e2
k)1/2 ,
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where
i P

S 2 O
iS 2 Oi

5
(Sx , Sy , Sz)

(S2
x 1 S2

y 1 S2
z)1/2 . (3.6)

3.2.2. Distant Object1
wk

nk

ek

25 1
f(yi 2 yj) f(yl 2 yi) f(yj 2 yl)

f(xj 2 xi) f(xi 2 xl) f(xl 2 xj)

(xiyj 2 xjyi) (xlyi 2 xiyl) (xjyl 2 xlyj)
21

ZiZl

ZiZj

ZlZj

2.
When an object is far away from the camera while the

light source is near the object, the perspective projection
model can be approximated by the simpler orthographic

Note that since the vectors ik , vk , nk , hk , and rk are all projection model. With orthogonal projection, we have the
expressed in terms of Zi , Zj , and Zl in the above discussion, following relationship:
the reflectance map Rk is only a function of Zi , Zj , and Zl ,
i.e., the depth variables of three vertices of Sk .

x 5 X, y 5 Y. (3.7)Finally, by using the image irradiance equation, we can
relate the image intensity Ik of a triangle Tk directly to the

For this case, since all rays from the surface points are innodal depth values of the corresponding surface patch Sk:
parallel with each other and orthogonal to the image plane,
the unit vector vk along the viewer direction from theIk 5 Rk(ik , nk , vk , rk)
surface patch Sk in (3.2) becomes independent on the posi-
tion of the patch, i.e.,

vk 5 v 5 nz 5 (0, 0, 1)T. (3.8)
55

I0

r2
k

(vT
knz)4

? SbdiTknk 1 bs
exph2k[cos21(hT

knk)]2j
vT

knk
D, iTknk $ 0,

0, otherwise,
Moreover, since

cos c 5 2nT
z nz 5 21, (3.9)5 Rk(Zi , Zj , Zl).

(3.4)
the lens collection is independent on the surface position

3.2. Special Cases and (2.8) reduces to

We discuss several simplified reflectance map models
E 5 CL,for some special cases below.

3.2.1. Distant Light Source where C is a constant collection factor f d2/(4f 2). Be-
sides, by using the orthographic projection relationshipIf the light source is located far away from the object and
in (3.7), the surface normal in (3.3) can be approximatedthe camera, the relative depth difference between surface
bypoints is negligible compared to the average distance from

the object to the light source. For this case, the radiance
flux arriving at a surface patch can be approximated as

n̂k 5
(xj 2 xi , yj 2 yi , Zj 2 Zi) 3 (xl 2 xi , yl 2 yi , Zl 2 Zi)
u(xj 2 xi , yj 2 yi , Zj 2 Zi) 3 (xl 2 xi , yl 2 yi , Zl 2 Zi)u

,

dFi 5
I0

r2 dA max[0, cos qi] P Il dA max[0, cos qi], (3.5)
5

(2ŵk , 2n̂k , êk)T

(ŵ2
k 1 n̂2

k 1 ê2
k)1/2 , (3.10)

where
where

I0

r2 P Il ; I0/r2
ŵk 5 (yj 2 yl)Zi 1 (yi 2 yj)Zl 1 (yl 2 yi)Zj ,

n̂k 5 (xl 2 xj)Zi 1 (xj 2 xi)Zl 1 (xi 2 xl)Zj ,
and where r is the average distance between the object

êk 5 (xj yl 2 xl yj) 1 (xi yj 2 xj yi) 1 (xl yi 2 xi yl).surface and the light source. Besides, since the light source
is far away, we can assume that incident rays from the light

3.2.3. Distant Light Source and Object
source are in parallel with each other. Then, the unit vector
ik of the light source direction in (3.1) is independent of If the light source, the object and the camera are far

away from one another, both the distant light point sourcethe position of the surface patch so that we can drop the
subscription and approximate it as and orthographic projection assumptions hold. For this
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FIG. 4. Test Problem 1: (a) ground truth, and reconstructed results with (b) a single image, (c) two photometric stereo images, (d) three photometric
stereo images; (e) three noisy photometric stereo images corrupted by 10% randim noise; (f ) the 1D sliced plot of several reconstructed results.

