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WaveGuide: A Joint Wavelet-Based Image
Representation and Description System

Kai-Chieh Liang,Member, IEEE,and C.-C. Jay KuoFellow, IEEE

Abstract—Data representation and content description are two technique to image indexing. First, it is often difficult to
basic components required by the management of any image describe the content of an image such as complicated texture
database. A wavelet-based system, called the WaveGuide, whichy e with human languages. Second, manual annotation of
integrates these two components in a unified framework, is h f | datab K | f1i d eff
proposed in this work. In the WaveGuide system, images are teX.t p r"f‘ses or a large data as? ta esg oto t'me and effort.
compressed with the state-of-the-art wavelet coding technique Third, since users may have different interests in the same
and indexed with color, texture, and object shape descriptors gen- data, it is difficult to describe an image with a complete set of
erated in the wavelet domain during the encoding process. All the key words. Finally, even if all relevant image characteristics

content descrlpt_ors are extracFed by machlnes_automatlcallyWlth are annotated, difficulty may still arise due to the use of
a low computational complexity and stored with a low memory

space. Extensive experiments are performed to demonstrate the different indexing languages or vocabularies by different
performance of the new approach. users. Another approach to image indexing and retrieval is to
| o Lo . exploit low-level image description tools such as color, shape,
ndex Terms—Data compression, image description, image in- .
dexing, image representation, image retrieval, wavelet coding. ~@nd texture features that can be automatically extracted by
machines [1], [3], [13], [14], [30], [33], [34], [42]. It requires
much less effort in comparison with manual annotation. It
is worthwhile to emphasize that machine-extractable features
UE TO THE tremendous growth of multimedia infor-are not meant to replace keywords. High- and low-level
mation, effective management of multimedia archivingescription tools are compatible in the sense that they provide
and storage systems becomes more important and challengaamtent information at different abstract levels, i.e., semantic
For example, a remote sensing satellite, which generates seapd feature spaces, respectively. As stated in the document of
band images including three visible and four infrared spectruime MPEG7 standard [44], a motion picture can be described
regions, produces around 5000 images per week. Each sirfgfe keywords such as its title, director, date of release,
spectral image, which corresponds to a 170 kml85 km production company, etc., as well as machine-extractable
of the earth region, requires 200 Mega bytes of storage.fdatures including color or texture components of dominant
is estimated that the amount of data originated from satellfteames, motion information, and audio characteristics. It
systems will reach a terabyte per day [4]. To store, index, aigddesirable to integrate features in different aspects and at
retrieve such a huge amount of data is a very challenging tadkferent abstract levels to make the description complete.
Generally speaking, data representation and content descripA joint set of image descriptors including texture, color, and
tion are two basic components required by the managemshtpe features extracted from the wavelet domain is explored
of any multimedia database. As far as the image databasdois image indexing in this work. We allow an adjustable
concerned, the former is concerned with image storage whileighting in combining these features together according to
the latter is related to image indexing and retrieval. distinctive characteristics of the query image. For example,
Current commercial systems support image indexing basg¢dhe query image is special in its color attribute, the color
on the use of keywords or text phrases associated with imagesn be used as the main attribute while texture and shape
The keyword is a high-level tool of content description, anféatures as auxiliary attributes for similar image search in the
has been successfully applied to textual databases. Howewdettabase. A closely related issue is that images are stored
there are limits [1], [13], [14], [30] in applying the samein a certain compression format in the database. Compressed
images are composed by decorrelated bit streams of random
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stream (or with the least amount of decoding) for the indexirtbe layer zero coding (LZC) [45], the set partitioning in
purpose. Furthermore, if the size of content descriptors is roerarchical trees (SPIHT) [37], the rate-distortion optimized
well controlled, the complexity of feature matching can growvavelet packet (WP) [23], the multithreshold wavelet coding
and slow down the retrieval process. The amount of indexitiITWC) [48], etc. All the above methods consist of these
information required may take up the memory space and ctmee stages:

deteriorate storage efficiency of a database. Since image cont) application of the wavelet transform to a given image;
tent description and compression are closely related in term®) SAQ of wavelet coefficients to obtain a bit plane repre-
of content accessibility and indexing overhead, they should be  sentation of the wavelet coefficients:

examined together in the design of an image database. 3) effective entropy coding of the resulting bit planes.

