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Abstract—Data representation and content description are two
basic components required by the management of any image
database. A wavelet-based system, called the WaveGuide, which
integrates these two components in a unified framework, is
proposed in this work. In the WaveGuide system, images are
compressed with the state-of-the-art wavelet coding technique
and indexed with color, texture, and object shape descriptors gen-
erated in the wavelet domain during the encoding process. All the
content descriptors are extracted by machines automatically with
a low computational complexity and stored with a low memory
space. Extensive experiments are performed to demonstrate the
performance of the new approach.

Index Terms—Data compression, image description, image in-
dexing, image representation, image retrieval, wavelet coding.

I. INTRODUCTION

DUE TO THE tremendous growth of multimedia infor-
mation, effective management of multimedia archiving

and storage systems becomes more important and challenging.
For example, a remote sensing satellite, which generates seven
band images including three visible and four infrared spectrum
regions, produces around 5000 images per week. Each single
spectral image, which corresponds to a 170 km185 km
of the earth region, requires 200 Mega bytes of storage. It
is estimated that the amount of data originated from satellite
systems will reach a terabyte per day [4]. To store, index, and
retrieve such a huge amount of data is a very challenging task.
Generally speaking, data representation and content descrip-
tion are two basic components required by the management
of any multimedia database. As far as the image database is
concerned, the former is concerned with image storage while
the latter is related to image indexing and retrieval.

Current commercial systems support image indexing based
on the use of keywords or text phrases associated with images.
The keyword is a high-level tool of content description, and
has been successfully applied to textual databases. However,
there are limits [1], [13], [14], [30] in applying the same
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technique to image indexing. First, it is often difficult to
describe the content of an image such as complicated texture
patterns with human languages. Second, manual annotation of
text phrases for a large database takes a lot of time and effort.
Third, since users may have different interests in the same
data, it is difficult to describe an image with a complete set of
key words. Finally, even if all relevant image characteristics
are annotated, difficulty may still arise due to the use of
different indexing languages or vocabularies by different
users. Another approach to image indexing and retrieval is to
exploit low-level image description tools such as color, shape,
and texture features that can be automatically extracted by
machines [1], [3], [13], [14], [30], [33], [34], [42]. It requires
much less effort in comparison with manual annotation. It
is worthwhile to emphasize that machine-extractable features
are not meant to replace keywords. High- and low-level
description tools are compatible in the sense that they provide
content information at different abstract levels, i.e., semantic
and feature spaces, respectively. As stated in the document of
the MPEG7 standard [44], a motion picture can be described
by keywords such as its title, director, date of release,
production company, etc., as well as machine-extractable
features including color or texture components of dominant
frames, motion information, and audio characteristics. It
is desirable to integrate features in different aspects and at
different abstract levels to make the description complete.

A joint set of image descriptors including texture, color, and
shape features extracted from the wavelet domain is explored
for image indexing in this work. We allow an adjustable
weighting in combining these features together according to
distinctive characteristics of the query image. For example,
if the query image is special in its color attribute, the color
can be used as the main attribute while texture and shape
features as auxiliary attributes for similar image search in the
database. A closely related issue is that images are stored
in a certain compression format in the database. Compressed
images are composed by decorrelated bit streams of random
zero’s and one’s, from which image features are difficult to
extract. A straightforward approach to indexing a compressed
image is to decode the bit stream for the original image, and
then extract content descriptors accordingly. This indexing
procedure is, however, inefficient, since it takes extra time and
computational complexity. Thus, besides bit rates, distortion
and complexity, a fourth criterion of evaluating an image
coding scheme was proposed in [32] based on its content
accessibility. With the new criterion, a good coding technique
should provide content access without fully decoding the bit
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stream (or with the least amount of decoding) for the indexing
purpose. Furthermore, if the size of content descriptors is not
well controlled, the complexity of feature matching can grow
and slow down the retrieval process. The amount of indexing
information required may take up the memory space and can
deteriorate storage efficiency of a database. Since image con-
tent description and compression are closely related in terms
of content accessibility and indexing overhead, they should be
examined together in the design of an image database.

