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with Hierarchical Color Clustering

Xia Wan and C.-C. Jay KucSenior Member, IEEE

Abstract—After performing a thorough comparison of different ~ which is manually annotated by keywords or automatically
quantization schemes in theRGB, HSV. YUV, and CIELu"v"  extracted by visual features. Although it seems effortless
color spaces, we propose to use color features obtained by hlerar-for a human being to pick out photos of horses from a

chical color clustering based on a pruned octree data structure to . . . - .
achieve efficient and robust image retrieval. With the proposed cqllectlon of pictures, _ObJeCt recognlthn gnd classification gre
method, multiple color features, including the dominant color, Still among the most difficult problems in image understanding
the number of distinctive colors, and the color histogram, can and computer vision. For a small image database, it would be
be natura_lly integrated _into one framework. A seleqtive filtering  easier to manually annotate a picture of horses by the keyword
strategy is also described to speed up the retrieval process..pqsen than to recognize a horse by visual feature analysis at
Retrieval examples are given to illustrate the performance of the . . . . .
proposed approach. different occlusion conditions and viewpoints. However, for

a large image database, a prohibitive amount of labor will
be involved for the annotation of objects in all images. In
addition, a limited number of keywords is usually not sufficient
to describe the details in a content-abundant image. To access

|. INTRODUCTION images based on their content, low-level features such as colors

DVANCES in modern multimedia technologies have le§L01-[12], textures [13]-[15], and shapes of objects [16], [17]
Ato huge and ever-growing archives of images, audi8® widely used as indexing features for image retrieval to
and video in diverse application areas such as medicify/Pass the difficulties of image understanding. _
remote sensing, entertainment, education, and on-line inforAMong various low-level features, the color information
mation services. This is similar to what occurred in thBas been extensively studied because of its invariance with
early computer development stage, during which the amodREPect to im_age s_caling and orientation. Color features used
of alphanumeric data increased rapidly and many practi¢dlimage retrieval include global and local color histograms,
issues in the database management system (DBMS) ardgg mean (i.e., average color), and higher order moments of the
In the past, DBMS was designed to organize alphanumeftstogram [18]. Average and dominant colors can be used to
data into structured records indexed by key attributes so tf#r out irrelevant images without too much computational
information retrieval and storage could be done convenienfiSt: However, they do not support a detailed comparison
and efficiently. However, traditional DBMS does not worlf the color appearance among images. The global color
well for multimedia data due to difficulties in several aspect§istogram provides a good approach to the retrieval of images
which include the diversity of the data type (e.g., image, vide#lat are similar in overall color content. There has been
audio), the large capacity of the unit record (e.g., a raw gesearch to improve the performance of color-based extraction
bit gray-level image of size 512 512 has 2.1 Mbits before Methods. For example, the QBIC (query by image content) [4]
compression), and the lack of semantic meaning of the dateS¥$tem supports color feature extraction of manually outlined
the physical level (e.g., no semantic meaning at the pixel lev@iects. An evaluation study made by Zhang and Smoliar [11]
for images). To exploit the full benefit of the explosive growtfghowed that the fixed-size local histogram is computationally
of multimedia data, there is a strong demand for developiggmple and efficient in some applications. The color indexing
efficient techniques for their storage, browsing, indexing, afgethod proposed by Stricker and Dimai [19] extracted color
retrieval [1]-[9]. features defined in fuzzy regions adaptive to image content.

Effective retrieval of image data is an important building There are common issues underlying all color-based re-
block for general multimedia information management. Fdfieval methods: the selection of a proper color space [20],
an image to be searchable, it has to be indexed by its contdi€ use of a proper color quantization scheme to reduce

the color resolution, and the development of efficient feature
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feature obtained by hierarchical color clustering. This color A quantized histogram is usually represented by /én
feature is different from the multiresolution color histograndimensional vector, wheré/ is the total number of quanti-
described in our previous work [21] in the sense that #ation bins. For example, aRGB color histogram, which
allows natural color clustering according to the content dfas been quantized infobins for R, [ bins for G, andm bins

an image (i.e., image adaptive). We also describe a setfof B, can be represented as a vector of dimengioa: kim.
filtering methods based on the new color feature to facilitaf@ifferent similarity metrics for histograms have been studied.
the retrieval process. They include filtering by the dominaf@ne example is the histogram intersection method by Swain
color, by the color width, and by hierarchical color distributionand Ballard [10]:

A combination of these methods allows a prompt access to N Ry Bl
images in a large image database. 2im1 mm( (1), T(L))
This paper is organized as follows. Image similarity mea- Ef\;l fIQ(i)

surements with color features are discussed in Section II. The R R

retrieval performances of different quantization schemes in dithere Hg(i) and Hr(i) denote, respectively, numbers of
ferent color spaces are compared in Section IIl. A hierarchiddikels in the query and target images of the same bin with
color clustering algorithm is presented in Section IV. Indexingpdex ¢. Another similarity metric [22], which takes into
and retrieval schemes based on the clustering algorithm afgount the perceptual similarity between bins of histograms,
proposed in Section V. Concluding remarks are drawn Was proposed by Hafneat al. [22]. It is of the form

