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The visual quality of compressed images and video is
Low bit rate image/video coding is essential for many visual generally affected by three factors: data source, coding bit

communication applications. When bit rates become low, most rates, and compression algorithms. For a given compres-
compression algorithms yield visually annoying artifacts that sion method, more information (motion or spatial details)
highly degrade the perceptual quality of image and video data. contained in the source signal requires more bits for repre-
To achieve high bit rate reduction while maintaining the best sentation. When compressed at the same bit rate, images
possible perceptual quality, postprocessing techniques provide

with more details usually degrade more than those withone attractive solution. In this paper, we provide a review and
fewer details. The coding bit rate is another importantanalysis of recent developments in postprocessing techniques.
factor that determines quality. In lossy compression, thereVarious types of compression artifacts are discussed first. Then,
is a trade-off between the bit rate and the resulting distor-two types of postprocessing algorithms based on image en-

hancement and restoration principles are reviewed. Finally, tion. The lower the bit rate, the more severe the coding
current bottlenecks and future research directions in this field artifacts due to loss of information. Furthermore, the type
are addressed.  1998 Academic Press of artifacts depends on the compression algorithm used.

Key Words: postprocessing; compression artifacts; image en- For coding algorithms based on block DCT, the major
hancement; image restoration; data compression; low bit rate artifacts are characterized by blockiness in flat areas and
coding.

ringing along object edges. For wavelet-based coding tech-
niques, ringing is the most visible artifact. Reduction of
these artifacts can result in a significant improvement in1. INTRODUCTION
the overall visual quality of the decoded images.

There are two strategies commonly adopted to reduceA wide range of new applications in visual communica-
compression artifacts. One is to solve the problem at thetion are made possible due to rapidly evolving telecommu-
encoder end, which is known as the preprocessing tech-nication and computer technologies. Almost all these ap-
nique. The other uses a postprocessing technique at theplications, including mobile or PSTN videotelephony,
decoder end. For a given decoding algorithm and a bitvideoconferencing, and video over the Internet, require

very efficient data compression methods to fit a large rate constraint, the quality of reconstructed images can be
enhanced by prefiltering techniques [11, 32] that removeamount of visual information into the narrow bandwidth

of communication channels while acceptable quality of unnoticeable details in source images so that less informa-
tion has to be coded or by perceptual-based coding tech-reconstructed data is preserved. This is, however, challeng-

ing for most existing coding algorithms and standards, since niques [23, 28] that optimize bit allocation based on a
human visual model so that the degradation is less visiblehighly visible artifacts appear when the coding bit rate is

low. A large amount of research has been done to improve by human observers. Preprocessing techniques have been
widely used in modern speech and audio coding. In con-the reconstructed image/video quality at low bit rates.

Among them, postprocessing techniques which are per- trast, there is much less amount of work in the area of
image/video coding. In still image coding, postprocessingformed after decoding provide an interesting solution,

since they can be easily incorporated in existing standards. techniques at the decoder end have received a lot of atten-
tion and become an active research area recently. It isPostprocessing aiming at the reduction of compression arti-

facts improves the overall perceptual quality for a given adopted to remove compression artifacts without increas-
ing the bit rate or modifying the coding procedure.bit rate or, equivalently, increases the compression ratio

with respect to a given quality requirement. Most postprocessing algorithms have been proposed to
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POSTPROCESSING TECHNIQUES FOR ARTIFACT REMOVAL 3

reduce coding artifacts resulting from block DCT, since Other coding techniques that involve block partitioning,
such as vector quantization, block truncation coding, andthe transform has been adopted in the JPEG and MPEG

compression standards. Generally speaking, they are de- fractal-based compression also suffer from this artifact. In
block-based coding schemes, blockiness arises since eachrived from two different viewpoints, i.e., image enhance-

ment and image restoration. For algorithms based on im- block is encoded without considering the correlation be-
tween adjacent blocks.age enhancement, the goal is to improve the perceived

quality subjectively. The special structure of artifacts and
B. Ringing Artifacthuman visual sensitivities are taken into account in the

