
Progressive Coding of 3-D Graphic Models

JIANKUN LI AND C.-C. JAY KUO, SENIOR MEMBER, IEEE

Based on state-of-the-art graphic-simplification techniques and
progressive image-coding schemes, we propose a new hierarchical
three-dimensional graphic-compression scheme in this research.
This scheme progressively compresses an arbitrary polygonal mesh
into a single bitstream. Along the encoding process, every output
bit contributes to the reduction of coding distortion, and the
contribution of bits decreases according to their order of position
in the bitstream. At the receiver end, the decoder can stop at any
point while giving a reconstruction of the original model with
the best rate-distortion tradeoff. A series of models of continu-
ous varying resolution can thus be constructed from the single
bitstream. This property, which is referred to as the embedding
property since the coding of a coarser model is embedded in the
coding of a finer model, can be widely used in robust error control,
progressive transmission and display, level-of-detail control, etc.
It is demonstrated by experiments that an acceptable quality level
can be achieved at a compression ratio of 20 to 1 for several test
graphic models.

Keywords—Embedded codecs, graphic coding, graphic simpli-
fication, progressive coding.

I. INTRODUCTION

Since the boom of the three-dimensional (3-D) laser
scanning system and the virtual-reality modeling language
for graphic description, 3-D graphic models have become
more accessible to general end users. In most existing
commercial hardware and software, the polygonal mesh is
one of the popular tools for object description. A complex
object with many fine details can be faithfully represented
with thousands or even millions of polygons. Even high-end
computers have difficulty in manipulating and visualizing
such kinds of models, since both the memory require-
ment and the rendering speed are directly proportional to
the total number of polygons in a model [9]. Similarly,
transmission of 3-D graphic models over the network is a
well-known bottleneck for collaborative design due to the
large amount of data. Future applications of 3-D graphic

Manuscript received July 21, 1997; revised December 11, 1997. The
Guest Editor coordinating the review of this paper and approving it
for publication was T. Chen. This work was supported in part by
the Integrated Media Systems Center, a National Science Foundation
Engineering Research Center, in part by the Annenberg Center for
Communication, University of Southern California, and in part by the
California Trade and Commerce Agency.

The authors are with the Integrated Media Systems Center and the De-
partment of Electrical Engineering-Systems, University of Southern Cali-
fornia, Los Angeles, CA 90089-2564 USA (e-mail: jiankunl@sipi.usc.edu;
cckuo@sipi.usc.edu).

Publisher Item Identifier S 0018-9219(98)03518-X.

models could be potentially limited due to the lack of
efficient representation. Another important consideration
in the generation of 3-D graphic models is to allow a
multiresolution representation of the object. That is, the
information is coded in the order of importance. The most
important information is encoded first, while finer details
are gradually added at a later stage. As a result, the decoder
can construct a model of different resolutions, from the
coarsest approximation to the finest replica, depending
on the application requirement. This property, which is
often referred to as the embedding property, finds wide
applications in robust error control, progressive transmis-
sion/display, level-of-detail control, etc.

Generally speaking, there are two types of data in a
3-D graphic model, i.e., structure data and attribute data.
Structure data specify the connectivity information among
vertices and characterize the topology of the model, while
attribute data describe information of each individual vertex
such as the position, color, surface normal, and other
application-specific information. Most 3-D graphic files
specify the structure data by a list of polygons, each of
which is in turn specified by a list of vertex indexes.
To recover the model properly, structure data have to be
coded losslessly. Consequently, it is difficult to achieve a
high compression ratio in representing these data. This is
the major obstacle for 3-D graphic coding, especially at
low bit rates. In contrast, attribute data bear a very strong
local correlation. They can be effectively compressed with
lossy compression methods while keeping the error under
a certain tolerable level.

In comparison with research in audio, image, and video
coding, the amount of work in 3-D graphic coding is
relatively small. This might be explained by the fact that
the 3-D graphic model has been gaining popularity only re-
cently. Another reason is that audio, image, and video data
come as one-dimensional (1-D), two-dimensional (2-D),
and 3-D regular array, respectively. Such structures require
no coding by themselves. However, 3-D graphic data are
not defined on a regular grid. Both the geometric structure
and data values have to be coded. This requirement imposes
a very challenging task beyond existing audio-, image-, and
video-coding techniques.

Three-dimensional graphic model simplification is a
closely related topic in which multiple simplification

0018–9219/98$10.00 1998 IEEE

1052 PROCEEDINGS OF THE IEEE, VOL. 86, NO. 6, JUNE 1998

steps are applied to an object to obtain a sequence
of approximations with a lower complexity. Some
simplification methods preserve the topology of the
polygonal mesh to maintain a faithful description. Others
ignore topological constraints in order to achieve a high
data deduction. In both cases, the sequence of simplification
steps is carefully chosen according to a certain rule to
maximize the fidelity of approximations. Successive levels
of simplification details are stored, and the most appropriate
level (sometimes all levels) are used for a given application
[6].

Previous work on 3-D graphic simplification is reviewed
below. Schr¨oeder [19] proposed a decimation algorithm that
significantly reduces the number of polygons required to
represent an object by repeatedly removing nonessential
vertices. Deering [3] introduced the concept of a gener-
alized triangle strip, which allows a compact representation
of a planar graph by using a linear data structure and a
set of stack operators. Sweldens [22] constructed a lifting
scheme to compactly represent scalar functions defined
on a sphere. Lounsbery [13] and Eck [4] established a
wavelet transform defined on an arbitrary 3-D domain to
compress a graphic model at several detail levels. Taubin
and Rossignac [23] represented a triangulated mesh by
using two interlocked trees. Their method compressed the
connectivity information into, roughly, an average of two
bits per triangle and used multistage vector quantization
to code the vertex position. Hoppe [10], [15] constructed a
progressive mesh by recursively applying the edge-collapse
operation to an arbitrary mesh and encoded the vertex
position via Huffman coding.