Section VI. dist (lﬁf@, -HT)
. ~N\T /. .
II. SIMILARITY MEASUREMENTS WITH COLOR FEATURES = (HQ — HT) A(HQ — HT)
Similarity measurements of images can be classified into N N . . . )
three levels: pixel matching, feature matching, and semantic = ZZ% (HQ(i) — HT(i)) (HQ(j) - HT(j))
meaning. The pixel-based similarity measurements obtained i=1 j=1

via Li- or Ly-norm distance are straightforward. However, hare matrixd — [a:;] contains similarity weighting coeffi-

since they are sensitive to image scaling, rotation, and translas s petween colors corresponding to birand j
tion, such measurements are seldom used in practice. Similar- ’

ity comparisons with considering semantic meaning are ide@l
for retrieval purposes. Nevertheless, they are difficult to be ) ] o
implemented due to the lack of good techniques in imageThere are several drawbacks in the fixed quantization

understanding. We focus on similarity measurements basedBgthod. First, as an indexing feature, the discriminating ability
low-level features in this paper. of the color histogram is determined by the selection of the

guantization method (i.e., color resolution). The computational
complexity increases quickly as the resolution of color feature
increases. This can be a major problem in applications where
The color histogram of an image describes its color distiihe desired performance requires a high resolution of color
bution. Every pixel in the image corresponds to a point in @atures. Second, the histogram obtained by a single resolution
three-dimensional (3-D) color space. A similar image set cgjiantization is not efficient in the sense that many buckets
be selected based on the color distribution are empty since it is often that colors in a given image
only occupy a small subspace of the entire color space.
Third, it is observed that results of quantized images are
very sensitive to the location of quantization boundaries.
*g 1 shows the histogram of two images similar in color.
A uniform gquantization scheme (two quantization levels for
each component aRGB) is used to compute the histogram.
The color of image4 (127, 127, 127) is quantized to (0,0,0),

2 x Zh.xhzt '%O'”ts' g'.owe"e;z theTreS.O'“tl'.O”fQ a”dfiTt. the color of imageB (128, 128, 128) is quantized to (1,1,1).
Is t00 high to be used in practice. To simplify the computatio imilar colors which are located at the different side of the

the colo.r space has to be quanpzed to reduce the resolut antization boundary are quantized into different bins. As
Thus, histograms on the quantized space are used to defin

the similarit t Thati new similar im tis obtain Pesult, imageB cannot be included in the similarity set
€ simifarity set. That1s, a new simiiar image set is obta eoq image A. To overcome these problems, it is desirable to

Hierarchical Case

A. Fixed Quantization Case

{T | diSt(HQ,HT) < 6}

whereH andHy are color histograms of the query and targ
images, respectively, at the finest resolution level. That is,
a pixel is described by?, G, and B color components of:

bits each, theridg and Hr are defined on the cubic lattice of

based on develop a hierarchical feature representation and comparison
{T | dist(f] HT) < E} scheme for image retrieval. In this work, we consider the
@ following metric:
where H, and Hy are quantized histograms of the query dist(Hg, Hp)® = dist(fg),f}k))

and target images, respectively. The quantization scheme in
obtaining Hy and Hr should be the same, i.e., one colowherefg“) andf}k) represent color features of the query and
guantization scheme is used for all images within the databateget images at th&th resolution, respectively. Comparison
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Image A: with uniform color

&-point histogram of Image A
R, G, B =127,127, 127)

012 3 456 7
(@)

Image B: with uniform color 8-point histogram of Image B
(R, G, B = 128, 128, 128)

0 1 23 456 7
(b)

Fig. 1. lllustration of the histogram mismatching problem.

with the coarsest resolution feature can be used to getexperiment, it is the ratio of the number of retrieved “sunset”
candidate-image set with a very low computational complers the “stained-glass” image to the size of the query image
ity. Comparison of higher resolution features is then performaeét. Precision is the proportion of retrieved images that are
within the candidate-images set to reduce the computationelevant to the query. In our experiment, it is the ratio of the
cost. number of retrieved “sunset” or “stained-glass” images to the
To avoid the problem of putting similar colors into differentotal number of retrieved images. The ideal result would be
buckets, we propose to use a color-clustering technique rathwat all “sunset” were ranked at the top eight positions and all
than the fixed quantization boundary in obtaining the coldstained-glasses” images ranked at the top five positions for
featuresfg“) and 1% at thekth resolution. The construction respective queries. With such an outcome, the precision versus

T . . .
of a new color feature by hierarchical color clustering will bgecall is a constant 1. The precision versus recall curves for
described in detail in Section IV. different color quantization schemes are compared as shown
in Figs. 2—-4.

I1l. COMPARISON OF IMAGE RETRIEVAL WITH

DIFFERENT COLOR QUANTIZATION SCHEMES

: o . A. Color Distributions in Different Spaces
To compare different quantization strategies, we per-

form a study on image retrieval based on global color Color is a visual sensation produced by the light in the
histograms with different resolutions in four color space4sible region of the spectrum incident on the retina. Since the
(i.e., RGB,YUV,HSV, and CIEL*u*v*) in this section human visual system has three types of color photoreceptor

?

