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Fast Overlapped Block Motion Compensation
with Checkerboard Block Partitioning
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Abstract—The overlapped block motion compensation (OBMC)
scheme provides an effective way to reduce blocking artifacts
in video coding. However, in comparison with the traditional
block motion compensation (BMC), its complexity of motion
estimation increases significantly due to the interdependency
of motion vectors. In this work, a new fast motion estimation
algorithm is proposed for OBMC based on the checkerboard
block partitioning and grouping in encoding. This algorithm,
called the grouped OBMC (GOBMC), effectively decorrelates
dependency among OBMC motion vectors and facilitates the
search process. In comparison with traditional iterative OBMC
motion search, GOBMC performs motion estimation only once
per macroblock at the encoder, and reaches a local optimal
solution with degradation of 0.05–0.1 dB. At the decoding end, we
also propose a fast OBMC reconstruction scheme which reduces
the complexity of multiplication to 38% of that of traditional
OBMC reconstruction while preserving the same visual quality
as obtained via BMC search with OBMC reconstruction.

Index Terms—H.263, motion estimation, overlapped block mo-
tion compensation (OBMC), video coding.

I. INTRODUCTION

T HE MAIN shortcoming of block motion compensation
(BMC) is the blocking artifact observed in the recon-

structed image frame when motion vectors in the neighbor-
hood are significantly different and/or the coding bit rate
becomes very low. The overlapped block motion compensation
(OBMC) scheme [1]–[3], which has been adopted in the
advanced mode of the H.263 recommendation, proposes the
use of overlapped blocks to reduce the blocking artifact. The
efficiency of pixel prediction is also increased by employing
multiple pixel values in OBMC. That is, OBMC predicts
the pixel value using more than one motion vector, which
come from the target macroblock as well as neighboring
macroblocks. The major problem associated with OBMC is
the increase of the computational complexity in estimating
motion vectors at the encoder end and in reconstructing the
image frame at the decoder end.

Motion search for OBMC is difficult since each OBMC
motion vector affects pixel values in more than one mac-
roblock. In other words, motion vectors are interdependent.
The search of optimal motion vectors for OBMC is a noncausal
problem with no closed-form solution. Watanabe and Singhal
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[1] used the classical BMC motion search, and applied OBMC
only in reconstruction. This scheme improves the PSNR
value at the expense of a higher computational complexity
required by frame reconstruction. In comparison with OBMC
which considers interdependence between motion vectors,
the decoupled motion search with BMC is only subopti-
mal. Furthermore, boundaries of reconstructed blocks may be
distorted in this scheme since all pixels in each block are
equally weighted in BMC motion search while pixel values
are weighted differently in OBMC reconstruction.

In an effort to get more accurate OBMC motion vectors,
Ohta and Nogaki [2] proposed a cost function of weighted sum
of absolute difference (SAD) for motion search. The procedure
can be simply described below. The intensity difference of
every pixel in an enlarged target block (i.e., the overlapped
block) and the corresponding search region is calculated at
each search displacement. The difference of the enlarged block
is then multiplied by a window support function so that a
higher weighting is assigned to a pixel near the center of
the enlarged block. Finally, the SAD value of this weighted
enlarged block is computed, and the motion candidate which
gives the minimum cost function (i.e., the one with the lowest
weighted SAD value) is chosen as the target motion vector.
The main drawback of this method is that it requires one
OBMC window multiplication at each search position, thus
resulting in a very high computational complexity. Besides,
this method only takes the target motion into account. That
is, the cost function of motion search is only the function
of the target motion, and no neighboring motion is involved.
Thus, the interdependency of OBMC motion vectors is ignored
during the search process.

In order to find a better set of OBMC motion vectors, Or-
chard and Sullivan (ORCH) [3] proposed an iterative OBMC
motion search algorithm to solve this problem. They initialized
block motion vectors with a certain motion field, e.g., the zero
motion field, and then iteratively refined these vectors block
by block with the window support function of OBMC, con-
ditioned on neighboring motion vectors, until the vector field
converges. Since the cost function of the motion search is not
convex, the solution may not give the optimal OBMC motion
field. Nevertheless, the iterative solution usually converges to
a good local minimum. The major shortcoming of this method
is the extremely high computational complexity required by
iteration.