In all previous work, the coding procedures of structure
data and attribute data are kept separately, as are the coding
results. Furthermore, attribute data are usually coded by the
traditional run-length coding with a single resolution level.
Therefore, the embedding property is not fully supported.
In this work, we propose a new 3-D graphic coding scheme
that progressively compresses an arbitrary polygonal mesh
into one single bitstream. Along the encoding process, we
carefully allocate bits to the coding of structure or attribute
data. Notice that both codings contribute to the quality of
the decompressed model, and the quality is determined
by the coarser information from both parts. Repeatedly
coding one part without checking the other will result
in a model with either too many vertices of insufficient
precision or too few vertices of overly accurate precision.
A quality-control rule is devised in our scheme to determine
switching between these two coding tasks to guarantee
the quality balance. Every output bit contributes to the
distortion reduction, and the contribution depends on its
location in the bitstream. Bits at later locations are less
important. The decoder can stop at any point while giving
a reconstruction of the original model with the optimal
rate-distortion tradeoff. A series of models of continuous
varying resolutions can thus be constructed from the single
bitstream.

This paper is organized as follows. A brief review of
graphic simplification and embedded coding techniques

is given in Section II, where the concept of successive
quantization and entropy coding is also explained. The
new, progressive 3-D graphic coder is described in detail
in Section III. It contains three basic steps. For a given
arbitrary polygonal mesh, a hierarchical representation con-
sisting of structure and attribute data is first built. Then,
both structure and attribute data are encoded separately
in a progressive manner. Last, the coding bitstreams of
structure and attribute data are multiplexed into a sin-
gle bitstream according to a rate-distortion criterion. In
Section IV, experimental results are provided to demon-
strate the performance of the proposed graphic-coding
scheme. Concluding remarks and future extensions are
given in Section V.

II. BACKGROUND

A. Graphic Simplification

The polygon is a primitive of an object represented
by a polygonal mesh. The cost of storing or transmitting
a polygonal mesh of primitives is . The cost of
rendering such a model is also [1], [8]. The primary
goal of graphic simplification is to reduce the number of
primitives required to represent a physical or an abstract
object faithfully. Several different algorithms have been
proposed to serve this purpose. They can be roughly
classified into three categories, i.e., surface retiling, vertex
decimation, and vertex clustering, as detailed below.

With surface retiling, one triangulates polygonal surfaces
with a new set of vertices to replace the original. The
new set usually consists of fewer vertices than the original
one while preserving its topology. Turk [25] suggested
randomly adding points on the polygonal surface and
then redistributing these points by exerting a repelling
force while removing old vertices gradually. Hoppe and
DeRose [11] defined an energy function that was mini-
mized to determine positions of new vertices. Hinker and
Hansen [9] merged coplanar and near coplanar polygons
into larger complex polygons and retriangulated them into
fewer simple polygons. Kalvin and Taylor [12] developed
a similar algorithm, which allows additional control of
approximation error. Cohenet al. [2] and Varshneyet al.
[26] surrounded the original polygonal surface with two
envelopes and then generated a simplified surface within
the volume enclosed by these two envelopes.

By using vertex decimation, Schröeder [19] proposed to
make multiple passes over an existing polygonal mesh and
use local geometry and topology information to remove
vertices that meet a distance or an angle criterion. The
hole left by the vertex-removal process is patched by a
local triangulating process. Soucy [21] described a more
sophisticated algorithm following the same idea.

The idea behind vertex clustering is that a detailed part in
a model is represented by a set of spatially close vertices.
A clustering algorithm is used to generate a hierarchy of
clusters and approximations of different resolutions [18].
Rossignac and Borrel [16] divided the bounding box of

LI AND KUO: PROGRESSIVE CODING OF 3-D GRAPHIC MODELS 1053

the original model into a grid. Within each cell, vertices
are clustered together into a single vertex, and the model
surface is updated accordingly. Heet al. [7] adopted a
signal-processing approach to sample the input object and
used low-pass filtering to remove high frequencies of the
object. Edge collapse is the most commonly used clustering
technique. It removes an edge and contracts two end points
into a new vertex. To determine the position of the new
vertex, André [6] required the volume to be preserved after
contraction. Hoppe [10], [15] used edge collapse to form the
progressive representation of triangulated geometric mod-
els. Garland [5] developed a method called pair contraction,
which is capable of contracting an arbitrary pair of vertices.

All of the above methods can generate multiple level-of-
detail representations of the original model. Surface retiling
achieves this by choosing several new sets consisting
of a different number of vertices. However, it cannot
guarantee that the coarse representation is a subset of
the finer representation. It has been shown that, with a
clever use of vertex decimation or clustering techniques,
one can generate a progressive representation by building
a hierarchical structure along the simplification process.
Furthermore, in some cases, the progressive representation
is designed in such a way that the original models can be
represented by a sequence of approximations of continuous
varying resolutions.

B. Embedded Coding

A typical image-coding scheme consists of three steps:
transform, quantization, and entropy coding. For example,
in the image-compression standard of the Joint Photo-
graphic Experts Group (JPEG), the discrete cosine trans-
form (DCT) is first applied to an image block of 8 8
pixels. The resulting DCT coefficients are then quantized
with a quantization table and mapped into an index set. Last,
the index set is encoded by an entropy-performed coder.
Decoding is simply in reverse order. The entire process is
applied in a coefficient-by-coefficient approach. That is, a
coefficient is completely coded before the coding of the next
coefficient. In the embedded coding scheme, however, each
coefficient is successively quantized into a certain number
of bits. Their most significant bits are grouped together to
form one bit layer and encoded first. Then the layer of
the second most significant bits are encoded, and so on.
By adding more layers of bits, the approximation becomes
more precise. Such a coding order is consistent with the
importance of each bit so that the coder can provide the
best possible reconstruction of the original image within a
given bit budget.

