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Abstract—Current coding techniques for 3-D graphic models
mainly focus on coding efficiency, which makes them extremely
sensitive to channel errors due to the irregular mesh structure. In
this paper, we introduce a new approach for error-resilient coding
of arbitrary 3-D graphic models by extending the error-free
constructive traversal compression scheme proposed by Li and
Kuo. A 3-D mesh of an arbitrary structure is partitioned into
pieces of a smaller uniform size with joint boundaries. The size of
a piece is determined adaptively based on the channel error rate.
The topology and geometry information of each joint boundary
and each piece of a connected component is coded independently.
The coded topology and first several important bit-planes of
the joint-boundary data are protected against channel errors
by using the Bose–Chaudhuri–Hocquenghem error-correcting
code. At the decoder, each piece is decoded and checked for
channel errors. The decoded joint-boundary information is used
to perform data recovery and error concealment on the corrupted
piece data. All decoded pieces are combined together according
to their configuration to reconstruct all connected components of
the complete 3-D model. Our experiments demonstrate that the
proposed approach has excellent error resiliency at a reasonable
bit-rate overhead. The techniques is also capable of incrementally
rendering one connected component of the 3-D model at a time.

Index Terms—3-D mesh, constructive traversal, data parti-
tioning, error resiliency, graphic models, mesh reconstruction,
mesh segmentation, robust coding, successive quantization.

I. INTRODUCTION

T HREE-dimensional (3-D) graphic models have gained
more attention these days due to the fast growth of the

computer hardware processing ability and the development
of multimedia compression techniques. Applications of 3-D
graphics are booming in computer animation, special effects
in movies, studio graphics design and 3-D video games. In
these applications, a general 3-D object is often represented
by triangular and/or polygonal meshes. The resulting meshes
usually have complex structure and thousands or even millions
of vertices and triangles, which make them difficult to handle
in storage, display, editing and network transmission. To solve
this problem, 3-D meshes should be compressed with tolerable
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distortion while maximizing the degree of data reduction. To
represent a 3-D graphic model, two types of data are used,
i.e., topological data and attribute data. Topological data
specify the connectivity information among vertices (e.g., the
adjacency of vertices, edges and faces) while attribute data
describe the position, the surface normal, the color and other
application-specific information of each vertex. In this paper,
we will study error-resilient coding of manifold polygonal
models with only the position attribute information. Similar
techniques can be applied for coding other attribute information
in more complicated models.

Several high-performance 3-D mesh coding methods have
been proposed recently, for example, [1]–[18]. Taubinet al.
[2], [3] developed an algorithm called topological surgery
(TS), in which the connectivity of a manifold triangular mesh
is encoded without any loss of information. In the TS scheme,
vertices are organized as a spanning tree, and triangles as a
simple polygon. Vertex positions are first quantized and then
predicted as a linear combination of ancestors along the vertex
tree, and residues are finally entropy encoded. Li and Kuo [4],
[5] developed a constructive traversal method, which traverses
the dual graph topology of the original mesh from a randomly
chosen seed to encode the connectivity information. The
geometry information is encoded by successive quantization.
Portions of Taubin’s TS scheme [2], [3] and Li and Kuo’s
constructive traversal scheme [4], [5] have been incorporated in
MPEG-4. Gumhold and Strasser [7] proposed a scheme for real
time encoding of the topology information of triangle meshes,
by applying a breadth-first traversal and then encoding the
corresponding building operations. Rossignac [8] introduced
an edgebreaker algorithm to encode the topology information
of triangle meshes. This algorithm uses a half-edge data
structure, and simply traverses the mesh from one triangle to a
neighboring one, recording the history and encoding the history
information. The schemes proposed in [7] and [8] both use
the breadth-first traversal method and achieve good results for
compressing triangle meshes. Most methods currently available
for geometry compression require a manifold connectivity.
Gueziecet al.[9] developed a method to compress nonmanifold
meshes. This method converts the original model to a manifold
model and encodes the manifold model by using an existing
mesh compression technique. In the decompression process,
the method clusters or stitches vertices that were duplicated
earlier to faithfully recover the original connectivity.