_In this research, we aim at an integrated system for bothrpese methods are similar in the first two stages, but
image content description and compression, and adopt Higerent in the last stage. In the entropy coding stage, one can
state-of-the-art wavelet-based image coding technique [2gyssify the bit stream into two parts, i.e., the structured and the
[37], [38], [45]. The wavelet-based coding scheme providegsiryctured zero-one patterns, and encode them differently.
superior coding efficiency and new functionalities such &g far as the content description is concerned, it is difficult
resolution and quality scalability. Since a wavelet coded se the output bit stream from the third stage since it is
bit stream can be progressively decoded, the image Ccqfsp|y dependent on the algorithm for zero grouping [37], [38]
tent of a certain resolution can_be conveniently accessed gl the entropy coder [5], [49]. In comparison, the content
a certain stage of decompression. Thus, the wavelet-bagggesentation of the output from the 2nd stage is very robust.
image representation provides a good joint framework f@§,antized wavelet coefficients provide a very good spatial-
coding and content description. Furthermore, we carefulfyoency representation of the original image, while the bit
control the size of content descriptors both in terms of t§ane structure allows a fast computation of the histogram of
number of indexing elements and the number of bytes (@, e|et coefficients. Thus, quantized wavelet coefficients are
reduce the matching complexity as vyell as the Memory SPagfinsen to be the image representation method.

In other words, the amount of “bits about bits” (content the SAQ of wavelet coefficients and its corresponding bit
descriptors) [44] is exceedingly smaller than that of *daigyane structure is briefly reviewed below. To illustrate the SAQ
bits” [44] in our designed system. There has been growing,ceqyre, let us consider a setéfwavelet coefficients with
interest about con_tent—based image retrieval for last SeV%gnitudesWo, Wi,---, and Wy_1. Note that since signs
years. Examples include the IBM QBIC system [1], [13]o¢ yavelet coefficients are usually coded separately, one can
[14], [30], MIT Photobook system [33], [34], the Columbig;,: s on the magnitude quantization only. In SAQ, a sequence

VisualSEEk system [42], and the Virage system [3], among thresholdsry, 77, - - -, and T, are adopted for quantization,
many others. These systems provide a set of features fory they are related via

content description and a user-machine interface for image
search and browsing. However, they do not address the issue Ty ="T1/2, =12, L
of indexing a compressed image database. As to previcwﬁh the initial threshold to be one half of the maximum
work on wavelet domain features, most research focused BRani :
. . . ) gnitude, i.e.,
the use of wavelet coefficients to classify and differentiate
textures [6], [25], [27], [39], while some considered the use Th=13 max [Wi.

of color histograms of coefficients [28], [29] and locations _ .
of significant coefficients to facilitate image retrieval [19]70r @ given threshold valug, we scan all wavelet coefficients

Excellent performances have been reported in these pap@fdl two passes, i.e., the dominant pass and the subordinate
However, an integrated coding and content description syst@@ss: In the dominant pass, we identify significant coefficients
is seldom examined. A wavelet-based prototype system, calfgPending on whether they are larger or smaller than the

the WaveGuide, for image indexing, search, browsing, afsyrrent threshold. In the subordinate pass, we perform the
compression is presented in this work. magnitude refinement of all coefficients that are identified as

This paper is organized as follows. An effective imag&dnificant earlier. During the coding process, a binary map
representation scheme by using the successive approximatio@/led the significance map [38] is maintained to store the
quantization (SAQ) and the bit plane structure of wavel&pordinates of significant coefficients so that the coder knows
coefficients is reviewed in Section Il. Image content descriHJe locations of significant as well as insignificant coefficients.
tors based on quantized wavelet coefficients for texture, color,If Coefficient W, is identified as significant at quantization
and shape feature extraction are examined, respectively,/§i€l I, the quantized magnitude 6+, can Pe written as a
Sections I1I-V. The WaveGuide prototype system and expeRinary representation of the following form:
mental results are provided in Section VI. Finally, concluding QW,) = (1,Bn141, Buiga, )

remarks are given in Section VII. ) ) o
where B,, 141, Bn 142, -+ are refinement bits at quantization

levell+1, 142, and so on. The reconstructed (or dequantized)
Il. WAVELET-BASED IMAGE REPRESENTATION value of W, is equal to

Several wavelet-based coding methods have been proposed

. 3 I; 1
W, = =T, B, — B, — 4
recently such as the embedded zerotree wavelet (EZW) [38], 2 1+ [ Bois) 2 + f(Bnit2) 4 +
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Fig. 1. Textured images and their corresponding wavelet packet decompositions: (a) raffia, (b) water, (c) weave, and (d) grass.

