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This work presents a postprocessing technique applied to a 3D graphic model of a
lower resolution to obtain a visually more pleasant representation. Our method is an
improved version of the modified butterfly subdivision scheme developed by Zorin
and his colleagues. Our main contribution is to exploit the flatness information of
local areas of a 3D graphic model for adaptive refinement in relatively coarser areas.
We can avoid unnecessary subdivision in regions which are smoother. Consequently,
the new algorithm reduces the computational complexity and also saves the storage
space for many models. Our algorithm can also remove overshoots around sharp
edges and retain sharp features.C© 2000 Academic Press
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1. INTRODUCTION

3D graphic models represented by polygonal meshes have become increasingly popu-
lar due to the fast development of the Internet and the standardization of VRML (Virtual
Reality Modeling Language). However, the complexity of graphic models has increased
much faster than the throughput of today’s graphics hardware and computer networks. In
the past several years, several algorithms for mesh simplification and compression have
been applied successfully to level-of-detail (LOD) generation and progressive transmission
[7, 12, 18, 19]. A quite different approach was adopted in [6, 11], where classical multires-
olution analysis and subdivision techniques were extended to the adaptive parameterization
of mesh surfaces.

Due to the loss of information in these simplification techniques, a graphic model may
become very coarse and have an inferior appearance in some areas, especially in the case
of high compression ratios. Quality degradation occurs because the compressed model
usually contains a fewer vertices and polygons than the orignal one and because geometry
data, such as vertex positions and normal vectors, are often represented with less numerical
precision than their raw values. A solution to this problem is to perform postprocessing on
the compressed model to enhance its visual quality. By postprocessing, we mean the way to
use surface subdivision techniques on the simplified model to obtain a finer and smoother
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mesh. We see at least two applications of mesh postprocessing, i.e., mesh browsing over
the Internet and LOD rendering. When meshes are transmitted through the Internet, visual
quality is greatly degraded because of the high compression ratio required. By applying
postprocessing, meshes can have more pleasant visual quality at relatively coarser areas.
For LOD rendering, we can use relatively coarser mesh when the object is far from the
viewer. If the object is closer, coarser areas can be further subdivided for a better resolution.

There are two major subdivision methods to achieveC1-continuous limit surfaces: one
is the butterfly scheme pioneered by Dynet al. [3], which is an interpolation scheme and
the other is Loop’s scheme [13] which is an approximating scheme for a given model. The
butterfly scheme of Dynet al. only considered the subdivision over triangular meshes in
which every vertex is regular (i.e., with six neighbors). Zorinet al. [21, 22] proposed a
modified butterfly subdivision (MBS) scheme on an arbitrary topology with extraordinary
points. MBS constructs a smooth surface that encloses the original mesh and retains old
vertices. Thus, it is an interpolating scheme. In contrast, Loop’s scheme obtains a shrinked
model with the old mesh as an envelope. Both schemes are very fast, since only linear
interpolation of local vertices is used. The advantage of MBS over Loop’s scheme is that it
allows adaptive subdivision in local areas as presented in this paper, and it may also allow
dynamic subdivision which shows view-dependent features similar as discussed in [8].

Based on MBS, we propose a new postprocessing algorithm for 3D meshes by using a
selective subdivision algorithm in this research. Our main contribution is the development
of a new adaptive subdivision method by using the local flatness information to perform se-
lective refinement. To be more specific, by defining the flatness of two neighboring faces, we
specify coarser areas in the 3D mesh for local subdivision. Furthermore, the extraordinary
behavior at boundaries of subdivided areas is carefully analyzed, and irregular cases in MBS
are improved to lead to a robust algorithm. We have tested our algorithm on a variety of mod-
els and observed very good results for most models. With our new algorithm, a large number
of relatively smoother areas are not subdivided. This technique is able to reduce the time for
mesh updating and rendering and the storage space while preserving a similar visual effect.

2. REVIEW OF UNIFORM SUBDIVISION

The butterfly scheme [3] is a local interpolating scheme. It is local in the sense that it
requires only a small neighborhood (8-point stencil with the shape of a butterfly) to calculate
values of new vertices and generates a smooth surface over triangular meshes with regular
vertices (i.e., vertices with six neighbors). However, it exhibits undesirable artifacts for
irregular meshes and the surface smoothness can be lost. Zorinet al. [21] developed a
MBS scheme that retains the simplicity of the butterfly scheme and provides a smoother
surface for meshes of arbitrary topology by using the discrete Fourier transform analysis.
The scheme extends the 8-point butterfly neighborhood to a 10-point stencil for regular
points as shown in Fig. 1 and finds a new formula for extraordinary vertices. Due to the
nature of the construction, all new vertices are of valence 6 and the limiting surface is thus
of C1-continuity.

