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A New Approach to Image Retrieval
with Hierarchical Color Clustering
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Abstract—After performing a thorough comparison of different
quantization schemes in theRGB;HSV; Y UV; and CIEL�u�v�

color spaces, we propose to use color features obtained by hierar-
chical color clustering based on a pruned octree data structure to
achieve efficient and robust image retrieval. With the proposed
method, multiple color features, including the dominant color,
the number of distinctive colors, and the color histogram, can
be naturally integrated into one framework. A selective filtering
strategy is also described to speed up the retrieval process.
Retrieval examples are given to illustrate the performance of the
proposed approach.

Index Terms—Color quantization, content-based retrieval, im-
age database, image indexing, image retrieval, query processing.

I. INTRODUCTION

A DVANCES in modern multimedia technologies have led
to huge and ever-growing archives of images, audio,

and video in diverse application areas such as medicine,
remote sensing, entertainment, education, and on-line infor-
mation services. This is similar to what occurred in the
early computer development stage, during which the amount
of alphanumeric data increased rapidly and many practical
issues in the database management system (DBMS) arose.
In the past, DBMS was designed to organize alphanumeric
data into structured records indexed by key attributes so that
information retrieval and storage could be done conveniently
and efficiently. However, traditional DBMS does not work
well for multimedia data due to difficulties in several aspects,
which include the diversity of the data type (e.g., image, video,
audio), the large capacity of the unit record (e.g., a raw 8-
bit gray-level image of size 512 512 has 2.1 Mbits before
compression), and the lack of semantic meaning of the data at
the physical level (e.g., no semantic meaning at the pixel level
for images). To exploit the full benefit of the explosive growth
of multimedia data, there is a strong demand for developing
efficient techniques for their storage, browsing, indexing, and
retrieval [1]–[9].

Effective retrieval of image data is an important building
block for general multimedia information management. For
an image to be searchable, it has to be indexed by its content,
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which is manually annotated by keywords or automatically
extracted by visual features. Although it seems effortless
for a human being to pick out photos of horses from a
collection of pictures, object recognition and classification are
still among the most difficult problems in image understanding
and computer vision. For a small image database, it would be
easier to manually annotate a picture of horses by the keyword
“horse” than to recognize a horse by visual feature analysis at
different occlusion conditions and viewpoints. However, for
a large image database, a prohibitive amount of labor will
be involved for the annotation of objects in all images. In
addition, a limited number of keywords is usually not sufficient
to describe the details in a content-abundant image. To access
images based on their content, low-level features such as colors
[10]–[12], textures [13]–[15], and shapes of objects [16], [17]
are widely used as indexing features for image retrieval to
bypass the difficulties of image understanding.

Among various low-level features, the color information
has been extensively studied because of its invariance with
respect to image scaling and orientation. Color features used
in image retrieval include global and local color histograms,
the mean (i.e., average color), and higher order moments of the
histogram [18]. Average and dominant colors can be used to
filter out irrelevant images without too much computational
cost. However, they do not support a detailed comparison
of the color appearance among images. The global color
histogram provides a good approach to the retrieval of images
that are similar in overall color content. There has been
research to improve the performance of color-based extraction
methods. For example, the QBIC (query by image content) [4]
system supports color feature extraction of manually outlined
objects. An evaluation study made by Zhang and Smoliar [11]
showed that the fixed-size local histogram is computationally
simple and efficient in some applications. The color indexing
method proposed by Stricker and Dimai [19] extracted color
features defined in fuzzy regions adaptive to image content.

There are common issues underlying all color-based re-
trieval methods: the selection of a proper color space [20],
the use of a proper color quantization scheme to reduce
the color resolution, and the development of efficient feature
representations to support a robust and flexible query process.
The effect of color quantization on the performance of image
retrieval has been reported by authors in [20] and [21]. It has
been observed that the fixed color quantization scheme, which
is commonly used in computing global and local histograms,
has one major drawback. That is, similar colors might be
quantized to different buckets in the histogram, thus leading
to false misses. In this work, we propose to use a new color
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feature obtained by hierarchical color clustering. This color
feature is different from the multiresolution color histogram
described in our previous work [21] in the sense that it
allows natural color clustering according to the content of
an image (i.e., image adaptive). We also describe a set of
filtering methods based on the new color feature to facilitate
the retrieval process. They include filtering by the dominant
color, by the color width, and by hierarchical color distribution.
A combination of these methods allows a prompt access to
images in a large image database.