where f(B) takes values oft1 and—1 when B is equal to speaking, the larger the number is, the higher energy the
one and zero, respectively. For more details, we refer to [38ubband possesses. This number also correlates well with the
To summarize, with SAQ and the bit plane representatioogding bit rates, since it takes approximately 1 bit to refine a
coefficients with a larger magnitudes are identified as signigignificant coefficient for an additional 1 bit precision in SAQ.
cant at an earlier quantization step with more refinement bitsFor a given texture and a predetermined threshold value
following. This approach allows a progressive representatidih, we propose to measure the importance of a subband by

of a given image. counting the number of significant coefficients, i.e.,
ll. TEXTURE DESCRIPTOR where.S; denotes theth subband andiV' (5, k) is the wavelet

Textures provide important surface characteristics of imageefficient at coordinat¢j, k). Furthermore, we can measure
objects and are widely chosen as features for image cl&3€ relative importance of a subband by considering the
sification and retrieval. Early work considered the statistid¥rmalized value of (1), i.e.,

(e.g., second-order statistics) or the distribution model (e.g., b — N; 5
the Gibbs distribution model) of textures [7], [11], [12], [16]. TS, (2)
The difficulty with traditional methods lies in the lack of an ; ‘

adequate multiresolution tool. Laws [24] used a local linear
transformation and the energy computation to extract textuf
features and obtained very good results. Laws’ method ca
be interpreted as a multichannel (or subband) decomposition
approach. Furthermore, it is known that many natural texturd 2 . . L S
can be modeled as quasiperiodic patterns. Research of hu gﬁ two qu:?mtlzatlon plns (|:e., significant .and |n5|.gn|f|cant

vision system (HVS) shows that the time-frequency repres ﬁyel). One |_mportant ISSUe 15 the appropriate ch0|_ce of the
tation [8], [36] can preserve both global and local informatioﬂarammem in (1) so that the image would have neither too

well and is suitable for the modeling of quasiperiodic sigI:'.Iany nar too few S|gn|f|_cant cgefflments. Let_us consider an
xtreme example. That is, (1) is computed with a very small

nals. The wavelet-based approach [6], [25] integrates t that all Hicients b anificant. F h
multiresolution and the space-frequency properties natural ,SO. at all coetlicients become significant. -or such a case,
=Y discriminating power of significant coefficient distribution

and has demonstrated a remarkable performance for textb ) . .
classification and analysis. among subbands is lost. In this work, we compute (1) with

Chang and Kuo [6] used the wavelet packet transform Espect to th_e_thres_ho_lm”lo of the te_nth_ _Iayer where about
decompose significant subbands adaptively for texture 0% of cpefﬁuents In iImages are S|gn|f|c§nt.

scription. As shown in Fig. 1, each textured pattern has isWe define the texture similarity as tig-distance between
own decomposition structure, and significant subbands i?gture vectors

decomposed into finer subbands successively. Here, we do Yr

not attempt to use the complicated decomposition structure as dr,(a,b) = <Z w; - |a; — bz‘|p> 3
the feature directly. Instead, we use the number of significant P

coefficients in a subband as feature, which serves as a rougterea and b are the feature vectors of two images angd
indicator of the significance of a particular subband. Generally the weighting factor for théth subband. The choice= 1

ere N; is the number of significant coefficients in thi
bband.

he texture feature as given in (1) and (2) can be viewed as
implified histogram of wavelet coefficients in each subband
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Fig. 2. Several images and their corresponding significant maps: (a) tomato, (b) pepper, (c) sunset, and (d) ski.

is used in our implementation. One reasonable choice;of

is the inverse of the total number of wavelet coefficients in

subbandi. Equation (3) is actually applicable regardless of

the decomposition structure. For the pyramid transform, where a0 a01 alo

only the coarsest subbands are recursively decomposed, we
can measure the similarity directly between images. For the
adaptive WP transform, the distance measure can be more

complicated, since two images may not have the same WP
decomposition structure. Here, we adopt a simple rule to
handle this situation. That is, when a further decomposed S
subband is matched to an undecomposed subband, we Sim@y 0001 20010 20011 al000 al001 al010 al011 all/4 all/4 all/4 all/4
assume that the undecomposed one has four pseudo-child @
subbands and each child node has one quarter of its parent’s
significance, as illustrated in Fig. 3.
The numbers of significant coefficients in a four-scale

