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A new blind inverse halftoning algorithm based on a nonlinear filtering technique
of low computational complexity and low memory requirement is proposed in this
research. It is called blind since we do not require the knowledge of the halftone
kernel. The proposed scheme performs nonlinear filtering in conjunction with edge
enhancement to improve the quality of an inverse halftoned image. Distinct features
of the proposed approach include efficiently smoothing halftone patterns in large
homogeneous areas, additional edge enhancement capability to recover the edge
quality, and an excellent PSNR performance with only local integer operations and
a small memory buffer. C© 2001 Academic Press
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1. INTRODUCTION

Halftone images are binary images that provide a rendition of gray-level images. Inverse
halftoning addresses the problem of recovering a continuous-tone image from a halftone
image. Inverse halftoning has applications in halftone manipulation, conversion, and com-
pression when a halftone image is the only available version of an image. In this research,
a nonlinear filtering technique is proposed to solve the inverse halftoning problem.

Although the proposed framework can work in principle with any halftoning process,
we focus on the most popular halftoning technique known as error diffusion in the current
work. In error diffused halftones, the error between the continuous-tone image and the binary
halftone at each pixel is diffused over a causal neighborhood. Most of the quantization noise
power falls in the high spatial frequency range. A good inverse halftoning scheme should
remove as much noise as possible while preserving the important image details. Several
inverse halftoning methods have been studied in the literature, including linear adaptive
filtering [7], nonlinear filtering [6, 11], wavelets [12], MAP estimation [8], and POCS
[1, 3]. A typical inverse halftoning process consists of two key modules, halftone noise
smoothing and image detail recovery, as detailed below.
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Smoothing can be performed by using linear filtering techniques that include the halfband
lowpass filtering [11], the Gaussian lowpass filtering [7], and the singular value decompo-
sition (SVD) technique [3]. It can also be achieved with model-based nonlinear smoothing
techniques such as MAP estimation [8] and the nonlinear filtering approach proposed in
this work. Some work adopts edge information to improve smoothing results, for example,
spatial varying FIR filtering [6] and wavelet denoising [12]. All the above methods can
reduce halftone noise efficiently. However, the cutoff frequency of the lowpass filter or the
threshold used in wavelet and model-based techniques plays a critical role in the overall
performance of a given algorithm. Furthermore, halftone noise contributes its energy mostly
to high frequency components, which can potentially corrupt or reduce the quality of image
edges. This is the fundamental limitation of inverse halftoning algorithms relying on the
smoothing process only. An edge recovery procedure is therefore required to obtain a high
quality inverse halftoned image.

To recover edges, a bandpass filter with thresholding was used to extract and enhance
edges in [7], and the application of a Gaussian filter to a highpass frequency band was
studied in [12]. There is no explicit edge extraction step in the restoration-based approach
[1, 8], where the edge information is recovered by projection to the original halftone image
with the assumption that the halftone kernel is known.

In this work, we present a single-pass blind inverse halftoning algorithm with a low
computational complexity and a low memory buffer. It is called blind since we do not
assume that the halftone kernel is available. Our scheme performs nonlinear filtering in
conjunction with edge enhancement to improve the quality of an inverse halftoned image.
The proposed approach is universal in the sense that no prior knowledge about the forward
halftoning process is assumed.

This paper is organized as follows. Two challenging problems for an inverse halftoning
technique are discussed in Section 2. The proposed inverse halftoning algorithm is detailed
in Section 3. Experimental results are given in Section 4. Finally, concluding remarks are
stated in Section 5.

2. TWO PROBLEMS

Previous work on blind inverse halftoning was performed without knowing the diffusion
kernel. It is nevertheless assumed that a “good” halftoning scheme has been applied so that
the resulting halftone image will not have localized energy in smooth areas and edges are
well represented. This is, however, not true in general. In this section, we address two major
problems that have not yet been pointed out in previous research in blind inverse halftoning.