design of image enhancement methods. One typical exam- The ringing effect is caused by a coarse quantization
ple is the application of filtering along block boundaries of high frequency components. When severely quantized,
to reduce blockiness. Image enhancement methods are high frequency coefficients are filtered out. Through the
heuristic in the sense that no objective criterion is opti- inverse transform (or the synthesis filter bank), the quanti-
mized. With the image restoration approach, one formu- zation error appears as ringing noise along sharp edges.
lates postprocessing as an image recovery problem. Recon- This noise shows up in the area influenced by the impulse
struction is performed based on the prior knowledge of response length of the filter in use. The longer the impulse
the distortion model and the observed data at the decoder. response length is, the wider the ringing noise spreads. For
Several classical image restoration techniques, including example, in the JPEG and MPEG compression standards,
constrained least squares (CLS), projection onto convex the impulse response length of the DCT transform is eight.
sets (POCS), and maximum a posteriori (MAP) restoration Because of the short impulse response length, ringing is
have been used to alleviate compression artifacts. In addi- less perceptible in JPEG and MPEG coded images, espe-
tion to quality improvement, the computational complexity cially at medium or high bit rates. It becomes much more
of these postprocessing techniques is another important visible at low bit rates. Generally speaking, the ringing
issue for applications that require real-time processing. In effect occurs in all coding schemes that involve quantiza-
this survey paper, our primary objective is to review recent tion in the frequency domain. The ringing effect is the
developments in postprocessing techniques, especially most noticeable artifact in the subband/wavelet coding
those developed to remove artifacts due to block DCT schemes at low bit rates.
coding. A new hybrid postprocessing method, which is very
simple and effective, is presented in Section 5. With this C. Blurring
hybrid method, each image block is classified into one of

Blurring also results from loss of high frequency compo-three block types: flat, edge, and texture blocks, and then
nents and occurs in all lossy coding techniques at low bitdifferent postprocessing techniques are applied to each
rates. However, a moderate degree of blurring is generallytype of blocks.
not annoying to human observers. As the viewing distanceThis paper is organized as follows. In Section 2, various
is increased, the effect of blurring is decreased. It can bekinds of compression artifacts are presented and discussed.
completely removed when the viewing distance is increasedTwo types of postprocessing algorithms based on image
to such a point that the missing frequencies fall outsideenhancement and image restoration are examined, respec-
the passband of the human visual system (HVS).tively, in Sections 3 and 4. A new hybrid postprocessing

Examples of the above three compression artifacts aretechnique which utilizes POCS in the smooth regions and
shown in Fig. 1. The original woman image given in Fig.nonlinear smoothing in edge regions is proposed in Section
1a is one of the JPEG2000 test images. Two regions of the5. Experimental results of the proposed method are given
original image are boxed and enlarged in Figs. 1b and ein Section 6. Finally, current bottlenecks, future research
for reference. When the image is encoded with JPEG atdirections, and concluding remarks are given in Section 7.
the rate of 0.26 bpp, significant blocking and ringing effects

2. REVIEW OF COMPRESSION ARTIFACTS appear in these two regions as shown in Figs. 1c and f.
The same image is also encoded with a wavelet image

To have a better understanding of quality degradation coder at the rate of 0.125 bpp, and the two enlarged regions
in compressed images and video, we classify artifacts into are shown in Figs. 1d and g, where the ringing effect along
several types and discuss each of them separately in this sharp edges is quite noticeable. When compressed at such
section. low bit rates, ‘‘out of focus’’ blurring is also observed in

Figs. 1c, d, f, and g.2.1. Image Compression Artifacts

A. Blocking Artifact D. Texture Deviation

Another type of distortion is known as texture deviation,The blocking effect is the most noticeable artifact associ-
ated with both JPEG and MPEG compression standards. which is caused by the loss of fidelity in mid-frequency
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FIG. 1. Illustration of compression artifacts: (a) is the original woman image; (b) and (e) are the enlarged (original) text and hand
regions; (c) and (f) show the text and hand regions coded by JPEG at 0.26 bpp; and (d) and (g) show the text and hand regions coded by
a wavelet-based coder at 0.125 bpp.

components and appears as granular noise. In transform data or the quantization noise caused by compression such
coding, it is less visible to the human visual system. How- as the ringing and blocking effects. Besides background
ever, in segmentation- or model-based coding [16] texture noise, unequal quantization levels between adjacent
deviation often manifests itself as an oversmoothing of frames may also cause flickering. For still image compres-
texture patterns that can be visually annoying. sion, the quality factor across the whole image is often

approximately the same. However, different bit rates can
2.2. Video Compression Artifacts be assigned to different frames or even to different regions

in the same frame for the rate control purposes in videoAll image artifacts discussed above also appear in image
compression. The variation of this quality factor can alsosequences in a similar fashion. In addition, there are some
lead to temporal flickering.artifacts that appear only in compressed video.

A. Flickering B. Motion Jerkiness

An image sequence is a series of discrete frames dis-One major temporal artifact in compressed video is
flickering, which appears as background noise. It can be played at a suitable rate. If the frame rate is high enough,

the observer does not see the individual element of theeither the random noise due to digitization of original video
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display but the continuous motion of the objects. However, are used to remove coding artifacts according to the label
information. Classification is essential to adaptive filteringat low bit rates, the frame rate may drop below the thresh-

old which enables the perception of smooth motion so that techniques which attempt to exploit local statistics of image
regions and the sensivity of human eyes. Classification canobjects in video have discontinuous jumps in their motion.