This paper is organized as follows. Image similarity mea-
surements with color features are discussed in Section II. The
retrieval performances of different quantization schemes in dif-
ferent color spaces are compared in Section III. A hierarchical
color clustering algorithm is presented in Section IV. Indexing
and retrieval schemes based on the clustering algorithm are
proposed in Section V. Concluding remarks are drawn in
Section VI.

II. SIMILARITY MEASUREMENTS WITH COLOR FEATURES

Similarity measurements of images can be classified into
three levels: pixel matching, feature matching, and semantic
meaning. The pixel-based similarity measurements obtained
via - or -norm distance are straightforward. However,
since they are sensitive to image scaling, rotation, and transla-
tion, such measurements are seldom used in practice. Similar-
ity comparisons with considering semantic meaning are ideal
for retrieval purposes. Nevertheless, they are difficult to be
implemented due to the lack of good techniques in image
understanding. We focus on similarity measurements based on
low-level features in this paper.

A. Fixed Quantization Case

The color histogram of an image describes its color distri-
bution. Every pixel in the image corresponds to a point in a
three-dimensional (3-D) color space. A similar image set can
be selected based on the color distribution

dist

where and are color histograms of the query and target
images, respectively, at the finest resolution level. That is, if
a pixel is described by and color components of
bits each, then and are defined on the cubic lattice of
2 2 2 points. However, the resolution of and
is too high to be used in practice. To simplify the computation,
the color space has to be quantized to reduce the resolution.
Thus, histograms on the quantized space are used to define
the similarity set. That is, a new similar image set is obtained
based on

dist

where and are quantized histograms of the query
and target images, respectively. The quantization scheme in
obtaining and should be the same, i.e., one color
quantization scheme is used for all images within the database.

A quantized histogram is usually represented by an-
dimensional vector, where is the total number of quanti-
zation bins. For example, an color histogram, which
has been quantized intobins for bins for , and bins
for , can be represented as a vector of dimension .
Different similarity metrics for histograms have been studied.
One example is the histogram intersection method by Swain
and Ballard [10]:

where and denote, respectively, numbers of
pixels in the query and target images of the same bin with
index . Another similarity metric [22], which takes into
account the perceptual similarity between bins of histograms,
was proposed by Hafneret al. [22]. It is of the form

dist

where matrix contains similarity weighting coeffi-
cients between colors corresponding to binsand .

B. Hierarchical Case

There are several drawbacks in the fixed quantization
method. First, as an indexing feature, the discriminating ability
of the color histogram is determined by the selection of the
quantization method (i.e., color resolution). The computational
complexity increases quickly as the resolution of color feature
increases. This can be a major problem in applications where
the desired performance requires a high resolution of color
features. Second, the histogram obtained by a single resolution
quantization is not efficient in the sense that many buckets
are empty since it is often that colors in a given image
only occupy a small subspace of the entire color space.
Third, it is observed that results of quantized images are
very sensitive to the location of quantization boundaries.
Fig. 1 shows the histogram of two images similar in color.
A uniform quantization scheme (two quantization levels for
each component of ) is used to compute the histogram.
The color of image (127, 127, 127) is quantized to (0,0,0),
the color of image (128, 128, 128) is quantized to (1,1,1).
Similar colors which are located at the different side of the
quantization boundary are quantized into different bins. As
a result, image cannot be included in the similarity set
of image To overcome these problems, it is desirable to
develop a hierarchical feature representation and comparison
scheme for image retrieval. In this work, we consider the
following metric:

dist dist

where and represent color features of the query and
target images at theth resolution, respectively. Comparison
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(a)

(b)

Fig. 1. Illustration of the histogram mismatching problem.

with the coarsest resolution feature can be used to get a
candidate-image set with a very low computational complex-
ity. Comparison of higher resolution features is then performed
within the candidate-images set to reduce the computational
cost.

To avoid the problem of putting similar colors into different
buckets, we propose to use a color-clustering technique rather
than the fixed quantization boundary in obtaining the color
features and at the th resolution. The construction
of a new color feature by hierarchical color clustering will be
described in detail in Section IV.

III. COMPARISON OFIMAGE RETRIEVAL WITH

DIFFERENT COLOR QUANTIZATION SCHEMES

To compare different quantization strategies, we per-
form a study on image retrieval based on global color
histograms with different resolutions in four color spaces
(i.e., and ) in this section
[20]. The similarity between histograms is measured with the
histogram intersection method.

