
642 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 5, MAY 2001

Transactions Letters__

Design of Wavelet-Based Image Codec in Memory-Constrained Environment
Yiliang Bao and C.-C. Jay Kuo

Abstract—This work presents a high-performance wavelet
transform based image coder that is designed for image compres-
sion in a system with limited resources. In this image coder, the
dual-sliding wavelet transform (DSWT) is first applied to image
data to generate wavelet coefficients in fixed-size blocks. Here, a
block consists of wavelet coefficients only from a single subband.
Then, the resulting coefficient blocks are directly coded with the
Low-Complexity Binary Description (LCBiD) coefficient coding
algorithm. No parent-child relationship is exploited in the coding
process. There is no intermediate buffering needed between
DSWT and LCBiD. The compressed bit stream generated by the
proposed coder is both SNR and resolution scalable, as well as
highly resilient to transmission errors. Both DSWT and LCBiD
process the data in blocks whose size is independent of the size of
the input image. This gives more flexibility in its implementation.
The codec has a very good coding performance even the size of a
coefficient block is as small as (16,16).

Index Terms—Block-based coding, block-based transform,
image compression, low complexity compression, wavelet trans-
form.

I. INTRODUCTION

I MAGE compression based on the discrete wavelet transform
(DWT) has been an active research area in last several years.

DWT decomposes an image by using wavelets as basis functions
[1]. Since this scheme is very efficient in compacting the en-
ergy for most images of interest, an image codec of high coding
efficiency can be designed accordingly. This idea has been sup-
ported by previous work in the literatures, including the work of
Shapiro [2], Taubman and Zakhor [3], Said and Pearlman [4],
and Xiong, Ramchandran, and Orchard [5], among many others.
In addition to coding efficiency, DWT-based image codec is
often designed to have SNR scalability by encoding wavelet co-
efficients in bit planes, or other layered structures. The wavelet
decomposition structure also enables resolution scalability in
the bit stream. Compared to the current image compression stan-
dard JPEG [6], this new technique has higher coding efficiency
and richer features achievable with a single bit stream.

However, most wavelet image coders proposed so far are infe-
rior to JPEG in the implementational complexity. At the initial

Manuscript received September 17, 1999; revised October 3, 2000. This paper
was recommended by Associate Editor Z. Xiong.

Y. Bao was with the Integrated Multimedia Systems Center and the Depart-
ment of Electrical Engineering-Systems, University of Southern California, Los
Angeles, CA 90089-2564 USA. He is now with Conexant Systems, Inc., New-
port Beach, CA 92660–3095 USA (e-mail: yiliang.bao@conexant.com).

C.-C. J. Kuo is with the Integrated Multimedia Systems Center and the De-
partment of Electrical Engineering-Systems, University of Southern California,
Los Angeles, CA 90089-2564 USA (e-mail: cckuo@sipi.usc.edu).

Publisher Item Identifier S 1051-8215(01)03819-8.

Fig. 1. Constrained system for the implementation of image compression
algorithms.

stage of wavelet-compression research, the emphasis was pri-
marily put on the coding efficiency and bit-stream features. It
used to be taken for granted that the full picture could be pro-
cessed as a whole. Such an assumption will certainly limit an
effective application of this technology to large images required
in real world applications. Ideally, both the wavelet transform
and the coding of wavelet coefficients should be performed lo-
cally in order to reduce the resource requirements as well as
the processing time, while the features provided by the wavelet
compression technology should not be sacrificed.

Resources are limited in a practical environment in which a
compression algorithm is implemented. A memory-constrained
environment can be modeled with a diagram as illustrated in
Fig. 1. The overall system has a processing unit and a hierar-
chical memory structure. Here, without loss of generality, we
take a two-level memory structure as an example. Buffer
is large and inexpensive, but its access delay and data transfer
delay are relatively long. Buffer is much faster than but
of higher unit cost, and its size is often very limited. This model
applies well to the hardware implementation of a compression
algorithm at a coarse level. It is desirable to have an algorithm of
low memory requirement to reduce the cost. The resource con-
straint is usually not so strict in software implementation, yet
this issue should be considered seriously when a large image is
compressed. One of the first set of JPEG2000 test images is of
size (14,565, 14 680). During the JPEG2000 competition phase
in the summer of 1997, almost all participants compressed this
image by partitioning it into smaller tiles. In compressing this
image, buffers and correspond, respectively, to the hard
disk and the main memory of the computer according to the
model given in Fig. 1.