case, the vectors ik , vk , and hk are no longer dependent 4. FORMULATION OF THE SFS PROBLEM
on the surface position. Once the light source direction is

The shape of an object, which is approximated with aspecified, the brightness of a pixel in an image plan is
determined only by the surface normal nk . By using (3.5), union of linear triangular surface patches, can be character-
(3.6), (3.8), (3.9), (3.10) and dropping off the unnecessary ized by the coordinates of the nodal points Pm 5 (Xm , Ym ,
subscripts, we obtain the simplified reflectance map Zm), m 5 1, . . . , Mn . Since the positions of the points

pm 5 (xm , ym , 2f ), m 5 1, . . . , Mn , in the image plane
Rk(i, n̂k , v) are given, one can determine the positions of Pm by calcu-

lating the nodal depths Zm , m 5 1, . . . , Mn , and applying
the perspective law (2.7) to find out the corresponding Xm

5 5Il SbdiTn̂k 1 bs
exph2k[cos21(hTn̂k)]2j

vTn̂k
D, iTn̂k $ 0,

0, otherwise.
and Ym . The reflectance map Rk given by (3.4) is a nonlin-
ear function of depth variables Zi , Zj , and Zl which makes
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In terms of mathematics, we can derive a linear approxima-
tion of Rk at the nth iteration by taking the Taylor series
expansion about the reference depth values obtained at
the (n 2 1)th iteration as

Rk(Zi , Zj , Zl)

P Rk(Zn21
i , Zn21

j , Zn21
l )

1 O
m5i, j,l

(Zm 2 Zn21
m )

­Rk(Zi , Zj , Zl)
­Zm

U
(Zn21

i ,Zn21
j ,Zn21

l )

5 O
m5i, j,l

­Rk(Zi , Zj , Zl)
­Zm

U
(Zn21

i ,Zn21
j ,Zn21

l )
Zm

1HRk(Zn21
i , Zn21

j , Zn21
l )

2 O
m5i, j,l

­Rk(Zi , Zj , Zl)
­Zm

U
(Zn21

i ,Zn21
j ,Zn21

l )
Zn21

m J.

Since the second term of the above equation is equal to a
constant, the reflectance map Rk over Sk is a linear function
of depth values Zi , Zj , and Zl of the three vertices of Sk .
We may rewrite Rk in terms of all nodal depth variables
Zm , m 5 1, . . . , Mn . That is,

Rk P OMn

m51
gkmZm 1 jk , (4.1)

where

gkm 55
­Rk(Zi , Zj

, Zl)

­Zm
U

(Zn21
i ,Zn21

j ,Zn21
l )

, if m [ Vk 5 hi, j, lj of Tk ,

0, otherwise,
(4.2)

and

FIGURE 4—Continued

TABLE 1
Depth and Orientation Error of the Reconstructed Surfaces

the SFS problem difficult to solve. However, we can sim- in Test Problem 1
plify the solution process by linearizing the reflectance

H-H3map, solving the linearized problem and then by applying
Error H-H1 H-H2 H-H3 (with noise)

a successive linearization scheme to improve the accuracy
Mean-absolute Z 1.3578 0.9729 0.0092 0.2778of the computed solution.
Std-absolute Z 0.5279 0.3275 0.0023 0.0648By successive linearization, we mean that the nodal val-
Mean-relative Z (%) 2.4243 1.7879 0.0163 0.4753ues obtained from the previous iteration are used as the
Mean-pq 0.1760 0.0976 0.0584 0.0660

reference points for linearization for the current iteration.
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FIG. 5. Test Problem 2: (a) ground truth of a spherical surface; (b)–(c) photometric stereo images of a Lambertian surface; (d)–(g) photometric
stereo images of a hybrid surface.
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Az 5 b.
jk 5 Rk(Zn21

i , Zn21
j , Zn21

l ) 2 OMn

m51
gkmZn21

m , (4.3)
Since the stiffness matrix A is sparse and symmetric, the
system can be efficiently solved by iterative methods such

and where Vk denotes the index set of vertices of Tk . as the multigrid method and the preconditioned conjugate
Our objective is to determine the nodal depth Zm with gradient method [3, 31].

