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The traditional mean-squared-error and peak-signal-to-noise-ratio error measures
are mainly focused on the pixel-by-pixel difference between the original and com-
pressed images. Such metrics are improper for subjective quality assessment, since
human perception is very sensitive to specific correlations between adjacent pixels.
In this work, we explore the Haar wavelet to model the space–frequency localization
property of human visual system (HVS) responses. It is shown that the physical con-
trast in different resolutions can be easily represented in terms of wavelet coefficients.
By analyzing and modeling several visual mechanisms of the HVS with the Haar
transform, we develop a new subjective fidelity measure which is more consistent
with human observation experience.C© 2000 Academic Press
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1. INTRODUCTION

The objective of lossy image compression is to store image data efficiently by reducing
the redundancy of image content and discarding unimportant information while keeping the
quality of the image acceptable. Thus, the tradeoff in lossy image compression is between
the number of bits required to represent an image and the quality of the compressed image.
This is usually known as the rate–distortion tradeoff. The number of bits used to record
the compressed image can be measured easily and objectively. However, the “closeness”
between the compressed and the original images is not a purely objective measure, since
human perception plays an important role in determining the fidelity of the compressed
image.
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At present, the most widely used objective distortion measures are the mean squared
error (MSE) and the related peak signal–noise ratio (PSNR). They can easily be computed
to represent the deviation of the distorted image from the original image in the pixelwise
sense. However, in practical viewing situations, human beings are usually not concentrated
on pixel differences alone, except for particular applications such as medical imaging,
where pixelwise precision can be very important. The subjective perceptual quality includes
surface smoothness, edge sharpness and continuity, proper background noise level, and so
on. Image compression techniques induce various types of visual artifacts that affect the
human viewing experience in many distinct ways, even if the MSE or PSNR level is adjusted
to be about equal. It is generally agreed that MSE or PSNR does not correlate well with the
visual quality perceived by human beings, since MSE is computed by adding the squared
differences of individual pixels without considering the spatial interaction among adjacent
pixels. Some work tries to modify existing quantitative measures to accommodate the factor
of human visual perception. One approach is to improve MSE by putting different weights
to neighboring regions with different distances to the focal pixel [31]. Most approaches can
be viewed as curve-fitting methods to comply with the rating scale method.

In order to obtain an objective measure for perceived image fidelity, models of the human
visual system (HVS) should be taken into account. It is well known that the HVS has
different sensitivities to signals of different frequencies. Since the detection mechanisms
of the HVS have localized responses in both the space and frequency domains, neither the
space-based MSE nor the global Fourier analysis provides a good tool for the modeling.
Since the late 1970’s, researchers have started to pay attention to the importance of the
human visual system (HVS) and tried to include the HVS model in image fidelity or quality
metrics [20, 21]. The development of the HVS model at that time was not mature enough
and the proposed model could not interpret human visual perceptual phenomena very well.
Recently, Karunasekera proposed an objective distortion measure to evaluate the blocking
artifact of block-based compression techniques [25]. Watson [40] and van den Branden
Lambrecht [27, 28] proposed more complete models and extended their use to compressed
video.

The major difficulty in modeling HVS, however often neglected by subjective fidelity
assessment research, is in the computation of the contrast in complex images. In this work,
we explore the Haar wavelet, which has good space–frequency localization properties
to evaluate the physical contrast. It is shown that the contrast can be easily represented
in an expression of transform coefficients. Some visual phenomena can also be modeled
by multiresolutional analysis since the contrast is defined in every resolution. Contrasts
in different resolutions are then combined with models of visual mechanism to yield a
new gray-scale image fidelity measure. The new objective error measure is defined as the
aggregate contrast response mismatch between the original and compressed images. The
proposed metric is more consistent with human subjective ranking and capable of describing
various compressed image artifacts. Our effort can have an impact on the development of
new compression methods that concentrate more on the overall perceptual fidelity rather
than pixelwise error minimization.

This paper is organized as follows. The HVS model is first discussed in Section 2. We pro-
pose a new definition of contrast with respect to complex images by taking the Haar wavelet
transform of the image, and using wavelet coefficients to estimate the local contrast at each
resolution in the image in Section 3. By using the multiresolution and space–frequency
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localization properties of wavelets, several observed inconsistencies in the psychophysi-
cal literature can be explained naturally. HVS mechanisms mentioned in Section 2 such
as the suprathreshold perception response, the frequency masking effect, and the direc-
tional preference can be conveniently incorporated in the wavelet framework. Based on this
framework, we propose an objective metric to compute the extent of the perceived contrast
in every resolution and derive an error measure by examining the response differences of
contrasts between the original and compressed images at each resolution in Section 4.1.
Psychophysical experiments are conducted in Section 4.2 to demonstrate the validity and
effectiveness of the Haar filter. We use these experiments to conclude the independence of
two visual masking variables. In addition, human perception deficiency at oblique orien-
tations is measured in these experiments. In Section 5, the effectiveness of the proposed
image fidelity measure is tested with natural images. The effect of viewing distance effect
on the perception of image compression artifacts is also discussed. Concluding remarks are
given in Section 6.

