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The traditional mean-squared-error and peak-signal-to-noise-ratio error measures
are mainly focused on the pixel-by-pixel difference between the original and com-
pressed images. Such metrics are improper for subjective quality assessment, since
human perception is very sensitive to specific correlations between adjacent pixels.
In this work, we explore the Haar wavelet to model the space—frequency localization
property of human visual system (HVS) responses. It is shown that the physical con-
trastin different resolutions can be easily represented in terms of wavelet coefficients.
By analyzing and modeling several visual mechanisms of the HVS with the Haar
transform, we develop a new subjective fidelity measure which is more consistent
with human observation experiences 2000 Academic Press

Key Wordsimage fidelity assessment; compression artifact measure; human visual
system (HVS); Haar transform; wavelet transform.

1. INTRODUCTION

The objective of lossy image compression is to store image data efficiently by reduc
the redundancy of image content and discarding unimportant information while keeping
quality of the image acceptable. Thus, the tradeoff in lossy image compression is betw
the number of bits required to represent an image and the quality of the compressed im
This is usually known as the rate—distortion tradeoff. The number of bits used to rec
the compressed image can be measured easily and objectively. However, the “closer
between the compressed and the original images is not a purely objective measure, !
human perception plays an important role in determining the fidelity of the compres:s
image.
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At present, the most widely used objective distortion measures are the mean squi
error (MSE) and the related peak signal-noise ratio (PSNR). They can easily be comp
to represent the deviation of the distorted image from the original image in the pixelw
sense. However, in practical viewing situations, human beings are usually not concentr
on pixel differences alone, except for particular applications such as medical imagi
where pixelwise precision can be very important. The subjective perceptual quality inclu
surface smoothness, edge sharpness and continuity, proper background noise level, a
on. Image compression techniques induce various types of visual artifacts that affect
human viewing experience in many distinct ways, even if the MSE or PSNR level is adjus
to be about equal. It is generally agreed that MSE or PSNR does not correlate well with
visual quality perceived by human beings, since MSE is computed by adding the squz
differences of individual pixels without considering the spatial interaction among adjace
pixels. Some work tries to modify existing quantitative measures to accommodate the fa
of human visual perception. One approach is to improve MSE by putting different weig}
to neighboring regions with different distances to the focal pixel [31]. Most approaches c
be viewed as curve-fitting methods to comply with the rating scale method.

In order to obtain an objective measure for perceived image fidelity, models of the hun
visual system (HVS) should be taken into account. It is well known that the HVS h
different sensitivities to signals of different frequencies. Since the detection mechanis
of the HVS have localized responses in both the space and frequency domains, neithe
space-based MSE nor the global Fourier analysis provides a good tool for the model
Since the late 1970’s, researchers have started to pay attention to the importance o
human visual system (HVS) and tried to include the HVS model in image fidelity or quali
metrics [20, 21]. The development of the HVS model at that time was not mature enot
and the proposed model could not interpret human visual perceptual phenomena very \
Recently, Karunasekera proposed an objective distortion measure to evaluate the bloc
artifact of block-based compression techniques [25]. Watson [40] and van den Bran
Lambrecht [27, 28] proposed more complete models and extended their use to compre
video.

The major difficulty in modeling HVS, however often neglected by subjective fidelit
assessment research, is in the computation of the contrast in complex images. In this w
we explore the Haar wavelet, which has good space—frequency localization proper
to evaluate the physical contrast. It is shown that the contrast can be easily represe
in an expression of transform coefficients. Some visual phenomena can also be mod
by multiresolutional analysis since the contrast is defined in every resolution. Contre
in different resolutions are then combined with models of visual mechanism to yield
new gray-scale image fidelity measure. The new objective error measure is defined a
aggregate contrast response mismatch between the original and compressed image:s
proposed metric is more consistent with human subjective ranking and capable of descril
various compressed image artifacts. Our effort can have an impact on the developmel
new compression methods that concentrate more on the overall perceptual fidelity ra
than pixelwise error minimization.