[20]. The similarity between histograms is measured with ti@ne cells, three components are necessary and sufficient to de-
histogram intersection method. scribe a color. There are several systems of color spaces, such

Our experimental database consists of 2119 images, incl@§ CIEXY Z, RGB, YUV, HSV,CIELAB, CIEL*u*v",
ing natural scenes, animals, plants, architectures, and peoplgnsell system, etc. Described below are the color systems
Large varieties of our image database prevent the bias gf{ected for our study.
a particular type of images. The same database is used im RGB: Digital images are normally represented in the
experiments reported for the rest of the paper. “Sunset” and RGB space. CRT's also use théeG B system to display
“stained-glasses” image sets were used as query sets, with a color pixel on the screen by excitations of red, green,
eight images in the “sunset” image set and five images in and blue phosphors.
the “stained-glasses” image set. The “sunset” image set i YUV: The YUV space is widely used in image com-
selected because the images in this set are different from each pression and processing applications. represents the
other with slight changes in hue and brightness. It is desirable luminance of a color, whilel/ and V' represent the
to test the robustness of color quantization schemes on such chromaticity of a color. The luminance component is
images. “Stained-glasses” images are selected because theyseparated from the chrominant components in this space.
contain rich colors in different hues, brightness, and satura-~ CIFEL*v*v*: Color differences in an arbitrary direction
tions. Testing with these images will provide a reasonable are approximately equal in th@! EL*w*v* space. Thus,
comparison among different schemes without overemphasis the relative distance of two colors can be determined by
on any particular color. the Euclidean distance.

Retrieval results are evaluated by precision versus recale HSV: HSV (hue, saturation, value) provides an intuitive
curves. Recall is the proportion of relevant images in the color space. Each component in this space contributes
database that are retrieved in response to a query. In our directly to visual perception. Other similar color spaces
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Fig. 2. Precision versus recall using uniform quantization schemes for (a) “sunde& B, (b) “stained glass” ilRG B, (c) “sunset” inY’ UV, (d) “stained
glass” inY UV, (e) “sunset” inH SV, (f) “stained glass” inH SV, (g) “sunset” in Luv, and (h) “stained glass” id.uwv.

include HSI and HSL, wherel and L denote intensity that color distributions are often nonuniform, and therefore,

and lightness, respectively. a simple uniform quantization scheme is inefficient for some
Color distributions of our test image database with respe&®lor spaces. The advantage of uniform quantization is that
to these color spaces are shown in Figs. 5-8. it is a straightforward and natural choice in the absenca of

priori information about the color distribution of the image
database. Generally, the retrieval performance gets better as
the number of quantization bins increases, as shown in Fig. 2.

1) Uniform Quantization:In uniform quantization, each Some exception may occur when similar colors under the
axis of the color space is uniformly divided into a certaisame subset of a coarse quantization scheme are divided into
number of bins. It has been shown in the previous sectibmo different subsets of a finer quantization.

B. Color Quantization Schemes
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Fig. 3. Precision versus recall using vector quantization schemes for (a) “sunde€ B, (b) “stained glass” inRG B, (c) “sunset” inY UV, (d) “stained
glass” inY UV, (e) “sunset” inH SV, (f) “stained glass” inH SV, (g) “sunset” inLuv, and (h) “stained glass” id.uwv.

2) Standard Vector Quantization (VQ)he standard VQ representations in the database is minimized. Compared
is a method of partitioning the vector space by minimizingiith uniform quantization, the histogram bins are optimally
the mean-squared error (MSE) with respect to a set centrasielected in VQ so that the same number of bins can lead to a
points (i.e., codewords). This procedure can be achieved wimaller quantization error at the expense of higher processing
a proper initialization and iteration by using the generalizezbmplexity. As shown in Fig. 3, the retrieval performance
Lloyd—Max algorithm (GLA). When applied to color spaceof VQ is better than that of uniform quantization as the
gquantization, VQ divides the color space into a prespecifiegdiantization level increases. It is interesting to point out that
number of subspaces so that the resulting quantization ertoe retrieval performance cannot be further improved when the
of all pixels of all images with respect to quantized colonumber of quantization bins is larger than a certain threshold.
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Fig. 4. Precision versus recall using product VQ schemes for (a) “sunsétGiB, (b) “stained glass” inRG B, (c) “sunset” inY UV, (d) “stained glass”
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3) Product Vector QuantizationAlthough VQ results in square quantization error along each axis independently so
an optimal partitioning of the color space, it is not suitablthat the computational complexity of the histogram extraction
for large image databases due to the high computatiomaln be reduced. The product vector quantization with the
complexity. A simpler but suboptimal quantization methotlloyd—Max quantizer results in a better partitioning of the
can be adopted to reduce the complexity. That is, we caalor space as compared to uniform quantization without a
consider partitioning perpendicular to the axis of the coldremendous increase in computational complexity. As shown
space. This method is known as product vector quantization.Fig. 4, the retrieval performance in t#&=B space does not
In particular, the Lloyd—Max quantizer can be applied tancrease much by using product VQ due to its nearly uniform
each axis of the color space separately to optimize the meanlor distributions. In contrast, the retrieval performance in
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Fig. 5. Color distribution in theRGB space.
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Fig. 6. Color distribution in theY UV space.
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the HSV space is better, especially when the number tfdad to the best performance because of the linear color
guantization bins is small.