2.1. Halftone Artifacts

One of the most observable artifacts associated with error diffusion is the periodically
repeating pattern appearing in areas where the image is a constant or slow varying. This is
called the limit cycle behavior, which was studied in [2]. The limited cycle phenomenon
results from a constant input, especially when the input value is a constant that slightly
deviated from1

2, 1
3, and 1

4. The stability of these periodic patterns is determined by the
choice of error diffusion weights and the support of the error diffusion kernel.

An example of limited cycle patterns is shown in Fig. 1. In this example, the input is
set to a constant130

256. It results in low frequency noise and makes a small perturbation to
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FIG. 1. Examples of the limited cycle behavior with a constant input set to 130: (a)-(c) are error diffusion
kernels used in (d)-(f ), respectively, (d) is dominated by checkerboard patterns, (e) is dominated by worm patterns,
and (f) has no obvious dominating patterns.

the checkerboard pattern. (Note that most error diffusion kernels generate a checkerboard
pattern at mid-gray.) In Fig. 1d the Floyd–Steinberg kernel is used. The dominating pattern
is the checkerboard. The worm pattern appearing in Fig. 1e is generated by equally weighted
4-coefficients in the diffusion kernel. Figure 1f is the result of the Jarvis kernel [4]. The Jarvis
kernel has a larger support than the other two kernels. Increasing the support generally can
reduce limited cycle patterns. The limited cycle behavior introduces low frequency noise or
structure noise (e.g., worm patterns), which is difficult to remove by using a linear lowpass
filter or even the wavelet denoising technique. A good blind inverse halftoning algorithm
should be able to deal with the limited cycle behavior.

2.2. Edge Sharpness

The sharpness of an edge is determined by halftoning schemes and halftone kernels.
In general, an error-diffused image has more edge information than one using clustered-
dot or disperse-dot methods. The error diffusion kernels also effect the quality of edges.
Larger diffusion kernels tend to have sharper edges. An example to illustrate the influence
of the error diffusion kernel is shown in Fig. 2. Clearly, the 12-coefficient Jarvis kernel [4]
produces sharper edges than the 4-coefficient Floyd–Steinberg kernel at the cost of more
noise in the slow varying regions. If significant edge information is lost during the forward
halftoning process, the reconstructed inverse halftone will have rather smooth edges. In
blind inverse halftoning, we cannot assume the edge is always perfectly rendered. The loss
of edge resolution cannot be solved by edge preserving smoothing algorithms. Additional
techniques, such as edge enhancement, must be performed to recover sharp edges.

3. PROPOSED INVERSE HALFTONING ALGORITHM

The proposed inverse halftoning algorithm consists of two components, i.e., noise smooth-
ing and edge enhancement, to overcome the problems addressed in the previous section. A
block diagram of the proposed algorithm is shown in Fig. 3. The lowpass filter serves as
a preprocessor to provide a rough estimate of the continuous-tone image, and it is further
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FIG. 2. Examples of the edge quality influenced by the diffusion kernel: (a) the Floyd–Steinberg kernel and
(b) the Jarvis kernel.

refined by a nonlinear filter that can efficiently suppress low frequency noise resulting from
limited cycle patterns in smooth regions. The loss of edge resolution is compensated by an
edge enhancement technique using a bandpass filter and a morphological filter.

3.1. Design of Smoothing Filters

In [9, 10], a robust nonlinear filtering technique was adopted to reduce various types of
compression artifacts. The nonlinear filter can suppress noise in continuous-tone images
efficiently while preserving the edge information. The same technique can also be used in
inverse halftoning to reduce halftone noise. However, the robust nonlinear filter in [9, 10]
is a location filter. That is, the output is selected from the neighboring pixel values. For
inverse halftoning, we have to preprocess the halftone image with a lowpass filter and then
feed the output into the robust nonlinear filter for further refinement.