It was shown in [2] that the maximum object displacement be performed either in the spatial domain by using local
variances [33] or in the transform domain by examiningbetween adjacent frames without being noticed is a func-

tion of the spatial frequency. For example, with the same the distribution of DCT coefficients [15, 19]. For blocks of
size 8 3 8, an example of the transform domain classifica-velocity, it is easier to see jerky motion in spatially varying

regions such as edges or textures. tion scheme can be expressed as

3. POSTPROCESSING VIA IMAGE ENHANCEMENT O63

i5k
uCiu # T, (1)

While reduction of compression artifacts in still images
has been studied extensively, little work has been done in
the quality improvement of compressed video. Therefore, where Ci are the quantized DCT coefficients, k can be an
we will focus primarily on postprocessing techniques for integer between 0 and 63, and T is a threshold value. If
still image artifact removal in this survey paper. We classify the left-hand side of (1) is smaller than threshold T, the
postprocessing algorithms according to their solution ap- block is classified as a smooth block. Otherwise, it is classi-
proach. Roughly speaking, a solution can be derived from fied as an edge or a texture block. Previous work [37, 13,
two different principles: image enhancement and image 19] also attempted to estimate the edge information in
restoration. Methods based on these two principles are compressed images to preserve the quality of edges. How-
examined in Sections 3 and 4. ever, it is worthwhile to emphasize that edge detection is

In most applications of visual communication, the major usually sensitive to quantization, and it is a very difficult
concern about quality is how well images are perceived by a task to extract edges accurately from highly compressed
human observer, not how close they are to original images. images since edges are somewhat distorted.
Therefore, postprocessing methods can be designed to As each block of an image has been properly classified,
match the perception of the human visual system. For one or more appropriate spatial filters can be used to
example, all artifacts described in Section 2 may appear smooth coding artifacts. To avoid blurring, lowpass filtering
in all regions of a DCT-coded image. However, due to is only applied to areas that are not masked by the presence
perceptual masking [27], the high frequency noise in the of detail information such as smooth regions. Two-dimen-
flat region is more visible to human eyes and thus requires sional separable lowpass FIR filters provide one popular
special attention for perceived quality improvement. A choice to artifact reduction. To achieve better spatial
block classification method [15] which distinguishes differ- adaptivity, the length of the lowpass filter may vary. Long-
ent types of blocks can be very useful as an initial step. The tap filters are used in a larger smooth region. For smooth
image enhancement approach aims at smoothing visible areas close to an edge, short-tap filters such as a filter of
artifacts instead of restoring the pixel back to its original size 3 3 3, are preferred. For block coded images, the
value. jagged edge appearance can be efficiently smoothed by

applying a 1D directional filter which is perpendicular to3.1. Postfiltering
the direction of the edge. In some implementations, nonlin-
ear filters are used to achieve the goal. In the work ofSince block and ringing effects resulting from block DCT

coding are high frequency artifacts, a straightforward solu- Kundu [12], the Hodges–Lehman D filter [5] was used in
large smooth areas while a 5 3 5 median filter or multistagetion is to apply lowpass filtering to the region where arti-

facts occur. A space-invariant filtering method to reduce median filter was applied to edges. It was reported that
combination of these nonlinear filters can effectively re-blocking artifacts in image coding was first proposed by

Reeves and Lim [34]. To maintain the sharpness of the duce artifacts in block DCT coded images.
Adaptive spatial filtering is also an efficient method todecoded image, filter coefficients must be selected care-

fully. However, filtering without considering the local im- reduce blocking and ringing effects in image sequences.
However, considering additional temporal artifacts such asage statistics often causes the loss of high frequency details

such as edges. Therefore, a number of adaptive spatial flickering and motion unsmoothness, it is usually integrated
with temporal filtering [20, 40]. A temporal filter thatfiltering techniques [12, 13, 19, 33, 37] have been proposed

to overcome this problem. Generally speaking, as adaptive smoothes noisy image sequences along motion trajectories
is commonly used as the prefilter within the motion com-filtering technique uses classification and edge detection

to categorize pixels into different classes for adaptation. pensation loop at the encoder [4, 9, 38] to reduce the
frame rate and increase the temporal correlation. In blockThen, different spatial filters (either linear or nonlinear)
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motion-compensated DCT coding, a temporal filter can
also be used as the postfilter to smooth motion and reduce
flickering. To reduce the memory requirement, temporal
filters are often implemented as HR filters [40], since the
HR filter can achieve noise attenuation with a lower order
than the FIR filter. A typical temporal filter can be writ-
ten as

