IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 8, NO. 6, OCTOBER 1998 705

Fast Overlapped Block Motion Compensation
with Checkerboard Block Partitioning
Tien-ying Kuo and C.-C. Jay Kuo

Abstract—The overlapped block motion compensation (OBMC) [1] used the classical BMC motion search, and applied OBMC
scheme provides an effective way to reduce blocking artifacts only in reconstruction. This scheme improves the PSNR
in video coding. However, in comparison with the traditional value at the expense of a higher computational complexity
block motion compensation (BMC), its complexity of motion - . . .
estimation increases significantly due to the interdependency reqwred by .frame.reconstructlon. In comparison W'th OBMC
of motion vectors. In this work, a new fast motion estimation” Which considers interdependence between motion vectors,
algorithm is proposed for OBMC based on the checkerboard the decoupled motion search with BMC is only subopti-
block partitioning and grouping in encoding. This algorithm,  mal. Furthermore, boundaries of reconstructed blocks may be
called the grouped OBMC (GOBMC), effectively decorrelates gigiqoried in this scheme since all pixels in each block are

dependency among OBMC motion vectors and facilitates the I ighted in BMC fi h while pixel val
search process. In comparison with traditional iterative OBMC equally weighted In motion search while pixel values

motion search, GOBMC performs motion estimation only once are weighted differently in OBMC reconstruction.
per macroblock at the encoder, and reaches a local optimal In an effort to get more accurate OBMC motion vectors,

solution with degradation of 0.05-0.1 dB At the decodi_ng end, we Ohta and Nogaki [2] proposed a cost function of weighted sum
also propose a fast OBMC reconstruction scheme which reduces of absolute difference (SAD) for motion search. The procedure

the complexity of multiplication to 38% of that of traditional . . . . .
OBMC reconstruction while preserving the same visual quality can be simply described below. The intensity difference of

as obtained via BMC search with OBMC reconstruction. every pixel in an enlarged target block (i.e., the overlapped
block) and the corresponding search region is calculated at
each search displacement. The difference of the enlarged block
is then multiplied by a window support function so that a
higher weighting is assigned to a pixel near the center of
. INTRODUCTION the enlarged block. Finally, the SAD value of this weighted
HE MAIN shortcoming of block motion compensationeénlarged block is computed, and the motion candidate which
(BMC) is the blocking artifact observed in the recongives the minimum cost function (i.e., the one with the lowest
structed image frame when motion vectors in the neighbdkeighted SAD value) is chosen as the target motion vector.
hood are significantly different and/or the coding bit ratéhe main drawback of this method is that it requires one
becomes very low. The overlapped block motion compensatie¥BMC window multiplication at each search position, thus
(OBMC) scheme [1]-[3], which has been adopted in th@sulting in a very high computational complexity. Besides,
advanced mode of the H.263 recommendation, proposes & method only takes the target motion into account. That
use of overlapped blocks to reduce the blocking artifact. Th® the cost function of motion search is only the function
efficiency of pixel prediction is also increased by employingf the target motion, and no neighboring motion is involved.
multiple pixel values in OBMC. That is, OBMC predictsThus, the interdependency of OBMC motion vectors is ignored
the pixel value using more than one motion vector, whicliuring the search process.
come from the target macroblock as well as neighboring In order to find a better set of OBMC motion vectors, Or-
macroblocks. The major problem associated with OBMC ghard and Sullivan (ORCH) [3] proposed an iterative OBMC
the increase of the computational complexity in estimatir[@OtiOﬂ search algorithm to solve this problem. They initialized
motion vectors at the encoder end and in reconstructing th@ck motion vectors with a certain motion field, e.g., the zero
image frame at the decoder end. motion field, and then iteratively refined these vectors block
Motion search for OBMC is difficult since each OBMCbY block with the window support function of OBMC, con-
motion vector affects pixel values in more than one maglitioned on neighboring motion vectors, until the vector field
roblock. In other words, motion vectors are interdepende@nverges. Since the cost function of the motion search is not
The search of optimal motion vectors for OBMC is a noncaus&Pnvex, the solution may not give the optimal OBMC motion