Rajagopalanet al. [5] proposed a two-pass algorithm to
compute the OBMC motion field. Basically, an exhaustive
BMC motion search is performed for every macroblock in the
first pass. The second pass searches OBMC motion vectors
based on an important partial set of BMC vectors obtained
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in the first pass. Since the motion search procedure for each
block could be more than once, the two-pass motion search
algorithm is still expensive.

In the decoder, the procedure of OBMC frame reconstruc-
tion is not as simple as classical BMC. Additional mul-
tiplications are required for pixel value weighting so that
the decoder’s complexity increases. Sullivan and Orchard
[4] attempted to reduce the OBMC decoder complexity by
considering a new hardware design.

A new approach to OBMC search complexity reduction at
the encoder end based on the checkerboard block grouping
is investigated in this work. It is called the grouped OBMC
(GOBMC). Only one motion estimation operation is required
for each macroblock in GOBMC at encoding since the ob-
tained motion vector set nearly reaches a local optimal solution
at the first iteration. The encoding complexity is significantly
reduced. The distortion measures, both in terms of PSNR and
visual quality, remain about the same as those obtained from
the iterative OBMC motion search (ORCH). In comparison
with the work of Rajagopalanet al. [5], the OBMC motion
search is performed only once for each macroblock in our
algorithm. It is important to emphasize that, with our new
approach, the OBMC motion search problem follows the same
framework as BMC motion search as given in [6]. Thus, fast
algorithms for BMC motion search described in [6] can be
easily extended to the OBMC case.

At the decoding end, we also propose a fast OBMC re-
construction scheme which reduces the complexity of mul-
tiplication to 38% of traditional OBMC reconstruction while
preserving the same visual quality as obtained via BMC search
with OBMC reconstruction. No overhead bit is required by the
decoder with this new scheme.

The paper is organized as follows. In Section II, we briefly
review the OBMC concept and technical barriers. Then, the
proposed GOBMC algorithm is described in Section III. Two
GOBMC reconstruction schemes are examined in Section IV.
Experimental results are provided in Section V. Concluding
remarks are given in Section VI.

II. BRIEF REVIEW OF OBMC

The OBMC scheme is briefly reviewed in this section.
As shown in Fig. 1, there are nine numbered squares, each
of which represents a 16 16 macroblock. Let block 5
be the current (or target) block. The other eight blocks are
its neighboring blocks. In BMC image reconstruction, each
macroblock is associated with one motion vector, and pixel
prediction is obtained by copying and pasting the 1616
block from the previous frame offset by the motion vector.
No block overlapping occurs in BMC during the copy-and-
paste procedure. For the OBMC case, we use enlarged blocks
to copy and paste. The enlarged block is represented by the
dotted line in Fig. 1. The enlarged block, called the domain
of window support, is of size 32 32. For block 5, its region
is covered partially by the window support functions of the
eight neighboring blocks and fully by its own window support.
Therefore, there are nine motion vectors involved in predicting
values in block 5. They are called the “motion set” of the target

Fig. 1. Illustration of overlapped block motion compensation.

block. To get the correct pixel prediction in the overlapped
part, we need to multiply the copy-and-paste block by the
window support function, and provide the correct weighting
after overlapping. OBMC can be viewed as a linear estimator
of pixel intensity. It estimates a pixel value by using the
weighted sum of pixel intensities obtained from the motion
vector of the target block as well as those from neighboring
blocks.

To reduce the computational cost, the following bilinear
weighting window of size 32 32 is adopted in our work:

where

for

for

as shown in Fig. 3(d). Even though other window support
functions can also be used, we observe that the difference
in the PSNR performance is not sensitive to the choice of
different window shapes.

For a given target block, there are nine blocks involved
in the OBMC process, including the target block and its
eight surrounding blocks. To set a mathematical framework
of OBMC motion search, let us adopt the following notation.
The nine blocks involved in OBMC are indexed by variable
, , as shown in Fig. 1. The OBMC linear estimator

for a predicted pixel can be written as

where is the absolute pixel position with respect to the frame
coordinates, is the pixel position relative to the coordinates
of the current block within a block, is the macroblock
number, and are, respectively, the weighting coefficient
and the motion vector of block, is the predicted OBMC
pixel intensity, and is the previous reconstructed pixel
intensity. Note that and refer to the same location, but
with a different reference point. is of size 16 16, which
is derived from 32 32 window support .