Most simplification and compression techniques focus
mainly on coding efficiency. However, random and/or burst
errors are often introduced into the encoded bit stream when it
travels through transmission channels. An error in coded mesh
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Fig. 1. Block diagram of the encoder for a 3-D graphic model.

data can quickly propagate due to the irregular grid structure
and the use of the entropy coder. This affects the decoding of
the subsequent connectivity information and causes a severe
damage to the decoded mesh structure. Little research has been
done in the error-resilient coding of 3-D graphic models before.
An error-resilient component-based data partitioning scheme
(CODAP) for the TS-based coding technique was proposed
in MPEG-4 [20], [21]. Several mesh segmentation schemes
[22]–[24] for error-resilient coding of 3-D graphic models were
studied based on Li and Kuo’s constructive traversal coding
technique [4], [5].

In this paper, we propose a new and efficient error-resilient
scheme for the coding of arbitrary 3-D graphic models. This
scheme also allows incremental rendering, with a reasonable
bit-rate overhead. The block diagram of the proposed encoder
is shown in Fig. 1. The basic idea of the proposed scheme can
be stated as follows.

1) A 3-D graphic model is first partitioned in its connected
components. An adaptive mesh segmentation algorithm,
called the multi-seed traversal algorithm, is then used to
partition the mesh structure of each connected compo-
nent into a set of smaller pieces and their joint bound-
aries. Pieces are subsets of the original mesh structure
of each connected component, and every piece contains
some partial topology and geometry information of the
original mesh. The pieces can be either simply or multiply
connected, depending on the original mesh structure. The
number of vertices in each piece is determined adaptively
according to the target channel bit error rates (BER). The
relationship between two neighboring pieces of a con-

nected component is represented by the “joint boundary,”
which contains the information of common vertices and
links. After mesh segmentation, there are four different
types of data to be encoded for each connected compo-
nent: the joint-boundary topology, the joint-boundary ge-
ometry, the piece topology, and the piece geometry.

2) A coding scheme is developed to encode the joint
boundary and piece data of each connected component.
The joint-boundary topology is efficiently coded by
using the starting vertex id and the traversal direction.
The joint-boundary geometry is encoded by using pre-
diction and successive quantization. The piece topology
is coded by using the constructive traversal method
while the piece geometry is coded by using prediction
and successive quantization. Since the joint-boundary
topology and geometry information is necessary to stitch
pieces back to obtain the original mesh in the presence of
errors, it is protected by using the BCH error-correcting
code. The bit-rate overhead introduced by BCH is very
small as the joint boundary is only a small fraction of the
total mesh data.

3) Appropriate headers and certain resynchronization words
are inserted in coded joint boundaries and pieces of each
connected component. Then, they are packed in indepen-
dent units (called a segment) for transmission. This proce-
dure is repeated to sequentially code each connected com-
ponent of a 3-D graphic model. In order to achieve incre-
mental rendering, data of each connected component are
sent independently. Furthermore, data of all joint bound-
aries of a connected component are transmitted first, fol-
lowed by data of all its pieces layer by layer.
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Fig. 2. Block diagram for the decoder of a 3-D graphic model.

At the decoder, four types of data of a connected component
are extracted from the coded bit stream in a sequential order:
the coded joint-boundary topology, the coded joint-boundary
geometry, the coded piece topology, and the coded piece geom-
etry. Since the joint-boundary data have been protected against
channel errors, the topology and geometry information of an-
chor-vertices and anchor-links is mostly decoded correctly, and
used in data recovery and error concealment during the decoding
of piece-topology and piece-geometry data. All successfully de-
coded pieces are combined together by using a piecewise recon-
struction procedure to form the connected component. Finally,
all decoded connected components are assembled to reconstruct
the target 3-D graphic model. The proposed error-resilient 3-D
mesh decoding system is shown in Fig. 2. The model can thus be
incrementally rendered, as the decoding procedure can start as
soon as coded data of the first connected component is received.
Although we have developed our scheme under the framework
of Li and Kuo’s dual-mesh coding technique [4], [5], the basic
error-resilient idea should be extensible to other 3-D compres-
sion schemes as well (with proper modifications to tailor to their
specific implementations).