In this research, we aim at an integrated system for both
image content description and compression, and adopt the
state-of-the-art wavelet-based image coding technique [23],
[37], [38], [45]. The wavelet-based coding scheme provides
superior coding efficiency and new functionalities such as
resolution and quality scalability. Since a wavelet coded
bit stream can be progressively decoded, the image con-
tent of a certain resolution can be conveniently accessed at
a certain stage of decompression. Thus, the wavelet-based
image representation provides a good joint framework for
coding and content description. Furthermore, we carefully
control the size of content descriptors both in terms of the
number of indexing elements and the number of bytes to
reduce the matching complexity as well as the memory space.
In other words, the amount of “bits about bits” (content
descriptors) [44] is exceedingly smaller than that of “data
bits” [44] in our designed system. There has been growing
interest about content-based image retrieval for last several
years. Examples include the IBM QBIC system [1], [13],
[14], [30], MIT Photobook system [33], [34], the Columbia
VisualSEEk system [42], and the Virage system [3], among
many others. These systems provide a set of features for
content description and a user-machine interface for image
search and browsing. However, they do not address the issue
of indexing a compressed image database. As to previous
work on wavelet domain features, most research focused on
the use of wavelet coefficients to classify and differentiate
textures [6], [25], [27], [39], while some considered the use
of color histograms of coefficients [28], [29] and locations
of significant coefficients to facilitate image retrieval [19].
Excellent performances have been reported in these papers.
However, an integrated coding and content description system
is seldom examined. A wavelet-based prototype system, called
the WaveGuide, for image indexing, search, browsing, and
compression is presented in this work.

This paper is organized as follows. An effective image
representation scheme by using the successive approximation
quantization (SAQ) and the bit plane structure of wavelet
coefficients is reviewed in Section II. Image content descrip-
tors based on quantized wavelet coefficients for texture, color,
and shape feature extraction are examined, respectively, in
Sections III–V. The WaveGuide prototype system and experi-
mental results are provided in Section VI. Finally, concluding
remarks are given in Section VII.

II. WAVELET-BASED IMAGE REPRESENTATION

Several wavelet-based coding methods have been proposed
recently such as the embedded zerotree wavelet (EZW) [38],

the layer zero coding (LZC) [45], the set partitioning in
hierarchical trees (SPIHT) [37], the rate-distortion optimized
wavelet packet (WP) [23], the multithreshold wavelet coding
(MTWC) [48], etc. All the above methods consist of these
three stages:

1) application of the wavelet transform to a given image;
2) SAQ of wavelet coefficients to obtain a bit plane repre-

sentation of the wavelet coefficients;
3) effective entropy coding of the resulting bit planes.

These methods are similar in the first two stages, but
different in the last stage. In the entropy coding stage, one can
classify the bit stream into two parts, i.e., the structured and the
unstructured zero-one patterns, and encode them differently.
As far as the content description is concerned, it is difficult
to use the output bit stream from the third stage since it is
highly dependent on the algorithm for zero grouping [37], [38]
and the entropy coder [5], [49]. In comparison, the content
representation of the output from the 2nd stage is very robust.
Quantized wavelet coefficients provide a very good spatial-
frequency representation of the original image, while the bit
plane structure allows a fast computation of the histogram of
wavelet coefficients. Thus, quantized wavelet coefficients are
chosen to be the image representation method.

The SAQ of wavelet coefficients and its corresponding bit
plane structure is briefly reviewed below. To illustrate the SAQ
procedure, let us consider a set ofwavelet coefficients with
magnitudes and Note that since signs
of wavelet coefficients are usually coded separately, one can
focus on the magnitude quantization only. In SAQ, a sequence
of thresholds and are adopted for quantization,
and they are related via

With the initial threshold to be one half of the maximum
magnitude, i.e.,

For a given threshold value we scan all wavelet coefficients
with two passes, i.e., the dominant pass and the subordinate
pass. In the dominant pass, we identify significant coefficients
depending on whether they are larger or smaller than the
current threshold. In the subordinate pass, we perform the
magnitude refinement of all coefficients that are identified as
significant earlier. During the coding process, a binary map

called the significance map [38] is maintained to store the
coordinates of significant coefficients so that the coder knows
the locations of significant as well as insignificant coefficients.