One barrier of OBMC motion search results from non-
causality in the search pattern. The noncausality property can
be explained from the fact that (1) is a function of motion
variables – . Motion vectors of OBMC are interdependent
because each pixel is affected by more than one motion
vector. Existing OBMC work was described in Section I. In
Section III, we propose a new fast motion search algorithm
for OBMC based on the concept of checkerboard block
partitioning.
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III. FAST OBMC MOTION SEARCH

WITH CHECKERBOARD PARTITIONING

To develop the fast OBMC search algorithm, we have to
solve the motion interdependency problem first. Two assump-
tions are made in this work to decorrelate the dependency
of motion vectors. The first assumption is that the motion
vector of the target block is primarily correlated with those
of its eight neighboring blocks. Since motion vectors of
neighboring blocks are also correlated with those of their
own neighboring blocks, the correlation should propagate
through every block in the whole frame in principle. This
propagation property complicates the motion search problem.
To simplify the problem, we assume that the target motion is
only correlated with the motion vectors within a certain range.
That is, motion vectors associated with blocks separated by one
block apart are uncorrelated with each other in the derivation
of fast OBMC motion search.

The second assumption is to let unknown motion vectors
of neighboring blocks take the same motion value as that of
the target block. During a noncausal motion search process,
we may not know motion vectors of neighboring blocks with
respect to a desired target block. By taking the strong spatial
correlation property observed among the motion vectors of
neighboring blocks and that of the target block, we approx-
imate unknown neighboring motion vectors with the motion
value of the target block. Therefore, if the motion vector of
the target block is given, all eight neighboring motion vectors
are assumed to be available to perform OBMC motion search.

Without loss of generality, we consider the QCIF sequence,
which is of size 144 176 with the macroblock size 16
16, as an example. There are totally 9 11 macroblocks
inside one image frame. To solve the motion interdependency
problem, we divide macroblocks in an image frame into three
groups with the checkerboard pattern. The three groups are
labeled by 1, 2, and 3 as shown in Fig. 2. In each frame
of QCIF video, we have 30 macroblocks of Group 1 (G1),
20 macroblocks of Group 2 (G2), and 49 macroblocks of
Group 3 (G3). This checkerboard pattern partitioning is closely
related to the first assumption, i.e., motion vectors associated
with blocks separated by one block distance are uncorrelated
with each other. It is clear that macroblocks of Group 1 are
separated by one block, thus satisfying the first assumption. To
perform OBMC motion search, we search all motion vectors
for Group 1 (G1) macroblocks first under assumption 1. Then,
motion vectors for Group 2 (G2) macroblocks are searched
based on G1 motion vectors obtained earlier. Finally, motion
vectors of Group 3 (G3) are determined based on surrounding
G1 and G2 motion vectors available after the above two steps.

To derive the new search algorithm, we use the block
numbering shown in Fig. 1, where block 5 is the target block.
The local cost function for the OBMC motion search can be
written as

(2)

where is the desired target pixel intensity,is the OBMC
predicted pixel intensity given by (1), and variable is the

Fig. 2. Macroblocks with checkerboard partitioning, where blocks are clas-
sified into three different groups.

unknown motion vector of the target block which is embedded
in . By using (1), the cost function can be expressed as

(3)

Our goal is to obtain the motion vector of the target
block to minimize the above function. However, (3) is also
a function of – . In other words, local cost functions are,
in fact, coupled. It becomes difficult to solve the minimiza-
tion problem with many unknown variables. We can apply
assumption 2 to simplify the problem and remove the number
of unknown neighboring vectors in the cost function. We
know from Fig. 2 and the group search order that, for G1
macroblocks, all neighboring motion vectors (four G2 blocks
and four G3 blocks) are unknown so that we simply set the
neighboring vectors to the same value as the target vector G1.
For G2, the neighboring four G1 motion vectors are available
so that we only have to set the four G3’s to the same value
as the target vector G2. A similar rule can be also applied to
G3 by setting four unknown surrounding G3 motion vectors
the same value as the target motion vector G3.