FIG. 2. The block diagram of perceptual-based image en-
hancement.

y(m, n, k) 5 ax(m, n, k)
1 (1 2 a)y(m 2 Dm, n 2 Dn, k 2 1),

effect in the smooth area, but the prediction is not verywhere y(m, n, k) is the pixel at position (m, n) of the kth
reliable in the neighborhood of edges.frame, y(m 2 Dm, n 2 Dn, k 2 1) is its best matching

pixel in the previous reference frame, and a is the filter
3.3. Enhancement Based on Perceptual Modelcoefficient which can be adjusted according to statistics

along the temporal domain. In general, a small value of a A postprocessing scheme based on properties of HVS
(typically smaller than 0.5) is adopted in the stationary was proposed by Macq et al. [24]. According to the percep-
area, and a 5 1 is used in scene changes or time intervals tual model, a stimulus to a given perceptual channel is
containing fast motion. However, there are several short- not perceived if the contrast value is below the visibility
comings with this approach. For example, a blocking arti- threshold corresponding to this channel. The visibility
fact that remains at the same position for a few frames is threshold for each channel depends on the content of the
difficult to reduce by using only temporal filtering. Yang et background in that channel, which is known as the masking
al. [40] incorporated adaptive spatial and temporal filtering effect [22]. Macq et al. assumed a simple masking model.
processes and applied them iteratively to reduce video That is, noise is visible if and only if its perceptual compo-
coding artifacts. nent power is equal to or greater than that of the back-

To conclude, adaptive postfiltering (spatial or temporal) ground. The global scheme of the postprocessing proce-
has the advantage of a low computational complexity and dure is shown in Fig. 2. To remove compression artifacts,
the adaptation to local statistics relies on good classification the decompressed JPEG image is first decomposed into
schemes. However, difficulty may arise for image/video several perceptual channels. Then, unmasked artifacts are
coded at low bit rates since adaptation may not be robust. removed by simply setting the corresponding perceptual
Poor estimation and adaptation in postprocessing can components to zero in each perceptual channel. After
sometimes cause image quality degradation. thresholding, all perceptual channels are integrated to ob-

tain an artifact-free image. The visibility thresholds of arti-
3.2. AC Prediction facts are determined by the perceptual components of the

noisy image contrast to the original image in each percep-Niss [29] proposed a technique to reduce the blocking
tual channel. However, since the original image is not avail-effect in JPEG by predicting the low-frequency AC coeffi-
able at the decoder, the contrast is actually obtained bycients from DC coefficients in a given block and its eight
computing the difference between the decoded image andneighboring blocks. A quadratic surface, given by
estimated noise. Noise estimation is achieved by filtering
the noisy image, applying the image codec to the filter

P(x, y) 5 a1x2y2 1 a2x2y 1 a3xy2 1 a4x2

(2) image, and then subtracting the obtained image from the
1 a5xy 1 a6y2 1 a7x 1 a8 y 1 a9 filtered image to regenerate the noise.

is used to model the shape of a local surface. Coefficients 4. POSTPROCESSING VIA IMAGE RESTORATION
ai , 1 # i # 9, can be determined by finding the best fit to
the surface determined by nine DC values in an array of The image restoration approach treats artifact removal

as an ill-posed image recovery problem. A number of clas-3 3 3 blocks. Once coefficients a1 , . . . , a9 are determined,
low-frequency AC coefficients required to reproduce the sical image restoration algorithms have been tailored to

the deblocking of DCT coded images. The diagram ofquadratic surface can be calculated by a set of equations
represented in terms of these nine DC values. To avoid the image restoration approach is shown in Fig. 3. In this

section, we classify different postprocessing methods intothe introduction of a large distortion value, predicted AC
coefficients are confined to their original quantization in- the following three categories:

1. criterion-based methods such as minimum leasttervals. This method considerably reduces the blocking
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An example of using the linear minimum mean square
error (LMMSE) criterion to reduce coding artifacts in
MPEG coded video is given by Nakajima et al. [26]. With
the assumption that e is zero-mean white noise uncorre-
lated with x, each pixel y(i, j) of the decompressed image
can be restored by the LMMSE estimate of the original
signal x̂(i, j). The solution is given by

x̂(i, j) 5 ex(i, j) 1 a[y(i, j) 2 ey(i, j)], (5)

where

a 5
s 2

x(i, j)
s 2

x(i, j) 1 s 2
e(i, j)

, (6)FIG. 3. An image restoration approach to postprocessing.

and ex(i, j) and ey(i, j) are local means calculated by a
squares (MLS), minimum mean square error (MMSE), or local averaging operator. The calculation of the variance
maximum a posteriori (MAP) probability; s 2

x(i, j) requires the estimate of the noise variance s 2
e(i, j).