2. HUMAN VISUAL SYSTEM (HVS) MODELS

Visual perception is the result from a series of optical and neural transformations. The
light is projected onto the retina through the cornea and lens to form an optical image. This
retina image is then sensed by photoreceptors on the retina and transformed into neural
responses to reach the optic nerve. The optic nerve carries these signals to the visual cortex
in the brain for further processing. Since both photoreceptors and cortical cells transform
incoming signals into some particular representation, they form the core of the visual system.
Many of the composing mechanisms are originating from these two core elements as well
as the optical mechanism of the eye. The objective of psychophysical research is to model
the overall transfer function of the visual system.

2.1. Contrast Threshold and Sensitivity

Generally speaking, human visual perception is a function of both the luminance differ-
ence between the background and the stimuli and the background adaptation level.

Let Lmax andLmin be the maximum and minimum luminance of the waveform around
the point of interest. Michelson’s contrast, defined as

C = (Lmax− Lmin)/(Lmax+ Lmin), (1)

is found to be nearly constant when used to represent the just noticeable luminance difference
[22]. For stimuli of uniform luminance seen against a uniform background, another contrast
measure called Weber’s fraction is defined as

C = 1L/L , (2)

where1L is the luminance difference andL is the background luminance. We see that for
simple patterns, Weber’s fraction and Michelson’s contrast differ by a factor of 2.

Physiological experiments showed that many of the cortical cells are focused on certain
regions in their receptive fields and only sensitive to the contrast in certain frequency bands.
The overall visual perception of object luminance or contrast is therefore the aggregate
performance of each cell’s frequency response [13]. Since the HVS cannot provide an infinite
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FIG. 1. A typical contrast sensitivity curve for human beings.

contrast resolution, a contrast threshold exists at every spatial frequency. This threshold
represents the just noticeable contrast in each frequency band.

The contrast threshold value is a function of the spatial frequency, which can be deter-
mined experimentally. A typical contrast sensitivity curve defined as the reciprocal of the
contrast curve is shown in Fig. 1 [13]. As shown in the figure, HVS has the highest luminance
sensitivity around 3–10 cycles per degree, and the sensitivity attenuates at both high and
low frequency ends. It was shown by Campbellet al. [6] that, over a wide range of spatial
frequencies, the contrast threshold of a grating is determined only by the amplitude of its
fundamental Fourier components. Based on this observation, Fourier frequency analysis is
widely used in vision research. According to this model, an image artifact can be sensed
only if its contrast is above the visual threshold after probability summation and contrast
integration.

There has been work devoted to parameterize the contrast sensitivity curve. Daly [9] and
Barten [1, 2] summarized various experimental results from the literature and determined
the contrast sensitivity as the function of several variables. Two variables are of particular
importance, i.e., the display size and the background luminance level. Experimental results
[8] suggest that the angular display size of gratings affects the contrast sensitivity at low
spatial frequencies. This deviation may be due to the consequence that a smaller number
of stimuli cycles produces smaller perceived contrast at the threshold [7]. In addition, Peli
[33] showed that the suprathreshold perception is unaffected with variable grating sizes up
to 4◦. Thus, we do not consider the display size as a variable in this work. On the other hand,
although the contrast threshold is approximately constant for various background luminance
levels for extremely low frequency patterns such as the staircase grating, this constancy does
not hold for the threshold sensitivity curve at a wide range of spatial frequencies. By taking
this factor into consideration and using a parabola in log–log coordinates as a reasonable
approximation [41], we obtain the relationship between the contrast thresholdCT0 and the
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spatial frequencyf as

log(1/CT0) = (p1 log(L)+ q1)(log f )2+ (p2 log(L)+ q2) log f + (p3 log (L)+ q3), (3)

whereL represents the background luminance around the fixation point andpi andqi are
model parameters. The computation ofL from different resolutions will be discussed in
Section 3.2.