This paper is organized as follows. The HVS modelis first discussed in Section 2. We
pose a new definition of contrast with respect to complex images by taking the Haar wav
transform of the image, and using wavelet coefficients to estimate the local contrast at ¢
resolution in the image in Section 3. By using the multiresolution and space—frequel
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localization properties of wavelets, several observed inconsistencies in the psychopt
cal literature can be explained naturally. HVS mechanisms mentioned in Section 2 s
as the suprathreshold perception response, the frequency masking effect, and the «
tional preference can be conveniently incorporated in the wavelet framework. Based on
framework, we propose an objective metric to compute the extent of the perceived cont
in every resolution and derive an error measure by examining the response difference
contrasts between the original and compressed images at each resolution in Sectior
Psychophysical experiments are conducted in Section 4.2 to demonstrate the validity
effectiveness of the Haar filter. We use these experiments to conclude the independen
two visual masking variables. In addition, human perception deficiency at oblique ori
tations is measured in these experiments. In Section 5, the effectiveness of the prop
image fidelity measure is tested with natural images. The effect of viewing distance eff
on the perception of image compression artifacts is also discussed. Concluding remark
given in Section 6.

2. HUMAN VISUAL SYSTEM (HVS) MODELS

Visual perception is the result from a series of optical and neural transformations. T
light is projected onto the retina through the cornea and lens to form an optical image. 1
retina image is then sensed by photoreceptors on the retina and transformed into n
responses to reach the optic nerve. The optic nerve carries these signals to the visual
in the brain for further processing. Since both photoreceptors and cortical cells transf
incoming signals into some particular representation, they form the core of the visual syst
Many of the composing mechanisms are originating from these two core elements as
as the optical mechanism of the eye. The objective of psychophysical research is tom
the overall transfer function of the visual system.

2.1. Contrast Threshold and Sensitivity

Generally speaking, human visual perception is a function of both the luminance diff
ence between the background and the stimuli and the background adaptation level.

Let L nax and L ymin be the maximum and minimum luminance of the waveform aroun
the point of interest. Michelson’s contrast, defined as

C= (Lmax_ Lmin)/('—max+ Lmin)y (1)

is found to be nearly constantwhen used to represent the just noticeable luminance differ
[22]. For stimuli of uniform luminance seen against a uniform background, another contr
measure called Weber’s fraction is defined as

C=ALJL, )

whereAL is the luminance difference andis the background luminance. We see that for
simple patterns, Weber’s fraction and Michelson’s contrast differ by a factor of 2.
Physiological experiments showed that many of the cortical cells are focused on cer
regions in their receptive fields and only sensitive to the contrast in certain frequency ba
The overall visual perception of object luminance or contrast is therefore the aggrec
performance of each cell’s frequency response [13]. Since the HVS cannot provide an infi
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FIG. 1. Atypical contrast sensitivity curve for human beings.

contrast resolution, a contrast threshold exists at every spatial frequency. This thresl
represents the just noticeable contrast in each frequency band.

The contrast threshold value is a function of the spatial frequency, which can be de
mined experimentally. A typical contrast sensitivity curve defined as the reciprocal of t
contrast curve is shown in Fig. 1 [13]. As shown in the figure, HVS has the highest luminar
sensitivity around 3—10 cycles per degree, and the sensitivity attenuates at both high
low frequency ends. It was shown by Camplatlal. [6] that, over a wide range of spatial
frequencies, the contrast threshold of a grating is determined only by the amplitude o
fundamental Fourier components. Based on this observation, Fourier frequency analys
widely used in vision research. According to this model, an image artifact can be sen
only if its contrast is above the visual threshold after probability summation and contr:
integration.

There has been work devoted to parameterize the contrast sensitivity curve. Daly [9]
Barten [1, 2] summarized various experimental results from the literature and determil
the contrast sensitivity as the function of several variables. Two variables are of partict
importance, i.e., the display size and the background luminance level. Experimental res
[8] suggest that the angular display size of gratings affects the contrast sensitivity at |
spatial frequencies. This deviation may be due to the consequence that a smaller nui
of stimuli cycles produces smaller perceived contrast at the threshold [7]. In addition, F
[33] showed that the suprathreshold perception is unaffected with variable grating size:
to 4°. Thus, we do not consider the display size as a variable in this work. On the other he
although the contrast threshold is approximately constant for various background lumina
levels for extremely low frequency patterns such as the staircase grating, this constancy
not hold for the threshold sensitivity curve at a wide range of spatial frequencies. By tak
this factor into consideration and using a parabola in log—log coordinates as a reason
approximation [41], we obtain the relationship between the contrast thre€hpkhd the
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spatial frequencyf as

log(1/Cro) = (p1log(L) + a1)(log f)? + (p2log(L) + ap) log f + (pslog (L) +az), (3)

wherelL represents the background luminance around the fixation poinpaaddg; are
model parameters. The computationlofrom different resolutions will be discussed in
Section 3.2.