one or multiple images. To achieve this goal, we employ
a cost functional minimization approach with J different 5. EXPERIMENTAL RESULTS
photometric stereo images taken by various illumination

We present some experimental results to demonstratedirections while keeping the camera position fixed. The
the performance of the proposed SFS algorithm in thisscheme reduces to the single image SFS algorithm for
section. In the experiment, we put light sources on theJ 5 1. The cost functional is chosen to be
Z 5 0 plane centered around the origin. When two light
sources are used, they are chosen to be orthogonal to each
other in the azimuth angle, and when three are used, theyE 5 OMt

k51
OJ

j51
E j

k 5 OMt

k51
OJ

j51
(Ij

k 2 Rj
k)2, (4.4)

are placed 1208 apart in the azimuth angle. The angle
between the light ray to the object center and camera
optical axis is maintained at less than 458 for each lightwhere E j

k denotes the cost term corresponding to the kth
source. Unless specified otherwise, the initial depth esti-triangular domain of the jth image, and Ij

k and Rj
k are the

mates Z0
i , i 5 1, . . . , Mn , are set at an arbitrary constantobserved image irradiance and the reflectance map over

and no a priori knowledge about the true depth is assumed.the kth triangular domain of the jth image, respectively.
Since the nodal points whose depth values can be deter-It is worthwhile to emphasize that no regularization term
mined by the SFS algorithm are irregular and sparse onis used in (4.4).
the object domain, we perform interpolation to increaseBy substituting (4.1) into (4.4) and simplifying the ex-
the resolution and visibility of the reconstructed surface.pression, we obtain
To show the performance of the algorithm in a quantitive
way, the absolute and relative depth error, as well as the
orientation error, of the reconstructed surfaces are calcu-E 5 OMt

k51
OJ

j51
FIj

k 2 SOMn

m51
gj

kmZm 1 j j
kDG2

(4.5) lated and illustrated for each of the synthetic test problems
where the ground truth are known.5 AszTAz 2 bTz 1 c, z 5 [Z1 , Z2 , . . . , ZMn

]T,
TEST PROBLEM 1: Spherical polyhedron. We examine

the performance of the proposed algorithm applied to awhere the stiffness matrix A and the load vector b are the
spherical polyhedron whose surface is composed ofsum of each individual stiffness matrix Aj and the load
piecewise triangular patches so that it fits the model de-vector bj of jth image, respectively. In terms of mathemat-
scribed in Section 3.1. The 17 3 17 surface depth valuesics, we have
associated with image nodal points are shown in Fig. 4a.
The ideal image intensity Ik of each triangle Tk with respect
to each triangular surface patch Sk can be exactly deter-A 5 OJ

j51
Aj , b 5 OJ

j51
bj ,

mined by (3.8) so that Ik contains no noise. We set the
focal length f 5 30, the diffuse and specular weighting
factors bd 5 0.6, bs 5 0.4, and the surface roughness param-where the individual stiffness matrix Aj and the load vector
eter k 5 10, respectively.bj can be determined by