2.2. Channel Interactions

Although cells narrowly tune to different frequency bands, they are not strictly band-
limited and interactions among adjacent frequency channels are well observed. Two primary
effects were often discussed in the literature, i.e., the summation effect and the masking
effect. The summation effect is an interchannel effect saying that the neighboring frequency
channels contribute to the total contrast. Consequently, a subthreshold contrast may still
produce a small response if there exist other excitory stimuli in nearby frequency channels.
However, since the summation effect is far less important than the masking effect [35], it is
not considered in this work. The masking effect is another interchannel effect which states
that the visibility of a stimulus at some frequency could be impaired by the presence of other
stimuli in nearby frequency channels. One well-known example is the blocking artifact in
images compressed by block transform methods. Since the blocking artifact consists of
high-frequency edge components, it is less visible in textured regions. This effect can be
viewed as a reduction of contrast sensitivity threshold at certain spatial frequencies in certain
regions.

Several masking models were investigated by Kleinet al. in [26]. Generally speaking,
there is no single model which can be used to account for all masking phenomena. For
the multiple spatial channel HVS model, at least two variables are required to model the
masking effect. They are the frequency separation and the masker contrast. The sensitivity
threshold is lowered when the frequency separation between the masker and the signal
decreases and/or when the masker contrast is larger with respect to the signal contrast
[12, 30]. If we assume these two variables are separable, the new contrast thresholdCT after
masking becomes

CT = CT0

N∏
i=1

gi (Ci ,C0)hi ( fi , f0), (4)

where

gi (Ci ,C0) =
{

1 if Ci ≤ k0C0,

k1(Ci /C0)k2 if Ci > k0C0

(5)

and

hi ( fi , f0) =
{

k3( fi / f0)k4 if fi < f0,

k5( fi / f0)k6 if fi > f0,
(6)

and whereCT0 is the original contrast threshold,C0 is the contrast of the signal,Ci is the
contrast of the masker in thei th channel, andf0 and fi are spatial frequencies of the signal
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channel and thei th masking channel, respectively. Both the separability assumption (4) and
parametersk0 throughk5 in (5) and (6) will be examined and determined in Section 4.2.B.

2.3. Suprathreshold Contrast

Since the subthreshold stimuli, i.e., stimuli with a contrast lower than the threshold, cannot
be sensed by human beings, only the suprathreshold contrast is of concern in image percep-
tion. As the suprathreshold contrast becomes larger, the equal-response curve morphs from
the inverse-U shape near the threshold (Fig. 1) to a flat horizontal line at high contrast lev-
els. In other words, at high suprathreshold contrast levels, the visual responses to all spatial
frequencies (below the optical cut-off frequency) become approximately the same [19].

Since visual responses to the suprathreshold contrast involves human subjective rating, it
is difficult to use psychophysical methods to measure it. However, even though it is difficult
to find a precise formula for its modeling, it is generally agreed that the estimated response
R is a function of the spatial frequency and follows a power law [29],

R= k(C − CT)p, (7)

whereC is the suprathreshold contrast,CT is the contrast threshold at the specific frequency,
and the exponentp varies between 0.4 and 0.52 [7]. The value ofp is chosen to be 0.45
and the scaling or normalization factork is set to 1 in this work.

2.4. Directional Preference

Besides spatial locations and frequencies, HVS also responds differently to various ori-
entations of stimuli. Campbellet al. [4, 5] demonstrated psychophysically that HVS is most
sensitive to stimuli in the vertical and horizontal directions and least sensitive to stimuli
in the 45◦ and 135◦ directions. Different from spatial frequency selectivity, the bandwidth
of orientational selectivity varies considerably from cell to cell. Cortical cells from foveal
and near nonfoveal cortical regions have a wide range of orientation bandwidth from 10◦

to over 180◦, with the median bandwidth being about 45◦ [13]. Phillips and Wilson [35]
used masking experiments to show that orientation bandwidths vary from about±30◦ at
0.5 cpd to±15◦ at 11.3 cpd. These results encourage the use of filters in four different
orientations: 0◦, 45◦, 90◦, and 135◦. In our work, the contrast sensitivity function in the
oblique directions also takes a form similar to that of (3) but with different parameters (see
Section 4.3).

3. NEW CONTRAST DEFINITION BASED ON HAAR WAVELET

3.1. Space–Frequency Localization

Limited by its spatial location on the retina, each photoreceptor can only focus on a
certain region of the visual field to form a channel. Furthermore, each photoreceptor is only
sensitive to signals of a certain spatial frequency range. Cortical cells pool the responses of
all photoreceptors on the same retinal location, and there are many channels tuned to the
same spatial frequency band, say, 2 cycles/degree, but at different locations in the receptive
field. Thus, we can say that the frequency response of visual stimuli is not only band-limited
in the frequency domain but also localized in the space domain. For example, the frequency
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response of the fixation point is characterized by the typical contrast threshold function
as shown in Fig. 1. However, from the spatial inhomogeneity [16] phenomenon, the high-
frequency response will further attenuate as the eccentricity from the focal point increases.
This means that responses at the same (high) spatial frequency in different locations in the
receptive field are governed by different channels, thus providing an evidence that visual
channels are narrowly tuned in specific spatial locations.