If coefficient is identified as significant at quantization
level the quantized magnitude of can be written as a
binary representation of the following form:

where are refinement bits at quantization
level and so on. The reconstructed (or dequantized)
value of is equal to
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(a) (b) (c) (d)

Fig. 1. Textured images and their corresponding wavelet packet decompositions: (a) raffia, (b) water, (c) weave, and (d) grass.

where takes values of 1 and 1 when is equal to
one and zero, respectively. For more details, we refer to [38].

To summarize, with SAQ and the bit plane representation,
coefficients with a larger magnitudes are identified as signifi-
cant at an earlier quantization step with more refinement bits
following. This approach allows a progressive representation
of a given image.

III. T EXTURE DESCRIPTOR

Textures provide important surface characteristics of image
objects and are widely chosen as features for image clas-
sification and retrieval. Early work considered the statistics
(e.g., second-order statistics) or the distribution model (e.g.,
the Gibbs distribution model) of textures [7], [11], [12], [16].
The difficulty with traditional methods lies in the lack of an
adequate multiresolution tool. Laws [24] used a local linear
transformation and the energy computation to extract texture
features and obtained very good results. Laws’ method can
be interpreted as a multichannel (or subband) decomposition
approach. Furthermore, it is known that many natural textures
can be modeled as quasiperiodic patterns. Research of human
vision system (HVS) shows that the time-frequency represen-
tation [8], [36] can preserve both global and local information
well and is suitable for the modeling of quasiperiodic sig-
nals. The wavelet-based approach [6], [25] integrates the
multiresolution and the space-frequency properties naturally,
and has demonstrated a remarkable performance for texture
classification and analysis.

Chang and Kuo [6] used the wavelet packet transform to
decompose significant subbands adaptively for texture de-
scription. As shown in Fig. 1, each textured pattern has its
own decomposition structure, and significant subbands are
decomposed into finer subbands successively. Here, we do
not attempt to use the complicated decomposition structure as
the feature directly. Instead, we use the number of significant
coefficients in a subband as feature, which serves as a rough
indicator of the significance of a particular subband. Generally

speaking, the larger the number is, the higher energy the
subband possesses. This number also correlates well with the
coding bit rates, since it takes approximately 1 bit to refine a
significant coefficient for an additional 1 bit precision in SAQ.

For a given texture and a predetermined threshold value
we propose to measure the importance of a subband by

counting the number of significant coefficients, i.e.,

(1)

where denotes theth subband and is the wavelet
coefficient at coordinate Furthermore, we can measure
the relative importance of a subband by considering the
normalized value of (1), i.e.,

(2)

where is the number of significant coefficients in theth
subband.

The texture feature as given in (1) and (2) can be viewed as
a simplified histogram of wavelet coefficients in each subband
with two quantization bins (i.e., significant and insignificant
level). One important issue is the appropriate choice of the
parameter in (1) so that the image would have neither too
many nor too few significant coefficients. Let us consider an
extreme example. That is, (1) is computed with a very small

so that all coefficients become significant. For such a case,
the discriminating power of significant coefficient distribution
among subbands is lost. In this work, we compute (1) with
respect to the threshold of the tenth layer where about
50% of coefficients in images are significant.

We define the texture similarity as the -distance between
feature vectors

(3)

where and are the feature vectors of two images and
is the weighting factor for theth subband. The choice
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(a) (b) (c) (d)

Fig. 2. Several images and their corresponding significant maps: (a) tomato, (b) pepper, (c) sunset, and (d) ski.

is used in our implementation. One reasonable choice of
is the inverse of the total number of wavelet coefficients in
subband Equation (3) is actually applicable regardless of
the decomposition structure. For the pyramid transform, where
only the coarsest subbands are recursively decomposed, we
can measure the similarity directly between images. For the
adaptive WP transform, the distance measure can be more
complicated, since two images may not have the same WP
decomposition structure. Here, we adopt a simple rule to
handle this situation. That is, when a further decomposed
subband is matched to an undecomposed subband, we simply
assume that the undecomposed one has four pseudo-child
subbands and each child node has one quarter of its parent’s
significance, as illustrated in Fig. 3.