2. constrained optimization methods such as con- However, the actual value of s 2
e(i, j) is not available at the

strained least squares (CLS); decoder end and has to be estimated from the observed
3. constraint-based methods such as projection onto image or other prior information. In the work of Nakajima

convex sets (POCS) where constraints are established et al. [26], s 2
e(i, j) was obtained empirically by training

based on some prior knowledge of the original image and several test image sequences. The LMMSE estimator that
the compression process. achieves a compromise between artifact reduction and de-

tail preservation should be selected. A similar approach
4.1. Criterion-Based Methods that uses linear estimators to implement deblocking for

JPEG coded images was proposed by Hong, Chan, andThe basic concept behind criterion-based methods is to
Siu [8]. In their work, the restoration technique was onlyfind the solution (i.e., an artifact-free image), which satisfies
applied to pixels at block boundaries to avoid blurring.some predefined optimality criterion. The choice of the

Wu and Gersho [39] proposed a nonlinear estimator thatcriterion is critical to the design of postprocessing algo-
employed nonlinear interpolation and vector quantizationrithms. The best choice for the criterion is an error mea-
to improve the reconstructed image quality coded with thesurement that provides a high correlation to perceptual
JPEG baseline process. Instead of adopting the conven-image quality. However, since there is no widely agreed-
tional JPEG decoding process, each quantized DCT coef-upon mathematical expression of a human perception
ficient in the 8 3 8 image block was used as an index toquality metric at present, the mean square error is still the
fetch a codeword from the corresponding codebook. Thecommonly used criterion.
sum of all 64 codewords formed the final reconstructed

A. Minimum Mean Square Error image block, with the codebook generated from a suffi-
(MMSE) Formulation ciently large training set based on the MMSE criterion.

Simply speaking, their method learns the nonlinear statisti-Let y be the decompressed (or reconstructed) image of
cal relationship from the training set and exploits this rela-the original image x. The degradation due to compression
tionship to restore proper values. Since restored values arecan be written as
limited to a linear combination of codebook entries, this
method is sensitive to the choice of the training set. An-y 5 x 1 e, (3)
other nonlinear estimator based on wavelet decomposition
and soft thresholding in the wavelet domain was proposedwhere e is the reconstruction error. We would like to find
by Gopinath et al. [6], where a threshold was selected toan estimate x̂ of the original image so that the cost
minimize the mean square error in (4).

Ehix̂ 2 xi2j (4)
B. Maximum A Posteriori (MAP)

Probability Formulation
is minimized. The best estimate x̂ can be obtained by using
a linear or a nonlinear estimator acting on the observed In MAP-based restoration, the criterion is to maximize

the probability density of the actual image conditioned onimage y.
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the observation. Let y be the observed image that contains MAP-based method that adopts a nonstationary Gauss–
Markov model was proposed by Özcelik et al. [31]. Thecompression artifacts. The original image x can be esti-

mated by a MAP estimate x̂ via maximization of the posterior function of this approach
was carried out by using mean field annealing. Li and Kuo
[17] proposed a multiscale MAP method, in which thex̂ 5 arg max

x
p(xuy).

decoded image was enhanced from coarse to fine scales.
Postprocessing at coarse scales improves the global appear-

By applying Bayes’ rule and the log-likelihood function, ance of the image and reduces long-range artifacts such as
we obtain ringing, while postprocessing at finer scales preserves the

sharpness of edges. It achieved a better performance in
x̂ 5 arg max

x
hlog p(yux) 1 log p(x) 2 log p(y)j. (7) suppressing ringing artifacts and computational speed than

the single-scale MAP method.
Since p(y) is constant with respect to the optimization

4.2. Constrained Optimization Methodsparameter x, the term log p(y) can be dropped. By assum-
ing that the given image x is compressed to the same obser- This class of methods optimizes an optimality criterion
vation y every time (i.e., fixed compression method and subject to constraints on the solution, which are obtained
compression ratio), (7) can be rewritten as from a priori knowledge of the original image. A well-

known method of this type is the method of constrained
x̂ 5 arg min

x[X
h2log p(x)j, (8) least squares (CLS). With the image degradation model

in (3), the estimate is defined to be a member within the
intersection of the following two sets:where X is the set of images which are compressed to y

and p(x) is the a priori probability modeled by a general
Cs 5 hx: ix 2 yi2 # s 2j, C« 5 hx: iAxi2 # «2j.form of the Gibbs distribution associated with a certain

Markov random field (MRF),
Computing the CLS estimate involves minimizing the ob-
jective function

p(x) 5
1
Z

exp HO
c[C

fc(x)J. (9)