The commonly used Fourier frequency analysis is, however, a global process which gives
all spatial components the same weighting. It is well known as Heisenberg’s uncertainty
principle that exact localization in both space and frequency domains cannot be achieved
simultaneously [24]. The Gabor transform [15], which is a Gaussian-windowed Fourier
transform, was proved to achieve the limit of the Heisenberg inequality. Gabor gratings
have thus been widely used in modern psychophysical experiments. Parameters of the
Gaussian window were chosen based on researchers’ preferences, and various degrees of
localization were achieved [34]. That is, by varying the Gaussian envelope parameters,
the passbands of Gabor gratings were overlapped to a different extent. There are some
limitations in the Gabor representation. First, it is difficult to analyze the stimuli whose
frequency responses fall into the overlapped band. Second, since the Gabor filter is an IIR
(infinite impulse response) filter, truncation is still needed for practical implementation.
However, localization is not fully ensured after truncation.

3.2. Contrast Computation with Haar Wavelets

A major difficulty of HVS modeling, though one often neglected by researchers, is the
computation of the contrast in complex images. Michelson’s contrast defined in (1) is based
on the staircase pattern, which has distinctLmax andLmin. In psychophysical experiments
with sinusoidal gratings, the stimuli also have unique peak (maximum) and trough (min-
imum) luminance. In Gabor experiments, on the other hand, the contrast is defined at the
largest ripple, which is located at the focal point. It is, however, extremely difficult to de-
fine the contrast for natural images since there are no unique or obvious maximum and
minimum luminance values to be recorded even with the Gaussian envelope localization.
For example, for a one-dimensional grating composed of two sinusoidal waveforms with
different frequencies [32],

f (x, y) = I0(1+ a1 cos(2πω1x)+ a2 cos(2πω2x)), (8)

whereω1 < ω2. The grating is shown in Fig. 2. We see that the contrast is approximately
equal toa2/(1 − a1) at point A, where the slow-varying waveforma1 cos (2πω1x) is
at its minimum luminance, while the contrast is abouta2/(1+a1) at point B, wherea1

cos(2πω1x) is at its maximum. Therefore, the contrast of this grating is different everywhere
along thex-direction. A good definition of contrast should be able to handle such cases.

Since (1) is defined as the ratio of the luminance difference and the background adaptation
level, both values should be obtained if one wishes to devise a good definition of the contrast
in complex images. Hesset al. [23] defined the contrast at thei th spatial frequency band as

Ci = ACi

DC
, (9)

where ACi is the filtered AC coefficient at that specific frequency band andDC is the
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FIG. 2. A composite grating example for contrast computation.

DC (zero-frequency) value computed based on the whole imageor 1/4 or 1/16 subimages.
Clearly, this value is pre-determined and not adaptive to model the contrast at different
resolutions with their respective space–frequency localizations. Peli [32] used localized
cosine log filters to define the contrast at thei th spatial frequency band as

Ci = ACi∑i−1
j=0 ACj

, (10)

where the denominator takes the sum of responses from all frequencies lower than the
target frequency band. It has a good adaptive property since these filters are well localized
and perfectly reconstructive. Both of the above approaches suggest that the background
adaptation level can be computed for the low-frequency response, since it represents more
global variation. On the other hand, the high-frequency response acts more like a differential
operator. This basic idea does make a lot of sense intuitively. The disadvantage of these
approaches is that it is difficult to show its coherence with the contrast definition presented
earlier mathematically. We will show below that the Haar wavelet transform approach
provides a good framework to generalize the contrast definition from simple to complex
cases both intuitively and mathematically.

The wavelet transform provides a good space–frequency localization property [10] and
can be implemented using the multichannel filter banks. Compactly supported wavelets
such as the Daubechies filters [10] can be implemented with FIR (finite impulse response)
filters. The space–frequency localization is optimized among all possible FIR filters with
the given length for the Daubechies filters. The Haar wavelet is the simplest basis function in
the compactly supported wavelet family. It provides the capability to compute the contrast
directly from the responses of low and high frequency subbands. For the Haar wavelet, filter
coefficients for the low- and high-frequency filter banks are given by

h0[n] =
{ 1√

2
n = −1, 0,

0 otherwise
(11)
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h1[n] =


1√
2

n = 0,

− 1√
2

n = −1,

0 otherwise,

(12)

respectively. Assume that a discrete-time input signalx[n] is the staircase contrast pattern

x[n] =
{

Lmax n < 0
Lmin n ≥ 0.