pyramid transform of four test textures are listed in Table I, /

b00 b01 b10 bll

where the last digit in each subband denotes the level of N
decompositiort. Letters H and L denote the high and low
frequency subbands and subscriptsand y denote thezx- s

andy-directions, respectively. The four textures are shown in
Fig. 1 for visual comparison while the corresponding wavelet
packet decomposition for each texture is also provided. We S
can see from Table | and Fig. 1 that when a subband in the P !
pyramid structure iS Significant, i.e., having Certain amount 8(]()0() b0001 b0O10 bOO1T b10/4b10/4 b10/4b10/4  b1100 b1101 b1110 b1111
significant coefficients, it is refinely decomposed in the wavelet (b)
packet structure. In other words, our feature can effectivalyy. 3. Similarity measure of the subband significance feature between two
represent the importance of subbands as the structureswafelet packet structures.
wavelet packet decomposition. In this work, we use the
pyramid transform for our experiments. description. One may use an image segmentation method to
It is worthwhile to point out that the texture feature dispartition the image into several regions and then obtain texture
cussed above is sensitive to image orientation. For examgksture for each region. For the image indexing and retrieval
by rotating an image which has a large number of significaapplication, a very accurate segmentation result may not be
coefficients in theH,L, subbands with 90 degrees, mosessential. What is needed is to detect prominent regions with
significant coefficients are now located in theH, subbands distinctive features [10], [26]. To serve this objective, the
with the same content. Thus, this feature can only be usedp of significant wavelet coefficients provides an efficient
to retrieve similar images with the same orientation. Usuall§gol for image segmentation. Four images and their significant
there are several textures in a natural image with or withotefficient maps are given in Fig. 2. Two of them are object
a dominant texture component, which complicates its textuireages (tomato and pepper) while the other two are scene
images (sunset and ski). Objects in the tomato and pepper

1Zero denotes the highest frequency subbands3attime lowest frequency image are Clearly shown, and different tex.tu_red regions in
subbands. the sunset (the sky and the ocean) and ski images (the sky
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TABLE | luminance(Y) and the chrominancé/ and V') components
NUMBERS OF SIGNIFICANT WAVELET COEFFICIENTS IN A FOUR-SCALE of a colorful image with respect to thresholds, - - - , 7.

PYRAMID WAVELET DECOMPOSITION FORFOUR TEXTURES One popular metric employed to compare the distance of
Subband | Raffia | Water | Weave | Grass two color histograms is thd.,-norm as used in [1], [13],
LzLy3 | 0.010 | 0.011 | 0.007 | 0.008 [14], [30], and [41]. There are other quantitative ways to
HyLy3 | 0.010 | 0.010 | 0.007 | 0.007 characterize the shape of a histogram such as the mean,

L;H,3 | 0.010 | 0.009 | 0.007 | 0.008
H;H,3 | 0.011 | 0.009 | 0.007 | 0.007
H.Ly2 | 0.040 | 0.041 | 0.028 | 0.028
L. H,2 | 0041 | 0.029 | 0.028 | 0.028
H,H,2 | 0.036 | 0.029 | 0.029 | 0.027

standard deviation, entropy, energy, etc. [31]. Here, we adopt
the mean, the variance, and the skewness of a histogram as
similarity metrics. For th&” component, we have

H,L, | 0121 | 0.159 | 0.106 | 0.107 Ay
L.H,1 | 0146 | 0.053 | 0.106 | 0.095 py =Y Pr()-er (D),
H H,21 | 0077 | 0.045 | 0.080 | 0.087 1=0
H,L,0 | 0.171 | 0.449 | 0.279 | 0.296 L1 1/2
L H,0 | 0.296 | 0.086 | 0.221 | 0.190 oy = Z Py(D)-(ey (D) —puy)?]
H,H,0 | 0.030 | 0.072 | 0.097 | 0.108 =0
Lt 1/3
. . _ sy = Py(D) - (ey (D) — py)?
and the snow) are detected, respectively, in the corresponding Y <lz% v (D)~ (er (D) = ) )

significant coefficient maps. The proposed texture extraction

method can be performed in each textured region. where 11, 5, and s denote the mean, variance, and skewness

measures, respectivelyy the probability value, andy (1)
IV. COLOR DESCRIPTOR the centroid for binl. The centroid is often set to the