J(x) 5 ix 2 yi2 1 Ss

«
D2

iAxi2.
In this expression, fc(x) is the energy function of a first-
order MRF defined over transitions between adjacent

Operator A in the above expression is chosen such thatneighbors [3] such that
C« summarizes the prior knowledge of the original image.
In general, A is a highpass filter which imposes the smooth-fc 5 O

i, j
w(xi 2 xj), (10)

ness constraint. Furthermore, s and « are selected so that
the set intersection is nonempty [25]. The ratio of s 2 and
«2 is used as the regularization parameter that controlswhere w(?) denotes a potential function. The form of the
the degree of smoothness within the restored image. Anpotential function can play a crucial role in the estimation
iterative solution [10] of the estimate is given byprocess. It is chosen to reflect prior expectations and re-

quirements of a given reconstruction problem. For exam-
ple, the Huber minimax function

xk11 5 xk 1 b Sy 2 SI 1 Ss

«
D2

AtAD xkD, (12)

wa(t) 5Ht2, utu # a,

a2 1 2a(utu 2 a), utu . a,
(11) where I is the identity matrix, At is the transpose of A,

and the relaxation parameter b is chosen within the range

can be used as a potential function to reduce coding arti-
0 , b ,

2

II 1 Ss

«
D2

AtAIfacts [18, 20, 17]. The Huber function that allows some
inconsistency is able to smooth artifacts while preserving
the sharpness of edges. The convex property of wa(t) makes
the optimization procedure tractable.

The estimate in (8) can be determined by several itera- to ensure convergence. Yang et al. [41] solved (12) in the
DCT domain with the quantization constraint. Hong,tive techniques, including the gradient projection method

[30], or the iterative conditional mode (ICM) [18]. Another Chan, and Siu [7] incorporated CLS regularization in sub-
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band decomposition/reconstruction to remove the maps an arbitrary image onto the smoothness constraint
set in (14) can be derived and takes the formblocking effect.

4.3. Constraint-Based Methods

The basic idea behind constraint-based methods is to Ps(fi) 55
fi11 1 a · (Afi), if i 5 8n,

fi 2 a · (Afi), if i 5 8n 1 1,

fi , otherwise,

(15)
impose a number of constraints on the coded image and
to restore it to its artifact-free form accordingly. Con-
straints can be obtained from the prior knowledge of the

where fi is the ith row or column, Afi is the pixel-differencecompression algorithm, noise, or properties of the input
between the i block boundaries, and a 5 0.5(1 1 s/iAfi).image. One famous example in this class of solutions is
A weighted version of (14) is given by Yang et al. [42] tocalled the projection onto convex sets (POCS). Generally
achieve spatial adaptivity.speaking, the use of POCS for image restoration has a long

Since POCS is an iterative process and requires onehistory and can be found in the classical image restoration
DCT and IDCT pair in each iteration, its computationalliterature [43]. In POCS, a constraint set is defined as a
complexity is extremely high. Many techniques have beenclosed convex set whose members are consistent with a
proposed to reduce the complexity per iteration and/or topriori knowledge of the original image. For m known prop-
speed up the convergence rate. For example, Kwak anderties, we may be able to construct m closed convex sets,
Haddad [14] improved the complexity of the algorithm ofCi , i 5 1, 2, . . . , m. A feasible solution, which is in the
Yang et al. [41] by canceling out the IDCT and DCT pairsintersection of all sets, can be found via an iterative process.
in POCS iterations. Lai et al. [15] proposed a spatiallyThat is, we start from a certain initial guess, and project
adaptive scheme to match the human perceptual character-the result onto each constraint set in sequence until it
istics and to improve the convergence rate by introducingconverges to the final solution.
frequency domain filtering.In the context of image postprocessing, two constraint

All POCS methods described above aim at reducing thesets are commonly used in POCS. One is the quantization
blocking effect. If there are other types of artifacts presentconstraint set (Cq) determined from the known quantiza-
in the image, additional constraint sets are required andtion intervals of each DCT coefficient in the DCT domain.
the corresponding computational complexity increases asThe other is the smoothness constraint set that captures
well. Also, it is challenging to determine the proper con-the smoothness properties of the original image (Cs) in
straint for nonblocking artifacts. For example, the con-the spatial domain. Let Pq and Ps be the two projection
straint set for the ringing artifact is very difficult to define.operators which project a solution onto Cq and Cs , respec-
However, it is known that the ringing effect can be sup-tively. Then, the artifact-free image can be obtained by
pressed effectively by the median filter.performing the iteration