In this research, we propose a block-based wavelet image
codec that has an extremely low implementational complexity,
yet provides very rich features. Here, ablockrefers to a rectan-
gular area in a single subband, i.e., it is defined in the wavelet do-
main instead of the image domain. The block size is fixed with
possible exceptions when a block meets the subband boundary.
No blocking artifacts are introduced in compressed images at

1051–8215/01$10.00 ©2001 IEEE

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 5, MAY 2001 643

Fig. 2. Boundary overlapping in the block-based wavelet transform.

low bit-rates. It also results in higher flexibility in the codec
implementation to process data in blocks whose size is inde-
pendent of the size of the original image. The codec contains
a block-based transform scheme called the dual-sliding wavelet
transform (DSWT), as well as a block-based quantization and
coding module called the low-complexity binary description
(LCBiD) coder.

II. REVIEW OF RELATED WORK

The Scalable Binary Description (S-BiD) coding algorithm
was studied and reported by authors in [7]. It adopted an external
wavelet transform scheme and a coefficient coding algorithm
that encodes wavelet coefficients in the unit of the tree block.1

It was demonstrated that a wavelet codec could have very high
coding efficiency, even if the localized coding was applied on
wavelet coefficients. However, no consideration was given to
other features of the compressed file in [7]. Besides, the memory
requirement of S-BiD is still high in terms of memory size and
memory bandwidth.

A line-based transform scheme was proposed by Chrysafis
and Ortega [8]. In this scheme, the horizontal transform is per-
formed on the entire line. A vertical sliding window is needed
to keep enough lines for performing the vertical filtering. One
more sliding window is needed for each additional transform
step. The widths of all these sliding windows are dependent
on the image width. This can be a significant limitation on
the application of line-based transform on compression of
large-size images. The spatially segmented wavelet transform
(SSWT) was proposed in [14]. SSWT attempts to generate
wavelet coefficients of all transform levels for each image
block fetched. Although quality degradation and compression
artifacts can be reduced by using overlapping blocks, both
the memory usage and the number of arithmetic operations
in the transform will increase because of boundary overlap-
ping. When the line-transform or SSWT is combined with a
block-based coder, an intermediate buffer is needed between
the transform and the coding stage since transform coefficients
are not generated in fixed-size blocks.

A block-based coefficient coding scheme called the em-
bedded block coding with optimized truncation (EBCOT) was

1A tree block contains wavelet coefficients from all subbands that are origi-
nated from the same location in the original image.

recently developed by Taubman [11] and adopted as the core
of the JPEG2000 Verification Model. EBCOT encodes each
coefficient block independently. After all blocks are encoded,
the final bit stream is formed by concatenating truncated block
bit streams and optimized in the rate-distortion performance.
EBCOT has high coding efficiency as well as nice features such
as smooth SNR scalability. A larger block size2 has to be used
in EBCOT in order to achieve a good coding performance. In
addition, the high complexity of the coding procedure, as well
as the complexity of bit-stream structure may have a negative
impact on its practical applications.

III. DSWT

In this section, we will present a block-based implementation
of the wavelet transform DSWT. DSWT produces wavelet co-
efficients in blocks. These coefficients are exactly the same as
those generated by the normal global wavelet transform. How-
ever, the resources required of performing DSWT are signifi-
cantly lower than that of global transform.

Proper handling of overlapping boundaries is the major issue
in the design of a localized wavelet transform engine. When
the transform is performed on an image block, the block being
transformed generally has boundary overlapping with its all
four neighboring image blocks as illustrated in Fig. 2. Here, a
“boundary” region usually contains several rows or columns of
image data. Based on the model presented in Fig. 1, data being
transformed should be stored in fast memory. This portion in

is referred to as the transform buffer (TB) in this paper. Other
data may be kept in bulk memory . Let us assume that image
blocks are transformed in a left-to-right then top- down fashion.
When block is transformed, the block above ,
and the block at the left side , must have been trans-
formed unless is at the boundaries. If the right vertical
boundaryof was left inTB,and thebottomhorizontal
boundary of block was stored in some buffer that can
be easily accessed, all boundaries needed for transforming block

are ready, and can be transformed to generate the
same results as those from global transform.