Our experimental database consists of 2119 images, includ-
ing natural scenes, animals, plants, architectures, and people.
Large varieties of our image database prevent the bias on
a particular type of images. The same database is used in
experiments reported for the rest of the paper. “Sunset” and
“stained-glasses” image sets were used as query sets, with
eight images in the “sunset” image set and five images in
the “stained-glasses” image set. The “sunset” image set is
selected because the images in this set are different from each
other with slight changes in hue and brightness. It is desirable
to test the robustness of color quantization schemes on such
images. “Stained-glasses” images are selected because they
contain rich colors in different hues, brightness, and satura-
tions. Testing with these images will provide a reasonable
comparison among different schemes without overemphasis
on any particular color.

Retrieval results are evaluated by precision versus recall
curves. Recall is the proportion of relevant images in the
database that are retrieved in response to a query. In our

experiment, it is the ratio of the number of retrieved “sunset”
or the “stained-glass” image to the size of the query image
set. Precision is the proportion of retrieved images that are
relevant to the query. In our experiment, it is the ratio of the
number of retrieved “sunset” or “stained-glass” images to the
total number of retrieved images. The ideal result would be
that all “sunset” were ranked at the top eight positions and all
“stained-glasses” images ranked at the top five positions for
respective queries. With such an outcome, the precision versus
recall is a constant 1. The precision versus recall curves for
different color quantization schemes are compared as shown
in Figs. 2–4.

A. Color Distributions in Different Spaces

Color is a visual sensation produced by the light in the
visible region of the spectrum incident on the retina. Since the
human visual system has three types of color photoreceptor
cone cells, three components are necessary and sufficient to de-
scribe a color. There are several systems of color spaces, such
as
Munsell system, etc. Described below are the color systems
selected for our study.

• : Digital images are normally represented in the
space. CRT’s also use the system to display

a color pixel on the screen by excitations of red, green,
and blue phosphors.

• : The space is widely used in image com-
pression and processing applications.represents the
luminance of a color, while and represent the
chromaticity of a color. The luminance component is
separated from the chrominant components in this space.

• : Color differences in an arbitrary direction
are approximately equal in the space. Thus,
the relative distance of two colors can be determined by
the Euclidean distance.

• : (hue, saturation, value) provides an intuitive
color space. Each component in this space contributes
directly to visual perception. Other similar color spaces
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 2. Precision versus recall using uniform quantization schemes for (a) “sunset” inRGB, (b) “stained glass” inRGB, (c) “sunset” inY UV , (d) “stained
glass” inY UV , (e) “sunset” inHSV , (f) “stained glass” inHSV , (g) “sunset” inLuv, and (h) “stained glass” inLuv.

include and where and denote intensity
and lightness, respectively.

Color distributions of our test image database with respect
to these color spaces are shown in Figs. 5–8.

B. Color Quantization Schemes

1) Uniform Quantization: In uniform quantization, each
axis of the color space is uniformly divided into a certain
number of bins. It has been shown in the previous section

that color distributions are often nonuniform, and therefore,
a simple uniform quantization scheme is inefficient for some
color spaces. The advantage of uniform quantization is that
it is a straightforward and natural choice in the absence ofa
priori information about the color distribution of the image
database. Generally, the retrieval performance gets better as
the number of quantization bins increases, as shown in Fig. 2.
Some exception may occur when similar colors under the
same subset of a coarse quantization scheme are divided into
two different subsets of a finer quantization.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3. Precision versus recall using vector quantization schemes for (a) “sunset” inRGB, (b) “stained glass” inRGB, (c) “sunset” inY UV , (d) “stained
glass” inY UV , (e) “sunset” inHSV , (f) “stained glass” inHSV , (g) “sunset” inLuv, and (h) “stained glass” inLuv.

2) Standard Vector Quantization (VQ):The standard VQ
is a method of partitioning the vector space by minimizing
the mean-squared error (MSE) with respect to a set centroid
points (i.e., codewords). This procedure can be achieved with
a proper initialization and iteration by using the generalized
Lloyd–Max algorithm (GLA). When applied to color space
quantization, VQ divides the color space into a prespecified
number of subspaces so that the resulting quantization error
of all pixels of all images with respect to quantized color

representations in the database is minimized. Compared
with uniform quantization, the histogram bins are optimally
selected in VQ so that the same number of bins can lead to a
smaller quantization error at the expense of higher processing
complexity. As shown in Fig. 3, the retrieval performance
of VQ is better than that of uniform quantization as the
quantization level increases. It is interesting to point out that
the retrieval performance cannot be further improved when the
number of quantization bins is larger than a certain threshold.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4. Precision versus recall using product VQ schemes for (a) “sunset” inRGB, (b) “stained glass” inRGB, (c) “sunset” inY UV , (d) “stained glass”
in Y UV , (e) “sunset” inHSV , (f) “stained glass” inHSV , (g) “sunset” inLuv, (h) “stained glass” inLuv.