The numbers of significant coefficients in a four-scale
pyramid transform of four test textures are listed in Table I,
where the last digit in each subband denotes the level of
decomposition.1 Letters and denote the high and low
frequency subbands and subscriptsand denote the -
and -directions, respectively. The four textures are shown in
Fig. 1 for visual comparison while the corresponding wavelet
packet decomposition for each texture is also provided. We
can see from Table I and Fig. 1 that when a subband in the
pyramid structure is significant, i.e., having certain amount of
significant coefficients, it is refinely decomposed in the wavelet
packet structure. In other words, our feature can effectively
represent the importance of subbands as the structures of
wavelet packet decomposition. In this work, we use the
pyramid transform for our experiments.

It is worthwhile to point out that the texture feature dis-
cussed above is sensitive to image orientation. For example,
by rotating an image which has a large number of significant
coefficients in the subbands with 90 degrees, most
significant coefficients are now located in the subbands
with the same content. Thus, this feature can only be used
to retrieve similar images with the same orientation. Usually,
there are several textures in a natural image with or without
a dominant texture component, which complicates its texture

1Zero denotes the highest frequency subbands and3 the lowest frequency
subbands.

(a)

(b)

Fig. 3. Similarity measure of the subband significance feature between two
wavelet packet structures.

description. One may use an image segmentation method to
partition the image into several regions and then obtain texture
feature for each region. For the image indexing and retrieval
application, a very accurate segmentation result may not be
essential. What is needed is to detect prominent regions with
distinctive features [10], [26]. To serve this objective, the
map of significant wavelet coefficients provides an efficient
tool for image segmentation. Four images and their significant
coefficient maps are given in Fig. 2. Two of them are object
images (tomato and pepper) while the other two are scene
images (sunset and ski). Objects in the tomato and pepper
image are clearly shown, and different textured regions in
the sunset (the sky and the ocean) and ski images (the sky



LIANG AND KUO: WAVEGUIDE 1623

TABLE I
NUMBERS OF SIGNIFICANT WAVELET COEFFICIENTS IN A FOUR-SCALE

PYRAMID WAVELET DECOMPOSITION FORFOUR TEXTURES

and the snow) are detected, respectively, in the corresponding
significant coefficient maps. The proposed texture extraction
method can be performed in each textured region.

IV. COLOR DESCRIPTOR

Color has long been recognized as a useful feature for
content-based retrieval [1], [3], [13], [14], [30], [33], [34],
[40]–[42], [50]. One distinctive property of the color feature
is its invariance under translation and rotation about the
viewing axis and its slow variation under the change of the
viewing angle, scale, and occlusion [41]. The color of an
image is usually represented by the statistics (histogram) of the
tristimulus values of pixels, such as or
based on the entire image or selected areas in the space
domain. In this work, we investigate the wavelet color content
description in the coordinate system.

The distribution of wavelet coefficients of an image is first
studied for an appropriate choice of the color quantization
scheme. Let us plot the magnitude distribution of pixels in the
space domain and that of coefficients in the wavelet domain in
Fig. 4(a) and (b), respectively, for the Lena image. Generally
speaking, the magnitude distribution in the space domain can
be quite different depending on the image characteristics,
while the magnitude distribution of wavelet coefficients is
close to the Laplacian function, which suggests a nonuniform
quantization scheme by allocating more bins in the higher
probability density area to achieve a better approximation
of the distribution. The exponentially decaying shape of the
wavelet coefficient distribution has been effectively exploited
by modern wavelet coders [23], [37], [38], [45] via SAQ and
the bit plane coding. Based on SAQ, it is straightforward to
obtain the desired nonuniform histogram as shown in Fig. 5:

if
if

where denotes the quantization threshold for layer
In other words, corresponds to the probability

of coefficients that are just identified significant when the
quantization threshold is set to In our implementation,
three 12-bin histograms are computed, respectively, from the

luminance and the chrominance and components
of a colorful image with respect to thresholds