To avoid the increase in memory requirements due to overlap-
ping boundaries, all transform steps should be separated. The
transform of each image block generates four coeffi-
cient blocks. If pyramid transform is taken as an example, three

2A typical block size is (64,64).

644 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 5, MAY 2001

Fig. 3. Block diagram of the DSWT forward transform.

blocks that belong to LH, HL, HH subbands can be sent to the
encoder directly. The LL coefficient block will also be sent di-
rectly to the encoder if it is already at the root level, otherwise,
the LL subband will be treated just as a smaller image.

A. Design of DSWT Engine

A DSWT engine of several transform steps basically contains
a sequence of cascaded Transform objects. Fig. 3 gives the dia-
gram of a forward DSWT engine for two-step forward wavelet
transform. Each transform object corresponds to one step of
wavelet transform. A transform object has three buffers: image
buffer (IB), transform buffer (TB), and overlapping buffer (OB).

The original image is first sent in lines to the Image Buffer in
the first TO, IB1. To generate coefficient blocks of size ,
the firstTOwill be activated afterat least lines have
been stored in IB1. and will be used in the discussion
to represent the lengths of boundary extension at two ends. Thus,
the height of IB1 needs to be , and its width is equal
to width of the original image. The LL coefficient blocks will be
sent to the corresponding IB in the TO of the next step, if this LL
subband will be transformed for an additional step. Data of LL
subbands are always generated in blocks of size . Thus,
for other transform steps, the transform of the first block row can
be started only after , which is the minimum number larger
than , lines have been stored in the corresponding
IB. The height of other IBs is , and the width is equal to
that of the corresponding LL subband.

TB is the place where all transform operations, such as
boundary extensions and convolutions, are performed. Physi-
cally only one TB is needed at any time. Multiple TBs are used in
Fig. 3 to have a clearer data flow in the block diagram. The size of
TB for forward DSWT is , as defined as follows:

(1)

(2)

The OB is the space that stores horizontal overlapping
boundaries. The bottom overlapping boundary of block
in Fig. 2 is stored in OB after the block is transformed, and will

be read back to the transform buffer for transforming block
.

The size of an image block to be fetched and its position in
TB depend on whether it is a boundary block or not. The ap-
propriate boundary extension is needed for boundary blocks.
Fig. 4 describes how DSWT is performed, especially how the
overlapping boundaries are handled, on different image blocks
in one step of forward DSWT. In this figure, each square is the
transform buffer at a particular state. The tilted-line pattern rep-
resents image data. The grid pattern represents wavelet coeffi-
cients after both horizontal and vertical transform. The vertical-
line pattern represents wavelet coefficients after only horizontal
transform. The basic requirement in forware transform is that
the transform of an image block should always generate four
coefficient blocks of size unless the image cannot
be partitioned into an integer number of blocks. To minimize
memory access operations, a coefficient is written back to TB
immediately after it is generated. A certain distance is main-
tained between the location the coefficient is written to and the
location where transform is performed in order to not overwrite
any data that will be used in generating other coefficients.

High- and low-frequency coefficients obtained after wavelet
transform are interleaved. The grid patterns shown in Fig. 4 are
used to represent these interleaved coefficients. Vertical over-
lapping boundaries need to be shifted from the right side of the
transform buffer to the left side for performing transform on the
next block. The row transform has been performed on horizontal
overlapping boundaries before they are written to the OB. Only
the column transform will be performed on them after they are
read back to TB. Thus, the total number of convolution opera-
tion does not increase.

We have, so far, discussed the implementation of forward
transform. It is trivial to show that the inverse wavelet transform
can be performed in a way similar to the forward transform. In
inverse DSWT, a TO gets LH, HL, and HH blocks directly from
the block coder, and pulls an LL block from the TO of the next
level. The TO of the last transform step gets an LL block di-
rectly from the block coder. After all four coefficient blocks are

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 5, MAY 2001 645

(a) (b) (c)

Fig. 4. Implementation details of forward DSWT. (a) First block column. (b) Normal block column. (c) Last block column.

available, coefficients are interleaved. Two synthesis filters can
be reorganized to form two interleaved filters which are used in
performing convolution on interleaved wavelet coefficients to
reconstruct the original signal.