problem with no closed-form solution. Watanabe and Singhﬂﬂm. Nevertheless, the iterative solution usually converges to
a good local minimum. The major shortcoming of this method
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in the first pass. Since the motion search procedure for each vi

block could be more than once, the two-pass motion search PN AL

algorithm is still expensive. § \*H?’
In the decoder, the procedure of OBMC frame reconstruc- La st 6

tion is not as simple as classical BMC. Additional mul- 789

tiplications are required for pixel value weighting so that
the decoder's complexity increases. Sullivan and Orchard. 1. Illustration of overlapped block motion compensation.
[4] attempted to reduce the OBMC decoder complexity by

considering a new hardware design. QIock To get the correct pixel prediction in the overlapped
A new approach to OBMC search complexity reduction & t, we need to multiply the copy-and-paste block by the

the encoder end based on the checkerboard block grou mdow support function, and provide the correct weighting

is investigated in this work. It is called the grouped OBM fter overlapping. OBMC can be viewed as a linear estimator
(GOBMC). Only one motion estimation operation is requirea . rapping. . . i
of pixel intensity. It estimates a pixel value by using the

for each macroblock in GOBMC at encoding since the ob- . L o . .
: ) . weighted sum of pixel intensities obtained from the motion
tained motion vector set nearly reaches a local optimal SOIUUSQCIOI’ of the target block as well as those from neighboring
at the first iteration. The encoding complexity is significantl}sI Ks
reduced. The distortion measures, both in terms of PSNR an . . .
visual quality, remain about the same as those obtained from. r.ed““r‘ the com_putatlonal cost, the fqllowmg b|||.near
the iterative OBMC motion search (ORCH). In compariso\r'1ve'ghtIng window of size 32« 32 is adopted in our work:
with the work of Rajagopalaet al. [5], the OBMC motion
search is performed only once for each macroblock in our Wi, y) =Wa - Wy, where
algorithm. It is important to emphasize that, with our new Lx+3), forz=0,---,15
approach, the OBMC motion search problem follows the same W = Way o forz =16.---.31
framework as BMC motion search as given in [6]. Thus, fast ’ T
algorithms for BMC motion search described in [6] can b

easily extended to the OBMC case. §s shown in Fig. 3(d). Even though other window support

At the decoding end. we also propose a fast OBMC rct:HnCtions can also be used, we observe that the difference
. 9 ' prop . in the PSNR performance is not sensitive to the choice of
construction scheme which reduces the complexity of ngl

s .. . . different window shapes.
0,
t|p||cat|on to 38% of traditional OBMC reconstruction while For iV target block, ther r ine blocks involv

preserving the same visual quality as obtained via BMC Seari(ﬁhthe OBMC process, including the target block and its

with OBMC reconstruction. No overhead bit is required by thgight surrounding blocks. To set a mathematical framework

decoder with this new scheme. of OBMC motion search, let us adopt the following notation.

The paper is organized as follows. In Section I, we brieﬂél‘he nine blocks involved in OBMC are indexed by variable
review the OBMC concept and technical barriers. Then, ttzel < i <9, as shown in Fig. 1. The OBMC linear estimator
proposed GOBMC algorithm is described in Section IIl. Tw ’r a_prgdiéted pixel can be.wr.itten as
GOBMC reconstruction schemes are examined in Section IV.