fk11 5 PqPsfk , (13) 5. HYBRID POSTPROCESSING ALGORITHM

where fk is the postprocessed image at the kth iteration. The In this section, we will present a new hybrid method that
projection operator Pq simply restricts each DCT coefficient demonstrates an excellent image enhancement capability
to its original quantization interval. The definition of Ps is with a very low computational cost. The proposed algo-
important for noise smoothing. Since there is no well- rithm is detailed below.
defined quantitative measure of image smoothness, the Step 1: Classification. The coded bitstream is first dequan-
choice of Ps varies. In the work of Rosenholtz and Zakhor tized. Each 8 3 8 block in an image is classified into two
[36], Cs was chosen to be the set of band-limited images. A categories: flat block, and high activity block. There exist
projection onto this set is equivalent to a lowpass filtering many classification rules. A simple DCT domain classifica-
process. However, the filterkernel used in their experiments tion rule is adopted here and stated as follows. Let V, H, and
is not an ideal lowpass filter, and it was pointed out by D be three directional indices that correspond to different
Reeves and Eddins [35] that the convergence of their algo- edge directions of the block in spatial domain. The values
rithm should be justified from the viewpoint of constrained of V, H, and D for each block can be calculated as
minimization rather than that of POCS. In the work of Yang
et al. [41], the smoothness constraint set was selected to cap- V 5 O

i5m,n
Cm,n , 2 # m # 7, 0 # n # 1,

ture discontinuities along block partition boundaries to re-
duce the blocking effect. This set is of the form

H 5 O
i5m,n

Cm,n , 0 # m # 1, 2 # n # 7,

Cs 5 hf: iAfi # sj, (14)
D 5 O

i5k
Ck,k 1 O

i5k
Ck,k21 1 O

i5k
Ck21,k , 2 # k # 5, (16)

where A is a highpass filter. The projection operator that
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classification map. Since the ringing artifact is confined to
blocks, the deringing filter is applied only to the block
classified as an edge block and only within the block. An
example of classification is shown in Fig. 5. The deringing
filter consists of two steps: edge pixel extraction and adap-
tive smoothing. First, a simple gradient operator is applied
to locate the position of edge pixels within the block. Sec-
ond, to preserve the quality of the edge, no process is
applied to edge pixels. A 5 3 5 multilevel median filter
[1] is applied to pixels marked as nonedge pixels. The
median filter is stated as follows. Let

zk(n1 , n2) 5 median[a(., .) [ Wk[a; (n1 , n2)]], 1 # k # 4,

whereFIG. 4. Examples of positions of filtered pixels.

W1[a; (n1 , n2)] 5 ha(n1 1 l1 , n2) : 22 # l1 # 2j,
where Cm,n is dequantized DCT coefficient at position (m, W2[a; (n1 , n2)] 5 ha(n1 1 l1 , n2 1 l1) : 22 # l1 # 2j,
n). Let M be the maximum among three indices V, H, and

W3[a; (n1 , n2)] 5 ha(n1 , n2 1 l1) : 22 # l1 # 2j,D. If M is less than a threshold value, the block is classified
as a flat block; otherwise, it is classified as a high activity

W4[a; (n1 , n2)] 5 ha(n1 1 l1 , n2 2 l1) : 22 # l1 # 2j.
block, which can be either a texture or an edge block. The
threshold value T determines the sensitivity of classifier

The output of the median filter is given byand it is selected from training images such that the proba-
bility of misclassification error is minimized. In our imple-
mentation, we chose T between 20 to 30. ymed(n1 , n2) 5 med[ymax(n1 , n2), ymin(n1 , n2), a(n1 , n2)],

Step 2: Deblocking. Our deblocking filter is a spatial (17)
adaptive low pass filter. In a very smooth region, filtering
only on block boundaries is not good enough to reduce
the blocking artifact due to dc offset between adjacent
blocks. Therefore, we apply a stronger lowpass filter to
flat blocks. As an example in Fig. 4, Blocks 1–3 are all
classified as flat blocks. A 1D 7-tap filter (1, 1, 2, 4, 2, 1,
1) is applied along the vertical boundary to obtain eight
new pixel values as indicated by v0 , v1 , v2 , v3 , v4 , v5 , v6 ,
v7 . The same filtering operation is also applied along the
horizontal boundary. For high activity blocks such as tex-
ture and edge blocks, filtering over the entire block shows
no visual improvement, but results in blurring. In the case
of high activity blocks, it is desirable that the deblocking
filter is applied once and restricted to the boundary pixels
only. In this case, we apply a 1D 3-tap filter (1, 4, 1) to
obtain new boundary pixel values v3 , v4 .