Embedded coding has been intensively studied in the
context of image compression for the last several years.
Some examples of embedded coders are given below.
The JPEG still-image compression standard [14] defines
a progressive compression mode that enables progressive
transmission and display of compressed images. Shapiro
[20] proposed the embedded zero-tree wavelet algorithm,
which encodes the bit layer effectively by considering a
particular data structure called the zero tree. Following

the basic framework of Shapiroet al. [24] developed the
layered zero coder, which adopts an efficient arithmetic
coder to gain more coding efficiency. Said and Pearlman
[17] presented another modification based on the concept
of set partitioning in hierarchical trees.

Embedded coding can be applied in either the spatial
domain or the transform domain. In the proposed algorithm
detailed in Section III, we will perform embedded coding
in the spatial domain. The two basic building blocks of the
embedded coder are successive quantization and entropy
coding. Details of these two steps are given below.

1) Successive Quantization:Given a sequence of input
coefficients , the first step of successive
quantization is to scale all coefficients to the interval

. This can be done by simply dividing every co-
efficient by the maximum magnitude of all coefficients.

Hereafter, we assume that every is within the
interval and can therefore be represented by

for its magnitude plus bit for its
sign. We define functionsid , where is the
leading nonzero bit of . We call the
identification bits of , and all bits that follows the
refinement bits of .

In the th stage of the successive quantization, we use
to approximate the value of coefficient

. However, instead of using directly,
we use as the approximation, i.e., the
average value rather than the lower bound of the quan-
tization bin is adopted. Fig. 1 shows results for the first
three successive quantization steps for nonnegative co-
efficients. For each quantization bin in the figure, the
corresponding bit sequence is to its right, while a vertical
bar shows the approximation value. The only exception
to this approximation rule is the lowest quantization bin,
where the coefficient is approximated by zero, as shown
by the shadow in the figure. Note that a typical set of
transformation coefficients consists of a large portion of
coefficients with small magnitude. Their average is closer
to zero.

In actual implementation, there is no need to scale the
coefficients. Instead, we choose a set of quantization steps
to generate . The initial quantization step is one-
half the maximum magnitude of all coefficients. Then, the
quantization step size at stages and are related
via . We call a coefficient significant
if its magnitude is greater than the current quantization
step. Otherwise, it is insignificant. At the beginning, all
coefficients are insignificant. For each coefficient at
quantization stage, we have the following.

1) If currently insignificant, we apply

Otherwise,

In the first and second cases shown above, the co-
efficient becomes significant at this quantization step
and sid .

1054 PROCEEDINGS OF THE IEEE, VOL. 86, NO. 6, JUNE 1998

(a)

(b)

(c)

Fig. 1. Illustration of successive quantization. (a) After stage 0.
(b) After stage 1. (c) After stage 2.

2) If currently significant, we apply the following re-
finement rules:

2) Context Arithmetic Coding:For each identification bit
sid , we use a context

arithmetic coder to encode it. As mentioned above, a large
portion of coefficients are with a very small magnitude, so
that only identification bits, i.e., , ,
have a value “1,” while the rest are all “0.” They can be
compressed efficiently if we can find a good probability
distribution model for these bits. The context arithmetic
coding provides a good tool to accomplish such a task. A
context arithmetic coder is a set of independent arithmetic
coders. Each coder is indexed by a number called the
context. In the process of coding, a binary symbol along
with a context is fed to the encoder. For each arithmetic
coder, it encodes the binary symbol using its own built-
in probability estimation. It counts the numbers of 0’s and
1’s under the same context and uses those occurrences to

estimate the probability for the next incoming symbol. Each
arithmetic coder dynamically estimates its own probability
model as it encodes. We refer to [14, ch. 12–14] for
more detailed discussion. The challenge that remains is the
assignment of appropriate context so that each individual
arithmetic coder can build a proper probability estimation
for incoming symbols. This is application dependent. We
present our method of context assignment in Section III-C.

For the refinement bit sid , we
simply take its value without further compression. Since
it can be 0 or 1 with an equal probability, it cannot be
compressed easily.

III. PROGRESSIVEGRAPHIC-CODING ALGORITHM

In this section, we describe the progressive 3-D graphic-
coding algorithm in detail. First, a procedure to construct a
hierarchical mesh is presented in Section III-A. Then, we
examine the coding of the structure and the attribute data in
Sections III-B and III-C, respectively. Last, in Section III-
D, the coded bitstreams of the two types of data are
multiplexed into a single bitstream by using a rate-distortion
model.

A. Construction of Hierarchical Mesh

Even though the developed compression scheme can be
applied to an arbitrary polygonal mesh in principle, we will
focus on a mesh composed by triangles for simplicity. There
are many graphic-simplification techniques, as reviewed
in Section II. We adopt the vertex decimation method
described in [19]. There are two reasons for this choice.
First, it provides a nice hierarchical structure in terms
of neighborhood areas for the progressive compression of
structure data, as described in the remainder of this section.
Second, the average of the attribute data of neighboring
vertices provides a good prediction of the central vertex.
Thus, the compression of attribute data can be done more
effectively.

Multiple passes are made over all vertices in the mesh.
Each vertex and its local topology are checked for the
eligibility of removal. According to its local topology, the
vertex is classified into three different types.

Simple A simple vertex is surrounded by a complete
cycle of triangles, and each edge connected
to the vertex is shared by two triangles [see
Fig. 2(a)].

Complex If one of its connecting edges is not shared
by two triangles, or is not forming a com-
plete cycle of triangles, then the vertex is
complex [see Fig. 2(b)].

Boundary A boundary vertex is on the boundary of a
mesh, i.e., within a semicycle of triangles
[see Fig. 2(c)].

Each vertex may be assigned to one of three possible
categories. To preserve the topology, complex vertices are
not deleted from the mesh. Only simple and boundary

LI AND KUO: PROGRESSIVE CODING OF 3-D GRAPHIC MODELS 1055

(a) (b) (c)

Fig. 2. Classification of vertices. (a) Simple. (b) Complex.
(c) Boundary.

Fig. 3. Removal and addition of a vertex.