There is a subtle difference between forward and inverse
DSWT. The constraint on forward DSWT is that the coefficient
blocks, the output of a TO, must be of fixed size
except at subband boundaries, while a TO in inverse DSWT
has to accept the fixed-size coefficient blocks as the input. It is
convenient to have a TB of size in inverse DSWT,
as given in (3) and (4)

(3)

(4)

B. Discussion On Memory Requirements

Three types of buffers (TB, OB, and IB) are involved in
DSWT. Based on the above discussion, we would like to
summarize their size requirements below.

All TOs share the same physical TB. The size of TB is
in forward DSWT

and
in inverse DSWT. If the 9/7 filters are used, the TB’s size is

and in forward
and inverse DSWT, respectively. If the size of a coefficient block
to be generated is of size (16, 16), the size of the TB will be 1600
and 1936 words in the forward and inverse DSWT, respectively,
by assuming each coefficient is stored as one word. This size is
not dependent on image size.

646 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 5, MAY 2001

Fig. 5. Generation of the block-significance bit stream in block skipping.

TABLE I
TEST OFBLOCK SKIPPING ON JPEG2000 VM2.1

The size of an OB is , where is the
width of the original image and is the width of an
LL subband with the relation for .
The extra point is always given to the low frequency band if

is odd. The total space needed by all OBs is bounded by
. This is less than if the 9/7

filters are used. A simple memory access unit can be used to per-
form the reading and writing of overlapping boundaries to and
from OBs. The row transform has been performed on data stored
in OBs. Thus, the operation of reading overlapping boundaries
from OB can be done while the row transform is performed on
the block, and the operation of writing overlapping boundaries
back to OB can be performed when the column transform is per-
formed. The overhead of transferring overlapping boundaries
can be minimized.

The size of IB1 is . The size of other IBs is
. The total space needed by all IBs converges

to when the number of transform steps
is infinity, so this is the upper limit of the total IB space for a
given image.

One major advantage of DSWT is its definition of buffering
space hierarchy. The TB is most frequently accessed. Its size is
fairly small and not dependent on the size of image processed.
As we have mentioned in Section II, the size of sliding windows
in line-based transform are dependent on image width. Without
further optimization in memory usage, significant buffering
space will be needed if a large image is processed.

Although there are no image buffers in line-based transform,
an intermediate buffer is needed between the line-based trans-
form and a block coder because the coder expects that the co-
effients are available in blocks instead of lines. The size of this
intermediate buffer space can be as large as , and
could be allocated in a slow memory. On the contrary, DSWT
is designed to work with a block-based coder, no such interme-
diate buffering space and operations are needed.

IV. BLOCK-BASED ENTROPY CODING OF WAVELET

COEFFICIENTS

Wavelet coefficients are usually encoded in bit planes in order
to have a bit stream that can be decoded progressively in quality.

A bitplane is further partitioned into three parts composed of
significance bits, sign bits, and refinement bits, respectively [2].
One type of bit-plane coding algorithm encodes these bits by
using context-based binary arithmetic coding [3], [9]. A sub-
band is encoded in bit planes, and each bit plane of a complete
subband is scanned and encoded in the raster order.

When a subband is partitioned into blocks, a block is usually
of a much smaller size than a subband, and most blocks become
significant much later than a subband as illustrated in Fig. 5. The
height of a vertical bar represents the maximum coefficient (ab-
solute value) in the block. The position of a dashed arrow indi-
cates the magnitude of the current threshold in bit-plane coding.
A block (or subband) is significant if at least one coefficient in
the block (or subband) is significant. A separate bit stream is
generated to describe the significance of blocks as illustrated in
that figure. If a block is insignificant, it is not necessary to scan
individual coefficients within the block. Otherwise, the coeffi-
cients within the block are scanned in the raster order.