Step 3: Deringing. Although all high activity blocks may
contain ringing artifacts, not all of them require deringing
filtering. As mentioned in the previous section, the ringing
artifact near the flat regions is more visible to human eyes
due to perceptual masking. Thus, we divide the high activ-
ity blocks into two groups: edge blocks and texture blocks.
For the block with all high activity blocks in its four con-
nected neighbors, we treat it as a texture block; otherwise,
it is treated as an edge block. Extraction of edge blocks FIG. 5. An example of classification. Light gray, dark gray, and

black represent edge, texture, and flat block, respectively.can be done by a simple morphological process on the
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TABLE 1
PSNR Improvements of Images Processed by Various Postprocessing Algorithms

PSNR improvement Time (s)
PSNR

Image Size bpp (dB) POCS [41] MMAP [17] Proposed POCS [41] MMAP [17] Proposed

Goldhill 720 3 576 0.198 29.493 0.502 0.679 0.617 6.4 87.3 6.1
Hotel 720 3 576 0.268 29.095 0.469 0.802 0.725 7.8 83.3 6.0
Woman 512 3 640 0.211 29.355 0.341 0.676 0.521 6.0 68.8 4.8
Cafe 512 3 640 0.536 22.961 0.156 0.493 0.342 9.7 67.2 4.3
Lena 512 3 512 0.246 30.704 0.685 1.011 0.897 4.6 54.1 3.8
Cameraman 256 3 256 0.376 25.176 0.180 0.599 0.133 2.4 10.7 0.9

where is clear that our new scheme is more suitable for on-line
real-time process than the other two methods.

It is worthwhile to point out that PSNR is not the bestymax(n1 , n2) 5 max1#k#4[zk(n1 , n2)],
(18) measure to evaluate the postprocessing algorithm, since it

ymin(n1 , n2) 5 min1#k#4[zk(n1 , n2)], does not completely correlate with human perception. We
show the subjective quality of different methods in Fig. 6.
It was found that both MMAP and the proposed methodStep 4: Quantization constraint. In the final step, we
achieve better subjective quality. The POCS method doescheck if the DCT coefficients are still within their original
not remove blockiness completely.quantization bins. If they are outside the original bins, we

adjust their values to satisfy this constraint.

7. CONCLUSION AND FUTURE WORK
6. EXPERIMENTAL RESULTS

Compression of digital image and video data plays an
important role in reducing the transmission and storageExperiments were carried out to evaluate the perfor-

mance of various postprocessing algorithms. We used a cost for visual communication. However, when bit rates
become very low, most compression algorithms yield visu-number of images of different sizes selected from

JPEG2000 test images and other de facto standard test ally annoying artifacts that highly degrade the perceptual
quality of image and video data. To achieve high bit rateimages. These images were encoded with the JPEG stan-

dard, with the same quantization table used in [41]. For reduction while maintaining the best possible perceptual
quality, postprocessing techniques provide one attractivecomparative study, three postprocessing algorithms: POCS

[41], multiscale MAP(MMAP) [17], and the method pro- solution. There has been a significant number of research
activities in the postprocessing of compressed image/videoposed in Section 5 were applied to the decoded images.

Table 1 summarizes the PSNR improvement and com- over the last decade. In this paper, we provided a review
and analysis of recent developments in postprocessingputing time of different approaches with respect to the

original JPEG-coded images. All computing was per- techniques. A discussion on compression artifacts was
given first. Then, algorithms based on image enhancementformed on a Pentium Pro 200 MHz Machine with 64 MB

of memory. We see from the results that MMAP has the and image restoration were examined in detail, and bottle-
necks in each method were also addressed.best PSNR performance, but the processing time is much

longer than the other two methods due to the high com- Finally, we would like to comment on future directions
in this field. Generally speaking, the image enhancementplexity. The proposed method provides a slightly worse

objective improvement, but with much less computing approach has the advantages of being relatively simple and
fast, while the image restoration approach produces thetime. The POCS method only restores the boundary pixels

so that the PSNR improvement is the worst among the best quality at a higher computational cost. For both ap-
proaches, adaptively applying postprocessing to match hu-three. Its complexity is also high since it requires several

iterations to converge, where each iteration has to perform man perceptual sensitivities should improve the perfor-
mance. Thus, a better understanding of the psychovisualone DCT/IDCT pair. Furthermore, both MMAP and

POCS require buffering the whole frame in the iterative model may lead to an evolutionary improvement of the
postprocessing scheme. Even though a number of goodprocess. Our new scheme only utilizes information in

neighboring blocks, so that it saves memory bandwidth. It postprocessing algorithms are available for still images,
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FIG. 6. Subjective quality of different approaches: (a) JPEG coded at 0.26 bpp; (b) POCS [41]; (c) MMAP [17]; (d) proposed method.
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