Color has long been recognized as a useful feature fegnter of a bin except for the last bin, which is set to zero,
content-based retrieval [1], [3], [13], [14], [30], [33], [34],because insignificant coefficients are not coded and treated as
[40]-[42], [50]. One distinctive property of the color featurezeros. Similar expressions can be written for theand V'
is its invariance under translation and rotation about tf@mponents.
viewing axis and its slow variation under the change of the There are two reasons to justify the use of color moments as
viewing angle, scale, and occlusion [41]. The color of athe similarity metric. First, according to the moment represen-
image is usually represented by the statistics (histogram) of fiaéion theorem, the infinite set of moments uniquely determine
tristimulus values of pixels, such &®,G, B) or (Y,U,V), a probability distribution, and vice versa [20]. Since higher
based on the entire image or selected areas in the spatger moments decay faster, we can reduce the size of feature
domain. In this work, we investigate the wavelet color contegctors as well as the complexity of feature matching by
description in theY' IV coordinate system. using the first three color moments. In the current context,

The distribution of wavelet coefficients of an image is firshstead of storing 36 probability values (for three 12-element
studied for an appropriate choice of the color quantizatidiistograms), we only have to store nine moments (i.e., three
scheme. Let us plot the magnitude distribution of pixels in tH@oments for each histogram) for the color description. Second,
space domain and that of coefficients in the wavelet domainitivas observed in [40] that color moments are more robust
Fig. 4(a) and (b), respectively, for the Lena image. Generalijan the L;-distance measure of the histogram difference.
speaking, the magnitude distribution in the space domain cAf shown in Fig. 6, three histograms are ordered in such a
be quite different depending on the image characteristi®¥@y that neighboring bins corresponding to similar colors.
while the magnitude distribution of wavelet coefficients islistograms in (a) and (b) are more similar perceptually.
close to the Laplacian function, which suggests a nonuniforitpwever, with theL, -distance computation, there is no match
quantization scheme by allocating more bins in the highbgtween (a) and (b) while there is one match between (a)
probability density area to achieve a better approximatiéid (c). In this example, thé,-distance measure contradicts
of the distribution. The exponentially decaying shape of tiBe human visual system (HVS) in the perception of color
wavelet coefficient distribution has been effectively exploitedimilarity. If the moments are used to model these histograms,
by modern wavelet coders [23], [37], [38], [45] via SAQ anda) will be more similar to (b) than (c), since (a) and (b) are
the bit plane coding. Based on SAQ, it is straightforward tenly slightly shifted from each other.
obtain the desired nonuniform histogram as shown in Fig. 5: We defined color similarity as thg, -distance between color

) . moments
P(1) = {PR{TI < W( k)| <2n}, if0<I<L

Pr{IW 3, k)| < Tz}, ifl=L 11
(W) <Ti) dr (f,9) =wuy - |bv,f — vgl Y weu - [pop — gl

+ wu,V : |NV’,f - NV’,g
+wou - lov s — ougl two v - lovy —ovy

where 17 denotes the quantization threshold for layer<

[ < L. In other words,P(l) corresponds to the probability
of coefficients that are just identified significant when the
quantization threshold is set t6. In our implementation, +wsy - [y, — Sygl +wsu - sUp — sUl
three 12-bin histograms are computed, respectively, from the +ws v - sy — Sy

+woy - oy, — oyl

(4)
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Fig. 4. Lena image and its magnitude distribution in the (a) space and (b) wavelet domains.
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Fig. 5. Color histogram calculation based on a nonuniform quantization scheme
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Fig. 6. Example illustrating the inefficiency of thie, -distance of color histograms. [40].
wherew's are the weighting parameters adjustable by users. V. SHAPE DESCRIPTOR
In our implementation, we use the following empirical values: pravious work on spatial features focused on the shape of
1 1 1 an image object. There is, however, no mathematically rigor-
Wpy Woy Wsy ﬁ ﬁ ﬁ ous definition of shape similarity that accounts for semantic
WU WoU WsU | = |7 1 1 recognition or perceptual judgment of human beings [43].
Wpv Wo v Wsy 1 1 1 Computational shape methods [43] include the moment-based