Fig. 4. Illustration of graphic simplification in the neighborhood
of a vertex.

vertices are candidates for removal. The removal of a vertex
and all triangles depending on that vertex results in a hole
in the mesh. This hole is patched by local retriangulation, as
shown in Fig. 3. The delete-patch operation is repeated until
the removal of any vertex causes a topological violation.
The resulting mesh serves as the base mesh, which is the
coarsest approximation of the original. It is very simple in
comparison with the original mesh. For example, a high-
quality sphere mesh may have thousands of vertices and
triangles. However, its base mesh is the simplest 3-D mesh,
i.e., tetrahedron. The original model can be recovered by
adding removed vertices back to the base mesh in reverse
order.

For every removed vertex, it is always associated with
a list of neighboring vertices. Byneighboring,we mean
the neighborhood of a vertex with respect to the currently
updated mesh rather than the original mesh (see Fig. 4). For
the first vertex removed from the original mesh, its neigh-
boring vertices are truly its nearest vertices. However, every
following removed vertex may have some neighboring
vertices that are not its nearest vertices, since some of those
vertices may have been removed beforehand and the local
topology has been changed. A hierarchical representation
of the connectivity of the mesh is then constructed by this
neighborhood structure.

We adopt a very simple yet effective criterion to deter-
mine the sequence of vertex removal. That is, a vertex

is removed if its removal results in the least distortion
between the simplified and the original models. Nonessen-
tial vertices, such as those vertices coplaned with their
neighborhood, are removed first. Vertices that are visu-
ally important tend to be significantly different from their
neighborhoods and will be preserved in the early stage
and removed later. Since vertices are added back to the
base mesh in reverse order, visually prominent vertices are
put back first, followed by regular vertices with medium
distortion and, last, nonessential vertices. This approach
ensures that the compressed model converges to the original
at a maximum rate. A variety of distortion measurements
can be used. We choose the Euclidean distance between the
position of removed vertex and the average position of its
neighboring vertices. This measurement can be computed
easily and reflects well the visual importance of vertices
according to our experimental results.

By coding the base mesh and each vertex addition step,
we can completely record the original mesh. The base mesh
can be coded with a regular graphic format. As to the coding
of vertex addition, we consider two different types of data.
One type is structure data, which specify where and how
the mesh topology is locally updated. The other type is
attribute data, which describe the individual information of
the new vertex, such as its position, normal, and color. The
coding of these two data is detailed in the following two
subsections.

B. Coding of Structure Data

We explain the procedure to encode the local topology
update with a simple example, as shown in Fig. 3, where
the addition (or removal) of one vertex in a local region
is illustrated. The first step is to delete all edges inside
the region. Then, a new vertex is added somewhere inside
the region and connected to all neighboring vertices. This
local region is called the neighborhood of the central vertex.
This vertex addition (or removal) process can be encoded by
recording a list of boundary vertices or composing triangles
in the updated mesh. However, these approaches require a
lot of coding bits.

In our algorithm, we consider a different approach by
implementing a pattern lookup table, where the region is
specified by one local and one global index. The local index
determines the pattern of the neighborhood topology, while
the global index locates the neighborhood in the mesh. This
approach can be justified as follows. There is a fixed num-
ber of topological patterns associated with a neighborhood.
For example, a neighborhood with six boundary edges (i.e.,
hexagon) has only four partitioning patterns, as shown in
Fig. 5. In Table 1, we show the relationship between the
maximum number of allowed patterns and the number
of boundary edges of a neighborhood up to ten edges.
Patterns that differ by a rotational factor are counted in
the same entry. Though the number of patterns grows very
rapidly as the number of edges (NOE) of a neighborhood
increases, the number of edges for most neighborhoods is
found to be between five and seven via extensive analysis
of the distributions of NOE for many models. Only a small

1056 PROCEEDINGS OF THE IEEE, VOL. 86, NO. 6, JUNE 1998

Fig. 5. Patterns of a partitioned hexagon.

Table 1 The Number of Neighborhood Patterns Associated
with Polygons Parameterized by Edge Numbers

fraction of neighbors have an NOE larger than ten. Since
there are in total 231 patterns with an NOE less than or
equal to ten, an 8-bit index set can be used to represent these
patterns and stored in both the encoder and the decoder. We
impose a constraint in the vertex removal process, namely,
only vertices with an NOE less than 11 are eligible for
removal. Therefore, every neighborhood thus generated can
be uniquely encoded with the 8-bit index set.

For each partitioning pattern in the table, we mark one
triangle in the pattern. To encode a neighborhood, we first
find its pattern in the lookup table. Then, the index of the
marked triangle in the triangle list of the updated mesh
is used as the global index to locate the pattern in the
updated mesh. Starting from each edge of this triangle,
we can find one neighborhood according to the partitioning
pattern. We also encode one of three edges that can produce
the desired area. The triangle index can be represented
compactly. At the early stage of coding, the updated mesh
has a smaller number of triangles and requires a smaller
number of bits to encode a triangle id. For example, if
the total number of triangles is between 32 and 64, only
6 bits are needed to encode the index. Note that both
the encoder and the decoder have the full knowledge of
the structure of the updated mesh. When the number of
triangles becomes larger and requires more bits, both the
encoder and the decoder will increase the number of coding
bits accordingly.

Experimental results of the proposed coding method
applied to the Spock model are listed in Table 3, where #
is the number of vertices of the mesh at different resolutions
and BPS is the averaged number of bits to encode a
neighborhood. Our method requires around #
bits, which is comparable to the generalized triangle strip
[3] and the progressive mesh method [10].

C. Coding of Attribute Data

One essential attribute datum is the vertex position. Other
commonly used attribute data include the normal and the
color of the vertex. Regardless of the type, all attribute data
can be coded with the same framework. Generally speaking,
attribute data bear a strong correlation among their neigh-
borhood. Due to the irregularity of the mesh structure, it
is very difficult to perform the transform such as DCT or
the wavelet transform for energy compaction. Instead, we
predict the attribute of a vertex by simply averaging the
same attribute of its neighboring vertices. Thus, attribute

(a)

(b)

Fig. 6. Comparison of histograms of (a) original data and
(b) prediction residual.

values of each vertex have prediction residues. Residues
of the same attribute are then arranged into a 1-D array
in the same order as the sequence of vertex addition and
encoded by the embedded coding method as described in
Section II-B.