2.2. Channel Interactions

Although cells narrowly tune to different frequency bands, they are not strictly ban
limited and interactions among adjacent frequency channels are well observed. Two prin
effects were often discussed in the literature, i.e., the summation effect and the mas
effect. The summation effect is an interchannel effect saying that the neighboring freque
channels contribute to the total contrast. Consequently, a subthreshold contrast may
produce a small response if there exist other excitory stimuli in nearby frequency chann
However, since the summation effect is far less important than the masking effect [35], |
not considered in this work. The masking effect is another interchannel effect which ste
that the visibility of a stimulus at some frequency could be impaired by the presence of ot
stimuli in nearby frequency channels. One well-known example is the blocking artifact
images compressed by block transform methods. Since the blocking artifact consist
high-frequency edge components, it is less visible in textured regions. This effect car
viewed as areduction of contrast sensitivity threshold at certain spatial frequenciesin cel
regions.

Several masking models were investigated by Kidiml. in [26]. Generally speaking,
there is no single model which can be used to account for all masking phenomena.
the multiple spatial channel HVS model, at least two variables are required to model
masking effect. They are the frequency separation and the masker contrast. The sensi
threshold is lowered when the frequency separation between the masker and the s
decreases and/or when the masker contrast is larger with respect to the signal cor
[12, 30]. If we assume these two variables are separable, the new contrast th@shibét
masking becomes

N
Cr = Cro[ [ 6 (Ci, Cohi(fi, fo), @
i=1
where
gi(Ci.Co) = o )
k1(Ci/Co) if Ci > koCo
and

ks(fi/fo)* if fi < fo,

hi (fi, fo) =
(1o {&Mﬁﬁﬁ it fi > fo. ©

and whereCry is the original contrast threshol@; is the contrast of the signdl; is the
contrast of the masker in thigh channel, and, and f; are spatial frequencies of the signal
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channel and thgh masking channel, respectively. Both the separability assumption (4) a
parametergg throughks in (5) and (6) will be examined and determined in Section 4.2.B

2.3. Suprathreshold Contrast

Since the subthreshold stimuli, i.e., stimuliwith a contrast lower than the threshold, can
be sensed by human beings, only the suprathreshold contrast is of concern in image pe
tion. As the suprathreshold contrast becomes larger, the equal-response curve morphs
the inverse-U shape near the threshold (Fig. 1) to a flat horizontal line at high contrast |
els. In other words, at high suprathreshold contrast levels, the visual responses to all sp
frequencies (below the optical cut-off frequency) become approximately the same [19]

Since visual responses to the suprathreshold contrast involves human subjective ratil
is difficult to use psychophysical methods to measure it. However, even though it is diffic
to find a precise formula for its modeling, it is generally agreed that the estimated respo
Ris a function of the spatial frequency and follows a power law [29],

R = k(C — Cy)P, (7)

whereC is the suprathreshold contraS; is the contrast threshold at the specific frequency
and the exponenp varies between 0.4 and 0.52 [7]. The valuepo chosen to be 0.45
and the scaling or normalization factiors set to 1 in this work.

2.4. Directional Preference

Besides spatial locations and frequencies, HVS also responds differently to various
entations of stimuli. Campbett al. [4, 5] demonstrated psychophysically that HVS is most
sensitive to stimuli in the vertical and horizontal directions and least sensitive to stim
in the 4% and 138 directions. Different from spatial frequency selectivity, the bandwidtt
of orientational selectivity varies considerably from cell to cell. Cortical cells from foves
and near nonfoveal cortical regions have a wide range of orientation bandwidth ffom :
to over 180, with the median bandwidth being about°433]. Phillips and Wilson [35]
used masking experiments to show that orientation bandwidths vary from &i36Ritat
0.5 cpd to+15° at 11.3 cpd. These results encourage the use of filters in four differe
orientations: 0, 45, 90°, and 135. In our work, the contrast sensitivity function in the
oblique directions also takes a form similar to that of (3) but with different parameters (s
Section 4.3).