A block of zeros can be effectively “skipped” if no co-
efficients in the block are significant. By introducing this
block-skipping scheme, the total number of symbols that
need to be encoded is reduced greatly, and both the coding
efficiency and coding speed can be increased. The experiment
on block skipping is performed in JPEG2000 VM2.1. The
original JPEG2000 VM2.1 has the block size of 1, i.e., no block
skipping. The modified VM has a two-level scanning structure,
and the block size can be defined by users. The introduction of
block-skipping results in the increase in both coding efficiency
and coding speed. The quality of the compressed file as well as
the coding time are obtained at different bit rates and block size
for four JPEG2000 test images: aerial2, bike, cafe, and woman.
Image aerial2 is of size (2048, 2048). Others are of size (2048,
2560). The numbers listed in Table I are the average results on
these four images. The value of coding time is normalized with
that of the original VM as 100. The improvement is block size
dependent. The increase in PSNR and the coding speed is very
obvious.

In generating experimental results listed above, it is still as-
sumed that coefficients of the whole image are accessible during

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 5, MAY 2001 647

Fig. 6. Encoding process of LCBiD.

the entire encoding process. What we can learn from these re-
sults is that it is beneficial to encode coefficients in blocks. Less
zeros are coded by using the block-skipping technique. The cor-
responding statistical model is also more consistent when a bit
plane is scanned in blocks.

A. Low Complexity Binary Description Coding

Based on the results obtained in the last section, the LCBiD
coding scheme is developed to generate a scalable bit stream by
encoding coefficients in blocks. Once a block is fetched into a
processing buffer, it is completely encoded. A bit stream that is
scalable in both SNR and resolution usually contains a 2-D array
of data units, with one dimension indexed by the resolution level
and the other indexed by the image quality. If all blocks of all
subbands are simply encoded sequentially using a single arith-
metic coder, the bit stream can only be decoded in one mode,
the inverse of the encoding process.

The coding process in LCBiD is illustrated in Fig. 6. A sep-
arate arithmetic coder is used for each bit plane of each sub-
band. The arithmetic coder is reset before a subband bit plane
is encoded. The statistical information is shared among blocks
within the same subband during the entire coding process. The
arithmetic coder is flushed after the coding of the subband bit
plane is finished. A minimum data unit (MDU) is defined as
a compressed data segment that corresponds to a bit plane of
a subband. After all data in one MDU have been formed, a
bit-stream header is constructed and added to indicate the length
of each MDU. When the bit stream is decoded, each MDU
can be directly accessed without any extra decoding operations.
The scalable decoding means that only a subset of bit stream
needs to be decoded in order to reconstruct an image according
to certain decoding criterion. The quality scalable decoding of
the bit stream can be achieved by decoding the MDUs in the
SNR decreasing order. The resolution scalable decoding can be
achieved by decoding only these MDUs that belong to the sub-
bands that contribute to the image of the reduced resolution.
The compressed file also has a better error-resilient property be-
cause bit errors can be isolated since the length of each MDU is
known.

During the coding of a block, coefficients are usually scanned
in the rowwise order as illustrated in Fig. 7. In this figure, (4, 4)
coefficient block is used as an example. Note that the statistics of
coding symbols varies abruptly from the last line in the previous
block to the first line in the current block. If the coefficients
are scanned in the columnwise order, this abrupt change can
be eliminated. This scanning mode is named as noninterrupting
scanning (NIS), which is adopted in generating results reported

(a)

(b)

Fig. 7. Scanning of coefficients within a block. (a) Normal rastering scanning.
(b) Non-interrupting scanning.

Fig. 8. Definition of coding contexts.

in the paper. For all the images tested, NIS always improves the
coding efficiency, for as much as 0.08 dB. Considering almost
no extra effort is needed, it is worthwhile to implement NIS.
The idea of NIS can be applied to other block-based codecs as
well. In order to simplify the codec design, LCBiD does not treat
subbands differently. All subbands are partitioned and scanned
in the same fashion.

In block-based coding, zero padding is applied at its bound-
aries when coding contexts for the coefficients at the boundaries
are calculated. The correlation among wavelet coefficients that
are separated by block boundaries can no longer be exploited.
This results in coding efficiency degradation which could oth-
erwise be avoided in a global coding scheme. This type of cor-
relation can be partly recovered by using a single overlapping
column. After a block is encoded, the right-most column of the
block is left in the cache. When the next block in the same
block row is coded, this column participates in the calculation
of coding contexts, but is not coded twice.