3) Product Vector Quantization:Although VQ results in
an optimal partitioning of the color space, it is not suitable
for large image databases due to the high computational
complexity. A simpler but suboptimal quantization method
can be adopted to reduce the complexity. That is, we can
consider partitioning perpendicular to the axis of the color
space. This method is known as product vector quantization.
In particular, the Lloyd–Max quantizer can be applied to
each axis of the color space separately to optimize the mean-

square quantization error along each axis independently so
that the computational complexity of the histogram extraction
can be reduced. The product vector quantization with the
Lloyd–Max quantizer results in a better partitioning of the
color space as compared to uniform quantization without a
tremendous increase in computational complexity. As shown
in Fig. 4, the retrieval performance in the space does not
increase much by using product VQ due to its nearly uniform
color distributions. In contrast, the retrieval performance in
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(a) (b) (c)

Fig. 5. Color distribution in theRGB space.

(a) (b) (c)

Fig. 6. Color distribution in theY UV space.

(a) (b) (c)

Fig. 7. Color distribution in theHSV space.

the space is better, especially when the number of
quantization bins is small.

C. Quantization Schemes in Different Color Spaces

The space can be uniformly quantized into
bins because the distributions of all three color components
are almost flat, except at two endpoints which correspond to
the black and white colors contributed mostly by the image
background (see Fig. 5). For the space, as shown in
Fig. 6, nonuniform quantization schemes are needed for good
performances. Product VQ might be a good choice because
the and components can be modeled by the Laplacian
distribution and the component can be uniformly quantized
for simplicity. The uniform quantization does not work well
for the space either (see Fig. 8). A sophisticated
quantization scheme based on vector quantization (VQ) can

lead to the best performance because of the linear color
difference property of this space. For the space, the
distribution of its color component suggests a product VQ
scheme, where is quantized with a resolution finer than
and because the human visual system is more sensitive to
the hue than to the saturation and the value (see Fig. 7). It is
interesting to point out that the distribution of peaks every
30 for our experimental database, so that the best quantization
should be multiples of 30. The distribution of is flat, except
for the region around zero, which is the background of an
image where a uniform quantization may be appropriate. In the
distribution of , lower saturation bins have higher probability
than higher saturation bins; however, because the human visual
system is more sensitive to colors with a higher saturation,
uniform quantization may also be appropriate. For example,
this space can be simply 6 2 2 or 12 5 5 uniformly
quantized along each axis.
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(a) (b) (c)

Fig. 8. Color distribution in theCIEL�u�v� space.

Fig. 9. Example of misclassification based on the mean-squared error clas-
sification criterion.

IV. HIERARCHICAL COLOR CLUSTERING

In the above discussion, we attempted to determine
good single-resolution quantization schemes for different
color spaces. There are however problems. Given a set

of samples , the objective of VQ is to
find representative vectors which minimize the averaged
quantization error. However, a good number of natural color
clustering usually varies with images. If the selected value
of is not equal to the number of natural color clusters for
a given image, similar colors might lie across boundaries of
quantization bins, and false misses might happen as a result
in the retrieval process. Furthermore, a large cluster might be
split to maintain the minimum mean-square error as shown
in Fig. 9. We propose to use a set of new features based on
hierarchical color clustering which represents the natural color
feature of each individual image in this section to overcome
these problems. Also, this new color feature extraction scheme
provides a balance between the performance in terms of
discriminant capability and the computational complexity.

A. Clustering Strategy

The target of clustering is to partition a setof samples
into disjoint subsets. There are two families

of unsupervised clustering techniques: heuristic methods and
criterion-based methods [23]. Heuristic clustering methods in-

clude the chain rule, hierarchical clustering, graphic-theoretic
methods, etc. Criterion-based methods are often developed via
iterative optimization of a certain cost function, which requires
a high computational complexity. Several widely used criteria
for single resolution clustering are described as follows.