3. NEW CONTRAST DEFINITION BASED ON HAAR WAVELET

3.1. Space-Frequency Localization

Limited by its spatial location on the retina, each photoreceptor can only focus or
certain region of the visual field to form a channel. Furthermore, each photoreceptor is c
sensitive to signals of a certain spatial frequency range. Cortical cells pool the response
all photoreceptors on the same retinal location, and there are many channels tuned t
same spatial frequency band, say, 2 cycles/degree, but at different locations in the rece
field. Thus, we can say that the frequency response of visual stimuli is not only band-limi
in the frequency domain but also localized in the space domain. For example, the freque
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response of the fixation point is characterized by the typical contrast threshold funct
as shown in Fig. 1. However, from the spatial inhomogeneity [16] phenomenon, the hi
frequency response will further attenuate as the eccentricity from the focal point increa:
This means that responses at the same (high) spatial frequency in different locations ir
receptive field are governed by different channels, thus providing an evidence that vis
channels are narrowly tuned in specific spatial locations.

The commonly used Fourier frequency analysis is, however, a global process which g
all spatial components the same weighting. It is well known as Heisenberg’s uncertai
principle that exact localization in both space and frequency domains cannot be achie
simultaneously [24]. The Gabor transform [15], which is a Gaussian-windowed Four
transform, was proved to achieve the limit of the Heisenberg inequality. Gabor gratir
have thus been widely used in modern psychophysical experiments. Parameters o
Gaussian window were chosen based on researchers’ preferences, and various degr
localization were achieved [34]. That is, by varying the Gaussian envelope paramet
the passbands of Gabor gratings were overlapped to a different extent. There are ¢
limitations in the Gabor representation. First, it is difficult to analyze the stimuli whos
frequency responses fall into the overlapped band. Second, since the Gabor filter is ar
(infinite impulse response) filter, truncation is still needed for practical implementatic
However, localization is not fully ensured after truncation.

3.2. Contrast Computation with Haar Wavelets

A major difficulty of HVS modeling, though one often neglected by researchers, is t
computation of the contrast in complex images. Michelson’s contrast defined in (1) is ba
on the staircase pattern, which has distibgtx and L min. In psychophysical experiments
with sinusoidal gratings, the stimuli also have unique peak (maximum) and trough (m
imum) luminance. In Gabor experiments, on the other hand, the contrast is defined al
largest ripple, which is located at the focal point. It is, however, extremely difficult to d
fine the contrast for natural images since there are no unique or obvious maximum
minimum luminance values to be recorded even with the Gaussian envelope localizat
For example, for a one-dimensional grating composed of two sinusoidal waveforms w
different frequencies [32],

f(X,y) = lo(1+ a; cos(ZrwiX) + a, cos(2r wyX)), (8)

wherew; < wy. The grating is shown in Fig. 2. We see that the contrast is approximate
equal toay/(1 — a;) at point A, where the slow-varying waveformy cos (Zrw;X) is
at its minimum luminance, while the contrast is abegt(1+ a;) at point B, wherea;
cos(Zr w1 X) is atits maximum. Therefore, the contrast of this grating is different everywhe
along thex-direction. A good definition of contrast should be able to handle such cases
Since (1) is defined as the ratio of the luminance difference and the background adapte
level, both values should be obtained if one wishes to devise a good definition of the cont
in complex images. He%t al. [23] defined the contrast at thih spatial frequency band as

AG

Ci=—,
"7 DC

9)

where AC; is the filtered AC coefficient at that specific frequency band Bx is the
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FIG. 2. A composite grating example for contrast computation.

DC (zero-frequency) value computed based on the whole imagdarrll/16 subimages.
Clearly, this value is pre-determined and not adaptive to model the contrast at differ
resolutions with their respective space—frequency localizations. Peli [32] used locali:
cosine log filters to define the contrast at thespatial frequency band as

AG

M 10
Y6 AC; 4o

Ci

where the denominator takes the sum of responses from all frequencies lower than
target frequency band. It has a good adaptive property since these filters are well local
and perfectly reconstructive. Both of the above approaches suggest that the backgr
adaptation level can be computed for the low-frequency response, since it represents |
global variation. On the other hand, the high-frequency response acts more like a differet
operator. This basic idea does make a lot of sense intuitively. The disadvantage of tt
approaches is that it is difficult to show its coherence with the contrast definition presen
earlier mathematically. We will show below that the Haar wavelet transform approa
provides a good framework to generalize the contrast definition from simple to compl
cases both intuitively and mathematically.