Similar to CODAP [20], [21], our scheme partitions a
3-D mesh into pieces and joint boundaries, and packs the bit
stream in independent data units called segments. Very small
connected components are also grouped together to reduce
overhead bits. However, our proposed scheme is more error
resilient than CODAP, because we employ data recovery and
error concealment at the decoder, which is not present in
CODAP. Any piece corrupted by the channel error is simply
discarded in CODAP, whereas we are able to recover many cor-

Fig. 3. Illustration of the multiseed traversal scheme by using two starting
seeds X and Y, where pieces I and II as the resulting pieces and joint-boundary
smoothing is illustrated via vertices A, B, C.

rupted pieces by using the joint-boundary information without
introducing a significant bit-rate overhead. In fact, data re-
covery and error-concealment schemes in piece data have been
made possible due to careful coding of joint-boundary data.
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Fig. 4. Pieces of the Dinosaur model obtained by using the multiseed traversal algorithm.

Joint-boundary vertices and links are called “anchor-vertices”
and “anchor-links,” respectively, since they form a skeleton in
the 3-D space used for data recovery and error concealment in
corrupted pieces.

This paper is organized as follows. The adaptive mesh seg-
mentation scheme is presented in Section II. The detailed en-
coding system is discussed in Section III. In Section IV, we
focus on the decoding scheme with error detection, data re-
covery, and error concealment. Section V describes the piece-
wise-reconstruction scheme. Experimental results are shown in
Section VI and conclusions are given in Section VII.

II. A DAPTIVE MESH SEGMENTATION

The topology structure of a 3-D graphic model may contain
more than one connected components of different sizes. It is
often necessary to partition large components into several pieces
for better error resiliency. Many mesh partitioning schemes are
available in the literature, including a software package devel-
oped by Karypis and Kumar [25]. In this work, we use an adap-
tive mesh segmentation scheme to extract pieces by considering
both coding efficiency and error resiliency. It consists of three
major modules: the piece-size determination, the piece extrac-
tion and the joint-boundary construction.

A. Determination of Piece Size

We adaptively determine the piece size in terms of the number
of vertices based on target BER. Generally speaking, when the
BER is high (or low), the piece size should be smaller (or larger).
The piece size is chosen in power of 2, i.e., 32, 64, 128, etc. The
minimum size is set to 32 to avoid a very high overhead. To
achieve good error resiliency, the piece size is chosen to allow
only 1 bit error in coded topology data of ten or more pieces. In
Li and Kuo’s coding scheme [4], [5], the coding of topology data
of an arbitrary 3-D mesh requires an average of 2 bits/vertex.
Therefore, there would be 1 bit error for every 500 vertices of a
coded mesh statistically at a BER of . For the piece size of
32, there would thus be an average of one bit error in 15 pieces.
Please note that this is a very conservative estimate. In fact, the
encoded topology bit stream of each piece can tolerate more
than one bit errors, provided they are properly distributed, as
discussed later in Section IV-C.

B. Piece Extraction

Pieces are extracted exclusively, i.e., no two pieces share the
same polygon. The union of polygons of all pieces form the

complete polygon set of the connected component (or the orig-
inal model). We represent the original 3-D polygonal mesh
by using set of all vertices (geometry position and vertex
index) and set of all polygons (indices of vertices) of the
mesh. We divide mesh into pieces ,
where is characterized by and , as discussed below.
Here, the union of (or ) is equal to (or ).