To summarize, we can divide motion search into three steps,
and determine motion vectors for G1, G2, and G3 blocks in
each step sequentially. For G1 blocks, the size of the motion
set involved in (3) is one, which is the unknown motion vector
of the target block. For G2 blocks, the size of the motion set
involved in (3) is five, consisting of one unknown motion
vector of the target block and four known motion vectors
of neighboring G1 blocks. For G3 blocks, the size of the
motion set involved is also five, consisting of one unknown
motion vector of the target block, two known motion vectors
of neighboring G1 blocks, and two known motion vectors of
neighboring G2 blocks. In terms of mathematics, letdenote
the known vector for block, we have

Step 1: G1

Step 2: G2

Step 3: G3
.
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(a) (b)

(c) (d)

Fig. 3. Derived bilinear window for Groups (a) G1, (b) G2, and (c) G3. The window support (d) is the bilinear weighting window.

By combining the above formulas with (3), we have the
following results for the three groups with the same form, i.e.,

(4)

for (5)

where

(6)

(7)

(8)

(9)

(10)

(11)

In deriving the GOBMC cost function, we see that (4)
requires the multiplication of with every reconstructed
block for each search displacement. The resulting computa-
tional cost is high. This cost can be significantly reduced by
dividing (4) with the nonzero coefficients as given in (5).
That is, the number of the window support multiplication is
reduced to only once per motion vector search for all search
displacements since the term is independent
of the search position , and has to be computed once only.

Coefficients of the group window support function can
be precalculated before the actual OBMC motion search. Their
values are plotted as the central 1616 matrix of the 32
32 window supports in Fig. 3(a)–(c) for the bilinear cases. As
far as the term is concerned, it is completely known since
it only involves known neighboring motion vectors. Thus, in
this minimization problem, the only unknown variable in (5)
is variable which is the desired target motion vector. From
(5), the cost function of GOBMC motion search looks similar
to that of the BMC, except that the term is replaced by

and an additional multiplication with is needed.
Therefore, we can apply BMC motion search methods such
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TABLE I
PSNR PERFORMANCE COMPARISON WITH RESPECT TOSEVEN DIFFERENT METHODS WITH THE BILINEAR WINDOW

TABLE II
COMPARISON OF THECOMPUTATIONAL COMPLEXITY OF ALGORITHMS FOR THE SUZIE SEQUENCE AS INDICATED

BY THE AVERAGE NUMBER OF BLOCK OPERATIONS PERMACROBLOCK, WHERE i IS THE NUMBER OF ITERATION

as the exhaustive search or various fast search algorithms to
(5) to obtain OBMC motion vectors. Depending on whether
exhaustive or fast BMC search algorithms are adopted, we
can get exhaustive GOBMC (E-GOBMC) or fast GOBMC
(F-GOBMC) search methods. In the implementation, we in-
corporate a fast BMC motion search algorithm proposed in [6]
to speed up the motion search process and to further reduce
the complexity of motion search. This fast BMC motion search
utilizes the spatial and temporal correlations of motion field to
predict the target motion vector based on motion vectors from
neighboring blocks or previous frames and then perform the
local refinement. If the refined motion vector is still not accu-
rate, then full search is applied. Compared to the E-GOBMC
search method, F-GOBMC motion search only requires around
20–35% of macroblocks for full search on the average.

IV. I MAGE RECONSTRUCTION: GOBMC-R1AND GOBMC-R2

Regarding image reconstruction in encoding or decoding,
we propose two new reconstruction algorithms called
GOBMC-R1 and GOBMC-R2 based on the following
observations. First, given BMC vectors, OBMC reconstruction
can give a better PSNR performance than the BMC
reconstruction even though motion vectors are optimized
for the BMC case. Second, the window support with a larger
motion set can give a better reconstructed image. In GOBMC-
R1, we use the traditional OBMC reconstruction, which adopts
a motion set of nine motion vectors and 32 32 window
support with the bilinear window shape for every group.