C. Quantization Schemes in Different Color Spaces
The RG B space can be uniformly quantized im¥ox N x N

difference property of this space. For tH&SV space, the
distribution of its color component suggests a product VQ
scheme, wherd{ is quantized with a resolution finer thah
and V because the human visual system is more sensitive to
the hue than to the saturation and the value (see Fig. 7). It is

bins because the distributions of all three color componeriggeresting to point out that the distribution & peaks every

are almost flat, except at two endpoints which correspond 36° for our experimental database, so that the best quantization
the black and white colors contributed mostly by the imagghould be multiples of 30 The distribution of” is flat, except
background (see Fig. 5). For tHeUV space, as shown infor the region around zero, which is the background of an
Fig. 6, nonuniform quantization schemes are needed for gaothge where a uniform quantization may be appropriate. In the
performances. Product VQ might be a good choice becaudietribution ofS, lower saturation bins have higher probability
the I/ and V' components can be modeled by the Laplaciaghan higher saturation bins; however, because the human visual
distribution and th&” component can be uniformly quantizedsystem is more sensitive to colors with a higher saturation,
for simplicity. The uniform quantization does not work welluniform quantization may also be appropriate. For example,
for the CTEL*u*v* space either (see Fig. 8). A sophisticatethis space can be simply% 2 x 2 or 12 x 5 x 5 uniformly
guantization scheme based on vector quantization (VQ) cgnantized along each axis.
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@ (b) (©
Fig. 8. Color distribution in theCIEL*u*v* space.

clude the chain rule, hierarchical clustering, graphic-theoretic
methods, etc. Criterion-based methods are often developed via
Class 1 Class II iterative optimization of a certain cost function, which requires
a high computational complexity. Several widely used criteria
for single resolution clustering are described as follows.

o O
¢ Sum of Squared Errors:
o ©O o |© A .
2
o © A =33 Nl
O o O\ o A A i=1 xC.X;
O
o ©O O O wherem; = n~ '3 ., «. For a given clustert;, the
O ®) mean vectorn; is the best representative of samplegin
O in the sense that it minimizes the sum of squared errors.
¢ Related Minimum Variance:
— -1 LQ
Fig. 9. Example of misclassification based on the mean-squared error clas- Jr =2 Z S
sification criterion. =1

where s; can be either the average squared distance
IV. HIERARCHICAL COLOR CLUSTERING between points in theth cluster or the median (or
maximum) distance between points in a cluster.

In the above discussion, we attempted to determine ' .o o
Scattering Measures: The within-cluster scatter matrix is

good single-resolution quantization schemes for different®

color spaces. There are however problems. Given a set defined as

X of n sampleszi,---,x,, the objective of VQ is to c

find ¢ representative vectors which minimize the averaged Sw = Zm Z (@ —mq)(w —m;)f
guantization error. However, a good number of natural color i=l  @€X;

clustering usually varies with images. If the selected value
of ¢ is not equal to the number of natural color clusters for
a given image, similar colors might lie across boundaries of ¢
guantization bins, and false misses might happen as a result Sp = Z”i(mi —m)(m; —m)".
in the retrieval process. Furthermore, a large cluster might be =1

split to maintain the minimum mean-square error as shown  criteria derived from scatter matrices are their traces,
in Fig. 9. We propose to use a set of new features based on determinants, and other invariant measures.

hierarchical color clustering which represents the natural colorSince the numbet of clusters is unknown. a series of cost
feature of each individual image in this section to overcome - tions 7c=i) with s — 1.2.3.--- has to b,e calculated to
these problems. Also, this new color feature extraction schei& . mine its value Clear]y}(c’:i) deceases monotonically

5_row.de.s a i balang$t betv(\;etin the petrf?rmalnce ml tg:ms Wth the increment of. If the samples are naturally grouped
IScriminant capability and the computational Complexity. ., & compact and well-separated clusted$:=") decreases

. fast wheni < ¢ and slowly wheni > ¢. To avoid difficulties in
A. Clustering Strategy determininge, a hierarchical clustering method is proposed in
The target of clustering is to partition a s&tof » samples this section. The proposed scheme consists of two stages. First,
x1,- -+, %, INt0o ¢ disjoint subsets. There are two familiesve use the octree color quantization to get the initial hierarchi-
of unsupervised clustering techniques: heuristic methods aral clustering. Then, we adopt an agglomerative hierarchical
criterion-based methods [23]. Heuristic clustering methods imethod for octree pruning. They are detailed below.

while the between-cluster scatter matrix is defined as
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Fig. 10. |lllustration of the octree structure.
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Fig. 11. Example of inserting a color point witR = 53, G = 187, B = 197 into the octree.