Multiseed Traversal Algorithm:Conceptually, this algo-
rithm is similar to simultaneously burning fires from all starting
seeds, which would grow uniformly toward their respective
neighborhood until all polygons and vertices of the whole mesh
are burnt. Each traversed region is called a piece. To divide a
connected component into pieces, vertices are first chosen
as starting seeds. Polygons associated with each seedare
found by using Li and Kuo’s constructive traversal scheme [4],
[5], and stored in the corresponding polygon set. For each
polygon set , vertices on the contour of all its polygons are
stored in the corresponding vertex set. For all vertices in the
vertex set , their associated polygons, which have not already
been stored in any polygon set, are then found and stored in the
corresponding polygon set . This procedure is repeated until
all polygons of the connected component have been stored. The
resulting polygon sets and their associated vertices form
pieces. Fig. 3 illustrates the multiseed traversal scheme by using
two starting seeds “X” and “Y.” First, seed “X” traverses all
polygons marked by “a,” and seed “Y” traverses all polygons
marked by “1.” Vertices lying on the contour obtained from
seeds X and Y are represented by “” to “ ” and “ ” to
“ ,” respectively. Polygons belonging to vertices “” to “ ”
and vertices “ ” to “ ” are then traversed and represented by
alphabet and numeral , respectively. This process continues
until all polygons are traversed. Two pieces are thus formed.

Seed Selection:The selection of starting seeds is critical
in the multiseed traversal algorithm. If two seeds are selected
too close to each other, their associated pieces could be much
smaller than others. This will degrade coding efficiency due to a
higher bit-rate overhead resulting from a poor data partitioning
procedure. To obtain pieces of a uniform size, we select one
seed at a time and each new seed is chosen to be the vertex
with the farthest distance from the set of seeds that are already
chosen. Fig. 4 shows four nearly uniform-sized pieces of the
Dinosaur model obtained with this scheme.

Correction of Irregular Structure:Some pieces generated by
the above algorithm may have an irregular structure. A piece is
assumed to have an irregular structure when its three or more
boundary links are connected to one vertex. In Fig. 5(a), seven
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Fig. 5. Illustration of the irregular piece structure and its correction procedure:
(a) irregular structure and (b) pieces after correction.

polygons connected to vertex “A” have been divided in three
pieces; namely, 1, 2, and 3. These polygons are ordered in a
clockwise manner and identified by their piece ID. Here, Piece
“1” has an irregular structure because its four boundary links
are connected to vertex “A.” Ideally, polygons of the same piece
should appear continuously. However, the fourth “1” is not con-
tinuous, and it should be reassigned to Piece “2,” as shown in
Fig. 5(b). Fig. 6 shows pieces of the Dinosaur model before and
after irregular-structure removal. Sometimes, the last piece of
a connected component may consist of several nonconnected
small parts. In such a case, only the biggest part is retained as the
last piece, and all other parts are assigned to appropriate pieces.
This procedure also avoids the creation of holes in some pieces
during segmentation.

The multiseed traversal algorithm, along with seed selection
and irregular structure removal, allows pieces to grow uniformly
around their associated starting seeds. As a result, the number
of vertices on boundary is only a small fraction of the piece size.
For example, we get an average of 7 and 10 joint-boundary ver-
tices for a piece size of 32 and 64, respectively, for the Dinosaur
model. Pieces obtained by using this scheme can be simply or
multiply connected, depending on the original mesh structure of
the connected component.

C. Joint-Boundary Construction

Two adjacent pieces share a number of vertices and links on
their joint boundary. Sometimes, there may be more than one
joint boundary between two adjacent pieces. We do not allow
any polygon in the joint boundary. Special care has been taken in
mesh segmentation to make sure that the joint boundary does not
contain any nonconnected vertex. As a result, the joint boundary
is composed of vertices that are linked one by one to form a
3-D curve. The curve is closed if the last vertex is connected to
the first vertex. A hole inside a multiply connected piece is not
considered a part of the joint boundary unless it is also shared
by other adjacent piece.