In order to reduce the complexity of OBMC reconstruction
in the decoder, we also consider an alternative in which we
do not use all nine motion vectors for every macroblock, but
simply apply those OBMC configurations of each group as in
the encoder to the decoder. This is called algorithm GOBMC-
R2. For each block in Group 1, no OBMC reconstruction
is used so that no block multiplication is required. As for

pixels in Groups 2 and 3 compared with GOBMC-R1, the
block weighting multiplication is reduced into 5/9 and 5/9,
respectively, because we can sum up the five out of nine
into and in advance as given in (10) and (11). For
example, for each OBMC reconstruction of blocks in Group 2,
we only have to perform the block multiplication of
in (5) as well as the block multiplications of , , ,
and in (7). The multiplication complexity of GOBMC-R2
reconstruction is reduced to about 38% of GOBMC-R1 (or
OBMC) based on the following computation:

where numbers 30, 20, and 49 are block counts in one
image frame for each group, respectively, and 99 is the total
block number within one image frame. Note that the above
complexity reduction result is valid for any QCIF sequence.

V. EXPERIMENTAL RESULTS

Seven QCIF videoconferencing image sequences are used in
the experiment to illustrate the performance of the proposed
algorithms. The first column of Table I gives the test video
title, and the number in parentheses is the total number of
frames used to generate the average results. For each video,
we perform a forward predictive coding with OBMC for all
frames (called the frames), except for the first frame which
is encoded as the frame, and compute the average PSNR
value for decoded frames. The experiments are conducted
based on the Telenor TMN5 H.263 environment with a fixed
quantization step of size 2. The size of the macroblock is

. The motion search displacement is in the range from
to 16. All motion vectors are in integer-pixel precision.

Bilinear window support is used.
We compare the performance of seven methods as shown in

Tables I–II and Figs. 4–5. The first three methods are existing
methods, while the last four are variations of the proposed
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Fig. 4. Comparison of the average PSNR values as a function of the iteration number for iterative OBMC (ORCH) and E-GOBMC-R1 with the bilinear
window. The ORCH and proposed E-GOBMC-R1 are denoted by a dotted line and a solid line, respectively.

(a) (b)

Fig. 5. PSNR performance comparison with respect to seven different methods with the bilinear window. The seven algorithms are: 1) BMC, 2) WATA,
3) ORCH, 4) E-GOBMC-R1, 5) E-GOBMC-R2, 6) F-GOBMC-R1, and 7) F-GOBMC-R2.

method. It is shown in Fig. 4 that our proposed algorithm
can be used in a noniterative fashion. In Fig. 4, two methods
are compared. The first method is ORCH [3], denoted by
the dotted line. It sets all initial motion vectors to zero and
performs the OBMC motion search at the first iteration, and
then refines OBMC motion field iteratively in the remaining

iterations. The second method E-GOBMC-R1 is denoted by
the solid line, which uses the proposed exhaustive GOBMC
scheme for motion search at the first iteration. Then, for the
remaining iterations, it uses the same bilinear window support
for all three groups as the ORCH method, while the motion
search is performed in the grouping order. As shown in Fig. 4,
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Fig. 6. Fifty-second DFD of block motion compensation (BMC) for the
Suzie sequence with PSNR = 30.33 dB.

E-GOBMC-R1 converges much faster than ORCH in test
video. In fact, GOBMC-R1 reaches nearly the local optimal
solution at the end of the first iteration. This justifies the
termination of GOBMC-R1 at the end of the first iteration.
It is also worthwhile to point out that the difference in the
converged PSNR values of ORCH and GOBMC-R1 is very
small as given in the fourth iteration.

The average PSNR results of seven algorithms are sum-
marized in Table I and Fig. 5. The WATA method [1] is
good enough to improve the PSNR value, even without
OBMC motion search. The PSNR value of E-GOBMC-R1
and F-GOBMC-R1 approaches that of iterative OBMC search
(ORCH) [3] with 0.05–0.1 dB degradation. The PSNR value
of GOBMC-R2 is not as good as GOBMC-R1, but it still
preserves about the same PSNR value as the WATA method
with a lower complexity in the decoder. If we use BMC motion
vector for GOBMC-R2 reconstruction, the performance is not
better than GOBMC-R2 reconstruction with GOBMC motion
search. The complexity saving of GOBMC-R2 in the decoder
without much PSNR degradation can be explained by the fact
that GOBMC motion search provides a suitable motion field
for GOBMC-R2 reconstruction. We also see from this table
that GOBMC with fast search (F-GOBMC) leads to a set
of good OBMC motion vectors which keep the same PSNR
as GOBMC with exhaustive search (E-GOBMC) at a lower
computational cost.