The MBS scheme can be specified under four cases:

1.Edge connects two regular points. The neighborhood is a 10-point stencil as shown in
Fig. 1a. The weights for the new vertex are given bya= 1/2−w,b= 1/8+ 2w,c=−1/16,
andd=w.
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FIG. 1. (a) The 10-point stencil and (b) the 1-neighborhood stencil for a 7-vertex, where the black dot indicates
the spot of a new vertex obtained by splitting the corresponding edge.

2.Edge connects a K-vertex (K6= 6) and a regular vertex. We show the neighborhood
of the K -vertex withK = 7 in Fig. 1b, which consists of vertices with distance 1. Weights
for these 1-neighbor vertices are chosen as follows. ForK = 3,s0= 5/12,s1= s2=−1/12.
For K = 4,s0= 3/8,s1= s3= 0,s2=−1/8. ForK ≥ 5,sj = (1/4+ cos(2π j/K )+ 1/2 cos
(4π j/K ))/K . In all cases, the weight for the centralK -vertex isq= 1−6sj = 0.75.

3. Edge connects two extraordinary vertices. The position of the new vertex is the
average of the values computed using the above formula for each endpoint.

4. Boudary edge. 1-dimensional 4-point scheme is used:s−1=−1/16, s0= 9/16,
s1= 9/16,s2=−1/16.

Before describing the proposed selective subdivision process, let us address the problem
of exponential growth in the computational complexity and the storage requirement due to
uniform subdivision. For uniform subdivision, each triangle is divided into four new faces at
each subdivision level. The number of vertices also increases by approximately four times.
Even with a small model, we will have difficulty in performing several levels of subdivision.
In the next section, we propose the use of local neighborhood flatness information to achieve
selective subdivision to solve this problem.

3. SELECTIVE SUBDIVISION

3.1. Subdivision Based on Flatness

Our basic idea is simple. Edges that are relatively flat are skipped so that no subdivision is
performed on flat patches. Only triangles in a visually rough surface are subdivided. Thus,
by defining a meaningful decision rule on surface flatness, we are able to skip a large amount
of flat triangles without performing subdivision on them and concentrate on subdividing a
small portion of the surface to give a more pleasant visual effect.

The flatness information of an edge is calculated by using the unit normal vectors of its
two adjacent triangles. Suppose that the dihedral angle between two adjacent faces isθ and
the two corresponding unit normal vectors aren1 andn2. Then, theflatnessof the joint edge
can be defined as

τ = −cosθ = n1 · n2,

providing thatn1 andn2 point to the same side of the connected patch. The initial direction
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FIG. 2. Triangles with one, two, or three target edges are split into two, three, or four new patches.

of the normal of each face is defined as the outside of the surface by the corresponding
order of vertices in VRML files. Thus, we have to be careful about the directions of new
faces after subdivision.

We haveτ ∈ [−1, 1]. It is clear that the part at the edge of the patch is smoother whenτ

is large while the edge is in a rough area ifτ is small.τ = 0 implies that the two faces are
perpendicular to each other. Thus, given a thresholdt , we can classify an edge asflat if

t < τ < 1.

Otherwise, it is classified as atargetedge for subdivision. A target edge can be subdivided
by MBS and a new vertex is obtained along the edge.

When a triangle has target edges, it can have one, two, or three target edges. After
appropriately connecting new and old vertices, a triangle is replaced by a new patch of two,
three, or four faces. When a triangle has just one target edge, we can simply connect the
new inserted point with the old vertex residing in the opposite of the edge. When a triangle
has two target edges, we connect the two new vertices and link one of the new vertices with
the opposite old vertex. If a triangle has three target edges, the old triangle can be simply
split into four. These situations are shown in Fig. 2.

As observed in experiments, very good results are obtained by choosing thresholdt from
0.75 to 0.95. The choice depends on topological structures of different models. Generally,
for simple models such as those under the first one or two levels of subdivision, we choose
smallert and then gradually increaset for finer subdivisions. By limiting the thresholdt to
0.75 or above, we allow the dihedral angle between two triangles to be classified as flat by
having an incident angle of 139◦ or above.