The wavelet transform provides a good space—frequency localization property [10]
can be implemented using the multichannel filter banks. Compactly supported wave
such as the Daubechies filters [10] can be implemented with FIR (finite impulse respor
filters. The space—frequency localization is optimized among all possible FIR filters w
the given length for the Daubechies filters. The Haar wavelet is the simplest basis functio
the compactly supported wavelet family. It provides the capability to compute the contr
directly from the responses of low and high frequency subbands. For the Haar wavelet, f
coefficients for the low- and high-frequency filter banks are given by

L n=-10,
holn] = { 2 (11)
0 otherwise
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1 _
WE n=_0,

hifn] =1 -%  n=-1, (12)
0 otherwise

respectively. Assume that a discrete-time input sigtia] is the staircase contrast pattern

] Lmax n<0
x[n] = { Lo n>o. (13)

The responseg 1[n] andy; 1[n] at the first resolution after filtering witho[n] andh1[n],
respectively, are

\/zl—max n<-1
yO,l[n] = %(Lmax‘f‘ I—min) n=-1 (14)
\/él—min n> 0,

%(Lmax_ I—min) n=-1

yra[n] = (15)

0 otherwise

Thus, contrast; in the interval 1, 0) and the 1st (finest) resolution can be computed vi
the ratio ofy; 1[n] and yo 1[n], i.e.,

Lmax_ I-min _ yl.l[_l]

Ci= = ,
! Lmax + I-min yO,l[_l]

which is consistent with Michelson’s contrast definition as given in (1). At the secol
(second finest) resolution, the low-frequency band respggge] is downsampled by 2
and fed into the same filter bank. The responses are

2L max n<-1

y0,2[n] = { Lmax+ Lmin n=-1 (16)
2L min n> -1,
L max — Lmin n=-1

yl,Z[n] = ) (17)
0 otherwise

Again, we can compute the contrast at the second resolution as
_ Lmax — L min _ Y1.2[—1]
I-max + I—min y0,2[_1] .
Following this path, the contrast at thié resolution can be computed as
_ Lmax — Lmin _ Y1,i[_1]
Lmax+ Lmin yO,i[_l]’

i.e., the ratio of high- and low-band responses evaluatedat- 1. Figure 3 illustrates this
constant-ratio relationship across resolutions.

C,

Ci (18)
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FIG. 3. Contrast computation using various filter responses where (a) is the original staircase signal, (b)
(c) are low and high band responses at the Oth resolution, and (d), (e), (f), and (g) are responses at the firs
second resolutions.

Itis worthwhile to point that the dyadic wavelet transform satisfies the uncertainty prine
ple in that the supported spatial radius is doubled when the center frequency of the high
band is halved. In addition, the supported radii of the highpass filter and the lowpass fi
are exactly the same. Thisis a very desirable property since the background adaptation |
i.e., the mean luminance of the signal, should be obtained from the same supported ra
as that of the bandpass filter extracting the frequency components to form the contt
According to (14), (16), and subsequent computation, the background luminancé leve
in (3) at thei th resolution can be computed as

L =(v2)"yo,i[-1] (19)

Even though the new contrast is derived based upon the staircase pattern, it can be dir
applied to more complex cases such as the example in Fig. 2. Takirg 0.004,w, =
0.0625, andh; = a, = 0.25, the contrasts at points Aand B in Fig. 2 should be 0.2 and 0.3
respectively. Based on the half-band decomposition, the fast varyingaseras(2r wox)
will be separated from the slowly varying teamcos(2r w;x) at the fourth resolution. We
show in Fig. 4 the low- and high-frequency bank responses as well as the computed cont
We see that the Haar wavelet can predict the contrast at different spatial locations accure

There are several reasons to define multiple contrasts in different resolutions. Firs
all, since human contrast sensitivity is highly dependent on the spatial frequency, multi
contrasts can be used to address different variations at different resolutions across the it
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FIG.4. The Haardecomposition of Fig. 2: the waveform (top) low-frequency response at the fourth resolut
(middle- left), high-frequency response at the fourth resolution (middle right), the ratio (computed contrast
these two responses (bottom).

[32]. Second, the uncertainty principle requires the response in different frequency banc
have different supported radii as stated above. Furthermore, it was shown that each frequ
channel in HVS has the bandwidth of about one octave [32]. The dyadic wavelet transf
satisfies this requirement naturally. Finally, perfect reconstruction is possible with respor
obtained from different scales, and no visual information will be lost during the process.
contrast, to perfectly reconstruct the visual information using the Gabor analysis, all filt
must have the same length and, as a result, the space-frequency localization property i
flexible.

4. NEW WAVELET-BASED FIDELITY MEASURE

4.1. Fidelity Measure System and Metric

Based on the discussion in Sections 2 and 3, we propose a new fidelity measure sy
as shown in Fig. 5 and detail the process below.