B. Hierarchical Clustering with Pruned Octree color information within a subspace (i.e., each node). They

The octree color quantization algorithm proposed by Gee the number of pixels passing through the node and the

vautz and Purgathofer [24] is a two-pass color quantizati(?rYerage color of these pixels. In other words, we say that each

rocedure for the purpose of color display. In the first aﬁ?de has two attributes, i.e., the Qormalized pass nupnler
p purp play ' m of %) and the average col6f of pixels. When a color

each pixel of a 24-bit color image is scanned and inserted n%%. ? X .
L IS_inserted to the octree, its path is traced, and attributes of
the octree data structure. Tree reduction is performed whenever i . . .
. infermediate nodes are modified accordingly. Similar colors
the total amount of inserted colors exceeds the predetermine L .
. . . will share a common path up to a certain intermediate node so
limit N (normally 256), with the assumption thaf colors

- ... that color quantization can, in fact, be achieved by mapping
are sufficient to support the color appearance of an 'nd'v'dLE’} ilar colors to the color of the shared intermediate node.

image. Colors of_leaf npdes form the _color palette. In the The octree of an image can be obtained by scanning the
s_econld pass, the image is scanned again and the color of &ag \51ye of each pixel and inserting it into the octree
pixel is traced from the root to the leaf of the octree. ThSne by one. The easiest way to explain the insertion process

original color of the pixel is quantized to the color of a leaf 5 consider an example as shown in Fig. 11, where the

node. In this work, we use the octree data structure to Spepﬁ'gcedure of inserting a pixel with color componetts=
up hierarchical clustering process. 53 (00110101 in binary)@ = 187 (1011101 in binary),

1) Octree Structure and Insertiorfig. 10 shows the struc- gnd p = 197 (11001111 in binary) into a eight-level oc-
ture of an octree in th&?G:B color space. At the first level yree is illustrated. At the first level, the color is located in
of the tree, the eight children of the root correspond to thgibspace{(R,G,B) : R € [0,127].G € [128,255], and
eight subspaces of the entire space. Similarly, each of tBee [128,255]}, which corresponds to child (0,1,1) of the root
eight nodes can have its own eight children correspondingriede. The subspadéR, G, B) : R € [0,127], G € [128,255],
further divided subspaces. The maximum depth of the octreed B < [128,255]} is further divided to eight subspaces.
for a 24-bit image is 8, and each leaf corresponds to one Af the second level, the color belongs to one of the eight
16777216 = 8% colors. Each color defines a path from théurther divided subspace§(R,G,B) : R € [0,64],G €
root to the leaf. Two quantities can be used to describe tfi28,128 + 63], B € [128 + 63, 255]}, which corresponds to
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node (0,0,1), one of the child of node (0,1,1). By repeating thigoerations to compare the similarity of two images with cluster
procedure, we can locate the pixel to the last level of the tremimbers:; andc;, respectively. Hierarchical features can help

2) Octree Pruning and Hierarchical ClusteringClearly, a in filtering out irrelevant images as early as possible with a
full octree is too large to be stored in the memory. Ivery low computational cost.
the method of Gervautz and Purgathofer, node shrinking isOne of the key issues here is the computational complexity
performed whenever the total number of leaf nodes exceeatfsthe reclustering step. A straightforward way to compute
a threshold. With this process, we observed that the octtbe distance of all cluster pairs 9(N?2), where N is the
depth of almost all images is less than or equal to 4. Thugymber of leaf nodes. However, a divide-and-conquer method
we limit the maximum level of the tree to 4 so that therean be used here to reduce this complexity(x@V log V).
are at mosfy /=, 8" = 4681 nodes, which is not too large Its basic idea is described as follows. The two leaf nodes with
for temporary storage and manipulation. We will introducthe shortest distance contained by the space represented by
pruning techniques in this subsection to further simplify théae root node have to be one of the following two situations.
octree. It is worthwhile to emphasize that insertion is impldt can be either the leaf node pair with the shortest distance
mented before any pruning in our scheme to guarantee ttwtained by one of its eight subspaces or two leaf nodes
uniqueness of the octree representation of a given image.belonging to two different subspaces. For the former case,
contrast, insertion and pruning are performed simultaneoushe shortest distance among each subspace can be computed

in the work of Gervautz and Purgathofer. recursively by treating the corresponding subspace as the root
We consider a two-step pruning process. In the first stepgde. Let us assume that these distances are denotéd, by
we perform a vertical pruning in which leaf nodes will bed,, ..., és and letd = min,(5;). To take care of the latter case,

merged to their parent node if the parent node of concern hag have to pay attention to leaf nodes located away from the

a small pass number. This is often called “tree shrinking.” TH®wundaries of the subspace with a distance less ¢hdrhat

main objective of tree shrinking is to reduce the number of leisf, distances between every pair of these leaf nodes also have

nodes to a reasonable size (e9.256). In the second step, weto be computed. By comparing results from the two cases, we

apply a horizontal pruning in which leaf nodes are merged ¢an determine the leaf node pair with the smallest distance.

their distance in terms of average colors is small, and the mergdhe closest pair of nodes and their distance within each

of leaf nodes with different parents and at different levels Bubspace are the attributes of the corresponding intermediate

allowed. There are two main objectives in the second stemde. The nearest pair attribute of the root node is the nearest