(13)

The responsesy0,1[n] and y1,1[n] at the first resolution after filtering withh0[n] andh1[n],
respectively, are

y0,1[n] =


√

2Lmax n < −1
1√
2
(Lmax+ Lmin) n = −1

√
2Lmin n > 0,

(14)

y1,1[n] =
{ 1√

2
(Lmax− Lmin) n = −1

0 otherwise.
(15)

Thus, contrastC1 in the interval (−1, 0) and the 1st (finest) resolution can be computed via
the ratio ofy1,1[n] and y0,1[n], i.e.,

C1 = Lmax− Lmin

Lmax+ Lmin
= y1,1[−1]

y0,1[−1]
,

which is consistent with Michelson’s contrast definition as given in (1). At the second
(second finest) resolution, the low-frequency band responsey0,1[n] is downsampled by 2
and fed into the same filter bank. The responses are

y0,2[n] =


2Lmax n < −1

Lmax+ Lmin n = −1

2Lmin n > −1,

(16)

y1,2[n] =
{

Lmax− Lmin n = −1

0 otherwise.
(17)

Again, we can compute the contrast at the second resolution as

C2 = Lmax− Lmin

Lmax+ Lmin
= y1,2[−1]

y0,2[−1]
.

Following this path, the contrast at thei th resolution can be computed as

Ci = Lmax− Lmin

Lmax+ Lmin
= y1,i [−1]

y0,i [−1]
, (18)

i.e., the ratio of high- and low-band responses evaluated atn= −1. Figure 3 illustrates this
constant-ratio relationship across resolutions.
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FIG. 3. Contrast computation using various filter responses where (a) is the original staircase signal, (b) and
(c) are low and high band responses at the 0th resolution, and (d), (e), (f), and (g) are responses at the first and
second resolutions.

It is worthwhile to point that the dyadic wavelet transform satisfies the uncertainty princi-
ple in that the supported spatial radius is doubled when the center frequency of the highpass
band is halved. In addition, the supported radii of the highpass filter and the lowpass filter
are exactly the same. This is a very desirable property since the background adaptation level,
i.e., the mean luminance of the signal, should be obtained from the same supported radius
as that of the bandpass filter extracting the frequency components to form the contrast.
According to (14), (16), and subsequent computation, the background luminance levelL
in (3) at thei th resolution can be computed as

L = (
√

2)−i y0,i [−1] (19)

Even though the new contrast is derived based upon the staircase pattern, it can be directly
applied to more complex cases such as the example in Fig. 2. Takingω1 = 0.004,ω2 =
0.0625, anda1 = a2 = 0.25, the contrasts at points A and B in Fig. 2 should be 0.2 and 0.33,
respectively. Based on the half-band decomposition, the fast varying terma2 cos(2πω2x)
will be separated from the slowly varying terma1 cos(2πω1x) at the fourth resolution. We
show in Fig. 4 the low- and high-frequency bank responses as well as the computed contrast.
We see that the Haar wavelet can predict the contrast at different spatial locations accurately.

There are several reasons to define multiple contrasts in different resolutions. First of
all, since human contrast sensitivity is highly dependent on the spatial frequency, multiple
contrasts can be used to address different variations at different resolutions across the image
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FIG. 4. The Haar decomposition of Fig. 2: the waveform (top) low-frequency response at the fourth resolution
(middle- left), high-frequency response at the fourth resolution (middle right), the ratio (computed contrast) of
these two responses (bottom).

[32]. Second, the uncertainty principle requires the response in different frequency bands to
have different supported radii as stated above. Furthermore, it was shown that each frequency
channel in HVS has the bandwidth of about one octave [32]. The dyadic wavelet transform
satisfies this requirement naturally. Finally, perfect reconstruction is possible with responses
obtained from different scales, and no visual information will be lost during the process. In
contrast, to perfectly reconstruct the visual information using the Gabor analysis, all filters
must have the same length and, as a result, the space-frequency localization property is less
flexible.

4. NEW WAVELET-BASED FIDELITY MEASURE

4.1. Fidelity Measure System and Metric

Based on the discussion in Sections 2 and 3, we propose a new fidelity measure system
as shown in Fig. 5 and detail the process below.