Histograms of original data and prediction residues are
compared in Fig. 6. The coordinates of all vertices from
the dinosaur model are plotted in Fig. 6(a). They are in
the interval of [-10, 10] with an irregular distribution
pattern. The corresponding prediction residues are plotted
in Fig. 6(b). They are highly concentrated in the interval of
[-0.5, 0.5], and the distribution fits well with the Laplacian
model. As mentioned in Section II-B, we have to consider
both identification and refinement bits in the coding process,
which have quite different bit-consumption characteristics.

For identification bits, each is encoded by the context
arithmetic coder. The context is generated according to
the significant identification of its neighboring vertices. For
each neighboring vertex, we use 1 bit to represent whether
or not its attribute datum of the same kind is significant.
We simply concatenate all such bits to create a binary
representation of the context. The rationale behind this
approach is that attribute data with a similar neighboring
circumstance most likely have a similar distribution. Since
the probability of “0” is much larger than that of “1,” an
arithmetic coder might take a fraction of one bit to code an
identification symbol 0, while it might take several bits to
code a 1. On the average, it still takes much less than 1 bit
to code one identification symbol. As far as the refinement
is concerned, it has a fixed half-half probability, so that
it costs exactly 1 bit. If a residue is very large and
sid , it costs several bits to encode . Then,
at each following layer, it costs exactly 1 bit to encode
each refinement symbol. If is relatively small andsid
is large, then each of , which is
zero, only costs a fraction of one bit and a small amount
in total. The exponential histogram of prediction residues

LI AND KUO: PROGRESSIVE CODING OF 3-D GRAPHIC MODELS 1057

guarantees a much better coding performance than the direct
binary representation of the original data. The average bit
consumption per attribute (BPA) datum versus the number

layers for the Spock model is given in Table 3. For each,
the residue is encoded to the precision of 2with respect
to the magnitude of the original threshold. It requires
bits to achieve the same performance for a regular binary
representation. At beginning layers, BPA is almost the same
as . As the coding proceeds to finer layers, BPA becomes
smaller in comparison with since more residues of small
magnitude are encoded.

D. Integration

In the last two subsections, we present two coding
procedures. One is the coding of structure data and the
other is the coding of attribute data. Each coding scheme
produces its own bitstream. In this subsection, we examine
the multiplexing of these two bitstreams.

The purpose of multiplexing is not only mixing two
bitstreams together. The bitstream of structure data provides
information about the mesh structure, while that of attribute
data provides information about the model geometry. The
quality of the reconstructed model depends on both the
number of vertices and the precision of attribute data.
The more a bitstream is decoded, the more similar the
decoded model is to the original model. Decoding of
either bitstream contributes to the reduction of compression
distortion. The contribution of bits decreases according to
their order in the corresponding bitstream. It is desirable
that this property is preserved in the final bitstream as
well. This problem is similar to the merging of two arrays,
which have been sorted in order according to a certain
measurement individually, into one array by the same
measurement. In this case, the measurement is “contribute
to the distortion reduction.” A rate-distortion model is built
for each bitstream to study the average distortion reduction
per bit so that these two bitstreams can be multiplexed in
the proper order.

In the coding of structure data, a vertex removed later is
likely to have a larger residue. Rigorously speaking, this is
not absolutely correct since the vertex removal is performed
locally and the update can change the mesh structure and
the residue of neighboring vertices. The altered residue
is possibly smaller than that of the vertex just removed.
However, the distortions reduced by a vertex addition are
in a decreasing order in the global scope. Fig. 7 shows such
a decreasing curve calculated based on the dinosaur model.
The local fluctuation is due to the effect of local update.

In the coding of attribute data, the quantization residue of
each vertex is uniformly distributed in the interval ,

at stage . Consequently, the distortion reduction at a
certain vertex is random. It is not correlated to that of the
preceding or the following vertices. Such a rate-distortion
curve is shown in Fig. 8.

According to these features, we propose a multiplexing
scheme as follows. We first find the prediction residue of
every vertex to be removed and determine the maximum
magnitude of all residues. Vertices are added back in a

Fig. 7. The rate-distortion curve for structure data.

Fig. 8. The rate-distortion curve for attribute data.

layer-by-layer fashion. Two set of thresholdsand are
chosen to control the vertex addition and coding of attribute
data, respectively. Thresholds are defined as

and for

where is the largest magnitude of the prediction residues,
while is a monotonically decreasing sequence

At layer , all vertices with a prediction residue in the
interval are added back to the mesh in order. For
each newly added vertex, its attribute data are immediately
coded progressively up to the quantization layer, which
is controlled by threshold . Then, the attribute date of all
existing vertices, i.e., old vertices introduced in the previous
layers and new vertices introduced in the layer, are further
quantized and encoded up to threshold . This finishes
the coding of information at layer. The same procedure
can be repeated for all layers. After all vertices are added
back, only the coding of attribute data is conducted.

1058 PROCEEDINGS OF THE IEEE, VOL. 86, NO. 6, JUNE 1998

Fig. 9. The multiplexing procedure.

To synchronize the encoder and the decoder, extra bits
have to be inserted in the final bitstream to indicate the
switch between coding of structure and attribute data. More
specifically, after each vertex addition, one extra bit is
added to the final bitstream to indicate the type of the next
coding process. If no switching is required, the codec adds
a new vertex to the updated mesh. Otherwise, the codec
starts to code the residues of all existing vertices according
to threshold , then moves to the coding layer and
adds a new vertex.

Consider an example with a model of 10 000 vertices and
the attribute data having been refined to the twelfth layer.
A total of 10 000 extra bits are introduced. Twelve of them
have a binary value of “1” to signal switching, and the other
9988 bits have a binary value of “0” to indicate continuing.
The entropy of this extra bit sequence is

Thus, it requires bits in total. This
amount of bits is negligible compared with the size of the
final bitstream.