matching algorithm, the parametric curve distance measure,
The weights associated with thé-component are decreasedthe turning angle matching method, etc. Moment-based algo-
sinceyu, o, ands of U andV are smaller in comparison with rithms treat an image as a 2-D probability function and applies
those of Y. the moment theory to this function [17], [46]. The parametric
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curve distance approach represents the object boundariesnbgge size. Again, thd.;-distance is used to measure the
a set of spline functions and measure the distances betwsanilarity of feature vectors.
boundary curves. In the turning angle method [2], the turning It is worthwhile to compare our work with that of Jaceb
angle along the perimeter of an object is recorded by ah [19]. In [19], coefficients are quantized intel (if negative
function 6. Then, elements off are matched to those ofand significant),+1 (if positive and significant), an@ (if
other sets for similarity comparison. Pairing of elemenissignificant). Thus, a gray-level image can be represented
could be multiple-to-one or one-to-one, but it must procedsy a map consisting of three valuesi, 0, and+1. Their
monotonically through both sets. Basically, the above methaosisnilarity metric is theL,-distance measure, which is suitable
are performed in the space domain and does not fit di@ar comparing objects with the same shape and the same
wavelet-domain framework. Besides, a binary shape imalpeation in two images but sensitive to translation, rotation and
has to be generated from the image first by an automatic os@le change of objects. Thus, the application of their method
manual algorithm before any shape analysis. to content-based image retrieval is too restrictive. In contrast,
A wavelet-based approach is adopted for shape analysis measure the normalized central spatial moments of the
here. Again, we start with the significant map of SAQsignificant map in each subband for similarity test, which are
which is automatically generated during the coding procesapre widely applicable. Besides, our method uses a smaller
as a binary description of an object, and compute the spati@rcentage of significant coefficients (25%) than theirs (50%)
moments accordingly [17], [31]. The significant map, as shown determining the image shape map.
in Fig. 2, is a binary record of the address of significant
coefficients. It contains spatial information of an image object VI. WAVEGUIDE PROTOTYPE
in various scales (or resolutions) and frequency channels,
therefore serving as an adequate tool for multiresolution sha%e
analysis. Let us take the tomato image in Fig. 2(a) as anWe have built a wavelet-based query-by-example prototype
example, edges along th€-, Y-, and XY -directions are ex- for image indexing, searching, browsing and compression
tracted in theHd, L, L. H,, andH, H, subbands, respectively,called the WaveGuide system. As illustrated in Fig. 7, Wave-
with different scales. Note that since topological attribute§uide has two basic building modules: the coding and index-
such as the object area or the perimeter, are not necessarity module and the decoding and retrieval module. The first
connected in the map, it is difficult to apply the turning angleodule contains building blocks for the wavelet transform, the
or the parametric curve distance methods to these data.slrccessive approximation quantizer, and the entropy coder,
comparison, the moment-based approach is still applicabdéad the texture, color, and shape feature extraction engines.
The spatial moment of ordép, ¢) can be defined as follows They are used to generate the compressed bit streams and
[31]: indexing files, respectively. Every input image is indexed
1 and compressed simultaneously by using this module. For
Mpq = Top 74 3 (e —TP(y; —)BGLE)  (5) image retrieval, the user first selects a query image through
kg the WWW interface. Then, the system compares its texture,

where B(j, k) is the binary value of the significant map (on&olor, and shape descriptors with those of the images in the
for significant and zero for insignificant)l and K are the database and find out good matches, which are decoded and

number of rows and columns of the corresponding subbandlisplayed for the user. Due to the multiresolution property
. L of wavelet coding, the decoding and transmission of wavelet-
tp=k—35, y=J+35-7J coded images can be progressive. Therefore, the browsing and
| confirmation of image candidates are effective.

System and Interface

andz andy are mean values af; and y;. Since central ide i b I id
moments are computed with respect to centraidand 7 in WaveGuide is a query-by-example system. We provide

each direction, they are invariant under the translation of t§@MpPle images to guide users through their search of de-

object. We can further normalize the moments by the tor%qred targets. The concept of query-by-example is based on
object area to make it invariant to the change of scale via '€ observation that many users have only vaguely defined
information needs so that they may be able to recognize

Tlpg = Mea  \where o = pra ., (6) What they are looking for rather than describing or sketching
mGo 2 it [15]. For such an application, pictorial examples and an

As a result,7,, is invariant both to translation and scaldnteractive and cooperative human-machine interface can be

change. In our implementation, the spatial distribution in @ great help. Currently, WaveGuide does not support direct
subband is described by nine elements: two meamgsand duery on features, i.e., we do not provide feature pallettes
7;), three variance$no, 711, and7oz), and four skewnesses (pickers), sketch boards, or painting tools. This can be easily
(m30, 721, M2, and 7p3). In this work, we compute the added in the next version of the system.