One popular metric employed to compare the distance of
two color histograms is the -norm as used in [1], [13],
[14], [30], and [41]. There are other quantitative ways to
characterize the shape of a histogram such as the mean,
standard deviation, entropy, energy, etc. [31]. Here, we adopt
the mean, the variance, and the skewness of a histogram as
similarity metrics. For the component, we have

where and denote the mean, variance, and skewness
measures, respectively, the probability value, and
the centroid for bin The centroid is often set to the
center of a bin except for the last bin, which is set to zero,
because insignificant coefficients are not coded and treated as
zeros. Similar expressions can be written for theand
components.

There are two reasons to justify the use of color moments as
the similarity metric. First, according to the moment represen-
tation theorem, the infinite set of moments uniquely determine
a probability distribution, and vice versa [20]. Since higher
order moments decay faster, we can reduce the size of feature
vectors as well as the complexity of feature matching by
using the first three color moments. In the current context,
instead of storing 36 probability values (for three 12-element
histograms), we only have to store nine moments (i.e., three
moments for each histogram) for the color description. Second,
it was observed in [40] that color moments are more robust
than the -distance measure of the histogram difference.
As shown in Fig. 6, three histograms are ordered in such a
way that neighboring bins corresponding to similar colors.
Histograms in (a) and (b) are more similar perceptually.
However, with the -distance computation, there is no match
between (a) and (b) while there is one match between (a)
and (c). In this example, the -distance measure contradicts
the human visual system (HVS) in the perception of color
similarity. If the moments are used to model these histograms,
(a) will be more similar to (b) than (c), since (a) and (b) are
only slightly shifted from each other.

We defined color similarity as the -distance between color
moments

(4)
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(a)

(b)

Fig. 4. Lena image and its magnitude distribution in the (a) space and (b) wavelet domains.

Fig. 5. Color histogram calculation based on a nonuniform quantization scheme.

Fig. 6. Example illustrating the inefficiency of theL1-distance of color histograms. [40].

where ’s are the weighting parameters adjustable by users.
In our implementation, we use the following empirical values:

The weights associated with the-component are decreased,
since and of and are smaller in comparison with
those of Y.

V. SHAPE DESCRIPTOR

Previous work on spatial features focused on the shape of
an image object. There is, however, no mathematically rigor-
ous definition of shape similarity that accounts for semantic
recognition or perceptual judgment of human beings [43].
Computational shape methods [43] include the moment-based
matching algorithm, the parametric curve distance measure,
the turning angle matching method, etc. Moment-based algo-
rithms treat an image as a 2-D probability function and applies
the moment theory to this function [17], [46]. The parametric
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curve distance approach represents the object boundaries by
a set of spline functions and measure the distances between
boundary curves. In the turning angle method [2], the turning
angle along the perimeter of an object is recorded by a
function Then, elements of are matched to those of
other sets for similarity comparison. Pairing of elements
could be multiple-to-one or one-to-one, but it must proceed
monotonically through both sets. Basically, the above methods
are performed in the space domain and does not fit our
wavelet-domain framework. Besides, a binary shape image
has to be generated from the image first by an automatic or a
manual algorithm before any shape analysis.

A wavelet-based approach is adopted for shape analysis
here. Again, we start with the significant map of SAQ,
which is automatically generated during the coding process,
as a binary description of an object, and compute the spatial
moments accordingly [17], [31]. The significant map, as shown
in Fig. 2, is a binary record of the address of significant
coefficients. It contains spatial information of an image object
in various scales (or resolutions) and frequency channels,
therefore serving as an adequate tool for multiresolution shape
analysis. Let us take the tomato image in Fig. 2(a) as an
example, edges along the-, -, and -directions are ex-
tracted in the and subbands, respectively,
with different scales. Note that since topological attributes,
such as the object area or the perimeter, are not necessarily
connected in the map, it is difficult to apply the turning angle
or the parametric curve distance methods to these data. In
comparison, the moment-based approach is still applicable.
The spatial moment of order can be defined as follows
[31]:

(5)

where is the binary value of the significant map (one
for significant and zero for insignificant), and are the
number of rows and columns of the corresponding subband,

and and are mean values of and Since central
moments are computed with respect to centroidsand in
each direction, they are invariant under the translation of the
object. We can further normalize the moments by the total
object area to make it invariant to the change of scale via

where (6)

As a result, is invariant both to translation and scale
change. In our implementation, the spatial distribution in a
subband is described by nine elements: two meansand

three variances and and four skewnesses
and In this work, we compute the

moments of and subbands in the first
three scales only. Thus, the shape feature vector consists of
81 float numbers. Note that it is not necessary to compute the
moments in all the scales, because the resolution of shapes
decrease in the coarse scales. We may select the number of
scales according to the desired feature vector size and the

image size. Again, the -distance is used to measure the
similarity of feature vectors.

It is worthwhile to compare our work with that of Jacobet
al. [19]. In [19], coefficients are quantized into1 (if negative
and significant), 1 (if positive and significant), and (if
insignificant). Thus, a gray-level image can be represented
by a map consisting of three values:1, 0, and 1. Their
similarity metric is the -distance measure, which is suitable
for comparing objects with the same shape and the same
location in two images but sensitive to translation, rotation and
scale change of objects. Thus, the application of their method
to content-based image retrieval is too restrictive. In contrast,
we measure the normalized central spatial moments of the
significant map in each subband for similarity test, which are
more widely applicable. Besides, our method uses a smaller
percentage of significant coefficients (25%) than theirs (50%)
in determining the image shape map.

VI. WAVEGUIDE PROTOTYPE

A. System and Interface

We have built a wavelet-based query-by-example prototype
for image indexing, searching, browsing and compression
called the WaveGuide system. As illustrated in Fig. 7, Wave-
Guide has two basic building modules: the coding and index-
ing module and the decoding and retrieval module. The first
module contains building blocks for the wavelet transform, the
successive approximation quantizer, and the entropy coder,
and the texture, color, and shape feature extraction engines.
They are used to generate the compressed bit streams and
indexing files, respectively. Every input image is indexed
and compressed simultaneously by using this module. For
image retrieval, the user first selects a query image through
the WWW interface. Then, the system compares its texture,
color, and shape descriptors with those of the images in the
database and find out good matches, which are decoded and
displayed for the user. Due to the multiresolution property
of wavelet coding, the decoding and transmission of wavelet-
coded images can be progressive. Therefore, the browsing and
confirmation of image candidates are effective.

WaveGuide is a query-by-example system. We provide
example images to guide users through their search of de-
sired targets. The concept of query-by-example is based on
the observation that many users have only vaguely defined
information needs so that they may be able to recognize
what they are looking for rather than describing or sketching
it [15]. For such an application, pictorial examples and an
interactive and cooperative human-machine interface can be
of great help. Currently, WaveGuide does not support direct
query on features, i.e., we do not provide feature pallettes
(pickers), sketch boards, or painting tools. This can be easily
added in the next version of the system.

To effectively access information in an image database,
there are several design criteria for user interface [15]:

1) integration of various query mechanisms,
2) a visual or graphical user interface (GUI),
3) incorporation of user’s relevant feedback,
4) support of user-guided navigation.
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(a)

(b)

Fig. 7. Block diagram of the WaveGuide system. (a) Indexing and coding
module. (b) Retrieval and decoding module.

To meet parts of these criteria, we implemented the Wave-
Guide interface on the World Wide Web (WWW) by using C,
HTML, UNIX, and Common-Gateway-Interface (CGI). In the
title Web page, we show a subset of images randomly selected

from the database to give users an idea of the image types that
can be accessed. The three query mechanisms—texture, color,
and shape—are listed in the page. Users can select an image as
the query image and select one or several features as querying
features. The retrieved candidates are then displayed. Users
can browse them or select one of them and several features
for the next query process. Through such a process, users can
access to the small portion of image data of their interest.
Our primary goal with WaveGuide is to develop an efficient
information filter to reduce the set of data that needs to be
browsed at a later stage.