4. FURTHER MODIFICATIONS

4.1. Problem of Successive Edge Subdivision

Directly applying the above scheme several times to a mesh may result in successive
subdivision on the same edge of the original triangle. As illustrated in Fig. 2a, since new
vertices are connected with the opposite old vertex in the case of a triangle with only one
target edge, the smoothness may not be recovered by subdivision. Instead, there may be a
loss in efficiency by introducing more faces and vertices. One such example is shown in
Fig. 3b. To solve this problem, we introduce a new way to mark target edges. After edges are
marked as targets by using the flatness initially, we further mark the 1-neighboring edges of
each previously marked edge for subdivision. This method can avoid the case of sudividing
an old edge again and again. It also prevents a vertex from connecting to too many other
vertices. This change greatly improves the appearance of the subdivided mesh even if we
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FIG. 3. (a) The original coarse mesh, (b) the subdived mesh obtained by using the scheme described in
Section 3, and (c) the subdivided mesh obtained by using the scheme described in Section 4.1. Three levels of
subdivision operations were performed for these two cases with thresholdst = 0.8, 0.85, and 0.9, respectively.

select a much smaller thresholdt for the flatness. The result of the modified scheme is shown
in Fig. 3c. When the mesh is relatively large (of several hundreds of vertices and faces) and
most areas are smooth, this method can still retain the effect of saving vertices and faces.

4.2. Problem of Overshoot

We performed the above algorithm on many models such as Bunny and Dinosaur. The
visual effect of final results looks almost the same as those obtained by using the uniform
subdivision (see results in Section 5). Zorinet al.also got very good results in [21] and [22].
However, when we work on some simple models with very sharp edges, MBS attempts to
construct a quadratic surface to interpolate the original mesh and, consequently, the refined
mesh suffers from the overshoot problem as shown in Fig. 4. This phenomenon is extremely
undesirable when the original mesh is greatly simplified. A practical example of the over-
shoot problem is given in Fig. 5b. Kobbeltet al. [10] addressed the same problem for the
1-dimensional case and used the variational subdivision scheme to handle the overshoot
problem.

The overshoot phenomenon results from the discontinuity of the surface around sharp
edges, which is the same as the 1-D case. As shown in Fig. 6, when we split edgeAC, the

FIG. 4. The overshoot phenomenon associated with MBS: (a) the original mesh and (b) the subdivided mesh
with MBS.
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FIG. 5. The overshoot problem for the Mug model: (a) the simplified mesh, (b) subdivision with MBS, and
(c) postprocessing by using the tension factor.

1-neighboring vertices ofA are used to interpolate this new vertex. Suppose that the two
adjacent triangular faces1ACBand1ADCof AChave unit normalsn1 andn2, respectively.
Let ne be the unit vector in the direction ofn1+ n2. Then, the plane determined by the edge
AC and parallel tone equally divides the dihedral angle of the two triangular faces. When
we project the 1-neighboring vertices ofA onto this plane, the reason of the overshoot phe-
nomenon becomes clear. For example, let us consider vertexE, which is the 1-neighboring

FIG. 6. SplittingACby using the tension factor.
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vertex of A. When the projection ofE is lower than the horizontal lineAC, it pushes the
new vertex obtained by subdividingAC higher to smooth the corner. On the other hand, if
E is higher thanAC, it pushes the new vertex lower. Thus, in order to reduce the overshoot
phenomenon, we should reduce the interpolating coefficients of those vertices with larger
projections in the direction ofne. This can be achieved by introducingtension factorsfor
1-neighboring vertices of a K-vertex. Letvi = EAE, l1 andl2 be the lengths of edgesABand
AD. For a given thresholda (a= 0.2 was used in the experiment), we can define the tension
factor of E with respect toA via

tE =
{

1 if bE ≤ a,

Cα−bE , otherwise,
(1)

whereC is a constant less than 1,α is a number greater than 1, and

bE = 2|ne · vi |
l1+ l2

.

It is easy to see that the larger the projection ofvi ontone is, the largerbE and the smaller
tE. The tension factortE decreases in an exponential speed asbE increases. Thus, ifbE

is larger than thresholda, we classify vertexE to one that contributes to the overshoot
problem. Then, coefficientsi (with i 6= 0, i.e., not including the vertexC) at E with respect
to A as defined in MBS subdivision is reduced totEsi .

In our implementation,C= 0.8 andα= 5 were adopted. In order to satisfy the smooth
requirements, we renormalize all weights of the K-vertexA so that the sum of all weights is
still equal to 1. Then whenα increases, the new vertex approaches the midpoint of the edge
AC. The modified algorithm is usually able to remove the overshoots around sharp edges.
The result for the Mug model with the modified algorithm is shown in Fig. 5c.

4.3. Sharp Feature Preservation

In order to get more realistic visual effects, it is desirable to preserve sharp features for
graphic models. Hoppeet al. [6] modified Loop’s subdivision rules locally to model sharp
features such as creases and corners specified by users. We choose a different way to do this
by using the tension factor defined in Section 4.2. This is automatically done by specifying
different parameters for the tension factor. Whena decreases, we can get more and more
sharp corners withbE greater thana. Whenα increases, weights of steeper neighbors have
less absolute values so that the new vertex approaches the midpoint of the corresponding
edge. From the results of the model Mug given in Fig. 5, we see that sharp edges are retained
with the proposed algorithm while relatively coarse regions are also smoothed.