It is necessary to have a simple definition of coding contexts
in order to reduce the total number of statistical models and the
implementational complexity. In generating results of LCBiD
reported in this work, only 13 coding contexts are used in each
arithmetic coder. The definition of coding context is the same
for all subbands. Among these 13 contexts, eight coding con-
texts are used for coding of the coefficient significance informa-
tion. Eight coding contexts are represented as a 3-bit number,
and formed with the significance bits of six immediate neigh-
boring coefficients. The formation of these 3 bits are explained
in Fig. 8. or is the significance or sign bit of coef-
ficient . or can be either 0 or 1. Two coefficients
that do not contribute to the significance bit context calculation

648 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 5, MAY 2001

Fig. 9. Data flow in a block-based image codec.

are labeled with gray numbers in the figure. The contexts for
coding a sign bit are formed with the significance bit and the
sign bit of the previous coefficient. This is the coefficient above
the coefficient currently being coded when NIS is applied. Its
mathematical definition is also given in Fig. 8. The refinement
bit stream is encoded in a single coding context. The bit stream
that tells when the blocks become significant are also coded in
a separate coding context.

B. Complexity Analysis

Buffers are needed in LCBiD to store coefficients and coding
contexts. A separate arithmetic coder is needed for generating
each MDU. A considerable amount of space will be needed
to store the statistical models. The state variables of the arith-
metic coder and the output buffers of the arithmetic coder will
also consume some amount of memory. However, they are not
considered here since this part can depend on the specific im-
plementation. It is easy to get a rough complexity analysis of
LCBiD with the following reasoning.

There are only 256 coefficients in a block. As explained ear-
lier, one line of the overlapping boundary is kept in the memory
after one block is coded. Thus, if a coefficient is stored as a
16-bit number, the size of the coefficient buffer is

bytes. The significance bit-coding context and the sign bit-
coding context of each coefficient are combined to form a single
number that can be stored as 1 byte. The size of the context
buffer is 272 bytes, including a state map for the single-column
overlapping boundary. Here, it is assumed arithmetic coders of
accurate symbol counting and re-normalization are used [15].
The memory requirement can be analyzed similarly if the arith-
metic coder of another type is used. Thirteen statistical models
are maintained for each arithmetic coder. A statistical model in
binary adaptive arithmetic coding contains the count of symbol
0’s and 1’s that have been coded. It is normally sufficient to
store a complete model with 2 bytes. If the minimum quantiza-
tion step size is, the number of bit planes that will be coded in
a subband at transform stepwill be no more than

(5)

The total number of MDUs, under the assumption that the
number of transform steps is, is upper bounded by

(6)

If the number of transform steps is five and the minimum
quantization step size is eight, the total number of MDUs is 130.
The states of 130 arithmetic coders are maintained during the
entire coding process. Not all arithmetic coders are active at a
time. Once a TO of a certain step is active, a complete block row
of the original image or an LL subband is transformed and coef-
ficients of four subbands are generated. Except for the last trans-
form step, only coefficients of three subbands need to be coded.
Thus, it is only necessary to maintain three sets (or four sets for
the last transform step) of arithmetic coders and related statis-
tical models corresponding to a transform step. All other param-
eters can be swapped to a secondary storage device. Since only
certain state variables of the arithmetic coders are stored, the
space needed for storing this information is fairly small. More
details on the state variables can be found in [15].

V. INTEGRATION OFDSWT AND LCBID

A low complexity wavelet image codec is designed by inte-
grating DSWT and LCBiD. DSWT perfectly matches LCBiD
in that wavelet coefficients are generated in blocks, and these
blocks can be directly encoded by LCBiD. The intermediate
buffer is not needed. The integrated system is described below.
An image is sent to the transform engine in lines. The coeffi-
cient blocks generated by DSWT are sent to a deadzone quan-
tizer. Deadzone quantization is applied only to individual coeffi-
cients, so that the quantization can be performed on the fly while
a coefficient block is formed. The quantization step size is spec-
ified by the user. For many applications, direct control of image
quality is of more interest to the user. For rate-critical applica-
tions, the target bit rate can be achieved by adjusting the quanti-
zation step iteratively or truncating the scalable compressed bit
stream. Fig. 9 depicts the buffer allocation and the data flow in
the block-based image codec. The compressed bit planes of all
subbands are separately generated. The final bit stream can be

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 5, MAY 2001 649

TABLE II
CODING PERFORMANCE OF THEPROPOSEDBLOCK-BASED WAVELET CODEC

TABLE III
LENGTH OFCOMPRESSEDBIT PLANES IN EACH SUBBAND (LENA, 512 � 512)

formed by simply concatenating these data units. The LCBiD
coder encodes/decodes coefficients in blocks of size (16, 16).
The memory usage of the transform engine can be calculated
according to the complexity analysis in Section III-B and Sec-
tion IV-B.