moments ofH,.L,, L,H,, and H, H, subbands in the first To effectively access information in an image database,
three scales only. Thus, the shape feature vector consistghgfre are several design criteria for user interface [15]:

81 float numbers. Note that it is not necessary to compute thel) integration of various query mechanisms,

moments in all the scales, because the resolution of shape®) a visual or graphical user interface (GUI),

decrease in the coarse scales. We may select the number &) incorporation of user’s relevant feedback,

scales according to the desired feature vector size and thd) support of user-guided navigation.
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from the database to give users an idea of the image types that
can be accessed. The three query mechanisms—texture, color,
and shape—are listed in the page. Users can select an image as
the query image and select one or several features as querying
features. The retrieved candidates are then displayed. Users
can browse them or select one of them and several features
for the next query process. Through such a process, users can
access to the small portion of image data of their interest.
Our primary goal with WaveGuide is to develop an efficient
information filter to reduce the set of data that needs to be
browsed at a later stage.

B. Wavelet Image Database

WaveGuide caters to still color images. At this moment,
the experimental image database consists of 2127 natural im-
ages, including landscapes, animals, buildings, people, flowers,
plants, etc. of size 19% 128 from the Corel Professional
Photos CD-ROM. Just as QBIC, we do not attempt to build
up complicated data model with WaveGuide. The system
concentrates on the signal processing techniques such as
indexing, low-level feature extraction, similarity matching, and
compression rather than techniques like data models, semantic
world representation or annotation, which are usually applied
in the systems developed by database researchers [15]. A
complete data model for a natural image database can be a
pretty difficult task. Due to the lack of data models, we also
bypassed the use of query languages such as SQL or PSQL.
Specifically, there are only two main data types in our system:
scene and object, which is part of a scene.

The database is compressed in WV color space by the
modern wavelet coder mentioned in Section Il. In the wavelet
transform, four and three levels of pyramid decompositions
are performed for the luminan¢&”) and chrominancél/ and
V) components, respectively. Consequently, there are thirteen
subbands for the luminance component and ten subbands
for each chrominance component. Texture, color, and shape
features were extracted according to algorithms described in
previous sections. Among these features, texture and shape
descriptors are computed only from thécomponent of an
image, and the color descriptors are computed fromhe
U-, andV-components. The sizes of the proposed descriptors
are given in Table Il. The indexing cost is measured in terms
of the number of elements in the feature vector and the number
of bytes required to represent each feature vector (where
4 bytes is used to represent one floating number). Both the
computational complexity and the memory requirement are
controlled. As shown in Table II, the total size of the indexing
file with our method is equal to 103 elements, which is less
than that required by a 256-element color histogram [1], [13],
[14], [30], [50].

€. Joint Content Description

The WaveGuide system allows users a humber of content

To meet parts of these criteria, we implemented the Waweescriptors for image retrieval. When several descriptors are
Guide interface on the World Wide Web (WWW) by using Cused simultaneously, it is necessary to integrate similarity
HTML, UNIX, and Common-Gateway-Interface (CGl). In thescores resulting from the matching in different feature spaces.
titte Web page, we show a subset of images randomly selectadthis work, we adopt two methods to handle this issue
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TABLE I
COMPARISON OF THE PROPOSED THREE
DIFFERENT TYPES OF WAVELET DESCRIPTORS
Descriptor Texture Color Shape

Type no. of significant coef. | color moments | spatial moments
Size 13-element 9-clement §1-element
Bytes 52 36 324

[14], [26]. The first one [14] is to normalize all scores in Fig. 8. Sunset query image set.
different spaces to the same range from zero to one, where

zero represents perfect similarity (i.e., zero distance) and 0|- . - -

normalized scores with a weighting. Another approach [2¢
is to rank the images from one t®& according to each

individual score, whereN is the total number of image
items in the database. The final ranking of an image

the weighted sum of each individual ranking result. Botl
approaches were implemented in our work. It was observeu
that their performances are comparable. We choose the firigt 9. Retrieved results based on the texture descriptor of the first sunset
approach. as the default. method in our system due to its lo i g’;[g,t\r/]vgeggnl(t;:]r.]s are ranked from the left to the right and then from the
computational complexity.