• Sum of Squared Errors:

where . For a given cluster , the
mean vector is the best representative of samples in
in the sense that it minimizes the sum of squared errors.

• Related Minimum Variance:

where can be either the average squared distance
between points in theth cluster or the median (or
maximum) distance between points in a cluster.

• Scattering Measures: The within-cluster scatter matrix is
defined as

while the between-cluster scatter matrix is defined as

Criteria derived from scatter matrices are their traces,
determinants, and other invariant measures.

Since the number of clusters is unknown, a series of cost
functions with has to be calculated to
determine its value. Clearly, deceases monotonically
with the increment of . If the samples are naturally grouped
into compact and well-separated clusters, decreases
fast when and slowly when . To avoid difficulties in
determining , a hierarchical clustering method is proposed in
this section. The proposed scheme consists of two stages. First,
we use the octree color quantization to get the initial hierarchi-
cal clustering. Then, we adopt an agglomerative hierarchical
method for octree pruning. They are detailed below.
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Fig. 10. Illustration of the octree structure.

Fig. 11. Example of inserting a color point withR = 53; G = 187; B = 197 into the octree.

B. Hierarchical Clustering with Pruned Octree

The octree color quantization algorithm proposed by Ger-
vautz and Purgathofer [24] is a two-pass color quantization
procedure for the purpose of color display. In the first pass,
each pixel of a 24-bit color image is scanned and inserted into
the octree data structure. Tree reduction is performed whenever
the total amount of inserted colors exceeds the predetermined
limit (normally 256), with the assumption that colors
are sufficient to support the color appearance of an individual
image. Colors of leaf nodes form the color palette. In the
second pass, the image is scanned again and the color of each
pixel is traced from the root to the leaf of the octree. The
original color of the pixel is quantized to the color of a leaf
node. In this work, we use the octree data structure to speed
up hierarchical clustering process.

1) Octree Structure and Insertion:Fig. 10 shows the struc-
ture of an octree in the color space. At the first level
of the tree, the eight children of the root correspond to the
eight subspaces of the entire space. Similarly, each of the
eight nodes can have its own eight children corresponding to
further divided subspaces. The maximum depth of the octree
for a 24-bit image is 8, and each leaf corresponds to one of

colors. Each color defines a path from the
root to the leaf. Two quantities can be used to describe the

color information within a subspace (i.e., each node). They
are the number of pixels passing through the node and the
average color of these pixels. In other words, we say that each
node has two attributes, i.e., the normalized pass number(in
term of %) and the average color of pixels. When a color
is inserted to the octree, its path is traced, and attributes of
intermediate nodes are modified accordingly. Similar colors
will share a common path up to a certain intermediate node so
that color quantization can, in fact, be achieved by mapping
similar colors to the color of the shared intermediate node.

The octree of an image can be obtained by scanning the
color value of each pixel and inserting it into the octree
one by one. The easiest way to explain the insertion process
is to consider an example as shown in Fig. 11, where the
procedure of inserting a pixel with color components

(00 110 101 in binary), in binary),
and (11 001 111 in binary) into a eight-level oc-
tree is illustrated. At the first level, the color is located in
subspace , and

, which corresponds to child (0,1,1) of the root
node. The subspace ,
and is further divided to eight subspaces.
At the second level, the color belongs to one of the eight
further divided subspaces

, which corresponds to
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node (0,0,1), one of the child of node (0,1,1). By repeating this
procedure, we can locate the pixel to the last level of the tree.

2) Octree Pruning and Hierarchical Clustering:Clearly, a
full octree is too large to be stored in the memory. In
the method of Gervautz and Purgathofer, node shrinking is
performed whenever the total number of leaf nodes exceeds
a threshold. With this process, we observed that the octree
depth of almost all images is less than or equal to 4. Thus,
we limit the maximum level of the tree to 4 so that there
are at most nodes, which is not too large
for temporary storage and manipulation. We will introduce
pruning techniques in this subsection to further simplify the
octree. It is worthwhile to emphasize that insertion is imple-
mented before any pruning in our scheme to guarantee the
uniqueness of the octree representation of a given image. In
contrast, insertion and pruning are performed simultaneously
in the work of Gervautz and Purgathofer.