First, reclustering is performed to remove rigid boundariggir of nodes within the entire color space. If these two nodes

created in the initial octree quantization process. Secorale merged, their ancestors have to be adjusted accordingly

reclustering is achieved under a sequence of thresholdstaonake sure the average color and the pass number of these

generate different sets of leaf nodes of different resolutionsnodes are updated. The new closest pair of nodes and their
To implement tree shrinking (i.e., the first-step pruningyistance should also be updated in order to carry out the next

we rank parent nodes of all leaf nodes according to their paserging process.

numbers. The pruning process begins with the parent nodéAn illustration of the merging process is shown in Fig. 12.

with the smallest pass number. Since its pass number is smilithis example, Nodé4, m) is merged with Nodg3,7). In

its children should have even smaller pass numbers. Thus, this case, since the new node is located in subspaoe),

can simply delete the original leaf nodes, and convert théig average color becomes

parent node into a leaf node. Consequently, the total number _, R R

of leaf nodes is reduced. The above process is repeated untlp4 m (C%m # Najm + Can * N&n)/(N%m + N3

the total number of leaf nodes is equal to or less than a prese

number (256 in our implementation). nd its pass number is updated to be

To implement the second-step pruning, we consider a se- Ny — Ny + Nap.
guence of merge processes determined by a set of increasing ’ ’ ’
threshold<ly, £ = 1,2,3, - - -. We start with the merge processThe average color and the pass number of ancestors of

with & = 1, and search the nearest pair of distinct clusteode(4,m) and Node(3,7) should be updated accordingly.

If their distance in terms of average colors is less tfan As shown in the figure, Nodé3,m'), Node(2,m"),
these two clusters are merged. This process is repeated Udate(1,m"”’), Node(2,n”), and Node(1,n”’) are their

the distances between all distinct clusters are all greater th&ncommon ancestors, while the root is their common ancestor.
T1. Then, by usingl; as the new threshold, we repeat th&Ve only have to update uncommon ancestors with the
same merge operations until all clusters have a distance grefadowing rules:

than 75. This procedure is continued fdr = 3,4,---. The

average color and the pass number of leaf nodes at the efdm’ — (03 mo % Na s + Clg 5 Ny n)/(N?:,m’ + N3.n),

of each merge process are recorded as the color feature in N3t ¢ Na + Nap,
different resolutions. The reason to divide the second-st - -

pruning into a sequence of successive merge processes is thagit®” (02:’"” # Norr + Can % N3:”)/(N2:m” + Nan),
allows us to select hierarchical features for sequential matching Ny & No o + N3
and filtering so that the computational complexity of image= =

retrieval can be greatly reduced. Note that it requipés;c;) Crnr (C 0% Noyur = Caoox N ")/ (Nonr = Nan),
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Fig. 12. lllustration of the node-merging process.
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Fig. 13. Distribution of the number of clusters at different resolutions.
Nopr = No v — N3, distance in theRGB space is not totally consistent with

5 = = the human visual system (HVS) model. That is, two colors
nl/// nl,” N nl,” n N n) N nl,” N njs . . . . !
Crom = (Cl’ * N Gt Nan ) [ (N +-N3n)s iy large Euclidean distance in tHeGB spaces may be
Nimrr = Ny + N3y perceptually similar. Quantitative measurement of the color
51771,” - (517n,” s Ny — 53771 * Ng,n) J(Nywm — Nan), distan.ce has been studied extensively, and psychophysical
experiments were conducted to determine the just noticeable
Ny = Ny — N . color differences (JNCD). It is well known that JNCD is

not uniform along the three axes in tHe@GB space. The

The hierarchical clustering procedure in the second-sig@initesimal color differenceds of two neighboring colors
pruning is implemented with = 1,2,3 and71 = 16,72 =24 .4 pe written as

and7; = 32. The number of layers and the thresholds are

obtained empirically by experiments. We show in Fig. 13 the ) 3
distribution of the leaf node number for images in our database ds’ = > i dw; dx;
with respect to each threshold value. The average numbers of =1

lust i.e., leaf nod 17.7, 8.48, 5.59 tively. . - ,
clusters (i.e., leaf nodes) are ' ’ » TOSPECVeiere metric coefficient§’; ; depend onz; and z;. To find

We record the pass number (1 byte) and the average colo . i
the difference between two colors, we have to integrate the

bytes) for these clusters as features. Thus, on the average, the tion f lor 1o the other. The int i
indexing file size is4 x (17.7 4+ 8.48 + 5.59) = 124 bytes above equation from one color 10 the other. The integral IS

per image. The clustering result at different resolutions of tf?@th dependent, and the a.ctualldlstance |s_qef|ned t.o be the
“Sunset” image is shown in Fig. 14. integral along the path Wh|_ch yields the minimum d|s_tan§:e
between these two colors. Since the computational cost is high,
an alternative approach is to map tR&/B space onto another
space with a uniform color difference. Several such spaces
Many digital images are represented in thé/B space. have been proposed, includinG/EL*a*b*, CIEL*u*v*,

However, the color difference computed using the Euclideamd Munsell color spaces [25]. The Munsell color space was

C. Hierarchical Color Clustering in thd.*«*v* Space
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Fig. 14. Color clustering of “sunset” image with three different resolutions.