The recovered surface depth values with a single image
generated by a light source located at (Sx , Sy , Sz) 5
(52, 30, 0) are shown in Fig. 4b. The result with two photo-[Aj]m,n 5 2 OMt

k51
gj

kmgj
kn ,

metric stereo images generated by two light sources
(Sx , Sy , Sz) 5 (52, 30, 0) and (230, 52, 0) is shown in Fig.
4c. We also show in Fig. 4d the reconstructed surface with[bj]m 5 2 OMt

k51
(Ij

k 2 j j
k)gj

km , 1 # m, n # Mn ,
three photometric stereo images with light sources at
(Sx , Sy , Sz) 5 (60, 0, 0), (230, 52, 0), and (230, 252, 0).
To examine the robustness with respect to noise, we applyand gj and j j are the coefficients in (4.2) and (4.3) for the

jth image. The minimization of the quadratic functional in our algorithm to three noisy photometric stereo images
generated by adding 10% pseudo random intensity noise(4.5) with respect to the nodal variables z is equivalent to

finding the solution of a linear system of equations to the original images and show the result in Fig. 4e.
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FIG. 6. Reconstruction results of the spherical surface test problem: (a) applying the Lambertian model to two photometric stereo images of a
Lambertian surface; (b) applying the Lambertian model to two photometric stereo images of a hybrid surface; (c) applying the Lambertian model
to three photometric stereo images of a hybrid surface; (d) applying the general reflectance model to three photometric stereo images of hybrid
surfaces; (e) 1D sliced plot of reconstructed Lambertian surfaces; (f ) 1D sliced plot of reconstructed hybrid surfaces.

To see the accuracy of the recovery results more clearly, We observe from these results that a single image does
not provide accurate depth as well as orientation informa-we present the 1D sliced view of three reconstructed

surfaces along with the original one in Fig. 4f, where tion. Moreover, it is interesting to see that, unlike the
Lambertian case where two images are sufficient to recoverthe solid, dotted, dashdot, ‘‘1’’ and ‘‘o’’ marked lines

are used to represent the ground truth and the results accurate results [19, 18], the non-Lambertian surface can
hardly be recovered correctly with two photometric stereodepicted in Figs. 4b, c, d, and e, respectively. The initial

surface was to be a plane Z 5 2100 in the experiment. images. The result in Fig. 4 and Table 1 shows that with
three photometric stereo images, we can obtain robustWe also calculate the mean and standard deviation of the

absolute depth error, the mean of the relative percentage and very accurate reconstructions of the non-Lambertian
hybrid test surface. Even with images corrupted by 10%depth error, and the average orientation error of each

reconstructed surface in Figs. 4b–e and summarize them random noise, the algorithm recovers the surface robustly
with the relative depth error of less than 0.5% and thein Table 1.
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average orientation error of 0.066. However, we observe
that when the specular factor bs or the surface roughness
k becomes larger, the accuracy of the reconstructed depth
even with three images becomes degraded.

TEST PROBLEM 2: Sphere. We sythesize test images by
illuminating a 129 3 129 spherical surface as shown in
Fig. 5a via a pointwise mapping of (2.11) with the surface
normal approximated by

n 5
(2p, 2q, 1)T

Ïp2 1 q2 1 1
,

where p 5 Z(X 1 1, Y) 2 Z(X, Y), q 5 Z(X, Y 1 1) 2
Z(X, Y), and we estimate the average intensity Ik of each
image triangle Tk on the tessellated image domain as dis-
cussed in [18]. By setting f 5 200, we obtain a set of
perspective test images of size 64 3 64 by varying both
surface reflection parameters and the source position as
shown in Figs. 5b–g. Figures 5b and c are two photometric
stereo images of a Lambertian surface (bd 5 1, bs 5 0)
with light sources at (Sx , Sy , Sz) 5 (2150, 260, 0), (260,
150, 0), while Figs. 5d–g are those of a hybrid surface with
(bd , bs , k) 5 (0.5, 0.5, 7) and light sources at (sx , Sy , Sz)
5 (2150, 260, 0), (2260, 150, 0), (260, 150, 0), and (0,
2300, 0), respectively.