We consider a two-step pruning process. In the first step,
we perform a vertical pruning in which leaf nodes will be
merged to their parent node if the parent node of concern has
a small pass number. This is often called “tree shrinking.” The
main objective of tree shrinking is to reduce the number of leaf
nodes to a reasonable size (e.g., ). In the second step, we
apply a horizontal pruning in which leaf nodes are merged if
their distance in terms of average colors is small, and the merge
of leaf nodes with different parents and at different levels is
allowed. There are two main objectives in the second step.
First, reclustering is performed to remove rigid boundaries
created in the initial octree quantization process. Second,
reclustering is achieved under a sequence of thresholds to
generate different sets of leaf nodes of different resolutions.

To implement tree shrinking (i.e., the first-step pruning),
we rank parent nodes of all leaf nodes according to their pass
numbers. The pruning process begins with the parent node
with the smallest pass number. Since its pass number is small,
its children should have even smaller pass numbers. Thus, we
can simply delete the original leaf nodes, and convert their
parent node into a leaf node. Consequently, the total number
of leaf nodes is reduced. The above process is repeated until
the total number of leaf nodes is equal to or less than a preset
number (256 in our implementation).

To implement the second-step pruning, we consider a se-
quence of merge processes determined by a set of increasing
thresholds . We start with the merge process
with , and search the nearest pair of distinct clusters.
If their distance in terms of average colors is less than,
these two clusters are merged. This process is repeated until
the distances between all distinct clusters are all greater than

. Then, by using as the new threshold, we repeat the
same merge operations until all clusters have a distance greater
than . This procedure is continued for . The
average color and the pass number of leaf nodes at the end
of each merge process are recorded as the color feature in
different resolutions. The reason to divide the second-step
pruning into a sequence of successive merge processes is that it
allows us to select hierarchical features for sequential matching
and filtering so that the computational complexity of image
retrieval can be greatly reduced. Note that it requires

operations to compare the similarity of two images with cluster
numbers and , respectively. Hierarchical features can help
in filtering out irrelevant images as early as possible with a
very low computational cost.

One of the key issues here is the computational complexity
of the reclustering step. A straightforward way to compute
the distance of all cluster pairs is , where is the
number of leaf nodes. However, a divide-and-conquer method
can be used here to reduce this complexity to .
Its basic idea is described as follows. The two leaf nodes with
the shortest distance contained by the space represented by
the root node have to be one of the following two situations.
It can be either the leaf node pair with the shortest distance
contained by one of its eight subspaces or two leaf nodes
belonging to two different subspaces. For the former case,
the shortest distance among each subspace can be computed
recursively by treating the corresponding subspace as the root
node. Let us assume that these distances are denoted by

and let . To take care of the latter case,
we have to pay attention to leaf nodes located away from the
boundaries of the subspace with a distance less than. That
is, distances between every pair of these leaf nodes also have
to be computed. By comparing results from the two cases, we
can determine the leaf node pair with the smallest distance.

The closest pair of nodes and their distance within each
subspace are the attributes of the corresponding intermediate
node. The nearest pair attribute of the root node is the nearest
pair of nodes within the entire color space. If these two nodes
are merged, their ancestors have to be adjusted accordingly
to make sure the average color and the pass number of these
nodes are updated. The new closest pair of nodes and their
distance should also be updated in order to carry out the next
merging process.

An illustration of the merging process is shown in Fig. 12.
In this example, Node is merged with Node . In
this case, since the new node is located in subspace ,
its average color becomes

and its pass number is updated to be

The average color and the pass number of ancestors of
Node and Node should be updated accordingly.
As shown in the figure, Node , Node ,
Node , Node and Node are their
uncommon ancestors, while the root is their common ancestor.
We only have to update uncommon ancestors with the
following rules:
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Fig. 12. Illustration of the node-merging process.

Fig. 13. Distribution of the number of clusters at different resolutions.

The hierarchical clustering procedure in the second-step
pruning is implemented with and
and . The number of layers and the thresholds are
obtained empirically by experiments. We show in Fig. 13 the
distribution of the leaf node number for images in our database
with respect to each threshold value. The average numbers of
clusters (i.e., leaf nodes) are 17.7, 8.48, 5.59, respectively.
We record the pass number (1 byte) and the average color (3
bytes) for these clusters as features. Thus, on the average, the
indexing file size is bytes
per image. The clustering result at different resolutions of the
“Sunset” image is shown in Fig. 14.