Fig. 9 illustrates such a multiplexing process. Each col-
umn represents the complete information of a vertex addi-
tion. The star stands for structure data. For simplicity, we
assume only one attribute datum for each vertex, and the
index of is omitted. The sign bit is also omitted
since it is right after the and thus not in a fixed
position. The explicit 0 and 1 are synchronization bits. The
arrow indicates the actual coding order, where structure data
are encoded by the scheme detailed in Section III-B and
each is encoded by the scheme detailed in Section II-B,
respectively.

The choice of is decided in such a way that expected
distortion reduction of the last vertex introduced at layer

(with prediction residue) is equal to the average
distortion reduction of attribute data coded by threshold.
Even though there is no close-form solution for, it can be
estimated based on a few assumptions. A very common case
is that the attribute data include only the vertex position. We
choose to be the maximum magnitude of its prediction
residue , , and . Without loss of generality, let

and and be uniformly distributed in the

interval . Before the vertex addition, the residue is
approximated by zero so that the average distortion is

After the vertex addition, the average distortion is

Here, we assume that attribute data are quantized by
threshold and encoded by using the coding rule
described in Section II-B. By vertex addition, we mean both
the coding of its neighborhood and the coding of its attribute
data up to the quantization layer. Thus, the distortion
reduction is

If a vertex addition requires bits on the average, the
distortion reduction per bit (DRPB) for structure data is

DRPB

For attribute data refinement quantized by thresholdwith
the uniform distribution assumption, the average distortions
before and after refinement, respectively, are

Thus, the distortion reduction can be calculated as

Each refinement requires 1 bit, so that the distortion reduc-
tion per bit (DRPB) for attribute data is

DRPB

LI AND KUO: PROGRESSIVE CODING OF 3-D GRAPHIC MODELS 1059

(a) (b)

(c) (d)

Fig. 10. Compression of the dinosaur. (a) Original mesh. (b) Original wire frame. (c) 100 : 1
compressed mesh. (d) 100 : 1 compressed wire frame.

By requiring DRPB DRPB , we have

Typically, is between 20 and 28, so that we choose
.

IV. EXPERIMENTAL RESULTS

We have tested our algorithm on four typical 3-D graphic
models. They are dinosaur, tube, Spock, and bunny. All
models contain six different attribute data: three for the
vertex position and three for the vertex normal. The tube
model also contains 2-D texture coordinates as part of its
attribute data.

To give a rough idea of the performance of the proposed
algorithm, we show the original dinosaur model and its
wire-frame structure in Fig. 10(a) and (b), respectively. The
wire frame of the 100 : 1 compressed model is shown in
Fig. 10(d). For this particular case, the compressed model
contains around one-tenth the vertices and triangles of the
original model. By comparing Fig. 10(b) and (d), it is
clear that the compressed model has a much simpler wire-
frame structure. Also, the vertex position has a coarser
representation, where each coordinate is represented with
four quantization layers (in contrast with the 32-bit full
resolution). With such a mesh structure and the precision
of vertex positions, we are able to render a 2-D image with
some distortion, as shown in Fig. 10(c).

More experimental results are listed in Table 2, where #
is the number of vertices in the model, #is the number
of triangles, CR is the compression ratio, and SNR is the
signal-to-noise ratio. The CR is defined to be the ratio of the
original file size to the compressed file size. It is worthwhile
to point out that a graphic model is usually stored as an
ASCII file. To be properly indented, it contains a large

Table 2 Comparison of the Compression Performance
for Different Graphic Models

Table 3 Compression Results of the Spock Model

amount of white-space characters such as spaces and tabs,
which in fact convey no information. Different indentation
styles may require different storage space. Furthermore, a
floating or an integer number represented in the ASCII
format usually demands more than 32 bits, as required in its
binary format. It is desirable to count the original file size
with its maximum compactness so that the experimental
results are independent of any particular file format. In our
calculation, we assume that each attribute datum (floating
number) as well as each vertex index (integer) requires
32 bits (or 4 bytes) to estimate the original file size. For
instance, the Spock model has 16 386 vertices and 32 768
triangles. Since each vertex has six attribute data and each
triangle is specified by three vertex indexes, the original file
size in terms of bytes can be calculated as follows:

(bytes)

1060 PROCEEDINGS OF THE IEEE, VOL. 86, NO. 6, JUNE 1998

This estimated file size is about one-third of its actual ASCII
file size. The SNR measures the similarity between the
original and the reconstructed 3-D graphic models. It is
defined as follows:

SNR

where is the total number of vertices, is the original
position of the th vertex, is the average position of
vertices (i.e., the centroid of the graphic model), and
is the reconstructed position of theth vertex. Note that a
compressed graphic model may not include allvertices
in the original model. In this case, can be obtained via
interpolation based on existing vertices in the compressed
model.

In the context of image compression, a compressed image
with the peak SNR equal to 35 dB or above is considered
to be of very good quality. Usually in such a case, the
decompressed image appears indistinguishable from the
original one to inexperienced eyes. In the context of graphic
compression, the quality of a compressed graphic model is
influenced by many factors. One obvious factor is the size
of rendering area or, equivalently, the viewing distance. If
the model is located far away from the viewer, the base
mesh may be sufficient to render the object with acceptable
quality. On the other hand, if we zoom into a particular
small region, even the original model might appear too
coarse by itself. Another factor is the viewing angle. A
model should be observed from any viewing angle. The
same amount of distortion might be negligible from one
viewing point but intolerable from another. Thus, a more
accurate approximation is required to ensure an overall
satisfying performance. According to our experience, a
high-quality rendered image with resolution 512 512
pixels can be obtained from a compressed graphic model
with SNR in the range of 40–45 dB.