1. Wavelet Decomposition
Both the original and distorted images are passed through the system for dyadic +
wavelet decomposition in four orientations, i.e?, @5°, 90°, and 135. The oblique

Original Wavelet p| Masking p| Suprathreshold Ro
Image Decomposition Effect Computation
©—»D
Compressed 3 Wavelet ) Masking > Suprathreshold ’
Image Decomposition Effect Computation Re

FIG.5. A block diagram of the proposed fidelity measure system.
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decomposition is performed on diagonally adjacent pixels, thus the central spatial 1
quency is ¥+/2 times of that at horizontal and vertical directions at the same decompsiti
level. Contrast€ are computed at every pixel and every resolution of interest with (18
Contrast thresholdS+q at each resolution are computed via (3) with respect to their cent
frequenciesf.

2. Masking Effect

The contrast threshol@q is adjusted according to (4) at each resolution to incorporat
the masking effect.

3. Suprathreshold Computation

Equation (7) is used to give the suprathreshold response from computed cdDtaasts
adjusted contrast threshol@s.

4. Summation of Error Measure

Let subscripts ¢c and o represent the compressed and the original images, respect
and let (, j) indicate the coordinate of the pixel in the image. Then, the perceptual err
measureD for the entire image is pooled and the Minkowski metrics taken as

1/p

vV H B
2D IRek(i- 1) = R, j)l) , (20)

j=1i=1

1 XN: (
D=|—

N k=1
whereV and H are the vertical and horizontal sizes of the image, respectixelg, the
number of filtering channels across all frequency bands in the four directiorg @&dn
empirical parameter related to the psychometric function and probability summation w
values from 2.0 to 4.0 [3]. We chooge= 4 in the experiment.

Note that the error measuk2is dimensionless since the contrast itself is dimensionless.

4.2. Experimental Calibration and Validation

The following psychophysical experiments were conducted on’ &iliton Graphics
color graphic display GDM-17E11. The luminance range of the display was adjusted fr
0 to 80 c¢m? (candela/square meter) using a Photoresearch spectroradiometer. There \
256 discrete gray scales present in the experiments. The relationship of the lumlinanc
versus the gray scalg is measured and approximated by

(0.0785G — 1.3270)}4925 if G>28

L =
5 =+ 0. | < .
(0.0159G + 0.5437)° if G <28

This relation can be used to transfer the display gray levels to the actual luminance.
transfer characteristics is plotted in Fig. 6. This curve was used to compute the actual con
in the following experiments. This display has a smaller gamma value than ordinary displ.
[36], but the influence on the following experiments is not critical.

A. Validation of Haar wavelet. The fact that cortical cells have a Gaussian-shape
reception profile [11] is often used to support the argument that the Gabor filter is prefera
in vision experiments. Since the Haar filter does not possess the same Gaussian-st
passband as the Gabor filter, one may suspect the validity of using the Haar filter in vis
analysis. To validate the use of the Haar wavelet, we measured the contrast threshol
using both Gabor and Haar filtered patches. The spatial frequencies of test patches r
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FIG. 6. The plot of the luminance versus the gray level for the color graphic display used in experiments

from 0.069 to 19.2 cycles per degree. This range covers virtually the whole frequency b
we would sense from digital images. The result is shown in Fig. 7, where the sensitiv
threshold, defined as the reciprocal of the contrast threshold, is plotted as a functiol
spatial frequency. The closeness of these two curves confirms that the Haar filter h
comparable performance in comparison with the Gabor filter.
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FIG. 7. Comparison of contrast sensitivity thresholds using the Gabor and Haar filters.
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B. Suprathreshold maskingln Section 2.2, we formulated the masking function (4)
by assuming that the two variables of masking, namely, the frequency separation anc
contrast ratio between the target and masker, are independent and separable. To verif
assumption, psychophysical experiments were conducted to find the parameters of
model. The contrast ratiGnask’ C, whereCpask andC represent the contrast of masking
and target signals, respectively, ranged from 0.5 to 2.5. The frequencyf¥atigf, in the
meanwhile, ranged from3 to 3 octaves. To isolate individual effects, we first fixed the
frequency ratio, and varied the contrast of each signal to investigate the effect of the con
ratio. The resultis shown in Fig. 8a, and an exponential fitting function was determined fr
the data. We then varied both the contrast and the frequency ratios of target and mas
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Sensitivity threshold

%  0/90 degrees
O 45/135 degrees

10° 10'
Spatial frequency (cycle/deg)

FIG. 9. Horizontal/vertical and diagonal sensitivity thresholds.

signals. During the computation process, we scaled experimental data with respect to
contrast ratios according to Fig. 8a. The scaled data show a very small amount of devia
thus indicating that (4) is a very good approximation to the masking model. The mean:
experimental data and fitting functions are shown in Fig. 8b, which are in good agreerr
with those in [12]. By fitting the data, we obtain the following parameters in (5) and (6):

ko=022 ki=15 k=027 ks = 1.34,
k=018  ks=152  ks=—0.20.