C. Hierarchical Color Clustering in the Space

Many digital images are represented in the space.
However, the color difference computed using the Euclidean

distance in the space is not totally consistent with
the human visual system (HVS) model. That is, two colors
with a large Euclidean distance in the spaces may be
perceptually similar. Quantitative measurement of the color
distance has been studied extensively, and psychophysical
experiments were conducted to determine the just noticeable
color differences (JNCD). It is well known that JNCD is
not uniform along the three axes in the space. The
infinitesimal color difference of two neighboring colors
can be written as

where metric coefficients depend on and . To find
the difference between two colors, we have to integrate the
above equation from one color to the other. The integral is
path dependent, and the actual distance is defined to be the
integral along the path which yields the minimum distance
between these two colors. Since the computational cost is high,
an alternative approach is to map the space onto another
space with a uniform color difference. Several such spaces
have been proposed, including
and Munsell color spaces [25]. The Munsell color space was
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(a)

(b)

(c)

Fig. 14. Color clustering of “sunset” image with three different resolutions.

named after artist Albert Munsell who created a book of
colored samples ordered by the constant hue, brightness, and
saturation chart. The space was developed to provide
a computationally simple measure of colors in agreement with
the Munsell space. The space was evolved from the

space, and became the CIE standard in 1976.
The transform from the space to the space is

if
otherwise

where and are obtained with reference to white tristim-
ulus values .

The gamut of the space translated from the
space is shown in Fig. 15. As seen from the figure, not all
combinations of hue, chroma, and value are within the gamut.



640 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 8, NO. 5, SEPTEMBER 1998

Fig. 15. Gamut ofL�u�v� color space and its partitioning planes.

Splitting the color space by a set of planes perpendicular to
these axes is not efficient because many subspaces will be
empty. It is desirable to develop a splitting scheme suitable
to the irregular volume of the space. One possible
solution is to map perpendicular splitting planes in the
space to the space. We illustrate in Fig. 15 the
partitioning planes corresponding to the second level of the
octree.

In actual implementation, we do not have to perform the
transform and initialize the octree in the space by com-
paring the value of pixels with boundaries defined by slitting
planes. Instead, the representation is used when inserting
a color into the octree. However, the average color of pixels
in each node is calculated with the representation.
It is worthwhile to mention that when the component is
very small, two colors might be perceptually similar, but with
a large color distance if their and components are very
different. To fix this problem, it is convenient to set these
colors to black before clustering.

The clustering procedure in the space is summa-
rized as follows.

1) Octree initialization and shrinking

a) Insert a new pixel in the image from the root to the
leaf, and update the pass number and the average
color of nodes accordingly based on its color
representation. Repeat the process until all pixels are
inserted.

b) If the number of leaf nodes is greater than(
), shrink the tree.

2) Hierarchical clustering

a) Set the average color of the node whose lightness is
less than to black.

b) Perform the following steps for . Find the
nearest pair of distinct clusters based on their means.
If their distance is less than , they are merged. This
process is repeated until the distance of all distinct
pairs is greater than .

Again, and are used in our
implementation.

V. INDEXING AND RETRIEVAL BASED

ON HIERARCHICAL CLUSTERING

A. Indexable Features and Distance Computation

We can derive a set of interesting features based on the
hierarchical color clustering feature to speed up the retrieval.
They include the following.

• Average color (stored with 3 bytes): The average color
of the entire image corresponds to that of the root of the
octree. The distance between the average colors of the
query and an image in the database is

The average color distance and dominant color distance
are computed using Euclidean distance because it is
consistent with the human visual perceptual model in the
L space.

• Dominant color (stored with 3 bytes): The average color
of the node with the largest pass number at the coarsest
resolution gives the dominant color of an image. The
distance between the dominant colors of the query and
target images can be computed via

where and are average colors of dominant
nodes of images and at the coarsest resolution, which
is 3 in our implementation, respectively.

• Color width (stored with 1 byte): The number of leaf
nodes at the finest resolution (i.e., ) is called the
color width of a given image. It indicates the richness of
colors. The distance based on the color width is defined as

where are widths of octrees of images
and .

• Hierarchical color distributions (stored on the average
with 124 bytes per image in our test database): The
average color and the pass number of leaf nodes at each
merging process lead to a set of hierarchical color distri-
butions. Since the number of clusters and the position of
clusters are different from images to images, we have to
define the distance between two sets of clustered nodes.
Let represent the resolution level, andand denote,
respectively, node sets for query image and target
image at level . Nodes from and are said to
have a match if their distance is less than. Let be
the set of all matched nodes in and at resolution .
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(a) (b)

Fig. 16. Retrieval result comparison for (a) “sunset” and (b) “stained glass.”