Figures 6a and b show the reconstructed Lambertian
and non-Lambertian surfaces by using a Lambertian re-
flectance map model with two sets of photometric stereo
images in Figs. 5b and c and Figs. 5d and f, respectively.
The results of applying the Lambertian reflectance map
and the generalized reflectance map to three photometric
images of the hybrid surface in Figs. 5e, f, and g are shown
in Figs. 6c and d, respectively. The mean and standard
deviations of the absolute depth error, the mean of relative
depth error, and the average orientation error of the recon-
structed surfaces in Figs. 6a–d are shown in Table 2. By

FIGURE 6—Continued comparing these results, we see clearly that applying the
Lambertian model to a non-Lambertian hybrid surface
using two or even three photometric stereo images pro-
duces a substantial amount of reconstruction error and is
thus not appropriate in practice.

TABLE 2
Depth and Orientation Error of the Reconstructed Surfaces in Test Problem 2

L-L2 H-H3
Error L-L2 H-L2 H-L3 H-H3 (w. depth constr.) (w. depth constr.)

Mean-absolute Z 4.1282 83.2214 70.5369 6.4409 0.5869 0.2458
Std-absolute Z 0.4084 11.4276 11.3204 0.3720 0.5008 0.2676
Mean-relative Z (%) 1.1501 12.0248 17.7108 1.6058 0.2920 0.1993
Mean-pq 0.0618 0.1285 0.2573 0.0599 0.0646 0.0635
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TABLE 3 the first and fourth columns of Table 2, that the mean
The Effect of the Distance of the Object from the Camera values are relatively large, while the standard deviations

in Test Problem 3 and the orientation error are small. By referring the results
of the ideal case in Fig. 4c, this discrepancy is primarilyError-distance 300 400 500
due to the quantization noise and noise caused by estimat-

Mean-absolute Z 2.7531 6.4409 10.6165 ing the image intensity Ik via an averaging process. How-
Mean-relative Z (%) 0.9335 1.6058 2.1435

ever, this depth discrepancy can be reduced by incorporat-Mean-pq 0.0664 0.5999 0.0614
ing the depth information of a single surface point. We
used Zref 5 2380, the depth of the center points, as a hard
constraint. We show the results in Figs. 6e and f with dashed
lines, and also we illustrate the statistics of depth error inIn Figs. 6e and f, we show the 1D sliced view of recon-

structed surfaces, where the solid lines denote the ground the last two columns of Table 2. We note that the mean
absolute depth error, as well as the mean relative error,truth while the dotted lines represent results by using cor-

rect reflectance maps (i.e., results in Figs. 6a and d). Al- are greatly reduced. These data show that more accurate
reconstructed surfaces can be obtained by imposing a depththough the overall shapes are close to the original one,

compared to the absolute depth of the ground truth, the constraint when the noise level in the image is relatively
small. We also tested the effect of the distance of an objectreconstructed surfaces are shifted globally by a certain

amount, which is also represented in the error statistics in from the camera. The test results of placing the same spher-

FIG. 7. Test Problem 3: (a) ground truth of a penny surface; (b)–(d) photometric stereo images.
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f 5 250, bd 5 0.4, bs 5 0.6, k 5 10 and light sources at
(Sx , Sy , Sz) 5 (285, 285, 0), (2386, 104, 0) and (104, 2386,
0), are given in Figs. 7b–d, respectively. Figure 8a is the
reconstructed depth by applying the general reflectance
map with a depth constraint Zref 5 2491. In this case, the
reconstruction error at the depth discontinuities is quite
visible. For comparison, we show in Fig. 8b the 1D slice
plot of several reconstructed surfaces, where the solid,
dashdot, dotted, and dashed lines denote the ground
truth and the results obtained by applying a Lambertian
model, a generalized reflectance model without and with
a depth constraint, respectively. Table 4 compares the
depth and orientation error of those reconstructed
surfaces.

Compared to previous test problems, both the depth
and orientation error becomes substantial even in the
case when a depth constraint is imposed. This is partially
due to the error occurring around the four corner regions
of the object, where the original surface has relatively
large depth discontinuities. Besides, since the test surface
is more complicated than the smooth spherical and cylin-
drical surfaces, with considerable local depth variation,
the averaging effect in estimating Ik is more serious.
This explains why the reconstructed surface with the
general reflectance model, but without using the depth
constraint, becomes worse for this problem than for that
of Test Problem 2.