The tradeoff curves between CR and SNR for the four test
graphic models are shown in Fig. 11. Since the proposed
coding scheme is progressive, we are able to decode only
one embedded bitstream to obtain all results given in each
curve. As more bits are decoded, the reconstructed model
becomes more accurate. Correspondingly, SNR gradually
increases while CR decreases. Different compression per-
formances are achieved for different models due to the
different degrees of redundancy existing in the models.
Based on the figure, we conclude that the bunny model has
the highest degree of redundancy, while the dinosaur model
has the lowest degree of redundancy. This is consistent with
our visual observation of these models. The bunny model
is approximately a round shape without many visually
important details in the body. Its total number of vertices is
34 835. The dinosaur is more complicated due to the four
legs, two ears, two horns, and some special features around
the mouth region. However, its total number of vertices is
only 2832. For models with a high degree of redundancy,
the proposed algorithm removes the redundancy at an
early stage of the compression process. The “nonessential”
information will be added back for a higher bit budget.

Fig. 11. Rate-distortion performances for embedding coding of
graphic models.

Fig. 12. Plot of bit consumptions as functions of the vertex
number for the Spock model.

To illustrate the multiplexing effect between the coding
of structure and attribute data, we plot the bit-consumption
curve as a function of the vertex number for the Spock
model in Fig. 12. The BPS curve denotes the average
number of bits spent in the coding of each neighborhood,
and the BPA curve denotes the average number of bits spent
in the coding of each attribute datum. Both BPS and BPA
grow smoothly as the number of vertices increase. This in-
dicates that bits are allocated proportionally in the coding of
structure and attribute data as the total bit budget increases.
When there are more triangles in the reconstructed model,
more bits are required to encode a triangle index so that
BPS grows. Similarly, BPA increases since attribute data
should be better represented by more quantization layers
when the number of vertices increases. It can be shown
that both BPS and BPA grow logarithmically with the level
of details of the reconstructed model, which ensures the
superior performance of our algorithm.

Last, to demonstrate the visual effect of rendered images
from the progressively coded graphic models, we show

LI AND KUO: PROGRESSIVE CODING OF 3-D GRAPHIC MODELS 1061

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 13. Compression of the bunny model. (a) Original (side
view). (b) Original (front view). (c) 1000 : 1 (side view). (d)
1000 : 1 (front view). (e) 100 : 1 (side view). (f) 100 : 1 (front view).
(g) 40 : 1 (side view). (h) 40 : 1 (front view).

two views (front and side) of rendered images at different
compression ratios for the bunny and the Spock models
in Figs. 13 and 14, respectively. The original bunny mesh
with a total of 34 835 vertices is shown in Fig. 13(a). The
base mesh has five vertices and five triangles. Meshes
with a compression ratio of 1000 : 1 (280 vertices), 100 : 1
(2431 vertices), and 40 : 1 (5688 vertices) are shown in
Fig. 13(b)–(d), respectively. The SNR value for the mesh
with a compression ratio of 40 : 1 (with about one-sixth of
the total numbers of vertices and triangles of the original)
is 45.03 dB. In other words, for simple graphic models,
we can achieve a compression ratio of 40 : 1 without
visible distortion. For more complicated models, such as the
dinosaur and Spock, we can obtain a good graphic quality
at a compression ratio of around 20 : 1. The Spock mesh,
with a total of 16 386 vertices, is shown in Fig. 14(a). The
base mesh is a tetrahedron. In Fig. 14(b)–(d), we show

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 14. Compression of the Spock model. (a) Original (side
view). (b) Original (front view). (c) 1000 : 1 (side view). (d)
1000 : 1 (front view). (e) 100 : 1 (side view). (f) 100 : 1 (front view).
(g) 20 : 1 (side view). (h) 20 : 1 (front view).

meshes corresponding to compression ratios of 1000 : 1
(150 vertices), 100 : 1 (1220 vertices), and 20 : 1 (5182
vertices), respectively. The SNR value for the last case is
45.93 dB. It is a high-quality replica of the original mesh,
even though it has only about one-third of the vertices of
the original one.

V. CONCLUSION AND EXTENSION

A progressive compression algorithm, which encodes a
3-D geometric model into an embedded bitstream, was
studied in this work. A 3-D geometric model consists
of two kinds of data: structure data and attribute data.
Structure data characterize the connectivity information
among vertices, while attribute data describe other relevant
information of vertices, such as positions, colors, and
normals. They are encoded separately according to their
importance and then integrated into a single bitstream. In

1062 PROCEEDINGS OF THE IEEE, VOL. 86, NO. 6, JUNE 1998

decoding, the decoder decodes from the bitstream the most
important information first and gradually adds finer detailed
information to provide a more accurate approximation. The
decoder can stop at any point while giving a reasonable
reconstruction of the original model. We applied the pro-
posed algorithm to several test 3-D meshes and achieved a
compression ratio of 20 : 1 while maintaining an excellent
graphic quality. The resulting compression method not only
allows a progressive representation of a 3-D graphic model
but also maintains an excellent rate-distortion performance.
It is expected that many applications, including progressive
display and level-of-detail control, will benefit from the
proposed coding scheme.

There are still several interesting problems to be solved
in making our work more complete. One is the smooth
transition between the coarse- and fine-resolution models.
With the current scheme, we observe sometimes an abrupt
change in a certain part of the object due to the removal
or addition of a vertex. This effect is visually annoying,
and it is desirable to make the transition as smooth as
possible. Another is the efficient rendering of progressively
coded graphic models. This appears to be a very challenging
problem with great impact.

REFERENCES

[1] R. Bar-Yehuda and C. Gotsman, “Time/space tradeoffs for
polygon mesh rendering,”ACM Trans. Graph., vol. 15, no. 2,
pp. 141–152, Apr. 1996.

[2] J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber, P.
Agarwat, F. Brooks, and W. Wright, “Simplification envelopes,”
in Proc. Computer Graphics Ann. Conf. Series, New Orleans,
LA, Aug. 1996, pp. 119–128.

[3] M. Deering, “Geometry compression,” inProc. Computer
Graphics Ann. Conf. Series, Aug. 1995, pp. 13–20.

[4] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and
W. Stuetzle, “Multiresolution analysis of arbitrary meshes,” in
Proc. Computer Graphics Ann. Conf. Series, Aug. 1995, pp.
173–182.