Experimental results are provided in Section V. Concluding 9
remarks are given in Section VI. T(a:) _ Z[Wf(wb) . f(a: — ;)]

IIl. BRIEF REVIEW OF OBMC wherez is the absolute pixel position with respect to the frame

The OBMC scheme is briefly reviewed in this sectioncoordinatesy, is the pixel position relative to the coordinates
As shown in Fig. 1, there are nine numbered squares, eaththe current block within a block; is the macroblock
of which represents a 16 16 macroblock. Let block 5 number,W; andw; are, respectively, the weighting coefficient
be the current (or target) block. The other eight blocks asmd the motion vector of block, I is the predicted OBMC
its neighboring blocks. In BMC image reconstruction, eagbixel intensity, and/ is the previous reconstructed pixel
macroblock is associated with one motion vector, and pixtensity. Note that: and z, refer to the same location, but
prediction is obtained by copying and pasting the 21616 with a different reference point¥; is of size 16x 16, which
block from the previous frame offset by the motion vectois derived from 32x 32 window suppori/.
No block overlapping occurs in BMC during the copy-and- One barrier of OBMC motion search results from non-
paste procedure. For the OBMC case, we use enlarged blockasality in the search pattern. The noncausality property can
to copy and paste. The enlarged block is represented by tiee explained from the fact that (1) is a function of motion
dotted line in Fig. 1. The enlarged block, called the domawariablesu;—ug. Motion vectors of OBMC are interdependent
of window support, is of size 3% 32. For block 5, its region because each pixel is affected by more than one motion
is covered partially by the window support functions of theector. Existing OBMC work was described in Section I. In
eight neighboring blocks and fully by its own window supportSection Ill, we propose a new fast motion search algorithm
Therefore, there are nine motion vectors involved in predictifigr OBMC based on the concept of checkerboard block
values in block 5. They are called the “motion set” of the targgartitioning.
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I1l. FAST OBMC MOTION SEARCH
WITH CHECKERBOARD PARTITIONING . e .

To develop the fast OBMC search algorithm, we have to il -l Bl Bl e
solve the motion interdependency problem first. Two assump- ' | ' 8 | ; o | | | | ' |
tions are made in this work to decorrelate the dependency 5 R R e B 8 R B e e
of motion vectors. The first assumption is that the motion 5 B BB B B |

vector of the target block is primarily correlated with those | . N
of its eight neighboring blocks. Since motion vectors of el i y
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neighboring blocks are also correlated with those of their B E E : i 3 B |
own neighboring blocks, the correlation should propagate sl2(3lalalalalalalzla
through every block in the whole frame in principle. This "B EI EI EI BRI |

propagation property complicates the motion search problem.
To Slmpllfy the pr_ObIem’ We_ assume that_ the target motlon I§g 2. Macroblocks with checkerboard partitioning, where blocks are clas-
only correlated with the motion vectors within a certain rangeified into three different groups.

That is, motion vectors associated with blocks separated by one

block apart are uncorrelated with each other in the derivati%'ﬁknown motion vector of the target block which is embedded

of fast OBMC motion search. I . ;
A . in 1. By using (1), the cost function can be expressed as
The second assumption is to let unknown motion vectors y 9@ P

of neighboring blocks take the same motion value as that of 9 )

the target block. During a noncausal motion search procesk= min Z | (x) — Z[Wi(ﬂcb) Iz — )|
we may not know motion vectors of neighboring blocks with "\ =€ target block i=1

respect to a desired target block. By taking the strong spatial 3

correlation property observed among the motion vectors of _ . .

neighboring blocks and that of the target block, we approgur goal IS _to_ obiain the motlon_ vector; of the ta_rget
imate unknown neighboring motion vectors with the motioRIOCK t0 minimize the above function. However, (3) is also
value of the target block. Therefore, if the motion vector df UNCtion ofui—us. In other words, local cost functions are,
the target block is given, all eight neighboring motion vector8 fact, coupled. It becomes difficult to solve the minimiza-

are assumed to be available to perform OBMC motion seard}e" Problem with many unknown variables. We can apply

Without loss of generality, we consider the QCIF sequend&sSumption 2 to simplify the problem and remove the number
which is of size 144x 176 with the macroblock size 16 of unknown neighboring vectors in the cost function. We