Then, the distance can be defined as

where and are the normalized pass numbers
of nodes and in the same matched set and
belonging to and , respectively, and and
are the normalized pass-numbers of nodesin unmatched
sets and , respectively.

As described above, we need bytes
in total to store the average color, the dominant color, the color
width, and the hierarchical color distribution for each image
in the database. This is about one half the storage required by
the traditional histogram method with 256 quantization bins
where 1 byte is used to record the normalized pixel numbers
in each bin.

B. Retrieval Examples

Each indexing feature mentioned above carries interesting
color information of an image. Filtering by a selected set of
simple features such as the average color, the dominant color,
and the color width can be performed first to remove irrelevant
images. This is particularly useful if the query image has
certain prominent features, e.g., a clear dominant color and
an unusual color width. Filtering based on the comparison
of hierarchical color distributions can be performed at a later
stage to refine the candidate image set which contains similar
images.

We use several examples below to demonstrate this idea.
The experimental database is the same as the one given
in Section III. We consider three image sets, i.e., “skiing,”
“stained-glasses,” and “sunset,” and use one from each image
set as the query image. The comparison of retrieval results
is shown in Fig. 16. The query image for each image set is
shown in Fig. 17.

Retrieval of “Skiing” Image: Each image in the “Skiing”
image set is dominated by the white tone. The dominant color
and the percentage of pixels possessing this color are shown
in Table I. Retrieval by the dominant color alone can promptly
get a very small candidate image set.

(a)

(b)

(c)

Fig. 17. Query images in (a) “skiing,” (b) “stained-glass,” and (c) “sunset”
image sets.

TABLE I
DOMINANT COLOR OF IMAGES IN “SKIING” SET

Retrieval of “Sunset” Image:Each image in this set has a
dominant color, but their dominant colors are not very similar.
For example, some images are dominated by dark red, while
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other images are dominant by dark yellow. Thus, the threshold
for filtering with the dominant color has to be set a larger value
to avoid false misses and, as a result, the candidate image set
is still large. Filtering by hierarchical color distributions can
be applied to this set of candidate images. Retrieval results
are compared with those of other methods in Fig. 16. The
amount of clusters at the third stage of hierarchical clustering
for “sunset” image set is 11. Retrieval by this small size of
color representation performs reasonably well compared with
other methods.

Retrieval of “Stained-Glasses” Image:The color width of
the query image is 71, which is very large in comparison with
most images in the database. The distribution of the color
width of images in our test database at the each resolution of
clustering can be found in Fig. 13. As seen from the figure,
only a small number of images have a large width. Thus,
filtering by the color width helps to narrow down the number
of candidate images quickly. Filtering by the color width
is ideal for images with rich or few distinctive colors. The
precision versus recall curves are shown in Fig. 16.

VI. CONCLUSION

We investigated the effect of color quantization schemes
on the performance of image retrieval, and proposed a new
hierarchical color extraction and indexing scheme based on
a pruned octree color representation. Color feature obtained
by our scheme is more efficient than the color histogram
in several aspects. First, it calculates the color feature of
each individual image separately, and only a small number
of distinctive colors and their corresponding pass numbers are
used to describe the color feature of the image. Consequently,
the color feature of each image is described more effectively
with a smaller storage space. Second, there are no rigid
quantization boundaries in quantizing similar colors so that
we can get a more robust retrieval result with respect to small
color differences among images. Third, more color features
such as color width, dominant color, and average color can
be obtained as the byproduct. The retrieval process can be
speeded up by combining these features properly.

There are several related tasks to be performed in the near
future. The proposed hierarchical color indexing file is much
smaller than that of the traditional color histogram. As a result,
we did not use sophisticated indexing methods such astree,

tree in our retrieval experiment. However, the storage
and retrieval efficiency can still be improved by organizing
the structure of indexing files effectively. We would also
like to consider the combination of color-based and object-
based retrieval with the proposed hierarchical color clustering
scheme. Object segmentation can be carried out using the
octree data structure by projecting colors of distinctive clusters
back to the original image. This back-projection process leads
to an efficient initial segmentation of the image [26]. Further
refinement using other methods, such as edge flow and region
growing [27], [28], need to be carried out. Image segmentation
using hierarchical color clustering by itself is an interesting
research problem. Query analysis for interactive retrieval based
on this color feature and other low-level image features such

as textures and shapes of objects are our main research topics
currently.
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