C. Directional preference. The contrast threshold functions for four orientationg (0
45°, 90, and 135) are measured. It is confirmed experimentally that there is no significa
difference between the contrast thresholds°afhrizontal) and 90(vertical) stimuli, nor
between thresholds of 4&and 135 stimuli. The difference between thresholds 6f90°
and 45/135 stimuli is shown in Fig. 9, where we see that the sensitivity threshold is low
for diagonal stimuli. Parameters in (3) are obtained from the fitting functions. They are

pr = —00062 p,=0.16 ps=0.24,
g1 = —0.53, G =052  gs=3.28

for horizontal/vertical thresholds. For oblique thresholds, the same parameters are use
p1, P2, and ps while

= —065 =076 gs=3.06

The contrast sensitivity curves for different orientations afglare shown in Fig. 10. The
curves are consistent with Daly’s [9] and Barten’s [1, 2] results except at very low spal
frequecies, where the sensitivity is lower than the literature. This spatial frequency rar
however, is seldom used in practical viewing situations.
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FIG. 10. Contrast sensitivity curves for horizontal/vertical and diagonal gratings.

5. APPLICATION TO COMPRESSION ARTIFACT MEASURE

5.1. Perceptual Difference Map

Compressed Lena images of size 25856 were used for image fidelity assessmen
with the proposed new fidelity assessment system. Two types of compression schemes
applied: block DCT-based compression (i.e., JPEG) and wavelet-based compression
evaluate the performance of our perceptual distortion measure by examining the percey
error map, defined as the sum@inveighted response differences at each pixel,

N
Dpermadi. 1) =~ > (1Rexi. 1) — Rosli Y. (21)
k=1

where the variables are as defined in (20), against the pixelwise error map which is use
MSE and PSNR computation,

Doximagli 1) = (Ge(i, j) — Goli, }))?, (22)

whereG(i, j) and Gy(i, j) represent the grayscale values at pixel location)(of the
compressed and the original images, respectively. Since these two error maps are comj
by different methods and are of different magnitude, we normalize them by equalizing
energy of the two maps for fair comparison. The viewing distance in this section is sef
five times the width of the image.

The JPEG compression standard is a block-based method [38]. It does not conside
correlation among adjacent blocks, and the blocking artifact usually appears at low
rates, presented as blocky edges along block boundaries. This artifact is visually annoy
but cannot be fully represented by the pixel-difference-based PSNR measure. We
an image compressed with the default quantization table with a bit rate of 0.19 bpp :
PSNR=23.36 dB. The original image and the compressed image are shown in Fig.
The resulting difference maps between Fig. 11a and 11b are shown in Fig. 12. We
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FIG. 11. (a) Original Lena image and (b) JPEG-compressed Lena at 0.19 bpp with 22RR6 dB.

that most of the energy of the pixelwise difference map concentrates in texture regic
since the pixel difference is large in these regions at low bit rates. The blocking artifac
mostly detected in homogeneous regions with slow slopes such as the shoulder, but i
detected in extremely flat regions such as the background, where the background noi
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50 100 150 200 250

FIG. 12. Difference maps of the DCT-compressed image: (a) pixelwise difference and (b) perceptual diff
ence.

more dominant. On the perceptual difference map, in contrast, the texture region differe
is decimated due to the masking effect, which is more consistent with human viewi
experiences. The blocking artifact is more dominant in flat or smooth regions with Ic
slopes, since its sharp characteristics generate large contrasts at every resolution.
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FIG. 13. Wavelet-compressed Lena image at 0.4 bpp with PSNIR.18 dB.