To show the visual effect and the removal of blocking
artifacts, three displaced frame difference (DFD) images of
Suzie are shown in Figs. 6–8, corresponding to the fifty-second
frame difference of the original and reconstructed frames by
using BMC, WATA, and E-GOBMC-R1, respectively. In these
figures, a darker gray level is used to indicate a larger DFD
value. As shown in Fig. 6 (BMC), one can see clearly the
blocking artifacts and two regions with a large DFD value in
the phone receiver and the collar of Suzie. Blocking artifacts
in Fig. 6 (BMC) are removed in the reconstructed images
of Figs. 7 (WATA) and 8 (E-GOBMC-R1), which are DFD

Fig. 7. Fifty-second DFD of BMC vectors with OBMC reconstruction for
the Suzie sequence with the bilinear window and PSNR = 31.51 dB.

Fig. 8. Fifty-second DFD of the proposed noniterative exhaustive
GOBMC-R1 for the Suzie sequence with the bilinear window and PSNR
= 32.79 dB.

images of OBMC with different search methods. However, the
two large DFD regions in the phone and the collar still remain.
The result of our proposed algorithm is shown in Fig. 8. Errors
in the two high DFD regions are substantially reduced and
spread out more uniformly to their neighborhood as the result
of efficient GOBMC motion search and prediction. Other parts,
e.g., the left eye of Suzie, are also improved in Fig. 8 in
comparison with Figs. 6 and 7. Note that the predication error
in Fig. 8 is lower than the ones in Figs. 6 and 7 because of
the lowest average value of PSNR as indicated in the figure
captions. In addition to the above examples, it is generally
true that the proposed E-GOBMC-R1 is subjectively better
since it has a lower and more uniform error distribution in
comparison with the WATA method.

The complexity comparison based on the average result for
the Suzie sequence is shown in Table II. For motion estimation
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in the encoder and frame reconstruction in the decoder, we can
measure the complexity by the number of addition/subtraction
and multiplication per macroblock. We count it as one block
operation for a 16 16 matrix (macroblock size) adding
or multiplying with a 16 16 matrix. For example, the

in (7) is counted as “one block operation” of
multiplication for each . As an example in F-GOBMC-R2 of
Table II, each macroblock requires 151.7 block operations of
addition/subtraction and 3.5 block operations of multiplication
on the average in the encoder. We observe that F-GOBMC-R1
and F-GOBMC-R2 have the lowest complexity in the encoder.
For the Suzie sequence, it takes only one-fifth of the exhaustive
motion search method. Furthermore, F-GOBMC-R2 saves
many computations in the decoder. Therefore, F-GOBMC-
R1 and F-GOBMC-R2 are the best algorithms in term of
complexity among the seven methods. One thing we have to
point out is that E-GOBMC-R1 still has a lower complexity
than iterative OBMC (ORCH) [3], even though the iteration
number of ORCH is set to one.

VI. CONCLUSIONS

In this work, we focused on the complexity reduction for
OBMC in both motion vector search at the encoder end
and image frame reconstruction at the decoder end. The
proposed motion search scheme GOBMC-R1 determines a set
of good motion vectors while giving almost the same PSNR
performance as iterative OBMC search (with 0.05–0.1 dB
degradation). Complexity reduction due to one motion search
per macroblock and fast search in the encoder make the

new algorithm GOBMC-R1 more attractive. By implementing
GOBMC-R1 with fast search algorithms, the complexity can
be reduced to 20%–35% of the exhaustive GOBMC search.
In block motion search, instead of applying one block mul-
tiplication per motion search displacement, we only perform
the block multiplication once per block motion search with
GOBMC-R1. Furthermore, GOBMC-R2 has the same motion
search complexity as GOBMC-R1 while with fewer block
multiplications. The multiplication complexity of OBMC re-
construction can be reduced to 38% of that of GOBMC-
R1 in the decoder by using GOBMC-R2. A good visual
quality is still preserved by GOBMC-R2, which has a similar
performance as that of BMC motion search with OBMC
reconstruction.
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