1. Wavelet Decomposition
Both the original and distorted images are passed through the system for dyadic Haar

wavelet decomposition in four orientations, i.e., 0◦, 45◦, 90◦, and 135◦. The oblique

FIG. 5. A block diagram of the proposed fidelity measure system.
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decomposition is performed on diagonally adjacent pixels, thus the central spatial fre-
quency is 1/

√
2 times of that at horizontal and vertical directions at the same decompsition

level. ContrastsC are computed at every pixel and every resolution of interest with (18).
Contrast thresholdsCT0 at each resolution are computed via (3) with respect to their center
frequenciesf .

2. Masking Effect
The contrast thresholdCT0 is adjusted according to (4) at each resolution to incorporate

the masking effect.
3. Suprathreshold Computation
Equation (7) is used to give the suprathreshold response from computed contrastsC and

adjusted contrast thresholdsCT.
4. Summation of Error Measure
Let subscripts c and o represent the compressed and the original images, respectively,

and let (i, j ) indicate the coordinate of the pixel in the image. Then, the perceptual error
measureD for the entire image is pooled and the Minkowski metrics taken as

D =
 1

N

N∑
k=1

(
V∑

j=1

H∑
i=1

|Rc,k(i, j )− Ro,k(i, j )|
)β1/β

, (20)

whereV and H are the vertical and horizontal sizes of the image, respectively,N is the
number of filtering channels across all frequency bands in the four direction, andβ is an
empirical parameter related to the psychometric function and probability summation with
values from 2.0 to 4.0 [3]. We chooseβ = 4 in the experiment.

Note that the error measureD is dimensionless since the contrast itself is dimensionless.

4.2. Experimental Calibration and Validation

The following psychophysical experiments were conducted on a 17” Silicon Graphics
color graphic display GDM-17E11. The luminance range of the display was adjusted from
0 to 80 cd/m2 (candela/square meter) using a Photoresearch spectroradiometer. There were
256 discrete gray scales present in the experiments. The relationship of the luminanceL
versus the gray scaleG is measured and approximated by

L =
{

(0.0785G− 1.3270)1.4925 if G ≥ 28

(0.0159G+ 0.5437)10 if G < 28.

This relation can be used to transfer the display gray levels to the actual luminance. The
transfer characteristics is plotted in Fig. 6. This curve was used to compute the actual contrast
in the following experiments. This display has a smaller gamma value than ordinary displays
[36], but the influence on the following experiments is not critical.

A. Validation of Haar wavelet. The fact that cortical cells have a Gaussian-shaped
reception profile [11] is often used to support the argument that the Gabor filter is preferable
in vision experiments. Since the Haar filter does not possess the same Gaussian-shaped
passband as the Gabor filter, one may suspect the validity of using the Haar filter in vision
analysis. To validate the use of the Haar wavelet, we measured the contrast threshold by
using both Gabor and Haar filtered patches. The spatial frequencies of test patches range
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FIG. 6. The plot of the luminance versus the gray level for the color graphic display used in experiments.

from 0.069 to 19.2 cycles per degree. This range covers virtually the whole frequency band
we would sense from digital images. The result is shown in Fig. 7, where the sensitivity
threshold, defined as the reciprocal of the contrast threshold, is plotted as a function of
spatial frequency. The closeness of these two curves confirms that the Haar filter has a
comparable performance in comparison with the Gabor filter.

FIG. 7. Comparison of contrast sensitivity thresholds using the Gabor and Haar filters.
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B. Suprathreshold masking.In Section 2.2, we formulated the masking function (4)
by assuming that the two variables of masking, namely, the frequency separation and the
contrast ratio between the target and masker, are independent and separable. To verify this
assumption, psychophysical experiments were conducted to find the parameters of this
model. The contrast ratioCmask/C, whereCmask andC represent the contrast of masking
and target signals, respectively, ranged from 0.5 to 2.5. The frequency ratiofmask/ f , in the
meanwhile, ranged from−3 to 3 octaves. To isolate individual effects, we first fixed the
frequency ratio, and varied the contrast of each signal to investigate the effect of the contrast
ratio. The result is shown in Fig. 8a, and an exponential fitting function was determined from
the data. We then varied both the contrast and the frequency ratios of target and masking

FIG. 8. Illustration of the masking effect: sensitivity threshold changes under different (a) contrasts and
(b) frequency ratios.
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FIG. 9. Horizontal/vertical and diagonal sensitivity thresholds.

signals. During the computation process, we scaled experimental data with respect to their
contrast ratios according to Fig. 8a. The scaled data show a very small amount of deviation,
thus indicating that (4) is a very good approximation to the masking model. The means of
experimental data and fitting functions are shown in Fig. 8b, which are in good agreement
with those in [12]. By fitting the data, we obtain the following parameters in (5) and (6):

k0 = 0.22, k1 = 1.5, k2 = 0.27, k3 = 1.34,
k4 = 0.18, k5 = 1.52, k6 = −0.20.