D. Retrieval Performance Evaluation ,
The retrieval performance of the WaveGuide prototyp I
system has been evaluated. The retrieval efficiency is measu
in terms of recall and precision [15], [29]. For each quer
imageq in a database of siz& (K = 2127 in our system), §&
there areN, such similar images. Let., n.,, ns, be the
numbers of correct, missed, and false candidates, respectivery,
in the first M retrieved images with the smallest matchin@g- 10. Retrieved results based on the color descriptor of the first sunset
errors. The precisiorpq and recalqu for the query image; Image, where items are ranked from the left to the right and then from the

. top to the bottom.
are defined as

no similarity (i.e., the largest distance), and then add all tt
[ n

e e

Pe= = ) Results by using the texture feature are shown in Fig. 9.

and e TN It is clear that retrieved items have common textures such
as sky, beach (sand), and water. Since the frequency feature

e = e _ Me ©) is sensitive to the orientation, all the retrieved items have

e+ N Ny the same orientation. The three vertical Sunset queries—the

second, seventh, and eighth images in the query image set—do
I and . I . . toct retrieval ﬁf)t rank at the top eight positions. Besides, since the search
recall and precision. In practice, since a perfect retrieval sy, cqq on texture only, color unlikeness is possible (e.g., the
difficult to obtain, a good balance between the two parametei§y, - of jtems 6-8). In Fig. 9, four sunsets, the first to the

is desired [15]. fourth items are retrieved from the query set; the precision

. Preliminary experiments are carried out by using sever&kd the recall are both equal to 0.5. In addition to the four
image sets to evaluate the performafidéote that the perfor- carrect candidates, the fifth item is actually a similar image

mance e_valuation gf image retrieval technjques is in gene t from another category. Results of the query based on the
difficult since there is no commonly agreed |mage_database lor feature are shown in Fig. 10 for comparison. Since the
comparative study and the performance would highly depeE lor is a global feature, images of different orientations can

on the selection of query image. Let us first demonstrate t retrieved (e.g., the sixth to eighth items). Because images

retrieval of scene images. The test query set is the sunset 'MABE matched by the color, results are not necessarily similar in

as shown in Fig. 8. Since these pictures are sunset SCeRures. In Fig. 10, five sunset images, the first through the

without clegr objects, t.hey can retrieved by texture and COI? jurth and the seventh, are retrieved from the query set and
When t_he first Su_nset image is used as the query Image, eig E similar image, the eighth item, from other category. In
items (i.e., the size of th_e query set) are retrl_eved frqm t?ﬁis case, the precision and the recall rate are @oiﬁesults
databaset. The 'dEa(lj r.ett['ﬁvatl W'". ?ﬁ tha'Ft_aII 'mages n tl}f‘y using a joint feature set of color and texture are shown in
query set are ranked in the top eight positions. Fig. 11. The total distance is computed by the summation of
2The color images can be accessed via the web siR0% color distance and 50% texture distance. From Fig. 11,
http://viola.usc.edu/extranet/|EEEIP 99nov/. one can see that all items are similar in both color components

Ideally, we want a unity value of both parameters for a perfe



1628 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 8, NO. 11, NOVEMBER 1999

the total distance based on 80% shape, 10% texture, and 10%
color. We get a better result, i.e., images of a single flower
with similar texture and color appear in the top positions.

VII.

- - B In this work, we proposed an integrated wavelet indexing
and coding system and demonstrated the use of a joint feature

Eig. 11. Rgtrieved results_ based on joint texture and color desqriptors of ®8t for content-based image retrieval. All the features—texture,
first sunset image, where items are ranked from the left to the right and then L -

from the top to the bottom. color, and shape—are based on significant wavelet coefficients
and their energy distribution among subbands and across
guantization layers. In addition, sizes of content descriptors are
carefully monitored to reduce the computational complexity
and the memory space. Since images are compressed and
indexed at the same time, the image database management
problem can be greatly simplified.

The developed WaveGuide prototype system is far from
completion. There are several parts which can be further
improved. First, we would like to support the user feedback to
achieve a truly interactive query process. Second, the database
has to be enlarged to include more different types of images.
Third, we would like to consider ways to reduce the amount
of shape features and exploit the features in a more natural
way. Fourth, it is interesting to see whether the wavelet-
based descriptors can help in organizing the image database to
facilitate the image retrieval process. Finally, it is important
to find metrics to measure the performance of an image query
engine in addition to precision and recall so that we can
compare different query algorithms or systems in a more

Fig. 13. Retrieved results based on the shape descriptor of the first r@fgjective way.
image, where items are ranked from the left to the right and then from the
top to the bottom.

CONCLUSION AND EXTENSION

Fig. 12. Rose query image set.
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