16, as an example. There are totally>d 11 macroblocks KNOW from Fig. 2 and the group search order that, for G1
inside one image frame. To solve the motion interdependerf@@croblocks, all neighboring motion vectors (four G2 blocks
problem, we divide macroblocks in an image frame into thréd!d four G3 blocks) are unknown so that we simply set the

groups with the checkerboard pattern. The three groups fgighboring vectors to the same valu_e as the target vector G1.
labeled by 1, 2, and 3 as shown in Fig. 2. In each frami®’ G2, the neighboring four G1 motion vectors are available
of QCIF video, we have 30 macroblocks of Group 1 (Gl)s'o that we only have to set.th.e four G3's to the same_value
20 macroblocks of Group 2 (G2), and 49 macroblocks g6 the targgt vector G2. A similar rule. can be alsp applied to
Group 3 (G3). This checkerboard pattern partitioning is closeg3 by setting four unknown surrqundmg G3 motion vectors
related to the first assumption, i.e., motion vectors associaté§ SaMe Va"_Je as the tar,ggt motpn vector G_3'

with blocks separated by one block distance are uncorrelated © summarize, we can divide motion search into three steps,
with each other. It is clear that macroblocks of Group 1 aﬂJ‘d determine mo'gon vectors for G1, G2, a.nd G3 bIocks_m
separated by one block, thus satisfying the first assumption. eh step sequentially. For G1 blocks, the size of the motion

perform OBMC motion search, we search all motion vector€t involved in (3) is one, which is the unknown motion vector

for Group 1 (G1) macroblocks first under assumption 1. The?\f, the target block. For G2 blocks, the size of the motion set

motion vectors for Group 2 (G2) macroblocks are searchgalowed in (3) is five, consisting of one unknoyvn motion
based on G1 motion vectors obtained earlier. Finally, motigffctor of the target block and four known motion vectors
vectors of Group 3 (G3) are determined based on surroundfﬁf%ne'ghbo”ng G1 blocks. For G3 blocks, the size of the

G1 and G2 motion vectors available after the above two stefition set involved is also five, consisting of one unknown
To derive the new search algorithm, we use the blo otion vector of the target block, two known motion vectors

numbering shown in Fig. 1, where block 5 is the target bIocRf neighboring G1 blocks, and two known motion vectors of

The local cost function for the OBMC motion search can br%eighboring G2 blocks. In terms of mathematics iedenote
written as the known vector for block, we have

Step 1: G1 w; =wus, i=1, -,
J = min > | 1(z) — ()] ) Step 2: G2 us {

zC target block (¢=5) o

W o W

S Gt
N OO ©
co

=, es,
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[
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where I is the desired target pixel intensity,is the OBMC Step 3: G3 w; = { i
predicted pixel intensity given by (1), and variahlg is the
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Fig. 3. Derived bilinear window for Groups (a) G1, (b) G2, and (c) G3. The window support (d) is the bilinear weighting window.

By combining the above formulas with (3), we have the Weao(x) = Z W) (10)
following results for the three groups with the same form, i.e., i=2,4,5,6,8
ng(a:) = Z Wz(a:b) (ll)

_ i=1,3,5,7,9
Jg; = min ( Z | Ig,(x)
e

wctargor block In deriving the GOBMC cost function, we see that (4)
requires the multiplication o#¢; with every reconstructed

W o — s 4 block I for each search displacement. The resulting computa-
cj(wn)  I(w = us)l (4) tional cost is high. This cost can be significantly reduced by
dividing (4) with the nonzero coefficient¥’; as given in (5).
Igj(x) That is, the number of the window support multiplication is

reduced to only once per motion vector search for all search
displacements since the tetha,;(x)/Weg; () is independent

of the search position;, and has to be computed once only.
), forj=1,2,3

= min E
P

xCtarget block

Wej(@s)