TEST PROBLEM 4: Golf ball. In this test, real images
taken by a CCD camera are used for the experiment. The
three phometric stereo images of a golf ball are shown in
Figs. 9a–c. The ball is located at a distance of 45 cm in
front of the camera, and the three-point light sources are
placed on the Z 5 0 plane 1208 apart from each other in
a circular fashion to make the illumination angle to the
center of the object approximately 308. We performed the
test with the estimated reflection parameters bd 5 0.8,
bs 5 0.2, and k 5 8 without any depth constraint. The

FIG. 8. Results of the penny surface test problem: (a) reconstructed reconstructed surface is shown in Fig. 9d. We also show
surface using a general reflectance map model with a single depth con- the 1D depth profile along a diagonal direction in Fig.straint; (b) 1D sliced view of several reconstructed surfaces.

9e. Note that the object surface is inhomogeneous and
laminated with transparent paint. Even though the recon-
structed surface does not produce very accurate detailed

ical object 300, 400, and 500 units from the camera, are
reported in Table 3. These results show that the depth

TABLE 4error tends to increase as the object becomes far from the
Depth Error of the Reconstructed Surfaces incamera. This can be easily expected since the projected

Test Problem 3image resolution and thus the depth information becomes
degraded when the object gets far away. We note, however, H-H3

Error H-L3 H-H3 (w. depth constr.)due to the smooth varing curvature property of the
spherical object, the orientation error does not change

Mean-absolute Z 184.28 71.5691 13.4443
so much. Std-absolute Z 11.2425 4.7793 5.2935

Mean-relative Z (%) 38.4671 14.8325 1.9752TEST PROBLEM 3: Penny. The penny surface is shown
Mean-pq 0.7712 0.4499 0.4617

in Fig. 7a, and test images synthesized with parameters



158 LEE AND KUO

FIG. 9. Test Problem 4: (a)–(c) photometric stereo images of a golf ball; (d) reconstructed surface; (e) 1D slice plot.

information which may be caused by the inaccurarcy of 6. CONCLUSION
estimated reflection parameters, one can still see from the

A new general physics-based reflectance map modelresult that the proposed algorithm does recover the compli-
which includes diffuse and specular reflection effects, acated surface well qualitatively.
nearby point source and perspective projection was derived

TEST PROBLEM 5: Mannequin. The test object is a head in this research. We discussed the discretization and param-
eterization of the derived reflectance map in terms of nodalof a mannequin as shown in Fig. 10a. Three real photomet-

ric stereo images are obtained by arranging light sources depth variables by using a triangular element surface repre-
sentation, and we proposed a direct shape recovery algo-1208 apart from each other in a circular fashion on the

source plane Z 5 0. The focal length of the camera is 8mm rithm from shaded images by successively linearizing the
reflectance map and minimizing a quadratic cost func-and the object is placed approximately 80 cm form the

camera. In this test, we make a guess on the reflection tional. The proposed method is practically attractive, since
it recovers a broad range of object surfaces with differentparameters bd 5 0.7, bs 5 0.3, and k 5 7, and do not

impose any depth constraint. The reconstructed surface reflective properties and under various geometric and light-
ing environments. We performed some experiments withand the corresponding level contour plot of the marked

region of the face in Fig. 10a are illustrated in Figs. 10b synthetic and real images to demonstrate the excellent
performance of the new method. The accurate and robustand c, respectively. Although there might be substantial

error in the reconstructed depth due to inaccuracy in esti- estimation of the surface reflectivity parameters and the
light source geometry information is crucial for the accu-mating the light source, camera and reflectance parame-

ters, as well as the measurement noise, the overall shape rate surface reconstruction, which is the research topic we
are currently investigating.of the reconstructed surface looks good.
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FIG. 10. Test Problem 5: (a) ground truth of a mannequin; (b) reconstructed surface; and (c) level contour plot.
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