named after artist Albert Munsell who created a book of ./ _ 9%
colored samples ordered by the constant hue, brightness, and X +15Y +32Z
saturation chart. Thé*a*b* space was developed to provide ;. _ {116[Y/Y0]1/3 —16,  if Y/Yo > 0.008856
a computationally simple measure of colors in agreement with 903.3Y/ Yo, otherwise
the Munsell space. Thé*u*v* space was evolved from the  * = 13L*(«/ — up)
L*a*b* space, and became the CIE standard in 1976. v = 1307 — )
The transform from thé?G B space to thd. *u*v* space is - 0

X =0.607R+ 0.174G + 0.200B wherew;, andv(, are obtained with reference to white tristim-
Y = 0.299R + 0.587G + 0.114B ulus valuesXy, Yo, Zo.
7 — 0.000R + 0.066G + 1.116B The gamut of thel.*v*v* space translated from theG B

4X space is shown in Fig. 15. As seen from the figure, not all

/ = —-— - - . .
YT XI5y +37 combinations of hue, chroma, and value are within the gamut.
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Fig. 15. Gamut ofL*u*v* color space and its partitioning planes.

Splitting the color space by a set of planes perpendicular

these axes is not efficient because many subspaces will be
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V. INDEXING AND RETRIEVAL BASED

ON HIERARCHICAL CLUSTERING

A. Indexable Features and Distance Computation

We can derive a set of interesting features based on the
hierarchical color clustering feature to speed up the retrieval.
They include the following.

to

empty. It is desirable to develop a splitting scheme suitable

to the irregular volume of thd.*«*v* space. One possible
solution is to map perpendicular splitting planes in #€B
space to theL*w*v* space. We illustrate in Fig. 15 the

partitioning planes corresponding to the second level of the

octree.

In actual implementation, we do not have to perform the

transform and initialize the octree in thh&«*v* space by com-
paring the value of pixels with boundaries defined by slittin

g

planes. Instead, thRG B representation is used when inserting
a color into the octree. However, the average color of pixels

in each node is calculated with the*«*v* representation.
It is worthwhile to mention that when thé& component is

very small, two colors might be perceptually similar, but with

a large color distance if theit andv components are very
different. To fix this problem, it is convenient to set thes
colors to black before clustering.

The clustering procedure in the*«*v* space is summa-
rized as follows.

1) Octree initialization and shrinking

e

a) Insert a new pixel in the image from the root to the
leaf, and update the pass number and the average

color of nodes accordingly based on &7 5 color

representation. Repeat the process until all pixels are

inserted.
b) If the number of leaf nodes is greater than(C =
256), shrink the tree.

2) Hierarchical clustering

Average color (stored with 3 bytes): The average color
of the entire image corresponds to that of the root of the
octree. The distance between the average colors of the
query (@) and an image in the databa&E) is

davg(Q7 T) = dEuclidean (66%)7 66?(?)

- 23: (ciPm1 - e [i])Q.

=1

The average color distance and dominant color distance
are computed using Euclidean distance because it is
consistent with the human visual perceptual model in the
L*u*v* space.

Dominant color (stored with 3 bytes): The average color
of the node with the largest pass number at the coarsest
resolution gives the dominant color of an image. The
distance between the dominant colors of the query and
target images can be computed via

)
i)

where C‘,E?,)l and 5,57;) are average colors of dominant
nodes of imagesz and7’ at the coarsest resolution, which

is 3 in our implementation, respectively.

Color width (stored with 1 byte): The number of leaf
nodes at the finest resolution (i.&.,= 1) is called the
color width of a given image. It indicates the richness of
colors. The distance based on the color width is defined as

—

ddom (Q7 T) = dEuclidean (0157@"17 C_:;E?;L)

-2 (@

i=1

. T
il - ¢ k=3

dWidth(Q, T) = |W(Q) _ W(T)|

where W@ W) are widths of octrees of image3
and 7.

« Hierarchical color distributions (stored on the average

a) Set the average color of the node whose lightness is

less thanlg (Lo = 50) to black.
b) Perform the following steps fdt = 1,2, 3. Find the

nearest pair of distinct clusters based on their means.

If their distance is less thdfy,, they are merged. This

process is repeated until the distance of all distinct

pairs is greater thafl}..
Again, 71 = 16, 15 = 24, and I3 = 32 are used in our
implementation.

with 124 bytes per image in our test database): The
average color and the pass number of leaf nodes at each
merging process lead to a set of hierarchical color distri-
butions. Since the number of clusters and the position of
clusters are different from images to images, we have to
define the distance between two sets of clustered nodes.
Let k represent the resolution level, agand7 denote,
respectively, node sets for query image and target
image T at level k. Nodes fromQ and 7 are said to
have a match if their distance is less tHBn Let M be

the set of all matched nodes @ and7 at resolutionk.
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Fig. 16. Retrieval result comparison for (a) “sunset” and (b) “stained glass.”