__f(g; — us) (5) Coefficientsi¥¢; of the group window support function can
be precalculated before the actual OBMC motion search. Their
values are plotted as the central ¥616 matrix of the 32x

where 32 window supports in Fig. 3(a)—(c) for the bilinear cases. As

far as the terml; is concerned, it is completely known since
Ici(z) =I(x) (6) i';] pnly.ir.lvcl)lve_s knowtr:I neigr;]borinlg moit<ion vector.s.b;rhgs,(;r)\
. this minimization problem, the only unknown variable in
Iea(w) =I(z) - ‘ > Wiwm) I -w)] () variableu;, which is the desired target motion vector. From
. (5), the cost function of GOBMC motion search looks similar
Ios(z) =1(z) — Z Wizy) - I(x —v;)]  (8) to that of the BMC, except that the terthis replaced by
i=2,4,6,8 I; and an additional multiplication witfil /W) is needed.
Weai(z) =1 (9) Therefore, we can apply BMC motion search methods such
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TABLE |
PSNR RRFORMANCE COMPARISON WITH RESPECT TOSEVEN DIFFERENT METHODS WITH THE BILINEAR WINDOW

PSNR BMC WATA  ORCH  E-GOBMC-RI E-GOBMC-R? F-GOBMC-R1 F-GOBMC-R2
Miss America(150) || 40.79 41.54 42.12 42.00 41.28 42.04 41.29
Suzie(150) 35.32 3597 36.54 36.43 35.87 36.39 35.84
Salesman(448) 39.23 39.78 40.09 39.95 39.63 39.96 39.63
Carphone(382) 30.08 30.56 30.79 30.72 30.48 30.73 30.47
Claire(494) 41.91 42.75 43.15 43.08 42.34 43.08 42.30
Foreman(400) 30.77 31.26 31.66 31.55 31.19 31.57 31.18
Akiyo(300) 42,68 43.45 44.08 43.94 43.28 43.93 43.28

TABLE I

CoMPARISON OF THE COMPUTATIONAL COMPLEXITY OF ALGORITHMS FOR THE SUZIE SEQUENCE AS INDICATED
BY THE AVERAGE NUMBER OF BLOCK OPERATIONS PERMACROBLOCK, WHERE ¢ |S THE NUMBER OF |ITERATION

Encoder Decoder
Method Addition/Subtraction | Multiplication || Addition/Subtraction | Multiplication
BMC 782.6 0 0 0
WATA 782.6 0 8 9
ORCH 790.6 x 1 9x1 8 9
E-GOBMC-R1 785.4 3.5 8 9
E-GOBMC-R2 785.4 3.5 2.8 3.5
F-GOBMC-R1 151.7 3.5 8 9
F-GOBMC-R2 151.7 3.5 2.8 3.5

as the exhaustive search or various fast search algorithmspixels in Groups 2 and 3 compared with GOBMC-R1, the

(5) to obtain OBMC motion vectors. Depending on whethdslock weighting multiplication is reduced into 5/9 and 5/9,

exhaustive or fast BMC search algorithms are adopted, waspectively, because we can sum up the five out of Hije

can get exhaustive GOBMC (E-GOBMC) or fast GOBMGnto W2 and W3 in advance as given in (10) and (11). For

(F-GOBMC) search methods. In the implementation, we irxample, for each OBMC reconstruction of blocks in Group 2,

corporate a fast BMC motion search algorithm proposed in [6je only have to perform the block multiplication 0f/ W)

to speed up the motion search process and to further reducg5) as well as the block multiplications d¥;, W3, W7,

the complexity of motion search. This fast BMC motion seardnd Wy in (7). The multiplication complexity of GOBMC-R2

utilizes the spatial and temporal correlations of motion field t@construction is reduced to about 38% of GOBMC-R1 (or

predict the target motion vector based on motion vectors fro@BMC) based on the following computation:

neighboring blocks or previous frames and then perform the 30 5 20 5

local refinement. If the refined motion vector is still not accu- 0- 99 + 9 99

rate, then full search is applied. Compared to the E-GOBMC

search method, F-GOBMC motion search only requires aroufy#ere numbers 30, 20, and 49 are block counts in one

20-35% of macroblocks for full search on the average.  image frame for each group, respectively, and 99 is the total
block number within one image frame. Note that the above
complexity reduction result is valid for any QCIF sequence.