The lowpass filter plays a critical role for the final performance. To lower the computa-
tional cost, a 2D separable FIR lowpass filter is selected. The 1D version of the proposed
lowpass filter is designed based on a spline functionθ ,

θ (x, n) =
(

sinπx

πx

)n

, n = 1, 2, . . . , N. (1)

For a given filter length, coefficients of the filter can be determined by uniformly sampling
the above function between [−1, 1], and the cutoff frequency can be adjusted by the value

FIG. 3. The block diagram of the proposed halftoning algorithm.
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FIG. 4. (a) A family of spline functions used in the lowpass filter design, and (b) the derivative of a cubic
spline.

of n. A larger value ofn leads to a higher cutoff frequency and, consequently, a lower
smoothing capability. Coefficients obtained by the above function should be normalized
to achieve the unity gain at the DC component. The shape of this function with different
n is depicted in Fig. 4a. Experiments show that the above lowpass filter is superior to the
Gaussian filter with respect to error diffusion halftones. The output of this filter is a rough
estimate of the original continuous-tone image and will be sent to a nonlinear filter and a
bandpass filter for further processing.

The nonlinear filter adopted is the same as the deringing filter presented in [9, 10]. That
is, given a set of samplesx1, x2, . . . , xN in the filtering window and the potential function
ρ, the filter output is defined as

x̂ = arg min
xj

N∑
i=1

ρ(xi − xj ). (2)

To ensure data fidelity, the following clipping process is applied,

d = x̂ − x, (3)

xc = x + c(d,Th1), (4)

wherex is the value of the pixel to be filtered,x̂ is the output of (2),xc is the final estimate
to replacex andc(d,Th1) is a clipping function to ensure data fidelity and is defined as

c(d,Th1)= sign(d) ·max(0, |d| −max(0, 2(|d| − Th1))).

The clipping function controls the amount of distortion introduced by the smoothing op-
eration. The shape ofc(d,Th1) is depicted in Fig. 5. It is clear that the result of nonlinear
filtering is effective only whend is smaller than 2Th1. The valueTh1 determines the amount
of smoothing.

To reduce halftone noise, Huber and truncated quadratic potential functions are better
choices for the potential function, since they are efficient in smoothing and can be im-
plemented by using only integer operations. For images containing more homogeneous
regions, the truncated quadratic function works the best. A set of commonly used nonlinear
filters is given in Table I.
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FIG. 5. The clipping function.

There are three parameters in the nonlinear filter. One is the filter size. Since the diffusion
kernel has a smaller extent, a 3× 3 window size is usually sufficient for most images. If the
underlying image contains a large amount of smooth regions, a larger window size can be
used to reduce clustered noise. The second parameter is the thresholdT used in potential
functions. For the truncated quadratic potential function,T can be chosen to be between 5
and 20. A larger value ofT tends to produce a smoother result. For the Huber function,T
ranges from 1 to 10. ForT = 1, this nonlinear filter is equivalent to the median filter. For
better quality,T can vary adaptively based on edge information. The third parameter is the
threshold for clipping, which is the value ofTh1 in (3). By empirically testing the average
distortion of inverse halftoned results for a selected set of images, the value ofTh1 can
be chosen to be one half or one quarter of the average value. The purpose of the clipping
operation is to avoid additional distortion.

The cascade of lowpass and nonlinear filters can efficiently smooth the low-frequency
clustered halftone noise in large smooth regions. Examples to demonstrate this phenomenon
are shown in Figs. 6a–6d. The original image has two constant gray levels (127

256 and 200
256).

The resulting halftone is shown in Fig. 6a. The result of the proposed algorithm without
edge enhancement is shown in Fig. 6b. In this case, a quadratic function withT = 10 is used
and the window size is 9× 9. Results obtained by other blind inverse halftoning algorithms
[6, 7] are shown in Figs. 6c and 6d for comparison. Clearly, the proposed algorithm is more
efficient in reducing noise in large smooth regions. Note that the proposed technique can
preserve the quality of sharp edges without further enhancement for this case. This is due
to the fact that the original image has a crispy edge. Since there is no intermediate level, the
resolution of the edge can be easily preserved. In addition, this image contains two constant

TABLE I
Commonly Used Potential Functions

Type ρ(x)

L2 x2

L1 |x|
“Fair” γ |x| − γ 2 log(1+ |x|

γ
)

Huber ρ(x) =
{

x2, |x| ≤ γ
γ 2 + 2γ (|x| − γ ), |x| > γ

Lγ |x|γ , 1≤ γ ≤ 2

TruncatedL2 min{γ x2, 1}
Lorentzian log(1+ 1

2( x
γ

)2).