[5] M. Garland and P. S. Heckbert, “Surface simplification using
quadric error metrics,” inProc. Computer Graphics Ann. Conf.
Series, Aug. 1997, pp. 209–217.

[6] A. Guéziec, “Surface simplification inside a tolerance volume,”
IBM T. J. Watson Research Center, Yorktown Heights, NY,
Tech. Rep. RC-20440, 1996.

[7] T. He, L. Hong, A. Kaufman, A. Varshney, and S. Wang, “Voxel
based object simplification,” inProc. Visualization, 1995, pp.
296–303.

[8] P. Heckbert and M. Garland, “Multiresolution modeling for fast
rendering,” inProc. Graphics Interface’94, Canadian Informa-
tion Processing Society, Banff, Alta., Canada, May 1994, pp.
43–50.

[9] P. Hinker and C. Hansen, “Geometric optimization,” inProc.
Visualization, 1993, pp. 189–195.

[10] H. Hoppe, “Progressive meshes,” inProc. Computer Graphics
Ann. Conf. Series, New Orleans, LA, Aug. 1996, pp. 99–108.

[11] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W.
Stuetzle, “Mesh optimization,” inProc. Computer Graphics
Ann. Conf. Series, Aug. 1993, pp. 19–26.

[12] A. D. Kalvin and R. H. Taylor, “Superface: Polyhedral approx-
imation with bounded error,” inProc. SPIE Medical Imaging,
Y. Kim, Ed., Feb. 1994, vol. 2164.

[13] M. Lounsbery, “Multiresolution analysis for surfaces of arbi-
trary topological type,” Ph.D. dissertation, Univ. of Washington,
Seattle, Oct. 1993.

[14] W. B. Pennebaker and J. L. Mitchell,JPEG Still Image Data
Compression Standard. New York: Van Nostrand, 1993.

[15] J. Popović and H. Hoppe, “Progressive simplicial complexes,”
in Proc. Computer Graphics Ann. Conf. Series, Aug. 1997, pp.
217–225.

[16] J. Rossignac and P. Borrel,Modeling in Computer Graphics:
Methods and Applications. Berlin, Germany: Springer-Verlag,
1993.

[17] A. Said and W. A. Pearlman, “A new fast and efficient image
codec based on set partitioning in hierarchical trees,”IEEE
Trans. Circuits Syst. Video Technol., vol. 6, pp. 243–250, June
1996.

[18] G. Schaufler and W. Stürzlinger, “Generating multiple levels
of detail from polygonal geometry models,” inProc. Virtual
Environments Eurographics Workshop, Jan. 1995, pp. 33–41.

[19] W. J. Schr̈oeder, “Decimation of triangle meshes,” inProc.
Computer Graphics Ann. Conf. Series, July 1992, pp. 65–70.

[20] J. M. Shapiro, “Embedded image coding using zerotrees of
wavelet coefficients,”IEEE Trans. Image Processing, vol. 41,
no. 12, pp. 3445–3462, 1993.

[21] M. Soucy and D. Laurendeau, “Multiresolution surface model-
ing based on hierarchical triangulation,”Comput. Vision Image
Understanding, vol. 63, pp. 1–14, Jan. 1996.

[22] W. Sweldens and P. Schröder, “Spherical wavelets: Efficiently
representing functions on the sphere,” inProc. Computer
Graphics Ann. Conf. Series, Aug. 1995, pp. 161–172.

[23] G. Taubin and J. Rossignac, “Geometric compression through
topological surgery,” IBM T. J. Watson Research Center, York-
town Heights, NY, Tech. Rep. RC-20340, 1996.

[24] D. Taubman and A. Zakhor, “Multirate 3D subband coding of
video,” IEEE Trans. Image Processing, vol. 3, pp. 572–588,
Jan. 1994.

[25] G. Turk, “Re-tiling polygon surfaces,” inProc. Computer
Graphics Ann. Conf. Series, July 1992, pp. 55–64.

[26] A. Varshney, P. K. Agarwal, F. P. Brooks, Jr., W. V. Wright,
and H. Weber, “Generating levels of detail for large-scale polyg-
onal models,” Dept. of Computer Science, Duke University,
Durham, NC, Tech. Rep., 1995.

Jiankun Li received the B.S. degree in physics
from the University of Science & Technology,
China, in 1993. He currently is pursuing the
Ph.D. degree in the Department of Electrical
Engineering-Systems at the University of South-
ern California, Los Angeles.

His research interests include natural and syn-
thetic image compression, graph compression,
postprocessing, and multiresolution graphic ren-
dering.

C.-C. Jay Kuo (Senior Member, IEEE) re-
ceived the B.S. degree from the National Taiwan
University, Taipei, in 1980 and the M.S. and
Ph.D. degrees from the Massachusetts Institute
of Technology, Cambridge, in 1985 and 1987,
respectively, all in electrical engineering.

From October 1987 to December 1988, he
was a Computational and Applied Mathematics
Research Assistant Professor in the Department
of Mathematics at the University of California,
Los Angeles. Since January 1989, he has been

with the Department of Electrical Engineering-Systems and the Signal and
Image Processing Institute at the University of Southern California, Los
Angeles, where he currently has a joint appointment as Associate Professor
of Electrical Engineering and Mathematics. His research interests are in
the areas of digital signal and image processing, audio and video coding,
wavelet theory and applications, multimedia technologies, and large-
scale scientific computing. He is the author of more than 280 technical
publications in international conferences and journals. He is Editor-in-
Chief of theJournal of Visual Communication and Image Representation.

Dr. Kuo is a member of the Society for Industrial and Applied
Mathematics and the Association of Computing Machinery. He is a Fellow
of the International Society for Optical Engineering. He was Associate
Editor of IEEE TRANSACTIONS ON IMAGE PROCESSINGin 1995–1998 and
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY

in 1995–1997. He received the National Science Foundation Young
Investigator Award and Presidential Faculty Fellow Award in 1992 and
1993, respectively.

LI AND KUO: PROGRESSIVE CODING OF 3-D GRAPHIC MODELS 1063