IV. IMAGE RECONSTRUCTION GOBMC-R1AND GOBMC-R2

Regarding image reconstruction in encoding or decoding,
we propose two new reconstruction algorithms called Seven QCIF videoconferencing image sequences are used in
GOBMC-R1 and GOBMC-R2 based on the followinghe experiment to illustrate the performance of the proposed
observations. First, given BMC vectors, OBMC reconstructicalgorithms. The first column of Table | gives the test video
can give a better PSNR performance than the BMtile, and the number in parentheses is the total humber of
reconstruction even though motion vectors are optimizéhmes used to generate the average results. For each video,
for the BMC case. Second, the window support with a largare perform a forward predictive coding with OBMC for all
motion set can give a better reconstructed image. In GOBM@ames (called the” frames), except for the first frame which
R1, we use the traditional OBMC reconstruction, which adopis encoded as thé frame, and compute the average PSNR
a motion set of nine motion vectors and 32 32 window value for decoded” frames. The experiments are conducted
support with the bilinear window shape for every group. based on the Telenor TMN5 H.263 environment with a fixed

In order to reduce the complexity of OBMC reconstructiogquantization step of size 2. The size of the macroblock is
in the decoder, we also consider an alternative in which wié x 16. The motion search displacement is in the range from
do not use all nine motion vectors for every macroblock, but16 to 16. All motion vectors are in integer-pixel precision.
simply apply those OBMC configurations of each group as Bilinear window support is used.
the encoder to the decoder. This is called algorithm GOBMC-We compare the performance of seven methods as shown in
R2. For each block in Group 1, no OBMC reconstructiofiables I-Il and Figs. 4-5. The first three methods are existing
is used so that no block multiplication is required. As fomethods, while the last four are variations of the proposed

V. EXPERIMENTAL RESULTS
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Fig. 4. Comparison of the average PSNR values as a function of the iteration number for iterative OBMC (ORCH) and E-GOBMC-R1 with the bilinear
window. The ORCH and proposed E-GOBMC-R1 are denoted by a dotted line and a solid line, respectively.
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Fig. 5. PSNR performance comparison with respect to seven different methods with the bilinear window. The seven algorithms are: 1) BMC, 2) WATA,
3) ORCH, 4) E-GOBMC-R1, 5) E-GOBMC-R2, 6) F-GOBMC-R1, and 7) F-GOBMC-R2.

method. It is shown in Fig. 4 that our proposed algorithriterations. The second method E-GOBMC-R1 is denoted by
can be used in a noniterative fashion. In Fig. 4, two methott®e solid line, which uses the proposed exhaustive GOBMC
are compared. The first method is ORCH [3], denoted tscheme for motion search at the first iteration. Then, for the
the dotted line. It sets all initial motion vectors to zero antemaining iterations, it uses the same bilinear window support
performs the OBMC motion search at the first iteration, arfdr all three groups as the ORCH method, while the motion
then refines OBMC motion field iteratively in the remainingearch is performed in the grouping order. As shown in Fig. 4,
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Fig. 6. Fifty-second DFD of block motion compensation (BMC) for therig. 7. Fifty-second DFD of BMC vectors with OBMC reconstruction for
Suzie sequence with PSNR = 30.33 dB. the Suzie sequence with the bilinear window and PSNR = 31.51 dB.

E-GOBMC-R1 converges much faster than ORCH in tes
video. In fact, GOBMC-R1 reaches nearly the local optima
solution at the end of the first iteration. This justifies the
termination of GOBMC-RL1 at the end of the first iteration.
It is also worthwhile to point out that the difference in the
converged PSNR values of ORCH and GOBMC-R1 is ver
small as given in the fourth iteration.
The average PSNR results of seven algorithms are sul
marized in Table | and Fig. 5. The WATA method [1] is
good enough to improve the PSNR value, even withot
OBMC motion search. The PSNR value of E-GOBMC-R] i
and F-GOBMC-R1 approaches that of iterative OBMC searc
(ORCH) [3] with 0.05-0.1 dB degradation. The PSNR valut
of GOBMC-R2 is not as good as GOBMC-R1, but it still
preserves about the same PSNR value as the WATA meth &
with a lower complexity in the decoder. If we use BMC motion -
vector for GOBMC-R2 reconstruction, the performance is not :
better than GOBMC-R2 reconstruction with GOBMC motiorfrig. 8. Fifty-second DFD of the proposed noniterative exhaustive
search. The complexity saving of GOBMC-R2 in the decod&@?“;'g'gé for the Suzie sequence with the bilinear window and PSNR
without much PSNR degradation can be explained by the fact '