Tukey ρ(x) =

γ 2

6 (1− [1− ( x
γ

)2]3), |x| ≤ γ
γ 2

6 , |x| > γ
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FIG. 6. Examples of smoothing a halftone image: (a) the halftone of an image with two constant gray levels,
130/256 and 200/256; (b) the result by applying the proposed smoothing filters; (c) the result by applying the
adaptive filtering technique [6]; (d) the result by applying the nonlinear smoothing technique [7].

gray levels separated by the sharp transition. It fits the truncated quadratic model the best
so that the sharp edge can be well recovered by the proposed nonlinear filter with only a
minor distortion.

3.2. Edge Enhancement

In the halftoning process, the gray-scale resolution (i.e., intensity) is represented by the
density of randomly distributed binary patterns. In some edge regions, such as those around
an unsharp edge, the intensity is changing gradually within small extent. For this case,
intermediate intensities at the edge transition area cannot be well represented by halftone
patterns. The resulting edge after inverse halftoning is smoother than the original one due
to the loss of grayscale resolution. This loss of resolution cannot be recovered even with
the proposed nonlinear filter. Note that our nonlinear filters use the first-order model for
discontinuity that does not fit smoother edges. The use of a higher order model for edge
approximation may solve this problem at the price of a higher complexity.

The edge enhancement approach presented in this section is based on heuristic arguments.
It, however, provides a good solution to the loss of grayscale resolution problem at a low
computational cost. With this approach, useful edge information is obtained by applying
a bandpass filter to a lowpass-filtered halftoning image. There are two ways to realize
the bandpass filter. One is to apply two lowpass filters with different cutoff frequencies
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and calculate the difference between the two filtered results. The other method is to take
derivative of (1) and sample it with a desired filter length. The derivative of (1) is depicted
in Fig. 4b.

In this work, we adopt the first approach, since a filter of shorter length can be used.
After bandpass filtering, a morphological operation is applied to refine the bandpass filtered
result. The morphological filter includes two steps. First, thresholding is applied to the
output of the bandpass filter to generate a binary edge mapE. Then a binary median filter is
applied toE to remove noise in this map. This edge information is used to refine the original
bandpass filter output by setting values of nonedge pixels to zero. Finally, the refined result
B is added back to the nonlinear filter outputS to obtain the inverse halftoning imageI . In
terms of mathematics, we have

I (m, n) = S(m, n)+ λB(m, n), 1≤ m, n ≤ N, (5)

whereλ is a scaling factor to control the amount of edge enhancement. This enhancement
technique has a very low complexity, since only windows of a small size and integer
operations are used.

4. EXPERIMENTAL RESULTS

We performed experiments on the 512× 512LenaandPeppersimages, as well as the
512× 640 Woman, Cafe, andBike images. These images were error diffused from their
corresponding graylevel images using the Floyd–Steinberg kernel. We compare our results
with several previous blind inverse halftoning work as follows.

4.1. Comparison of Lowpass Filters

The lowpass filter that performs an initial estimate of its corresponding continuous-
tone image plays a critical role in the inverse halftoned result. Equation (1) provides a
family of lowpass filters. The cutoff frequency of the lowpass filter should be high enough
to preserve spatial details while providing a sufficient grayscale resolution for the robust
nonlinear filter. To achieve a good trade-off between the performance and the complexity, a
7× 7 separable FIR filter with coefficients listed in Table II is used in the implementation.
These coefficients are obtained by settingn = 3 in (1) and normalized to have the unity
gain. We compare the performance of this filter with other filters used in other inverse
halftoning algorithms, including the 9× 9 Gaussian filter [3], the halfband lowpass filter
[11], and the wavelet method [12]. The PSNR values for several test images after lowpass
filtering are shown in Table III. We see that the proposed lowpass filter is superior to
others.