B. Wavelet Image Database

WaveGuide caters to still color images. At this moment,
the experimental image database consists of 2127 natural im-
ages, including landscapes, animals, buildings, people, flowers,
plants, etc. of size 192 128 from the Corel Professional
Photos CD-ROM. Just as QBIC, we do not attempt to build
up complicated data model with WaveGuide. The system
concentrates on the signal processing techniques such as
indexing, low-level feature extraction, similarity matching, and
compression rather than techniques like data models, semantic
world representation or annotation, which are usually applied
in the systems developed by database researchers [15]. A
complete data model for a natural image database can be a
pretty difficult task. Due to the lack of data models, we also
bypassed the use of query languages such as SQL or PSQL.
Specifically, there are only two main data types in our system:
scene and object, which is part of a scene.

The database is compressed in the color space by the
modern wavelet coder mentioned in Section II. In the wavelet
transform, four and three levels of pyramid decompositions
are performed for the luminance and chrominance and

components, respectively. Consequently, there are thirteen
subbands for the luminance component and ten subbands
for each chrominance component. Texture, color, and shape
features were extracted according to algorithms described in
previous sections. Among these features, texture and shape
descriptors are computed only from the-component of an
image, and the color descriptors are computed from the-,

-, and -components. The sizes of the proposed descriptors
are given in Table II. The indexing cost is measured in terms
of the number of elements in the feature vector and the number
of bytes required to represent each feature vector (where
4 bytes is used to represent one floating number). Both the
computational complexity and the memory requirement are
controlled. As shown in Table II, the total size of the indexing
file with our method is equal to 103 elements, which is less
than that required by a 256-element color histogram [1], [13],
[14], [30], [50].

C. Joint Content Description

The WaveGuide system allows users a number of content
descriptors for image retrieval. When several descriptors are
used simultaneously, it is necessary to integrate similarity
scores resulting from the matching in different feature spaces.
In this work, we adopt two methods to handle this issue
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TABLE II
COMPARISON OF THE PROPOSEDTHREE

DIFFERENT TYPES OF WAVELET DESCRIPTORS

[14], [26]. The first one [14] is to normalize all scores in
different spaces to the same range from zero to one, where
zero represents perfect similarity (i.e., zero distance) and one,
no similarity (i.e., the largest distance), and then add all the
normalized scores with a weighting. Another approach [26]
is to rank the images from one to according to each
individual score, where is the total number of image
items in the database. The final ranking of an image is
the weighted sum of each individual ranking result. Both
approaches were implemented in our work. It was observed
that their performances are comparable. We choose the first
approach as the default method in our system due to its lower
computational complexity.

D. Retrieval Performance Evaluation

The retrieval performance of the WaveGuide prototype
system has been evaluated. The retrieval efficiency is measured
in terms of recall and precision [15], [29]. For each query
image in a database of size in our system),
there are such similar images. Let be the
numbers of correct, missed, and false candidates, respectively,
in the first retrieved images with the smallest matching
errors. The precision and recall for the query image
are defined as

(7)

and

(8)

Ideally, we want a unity value of both parameters for a perfect
recall and precision. In practice, since a perfect retrieval is
difficult to obtain, a good balance between the two parameters
is desired [15].

Preliminary experiments are carried out by using several
image sets to evaluate the performance.2 Note that the perfor-
mance evaluation of image retrieval techniques is in general
difficult since there is no commonly agreed image database for
comparative study and the performance would highly depend
on the selection of query image. Let us first demonstrate the
retrieval of scene images. The test query set is the sunset image
as shown in Fig. 8. Since these pictures are sunset scenes
without clear objects, they can retrieved by texture and color.
When the first Sunset image is used as the query image, eight
items (i.e., the size of the query set) are retrieved from the
database. The ideal retrieval will be that all images in the
query set are ranked in the top eight positions.