C. Directional preference. The contrast threshold functions for four orientations (0◦,
45◦, 90◦, and 135◦) are measured. It is confirmed experimentally that there is no significant
difference between the contrast thresholds of 0◦ (horizontal) and 90◦ (vertical) stimuli, nor
between thresholds of 45◦ and 135◦ stimuli. The difference between thresholds of 0◦/90◦

and 45◦/135◦ stimuli is shown in Fig. 9, where we see that the sensitivity threshold is lower
for diagonal stimuli. Parameters in (3) are obtained from the fitting functions. They are

p1 = −0.0062, p2 = 0.16, p3 = 0.24,
q1 = −0.53, q2 = 0.52, q3 = 3.28,

for horizontal/vertical thresholds. For oblique thresholds, the same parameters are used for
p1, p2, andp3 while

q1 = −0.65, q2 = 0.76, q3 = 3.06.

The contrast sensitivity curves for different orientations andL ’s are shown in Fig. 10. The
curves are consistent with Daly’s [9] and Barten’s [1, 2] results except at very low spatial
frequecies, where the sensitivity is lower than the literature. This spatial frequency range,
however, is seldom used in practical viewing situations.
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FIG. 10. Contrast sensitivity curves for horizontal/vertical and diagonal gratings.

5. APPLICATION TO COMPRESSION ARTIFACT MEASURE

5.1. Perceptual Difference Map

Compressed Lena images of size 256× 256 were used for image fidelity assessment
with the proposed new fidelity assessment system. Two types of compression schemes were
applied: block DCT-based compression (i.e., JPEG) and wavelet-based compression. We
evaluate the performance of our perceptual distortion measure by examining the perceptual
error map, defined as the sum ofβ-weighted response differences at each pixel,

Dpermap(i, j ) = 1

N

N∑
k=1

(|Rc,k(i, j )− Ro,k(i, j )|)β, (21)

where the variables are as defined in (20), against the pixelwise error map which is used in
MSE and PSNR computation,

Dpxlmap(i, j ) = (Gc(i, j )− Go(i, j ))2, (22)

whereGc(i, j ) and Go(i, j ) represent the grayscale values at pixel location (i, j ) of the
compressed and the original images, respectively. Since these two error maps are computed
by different methods and are of different magnitude, we normalize them by equalizing the
energy of the two maps for fair comparison. The viewing distance in this section is set to
five times the width of the image.

The JPEG compression standard is a block-based method [38]. It does not consider the
correlation among adjacent blocks, and the blocking artifact usually appears at low bit
rates, presented as blocky edges along block boundaries. This artifact is visually annoying,
but cannot be fully represented by the pixel-difference-based PSNR measure. We used
an image compressed with the default quantization table with a bit rate of 0.19 bpp and
PSNR= 23.36 dB. The original image and the compressed image are shown in Fig. 11.
The resulting difference maps between Fig. 11a and 11b are shown in Fig. 12. We see
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FIG. 11. (a) Original Lena image and (b) JPEG-compressed Lena at 0.19 bpp with PSNR= 23.36 dB.

that most of the energy of the pixelwise difference map concentrates in texture regions,
since the pixel difference is large in these regions at low bit rates. The blocking artifact is
mostly detected in homogeneous regions with slow slopes such as the shoulder, but is not
detected in extremely flat regions such as the background, where the background noise is
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FIG. 12. Difference maps of the DCT-compressed image: (a) pixelwise difference and (b) perceptual differ-
ence.

more dominant. On the perceptual difference map, in contrast, the texture region difference
is decimated due to the masking effect, which is more consistent with human viewing
experiences. The blocking artifact is more dominant in flat or smooth regions with low
slopes, since its sharp characteristics generate large contrasts at every resolution.
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FIG. 13. Wavelet-compressed Lena image at 0.4 bpp with PSNR= 28.18 dB.

The main artifact for wavelet-based coding algorithms is the ringing artifact, which
appears as ripples around the edges due to the truncation and quantization of wavelet
components. The ringing artifact also appears in DCT compressed images but is not as
severe as the blocking artifact. We used an image coded at a bit rate of 0.4 bpp with PSNR=
28.18 dB. The compressed image is shown in Fig. 13 and the corresponding two difference
maps are shown in Fig. 14. The energy of the pixelwise difference map again concentrates
on texture regions, and the ringing artifact is rather insignificant by comparison. The ringing
artifact can be more easily detected in the perceptual difference map by comparing textured
patterns located in the vertical and curved strips of the background in Figs. 14a and 14b.