4.2. Blind Inverse Halftoning

Our technique does not assume the availability of the error diffusion kernel. The PSNR
results of our proposed technique and other blind inverse halftoning algorithms, including

TABLE II
Coefficients of the 7-tape Lowpass Filter Used in the Experiment

n −3 −2 −1 0 1 2 3

H 0.0089 0.0852 0.2409 0.3300 0.2409 0.0852 0.0089
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TABLE III
Performance Comparison of Different Lowpass Filters

Algorithm Gaussian [3] Half-band [11] Wavelet [12] Proposed

PSNR (dB)
Lena 28.64 29.60 30.38 30.79
Peppers 27.59 27.76 28.56 28.65

statistical smoothing [11], wavelet [12], adaptive filtering [6], and nonlinear noise removal
[7], are listed in Table IV. The PSNR figures are either taken directly from the publications
[11, 12] or generated from the software provided by the authors’ Web sites [6, 7]. Nonblind
inverse halftoning algorithms assume that the halftone kernel is known and perform the
projection to improve the quality. Results of these techniques are also provided in Table V
for comparison. We can see clearly from Table IV that our technique achieves the best
results among all blind inverse halftoning algorithms under comparison. Our method is also
robust with respect to all test images. It is interesting to see that our blind inverse halftoning
results are comparable to (or even outperform) those obtained from iterative projection. It
is actually not surprising that the kernel information does not boost the inverse halftoning
performance much via iterative projection since the halftone process is a many-to-one map;
the original halftone image does not provide a strict constraint in the space domain. This is
especially obvious when intensities are around mid-gray; projection to this set may move
the estimate not toward the real solution, but toward a legal solution.

If the purpose of inverse halftoning is to obtain the original continuous-tone image, then
subjective quality of the inverse halftone is also important. In Fig. 7, the central portion of
the LenaandPeppersimages is enlarged and compared to that obtained from a wavelet-
based blind inverse halftoning method [12], which tends to produce the best visual quality
among previous work. It is clear that visual quality achieved by the proposed method is
comparable to the best scheme. In general, a larger window size produces more pleasant
visual quality at the cost of a higher computational complexity.

4.3. Complexity and Memory

The complexity of the proposed technique is slightly higher than that of the linear filtering
approach [6, 7], but much less than that of the wavelet-based method [12].

To give an example, if we use a 7× 7 window for all three lowpass filters, 5× 5 for the
binary median filter, and 3× 3 for the nonlinear filter, the number of operations required

TABLE IV
Performance Comparison of Different Blind Inverse

Halftoning Algorithms

PSNR

Algorithm Ref. Lena Peppers Woman Bike Cafe

Statistical [11] 31.00 29.30 NA NA NA
Wavelet [12] 31.50 30.43 NA NA NA
Adaptive [6] 31.33 29.03 29.56 22.64 22.03
Nonlinear [7] 31.26 28.96 29.21 22.26 21.39
Proposed 31.62 30.82 29.60 22.97 22.41

Note. NA, Not available. The data are not provided by the publi-
cation.
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TABLE V
Performance Comparison of Inverse

Halftoning Algorithms That Require
Knowledge of the Halftone Kernel

PSNR

Algorithm [Ref.] Lena Peppers

Statistical [11] 32.00 30.30
Wavelet [12] 31.67 30.69

per pixel is less than 500. The execution of the proposed algorithm proceeds in the raster
scan fashion. Several rows are required for the filtering process. In this example, at least
11 rows have to be buffered.