Then, the distance can be defined as

dlayer(k)(QvT): Z Z pgnQ) Z p(T)
M;eEM |meM; mCM; @)
DIELERD O
ucQ—M u€T —M
wherep(Q) and p(T) are the normalized pass numbers

of nodesm and m in the same matched set!; and
belonging toQ and 7, respectively, anqb&Q and p(T)
are the normalized pass-numbers of nhod@sunmatched
setsQ — M and7 — M, respectively.
As described above, we needl (= 3+3+ 1+ 124) bytes
in total to store the average color, the dominant color, the color
width, and the hierarchical color distribution for each image
in the database. This is about one half the storage required by
the traditional histogram method with 256 quantization bins
where 1 byte is used to record the normalized pixel numbers
in each bin.

B. Retrieval Examples

Each indexing feature mentioned above carries interesting
color information of an image. Filtering by a selected set of (c)
simple features such as the average color, the dominant color,
and the color width can be performed first to remove irrelevant
images. This is particularly useful if the query image has
certain prominent features, e.g., a clear dominant color and
an unusual color width. Filtering based on the comparison
of hierarchical color distributions can be performed at a lat@fy 17. Query images in (a) “skiing,” (b) “stained-glass,” and (c) “sunset’
stage to refine the candidate image set which contains similasge sets.
images.

We use several examples below to demonstrate this idea.

The experimental database is the same as the one given

TABLE |
DoMINANT COLOR OF IMAGES IN “SKIING” SET

in Section Ill. We consider three image sets, i.e., “skiing2 , ,

“ " « " Images | Dominant color (Luv) np Images | Dominant color (Luv) np

stained-glasses,” and “sunset,” and use one from each imaggjg (86.-18,-19) 7935 TS5 5 98, 8, 5) 78995
set as the query image. The comparison of retrieval resulgsll ((96 >) 0.9077 || Ski6 287,—14;12) 0.9431
. . . . . 1.2 92 11 -8 0.8667 Ski7 87,-22,-25) 0.9121
is shown in Fig. 16. The query image for each image set-ig;5 (G147 G160 1 Sk (91,10, -9) 55983
shown in Fig. 17. Ski 4 (89, -10, 1) 0.9334 || Ski9 (86,-10,-8) 0.8376

Retrieval of “Skiing” Image: Each image in the “Skiing”
image set is dominated by the white tone. The dominant color

and the percentage of pixels possessing this color are showRetrieval of “Sunset” Image:Each image in this set has a
in Table I. Retrieval by the dominant color alone can promptigominant color, but their dominant colors are not very similar.

get a very small candidate image set.

For example, some images are dominated by dark red, while
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other images are dominant by dark yellow. Thus, the threshad textures and shapes of objects are our main research topics
for filtering with the dominant color has to be set a larger valusurrently.

to avoid false misses and, as a result, the candidate image set
is still large. Filtering by hierarchical color distributions can
be applied to this set of candidate images. Retrieval results
are compared with those of other methods in Fig. 16. They
amount of clusters at the third stage of hierarchical clustering
for “sunset” image set is 11. Retrieval by this small size of
color representation performs reasonably well compared witfz]
other methods.

Retrieval of “Stained-Glasses” Imagerhe color width of 3
the query image is 71, which is very large in comparison with
most images in the database. The distribution of the color
width of images in our test database at the each resolution ¢f
clustering can be found in Fig. 13. As seen from the figure,
only a small number of images have a large width. Thus,
filtering by the color width helps to narrow down the numbers)
of candidate images quickly. Filtering by the color width
is ideal for images with rich or few distinctive colors. The[
precision versus recall curves are shown in Fig. 16.

(7]
VI

We investigated the effect of color quantization scheme{sa]
on the performance of image retrieval, and proposed a new
hierarchical color extraction and indexing scheme based on
a pruned octree color representation. Color feature obtaingsj
by our scheme is more efficient than the color histogram
in several aspects. First, it calculates the color feature ﬂ]
each individual image separately, and only a small number
of distinctive colors and their corresponding pass numbers dtél
used to describe the color feature of the image. Consequently,
the color feature of each image is described more effectivghy)
with a smaller storage space. Second, there are no rigid
guantization boundaries in quantizing similar colors so thﬁtg]
we can get a more robust retrieval result with respect to small
color differences among images. Third, more color featurgls4
such as color width, dominant color, and average color can
be obtained as the byproduct. The retrieval process can be
speeded up by combining these features properly. (15]

There are several related tasks to be performed in the near
future. The proposed hierarchical color indexing file is much
smaller than that of the traditional color histogram. As a resu[il,
we did not use sophisticated indexing methods sudki*asee, [17]
k — d tree in our retrieval experiment. However, the storage
and retrieval efficiency can still be improved by organizing
the structure of indexing files effectively. We would alsqgis]
like to consider the combination of color-based and object-
based retrieval with the proposed hierarchical color clusteripg,
scheme. Object segmentation can be carried out using the
octree data structure by projecting colors of distinctive cluste@]
back to the original image. This back-projection process leads
to an efficient initial segmentation of the image [26]. Further
refinement using other methods, such as edge flow and regﬁ
growing [27], [28], need to be carried out. Image segmentatigzp)
using hierarchical color clustering by itself is an interesting
research problem. Query analysis for interactive retrieval ba
on this color feature and other low-level image features such

CONCLUSION
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