5.2. Effect of Viewing Distance

Since the HVS contrast sensitivity threshold is characterized by the spatial frequency,
defined as cycles per degree, one should expect the fidelity measure to vary with the ratio
of D, the distance between the observer and the image, and the widthW of the image.
We used a DCT-compressed Lena image (0.34 bpp, PSNR= 26.43 dB) and a wavelet-
compressed Lena image compressed by the embedded zerotree wavelet (EZW) algorithm
(0.32 bpp, PSNR= 28.47) as test images. Figure 15 shows the relation between the ratio
and the fidelity measure. As the distance between the observer and the image increases, the
spatial frequencies of the details (high-frequency components) become even higher, so the
visual system attenuation fails to capture the compression artifact. Therefore, the error will
diminish as the viewing distance increases. On the other hand, once the viewing distance is
decreased to a certain extent, the whole details of the image at the pixel level are perceivable.
The fidelity measure will thus reach a maximum when the viewing distance is smaller than
this distance. As the viewing distance becomes still smaller, however, due to the bandpass
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FIG. 14. Difference maps of the wavelet-compressed image: (a) pixelwise difference and (b) perceptual
difference.
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FIG. 15. Fidelity measure as a function of the ratio of the viewing distance and the image width.

characteristics of the HVS sensitivity as shown in Fig. 1, the contrast sensitivity at the
low-frequency (coarse resolution) end starts to attenuate. The global variation represented
by coarse resolution coefficients begins to extend further into the peripheral region and
thus cannot be resolved by foveal vision. The perceived error is therefore lowered by some
extent. The “best” viewing distance is about 3–8 times the image width, which is consistent
with the rule of thumb in practical image viewing situations. We can also see from Fig. 15
that the EZW-compressed image has a lower fidelity error measure than that of the JPEG-
compressed image, although the compression ratio is slightly smaller. This is consistent
with the subjective ranking of human observers.

6. CONCLUSION AND FUTURE WORK

In this paper, we investigated a wavelet approach to modeling the human visual system
(HVS) and proposed a new fidelity measurement system accordingly. The Haar wavelet was
shown to provide local contrast values at each resolution, and the new contrast definition
was then incorporated into computational models of visual mechanisms in the design of a
new fidelity metric for image fidelity measurement. Experiments showed that Haar filters
provide good ability to simulate HVS, and the resulting new metric was useful in measuring
compressed image artifacts.

There are a few interesting problems worth further investigation in the future. First, our
research work was mainly based on deterministic signal models. It is, however, better to
model compressed images as stochastic signals. The generalization of the current work to
the context of stochastic signals and the comparison between deterministic and stochastic
models should be interesting and useful. Second, more thorough comparison of different
still image quality measurement algorithms should be conducted. Although many of the
published algorithms left some parameters unspecified, we were able to give good estimates
of them for implementation. In our preliminary experiments, all these metrics, including
ours, did very well in estimating the perceptual error, so that it is difficult to conclude
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any decisive advantage of one algorithm over another. Third, masking in different orienta-
tions deserves special treatment. To fully investigate this mechanism with psychophysics
experiments would be a demanding task and is beyond the scope of our research. In the
literature, psychophysical experiments showed the orientational bandwidth could be as
narrow as 10◦ and as wide as 180◦, depending on which group of cortical cells they sur-
veyed, what region (foveal or no foveal), and the test conditions. This work used 45◦ as
an estimate for the orientational selectivity index, which is moderate in this image quality
assessment research. Finally, the extension of this work to color image fidelity measures
should have practical value. When all three dimensions one considered in color space,
HVS computation becomes rather complex. A desired simplification is to find a transform
which is able to project the color image onto three perceptually independent axes so that
we can process each of the three projected images separately and combine the results.
Similarly to luminance perception, chrominance perception is the aggregate response of
many individual space–frequency localized channels. It is believed that the masking ef-
fect also exists in chrominance dimensions just as in the luminance case. However, this
phenomenon has not yet been much discussed in the literature, and few experiments have
been devoted to the determination of parameters of this effect. The interaction between
luminance and chrominance is very asymmetric. For example, it has been shown that lumi-
nance masks have little effect on color contrast detection, while chromatic masks greatly
reduce the detectability of luminance contrast. Interactions among chrominance channels
and the cross-masking effect between luminance and chrominance dimensions should be
investigated.
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