5. EXPERIMENTAL RESULTS

We performed our postprocessing algorithm on many graphic models. Our experiment
was performed on a Pentium-II 450 MHz with 128 MB memory. The total processing time
of one level of subdivision including the rendering time was about 1 to 5 s for models of
about 10,000 vertices. The time for computing the tension factor is negligible in comparison
with the rendering time.
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TABLE 1
Results of Different Subdivision Schemes

Bunny Dinosaur Mug

Model Vertex Face Level Vertex Face Level Vertex Face Level

Original 34834 69451 — 2832 5647 — 1725 3450 —
Simplified 268 500 — 409 801 — 172 344 —
Uniform MBS 4078 8000 2 25715 51238 3 11008 22016 3

Our scheme
2613 5141 2 11679 23229 3 3447 6894 3

t = 0.75, 0.85 t = 0.75, 0.85, 0.90 t = 0.75, 0.85, 0.90

Table 1 summarizes the resulting number of vertices and faces, the corresponding thresh-
olds t , and the levels of subdivision (if any) for three models, i.e., Bunny, Dinosaur, and
Mug. We see from this table that there are about 40 to 80% of faces and vertices can be
saved with our new method in comparison with uniform subdivision without loss of visual
quality. By gradually increasing thresholds for different levels of subdivision, we see more
coarser patches are smoothed. We got very good results whent ranges from 0.75 to 0.95.
Our method tends to get more savings for simplified models of about 1000 to 5000 vertices
with some local rough areas.

Figures 5 and 7 show the results of Mug and Cannon, which are all subdivided three
times with thresholdst = 0.75, 0.85, and 0.90, respectively. From Fig. 5a, we see that the
Mug model is very simple with only 172 vertices and 344 faces. After subdivision with
MBS, the top boundary of the Mug is rugged because of overshoots at the first two levels
as shown in Fig. 5b. The result obtained by using the tension factor is given in Fig. 5c,
whose top boundary is much smoother. In Fig. 5, we illustrate the sharp feature preserving
capability by using our new algorithm for the Cannon model given in Fig. 7a. The MBS
scheme smoothes out all sharp edges with severe overshoots in the first level of subdivision
for this model as shown in Fig. 7b. Figure 7c gives the result of using the tension factor to
control the overshoots around sharp corners and to preserve sharp features. It is clear that
the result is visually more similar to the original one.

FIG. 7. The edge-preserving subdivision for the Cannon model: (a) sharp edges shown on the simplified
model, (b) subdivision with MBS, and (c) postprocessing by using the tension factor.
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FIG. 8. Results for the Bunny model: (a) rendered with the simplified mesh, (b) the simplified mesh with
wireframe, (c) rendered with the 2-level adaptive subdivision, (d) rendered with wireframe of (c), (e) rendered
with the 2-level uniform subdivision, and (f) rendered with the original finest mesh.

We show two more graphic models, i.e., Bunny and Dinosaur, in Figs. 8 and 9, re-
spectively. For each graphic model, the rendered image with the simplified mesh and the
corresponding wireframe, the rendered images with the adaptive subdivided mesh and the
corresponding wireframe, the rendered images with uniform subdivision and the original
finest mesh are given. The postprocessing of the compressed Bunny model of compression
ratio 138 : 1 was performed by takingt = 0.75 and 0.85, respectively, for the first two levels
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FIG. 9. Results for the Dinosaur model: (a) rendered with the original mesh, (b) the simplified mesh with
wireframe, (c) rendered with the simplified mesh, (d) the adaptive subdivision with wireframe, (e) rendered with
adaptive subdivision, and (f) rendered with uniform subdivision.

of subdivision. In other words, edges with incident dihedral angles greater than 154◦ are
skipped. Note that triangles in flat regions such as on the back and at the side are skipped,
while those at ears, legs, and feet are subdivided much more.

6. CONCLUSION AND FUTURE WORK

We provided a postprocessing technique for a generic 3-D mesh of triangular faces based
on the MBS scheme [21, 22]. Adaptive subdivision was used and local flatness of edges
was defined. We also introduced the tension factors to solve the problem of overshooting at
sharp corners and to retain sharp features. Final results were obtained and compared with
those with uniform subdivision. The number of vertices and faces can be saved from 40 to
80% with our new method.

We plan to extend our postprocessing to view-dependent rendering of 3-D meshes. The
viewing information and lighting effects can be used to further reduce the number of faces
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and vertices. We are currently working on models with only one attribute data, i.e., the
vertex position. It is interesting to consider other attribute information such as colors and
textures.
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