that GOBMC motion search provides a suitable motion field .
for GOBMC-R2 reconstruction. We also see from this tabf8'29¢S of OBMC with different search methods. However, the

that GOBMC with fast search (F-GOBMC) leads to a sdyvo large DFD regions in the ph(_Jne qnd the co_IIar_stiII remain.
of good OBMC motion vectors which keep the same PSNE"E result of.our proposeq algorithm is shown in Fig. 8. Errors
as GOBMC with exhaustive search (E-GOBMC) at a lowdP the two high DFD regions are substantially reduced and
computational cost. spread out more uniformly to their neighborhood as the result
To show the visual effect and the removal of blocking efficient GOBMC motion search and prediction. Other parts,
artifacts, three displaced frame difference (DFD) images 6fd- the left eye of Suzie, are also improved in Fig. 8 in
Suzie are shown in Figs. 6-8, corresponding to the fifty-secof@mparison with Figs. 6 and 7. Note that the predication error
frame difference of the original and reconstructed frames By Fig. 8 is lower than the ones in Figs. 6 and 7 because of
using BMC, WATA, and E-GOBMC-R1, respectively. In thesdhe lowest average value of PSNR as indicated in the figure
figures, a darker gray level is used to indicate a larger DFEptions. In addition to the above examples, it is generally
value. As shown in Fig. 6 (BMC), one can see clearly thgue that the proposed E-GOBMC-R1 is subjectively better
blocking artifacts and two regions with a large DFD value isince it has a lower and more uniform error distribution in
the phone receiver and the collar of Suzie. Blocking artifaceomparison with the WATA method.
in Fig. 6 (BMC) are removed in the reconstructed images The complexity comparison based on the average result for
of Figs. 7 (WATA) and 8 (E-GOBMC-R1), which are DFDthe Suzie sequence is shown in Table Il. For motion estimation
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in the encoder and frame reconstruction in the decoder, we gaw algorithm GOBMC-R1 more attractive. By implementing
measure the complexity by the number of addition/subtracti@OBMC-R1 with fast search algorithms, the complexity can
and multiplication per macroblock. We count it as one blodie reduced to 20%-35% of the exhaustive GOBMC search.
operation for a 16x 16 matrix (macroblock size) addingIn block motion search, instead of applying one block mul-
or multiplying with a 16 x 16 matrix. For example, the tiplication per motion search displacement, we only perform
Wi - f(x — ;) In (7) is counted as “one block operation” ofthe block multiplication once per block motion search with
multiplication for eachi. As an example in F-GOBMC-R2 of GOBMC-R1. Furthermore, GOBMC-R2 has the same motion
Table Il, each macroblock requires 151.7 block operations eéarch complexity as GOBMC-R1 while with fewer block
addition/subtraction and 3.5 block operations of multiplicatiomultiplications. The multiplication complexity of OBMC re-
on the average in the encoder. We observe that F-GOBMC-Bdnstruction can be reduced to 38% of that of GOBMC-
and F-GOBMC-R2 have the lowest complexity in the encoddgRl in the decoder by using GOBMC-R2. A good visual
For the Suzie sequence, it takes only one-fifth of the exhaustiypeality is still preserved by GOBMC-R2, which has a similar
motion search method. Furthermore, F-GOBMC-R2 savpsrformance as that of BMC motion search with OBMC
many computations in the decoder. Therefore, F-GOBMG@econstruction.

R1 and F-GOBMC-R2 are the best algorithms in term of

complexity among the seven methods. One thing we have to REFERENCES
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