The main artifact for wavelet-based coding algorithms is the ringing artifact, whic
appears as ripples around the edges due to the truncation and quantization of wa
components. The ringing artifact also appears in DCT compressed images but is nc
severe as the blocking artifact. We used an image coded at a bit rate of 0.4 bpp with=PSN
28.18 dB. The compressed image is shown in Fig. 13 and the corresponding two differe
maps are shown in Fig. 14. The energy of the pixelwise difference map again concentr
on texture regions, and the ringing artifact is rather insignificant by comparison. The ring
artifact can be more easily detected in the perceptual difference map by comparing text
patterns located in the vertical and curved strips of the background in Figs. 14a and 14

5.2. Effect of Viewing Distance

Since the HVS contrast sensitivity threshold is characterized by the spatial frequer
defined as cycles per degree, one should expect the fidelity measure to vary with the
of D, the distance between the observer and the image, and the Widththe image.
We used a DCT-compressed Lena image (0.34 bpp, PSR&R43 dB) and a wavelet-
compressed Lena image compressed by the embedded zerotree wavelet (EZW) algo
(0.32 bpp, PSNR=28.47) as test images. Figure 15 shows the relation between the re
and the fidelity measure. As the distance between the observer and the image increase
spatial frequencies of the details (high-frequency components) become even higher, s
visual system attenuation fails to capture the compression artifact. Therefore, the error
diminish as the viewing distance increases. On the other hand, once the viewing distan
decreased to a certain extent, the whole details of the image at the pixel level are perceiv
The fidelity measure will thus reach a maximum when the viewing distance is smaller t
this distance. As the viewing distance becomes still smaller, however, due to the band|
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FIG. 14. Difference maps of the wavelet-compressed image: (a) pixelwise difference and (b) percept

difference.
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FIG. 15. Fidelity measure as a function of the ratio of the viewing distance and the image width.

characteristics of the HVS sensitivity as shown in Fig. 1, the contrast sensitivity at 1
low-frequency (coarse resolution) end starts to attenuate. The global variation represe
by coarse resolution coefficients begins to extend further into the peripheral region
thus cannot be resolved by foveal vision. The perceived error is therefore lowered by s
extent. The “best” viewing distance is about 3—8 times the image width, which is consist
with the rule of thumb in practical image viewing situations. We can also see from Fig.
that the EZW-compressed image has a lower fidelity error measure than that of the JP
compressed image, although the compression ratio is slightly smaller. This is consis
with the subjective ranking of human observers.

6. CONCLUSION AND FUTURE WORK

In this paper, we investigated a wavelet approach to modeling the human visual sys
(HVS) and proposed a new fidelity measurement system accordingly. The Haar wavelet
shown to provide local contrast values at each resolution, and the new contrast defini
was then incorporated into computational models of visual mechanisms in the design
new fidelity metric for image fidelity measurement. Experiments showed that Haar filte
provide good ability to simulate HVS, and the resulting new metric was useful in measuri
compressed image artifacts.

There are a few interesting problems worth further investigation in the future. First,
research work was mainly based on deterministic signal models. It is, however, bette
model compressed images as stochastic signals. The generalization of the current wc
the context of stochastic signals and the comparison between deterministic and stoch
models should be interesting and useful. Second, more thorough comparison of diffe
still image quality measurement algorithms should be conducted. Although many of
published algorithms left some parameters unspecified, we were able to give good estin
of them for implementation. In our preliminary experiments, all these metrics, includit
ours, did very well in estimating the perceptual error, so that it is difficult to concluc
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any decisive advantage of one algorithm over another. Third, masking in different orier
tions deserves special treatment. To fully investigate this mechanism with psychophy
experiments would be a demanding task and is beyond the scope of our research. Ir
literature, psychophysical experiments showed the orientational bandwidth could be
narrow as 10and as wide as 180depending on which group of cortical cells they sur-
veyed, what region (foveal or no foveal), and the test conditions. This work usSeas45

an estimate for the orientational selectivity index, which is moderate in this image qual
assessment research. Finally, the extension of this work to color image fidelity meast
should have practical value. When all three dimensions one considered in color sp:
HVS computation becomes rather complex. A desired simplification is to find a transfo
which is able to project the color image onto three perceptually independent axes so
we can process each of the three projected images separately and combine the re
Similarly to luminance perception, chrominance perception is the aggregate respons
many individual space—frequency localized channels. It is believed that the masking
fect also exists in chrominance dimensions just as in the luminance case. However,
phenomenon has not yet been much discussed in the literature, and few experiments
been devoted to the determination of parameters of this effect. The interaction betw
luminance and chrominance is very asymmetric. For example, it has been shown that It
nance masks have little effect on color contrast detection, while chromatic masks gre
reduce the detectability of luminance contrast. Interactions among chrominance chan
and the cross-masking effect between luminance and chrominance dimensions shoul
investigated.
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