Joint boundaries are used to stitch different pieces together.
In an error-free environment, the original mesh can be suc-
cessfully constructed without joint-boundary information by

only knowing the topology and geometry information of all
pieces. The importance of joint boundaries lies in that they
can correct erroneous decoding of data in each piece when
there are errors in the corresponding bit stream. The coding
of joint-boundary information, however, contributes to the
bit-rate overhead. To lower the overhead, we use asimple
smoothing scheme, which reduces the number of vertices
at the joint boundary, while keeping the mesh segmentation
result nearly the same. In this scheme, if two nonconsecutive
anchor-vertices on the joint boundary also have a direct link
which lies inside a piece, this link can be used to substitute
the sequence of links between these two anchor-vertices along
the joint boundary. For example, the original joint boundary in
Fig. 3 has anchor-links (A, B) and (B, C). Since there is also a
direct link (A, C) between anchor-vertices A and C in Piece II,
we substitute anchor-links (A, B) and (B, C) by link (A, C) and
shift polygon (A, B, C) from Piece II to Piece I.

III. ERROR-RESILIENT ENCODING SCHEME

As shown in Fig. 1, four types of data (i.e., the joint boundary
topology, the joint boundary geometry, the piece topology and
the piece geometry, in that order) are encoded separately. The
same joint boundary and piece coding schemes are used for
simply, as well as multiply, connected pieces. Gueziecet al. [9]
proposed an efficient method to encode the joint boundary in-
formation by applying run-length coding to consecutive pairs
of boundary edges and using the order of traversal of vertices
to determine vertex indices, which are usually costly to encode.
In our scheme, vertices and links on the joint boundary are used
to detect and conceal errors occurring in related pieces. In other
words, our joint boundary coding method is developed to sup-
port error resiliency. The BCH error-correcting code is used to
further protect joint boundary data against channel errors. There
is no protection on coded piece data. The encoding system is de-
scribed below.

A. Encoding of Joint Boundary Topology

We use the following structure to code the joint boundary
topology:

[PIECE ID 1][STARTING VERTEX ID 1]

[TRAVERSE DIRECTION 1] [PIECE ID 2]

[STARTING VERTEX ID 2][TRAVERSE DIRECTION 2]

[CURVE OPEN/CLOSED]

In the above, [PIECE ID 1] and [PIECE ID 2] specify the two
pieces connected by the current joint boundary. Each PIECE ID
is represented by either one or two bytes. We reserve the first
bit to indicate this information. If the first bit is 0, the PIECE ID
occupies 1 byte, and the maximum number of pieces that can be
represented is . This is enough for most 3-D graphic
models. If the first bit is 1, the PIECE ID is represented with 2
bytes. The maximum number of pieces allowed is thus enlarged
to . This is used for extremely complicated models
which have millions of vertices and polygons.

[STARTING VERTEX ID 1] and [STARTING VERTEX ID
2] specify the corresponding index of the first stitching vertex
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(a) (b)

Fig. 6. Two pieces of the Dinosaur model before and after irregular structure correction. (a) Irregular structure. (b) Corrected structure.

Fig. 7. Illustration of the coding of joint boundary data, where the relationship between the polygon normal and the traverse direction is also shown.

in these two pieces. Both starting vertices in fact represent the
same vertex in the original model. However, they may have dif-
ferent indices in these two adjacent pieces. The number of bits to
represent [STARTING VERTEX ID] is determined by the piece
size, which is related to the BER. Our experiments reveal that
the actual piece size deviates from its target value but never ex-
ceeds twice of its value. Thus, we need 6 (or 10) bits to represent
the [STARTING VERTEX ID], when target piece size is 32 (or
512).

[TRAVERSE DIRECTION 1] and [TRAVERSE DIREC-
TION 2] specify the direction to traverse boundary links in
each piece in order to stitch remaining vertices one by one,
according to the decoded geometry data of joint boundary.
A boundary vertex in a piece has two boundary links. Each

boundary vertex can traverse the piece in two directions,
depending on its associated polygon normal. [TRAVERSE
DIRECTION] thus needs 1 bit to indicate the direction of
traversal. Consider the case that a polygon normal points from
the center of the polygon toward our eyes as shown in Fig. 7.
Then, if the direction of its links is in the clockwise order, it is
set to 1. Otherwise, it is set to 0. [CURVE OPEN/CLOSED] is
represented by 1 bit. Other necessary information, such as the
number of vertices in the joint boundary, is added during data
partitioning, which is discussed later in Section III-E.