2The color images can be accessed via the web site
http://viola.usc.edu/extranet/IEEEIP 99nov/.

Fig. 8. Sunset query image set.

Fig. 9. Retrieved results based on the texture descriptor of the first sunset
image, where items are ranked from the left to the right and then from the
top to the bottom.

Fig. 10. Retrieved results based on the color descriptor of the first sunset
image, where items are ranked from the left to the right and then from the
top to the bottom.

Results by using the texture feature are shown in Fig. 9.
It is clear that retrieved items have common textures such
as sky, beach (sand), and water. Since the frequency feature
is sensitive to the orientation, all the retrieved items have
the same orientation. The three vertical Sunset queries—the
second, seventh, and eighth images in the query image set—do
not rank at the top eight positions. Besides, since the search
is based on texture only, color unlikeness is possible (e.g., the
color of items 6–8). In Fig. 9, four sunsets, the first to the
fourth items are retrieved from the query set; the precision
and the recall are both equal to 0.5. In addition to the four
correct candidates, the fifth item is actually a similar image
but from another category. Results of the query based on the
color feature are shown in Fig. 10 for comparison. Since the
color is a global feature, images of different orientations can
be retrieved (e.g., the sixth to eighth items). Because images
are matched by the color, results are not necessarily similar in
textures. In Fig. 10, five sunset images, the first through the
fourth and the seventh, are retrieved from the query set and
one similar image, the eighth item, from other category. In
this case, the precision and the recall rate are bothResults
by using a joint feature set of color and texture are shown in
Fig. 11. The total distance is computed by the summation of
50% color distance and 50% texture distance. From Fig. 11,
one can see that all items are similar in both color components
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Fig. 11. Retrieved results based on joint texture and color descriptors of the
first sunset image, where items are ranked from the left to the right and then
from the top to the bottom.

Fig. 12. Rose query image set.

Fig. 13. Retrieved results based on the shape descriptor of the first rose
image, where items are ranked from the left to the right and then from the
top to the bottom.

Fig. 14. Retrieved results based on the joint color, texture and shape
descriptors of the first rose image, where items are ranked from the left to the
right and then from the top to the bottom.

and textures, and the retrieval efficiency is superior to those of
a single feature. In Fig. 11, there are five items from the sunset
query set ranked in the top five positions, i.e., the precision
and recall rate equal

The second query set is the rose image as shown in Fig. 12.
Since these pictures have clear dominant objects, we use the
shape feature as the main attribute, and the texture and color
features as the auxiliary attributes. The first rose is used as the
query image and eight items, which is the size of the query
set, are retrieved from the database. Results by using the shape
feature only is shown in Fig. 13. Items with clear round objects
in the center, most of which are flowers, are retrieved. Results
by using shape, texture, and color jointly are shown in Fig. 14.
To emphasize the significance of the object shape, we compute

the total distance based on 80% shape, 10% texture, and 10%
color. We get a better result, i.e., images of a single flower
with similar texture and color appear in the top positions.

VII. CONCLUSION AND EXTENSION

In this work, we proposed an integrated wavelet indexing
and coding system and demonstrated the use of a joint feature
set for content-based image retrieval. All the features—texture,
color, and shape—are based on significant wavelet coefficients
and their energy distribution among subbands and across
quantization layers. In addition, sizes of content descriptors are
carefully monitored to reduce the computational complexity
and the memory space. Since images are compressed and
indexed at the same time, the image database management
problem can be greatly simplified.

The developed WaveGuide prototype system is far from
completion. There are several parts which can be further
improved. First, we would like to support the user feedback to
achieve a truly interactive query process. Second, the database
has to be enlarged to include more different types of images.
Third, we would like to consider ways to reduce the amount
of shape features and exploit the features in a more natural
way. Fourth, it is interesting to see whether the wavelet-
based descriptors can help in organizing the image database to
facilitate the image retrieval process. Finally, it is important
to find metrics to measure the performance of an image query
engine in addition to precision and recall so that we can
compare different query algorithms or systems in a more
objective way.
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