VI. CODING EFFICIENCY OF THEPROPOSEDCODEC

Even though our image codec design has been constrained
by a severe memory requirement, the coding performance of the
proposed codec is still among the best in all known image codecs
as demonstrated by experimental results given in this section.

The proposed block-based image codec was applied to four
JPEG2000 test images: aerial2, bike, cafe and woman. Its re-
sults and those of JPEG2000 VM3.0A and SPIHT [4] are listed
in Table II. Note that even though JPEG2000 VM4.0 is available
now, the kernel coding algorithms of VM4.0 and VM3.0A are
essentially the same, i.e., EBCOT. The coding performance of

VM4.0 is however lower than VM3.0A because more bit stream
features are added. Two separate sets of experimental results
are generated with VM3.0A. Results“VM3.0A-32” are gener-
ated by running the VM3.0A encoder with a coding block size
of , while results“VM3.0A-64” are with block size of

. Both sets of data are generated with the “SNR-progres-
sive” flag turned on. SPIHT is not a low complexity codec. It is
implemented in the full-frame coding mode. A compressed bit
stream generated with SPIHT is not scalable in resolution.

In all experiments reported here, the 9/7 biorthogonal filters
[13] are used. All images are decomposed with the pyramid
transform for all codecs. For VM3.0A and SPIHT, the number
of transform steps are determined by the codec. For LCBiD, the
number of transform steps is always set to five for all the results
in Table II. From these experimental results, we can clearly see
that the proposed codec has the best coding efficiency among
all three codecs while its memory requirement is the lowest.
Although no inter-subband correlation is exploited, LCBiD has

650 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 5, MAY 2001

better performance than SPIHT. The authors believe that is due
to efficient context-based coding of significance and sign bits in
LCBiD. Improvement in coding efficiency may be achieved if
the inter-subband correlation is also taken into consideration in
defining the context models in LCBiD, however, this will intro-
duce the dependency in coding different subbands which should
be avoided in order to have more flexibility in implementing the
coder.

The coding efficiency of the proposed codec can be slightly
higher if the block size is larger than 16, because less zero
padding is applied at block boundaries. The improvement in the
coding efficiency by using blocks of size (64, 64) is between
0–0.06 dB for the four test images used. Since the improvement
in coding efficiency is not significant, we prefer to choose the
smaller block size (16, 16) due to the memory consideration.

Before examining the scalability issue of the compressed bit
stream, let us look at the structure of a compressed Lena file of
size at the bit rate of 2.0 bpp, and the transform step
of 4. The compressed file contains a 139-byte bit-stream header
and a 65 391-byte data segment. The header stores the image and
compression parameters. It also includes an indexing structure
telling the length of each MDU. As explained earlier, an MDU
is the part of the compressed bit stream that corresponds to a
bit plane of a subband. All MDUs can stored in a data segment
in a quality-progressive order, or a resolution-progressive order.
The lengths of all MDUs in the example are listed in Table III,
and these numbers are stored in the bit stream header. The ac-
cumulated data length (denoted by A. bytes) and accumulated
bit rate (denoted by A. bit rate) at each bit plane are also listed
in the table.

In SNR decoding, it is preferred to stop the decoding at
the points where all subband bit planes at the same level are
decoded. For the example in Table III, bpp is such a
preferred truncation point. All preferred truncation points can
be easily found by inspecting the bit-stream header. PSNR in
Table III is calculated at the preferred truncation points.

The decoding can also be stopped at any other point other
than these preferred truncation points. Although continuous
SNR scalability can be achieved, the rate-distortion curve is not
very smooth. The PSNR value climbs slowly when the bit rate
increases, and is just above a preferred truncation point. The
PSNR increases much faster when the bit rate approaches the
next preferred truncation point.