The complexity and memory requirements for several inverse halftoning schemes are
compared in Table VI. The memory usage is the minimum number of data required for
buffering to process one row of an image. The computational complexity is estimated

FIG. 7. Inverse halftoning results of the proposed technique (a and c) and results from the wavelet approach
in [12] (b and d).
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TABLE VI
Performance Comparison of Inverse Halfton-

ing Schemes in Terms of Complexity and Memory
Requirements

Algorithm [Ref.] Memory usage Complexity

POCS [3] 8N2 High
MAP [8] 8N2 High
Wavelet [12] 9N2 Med.
Adaptive [6] 7N Low
Nonlinear [7] 11N Low
Proposed 11N Low

from algorithms given in the corresponding citation.Low means a number fewer than 500
operations per pixels,mediandenotes 500–2000 operations per pixel, andhighmeans more
than 2000 operations required. Clearly, scan-based techniques such as our algorithm have
a memory requirement that is proportional to image widthN, while frame-based methods
have to store the entire frame and their complexity is proportional toN2 for an image of size
N × N. Furthermore, most frame-based techniques are iterative so that we have to buffer
several copies of the image. The wavelet approach requires the largest amount of memory
buffer due to the use of overcomplete wavelet decomposition, and all bands created in each
decomposition have to be buffered.

4.4. Other Diffusion Kernels

We also test our algorithm on halftone images generated by using the Jarvis kernel [4] and
the multiscale halftoning algorithm [5]. Results from the proposed method and two other
blind inverse halftoning algorithms are compared in Table VII. Throughout these tests, a
3× 3 nonlinear filter with the Huber potential function is used in our algorithm. Threshold
T in the potential function is set to 2 and constraintTh1 is set to 15. From Table VII, it is
clear that the proposed algorithm outperforms the two other methods for all test images.

As discussed previously, the Jarvis kernel produces sharper edges at the price of more
noise in homogeneous regions. We note that the Jarvis kernel produces higher contrast
edges. Lowpass filtering of these edges generates an enhanced version of the original ones.
In our approach, the Huber function is used as a cost function. It allows a smoother tran-
sition of large discontinuities, leading to an edge that is closer to the original one. It also
produces better results in homogeneous areas since it is a quadratic cost function when the

TABLE VII
Performance of Blind Inverse Halftoning Algorithms Applied to

Halftone Images Generated by Different Error Diffusion Algorithms

PSNR

Halftone algorithm Proposed Adaptive [6] Nonlinear [7]

Jarvis
Lena 25.76 24.65 25.29
Peppers 25.42 23.91 24.35

Multiscale
Lena 28.29 26.73 28.16
Peppers 29.07 27.99 28.71
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residual is below thresholdT . Multiscale error diffusion has a higher gain at edges than
Floyd–Steinberg diffusion. As a result, edges in the inverse halftone images from Jarvis and
multiscale error diffusion methods are overly sharp.

We can draw the following conclusions based on experimental results presented above.

• The proposed method is more robust w.r.t. different error diffusion kernels. Some
inverse halftoning methods with predesigned passbands may fail when halftoning algorithms
perform visual enhancement such as the use of the Jarvis kernel.
• Compared to most other methods that are difficult to optimize for different halftone

images, our approach can simply replace the cost function in the nonlinear filter to obtain
better results. This is one important advantage of the model-based filtering technique.

5. CONCLUSION

A blind inverse halftoning algorithm of low complexity was presented in this work.
The cascade of lowpass and nonlinear filters in conjunction with the edge enhancement
technique produce high quality inverse halftoned images at a low computational cost. Results
of the proposed technique are comparable to those obtained by sophisticated restoration-
based techniques, which often require information about the diffusion kernel. Besides, our
method is more robust to different error diffusion kernels than other blind inverse halftoning
algorithms, since our nonlinear filtering is a model-based approach where the smoothing
operation is based on a generic image model for an ideal image. The advantage of using our
technique is even more substantial when an image contains constant or slow varying gray
levels in large areas separated by sharp edges.
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