The rate-distortion curve can become smoother if the bit
stream of bit plane can be arranged so that the bit-stream trun-
cation results in the loss of less important bit stream. This can
be achieved by coding significace and refinement bits of each
bit plane separately as in the embedded wavelet coder as [2]
and [4], or even more layers as in EBCOT [11]. However, the
implementational complexity will increase. The degradation
in coding efficiency will be more obvious for small images
because of an increased amount of data units.

VII. CONCLUSION AND FUTURE WORK

A block-based image codec was designed by integrating the
block-based transform (DSWT) and block-based coefficient
coding (LCBiD). The codec has a very low implementational
complexity. The size of cache memory needed is image-size
independent. The coding efficiency of the codec was proven to
be very high. It outperforms other high-performance wavelet
coders in the same class. The bit stream generated with the image
codec is scalable in both SNR and resolution. The image codec
has a very simple coding process, while the requirement on the
local storage is very small, since it is possible to transmit the
compressed data as soon as they are generated. The compressed
file has a simple structure that can be easily parsed in the decoder.

Other work to reduce the implementational complexity of the
wavelet image codec is possible. For example, it is desirable to
replace all floating point computation to fixed point computa-
tion and to replace the multiplication with addition/substraction
and bit-shift operation as much as possible. This is out of the
scope of this paper, but worth careful study in the design of a
special purpose chip for image compression.

REFERENCES

[1] S. G. Mallat, “A theory for multiresolution signal decomposition: the
wavelet representation,”IEEE Trans. Pattern Anal. Machine Intell., vol.
11, pp. 674–693, July 1989.

[2] J. M. Shapiro, “Embedded image coding using zerotrees of wavelet co-
efficients,”IEEE Trans. Signal Processing, vol. 41, pp. 3445–3462, Dec.
1993.

[3] D. Taubman and A. Zakhor, “Multirate 3-D subband coding of video,”
IEEE Trans. Image Processing, vol. 3, pp. 572–588, Sept. 1994.

[4] A. Said and W. A. Pearlman, “A new, fast, and efficient image codec
based on set partitioning in hierarchical trees,”IEEE Trans. Circuits
Syst.Video Technol., vol. 6, pp. 243–250, June 1996.

[5] Z. Xiong, K. Ramchandran, and M. T. Orchard, “Space-frequency quan-
tization for wavelet image coding,”IEEE Trans. Image Processing, vol.
6, pp. 677–693, May 1997.

[6] W. P. Pennebaker and J. L. Mitchell,JPEG, Still Image Data Compres-
sion Standard. New York: Van Nostrand, 1993.

[7] Y. Bao, H. Wang, R. Chung, and C.-C. J. Kuo, “Design of a memory-
scalable wavelet-based image codec,” inProc. IEEE Int. Conf. Image
Processing, Chicago, IL, Oct. 4–7, 1998.

[8] C. Chrysafis and A. Ortega, “Line-based, reduced memory, wavelet
image compression,” inProc. Data Compression Conf., Snowbird, UT,
Mar. 1998.

[9] C. Christopoulos, “JPEG-2000 verification model VM version 2.0/2.1,”
ISO/IEC JTC1/SC29/WG1 N988.

[10] Y. Bao, M. Shen, and C.-C. J. Kuo, “Dual sliding wavelet trans-
form, generating same coefficients in fixed-size blocks,” ISO/IEC
JTC1/SC29/WG1 N1217.

[11] D. Taubman, “Report on codEff22: EBCOT (embedded block coding
with optimized truncation),” ISO/IEC JTC1/SC29/WG1 N1020.

[12] Y. Bao and C.-C. J. Kuo, “Low complexity binary description codec,”
presented at the IEEE Int. Workshop Multimedia Signal Processing
(MMSP’99), Copenhagen, Denmark, Sept. 13–15, 1999.

[13] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding
using wavelet transform,”IEEE Trans. Image Processing, vol. 1, pp.
205–220, Apr. 1992.

[14] C. Christopoulos, “JPEG2000 verification model 4.0 (Technical descrip-
tion),” ISO/IEC JTC1/SC29/WG1 N1282.

[15] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding for data
compression,”Commun. ACM, vol. 30, no. 6, pp. 520–540, June 1987.