Let us use an example to illustrate the scheme described
above. As shown in Fig. 7, two pieces—5 and 8—are connected
by the joint boundary. The index of the starting vertex is 26
and 32 in pieces 5 and 8, respectively. The traversing direction
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in piece 5 is from vertex 26 to vertex 12 (i.e., counter-clock-
wise) with direction bit set to 0. The traversing direction in
piece 8 is from vertex 32 to vertex 47 (i.e., clockwise) with
direction bit set to 1. By using 1 byte to represent [PIECE
ID] and 6 bits to represent the [STARTING VERTEX ID],
we have the following fixed length representation of the joint
boundary in binary format: [PIECE 5][STARTING VERTEX
26][COUNTER CLOCKWISE][PIECE 8] [STARTING
VERTEX 32][CLOCKWISE][CURVE OPEN]. In this ex-
ample, it is 00 000 101 011 010 0 00 001 000 100 000 1 1 (31
bits in total).

The coded data are protected against channel errors by using
the BCH (63, 51, 5) code, which can correct up to two bit errors
in a 63-bit block [26], [27]. The number of actual message bits
in a block is 51. Since the information of the joint boundary
topology is only a very small fraction of the total mesh data,
the bit-rate overhead due to the BCH code is very small. Thus,
an even stronger error-protection scheme, such as BCH(63,
45, 5), can also be used without introducing much overhead. It
is confirmed by extensive experimental results that the above
fixed length representation of the joint boundary topology can
uniquely and correctly stitch two adjacent pieces together.

B. Encoding of Joint Boundary Geometry

To encode the joint boundary geometry, we adopt a technique
that is similar to the coding of the geometry of pieces to be
discussed later in Section III-D. In this technique, successive
quantization and entropy coding are applied to vertex predic-
tion residuals. Since joint boundaries are composed of only ver-
tices and links, we consider a simple yet efficient vertex predic-
tion scheme to compute the vertex residue. The joint boundary
shown in Fig. 8(a) is composed by vertices 1, 2, 3, 4, 5, and links
(1, 2), (2, 3), (3, 4), (4, 5), etc. The position of vertex 1 is coded
with its actual coordinates. Predicted positions of vertices 2, 3,
and 4 are denoted by points 2, 3 and 4, respectively. In this ex-
ample, 2 is the same as vertex 1, 3is the mirror point of vertex
1 with respect to vertex 2, and 4is the mirror point of vertex 2
with respect to vertex 3, etc.

Each quantized bit-plane contributes to the final position of
vertices. Since only the first several bit-planes play a more im-
portant role in the vertex position, we apply the BCH(63, 51, 5)
code only to the most significant three bit-planes to protect them
against channel errors while encoding the remaining bit-planes
directly. Again, the bit-rate overhead due to the use of BCH
codes is very small.

C. Encoding of Piece Topology

The topology of each piece is coded by using the constructive
traversal method [4], [5]. With this method, the mesh is traversed
level by level. Each level has a queue of nodes, which is initially
empty and filled by the traversal process of the previous level.
The queue of the first level consists of a single node randomly
chosen from the mesh. At each level, one node is popped at a
time from the queue. Then, each unvisited link of the node is
traversed one by one in clockwise or counterclockwise order.
For each such link, the first node is called the start node whereas
the other node is called the end node. There are two different

(a)

(b)

Fig. 8. (a) Vertex prediction rule for the coding of joint boundary geometry
data. (b) Constructive traversal of a mesh from single nodeN .

cases for the end node. If the end node is traversed for the first
time, the corresponding link is called thebranchand the end
node is pushed to the queue of the next level. However, if the
end node has been traversed before, the corresponding link is
called themergerand the end node is marked. This end node is
not pushed into the queue. Throughout the traversal, each link
is visited once and only once. The traversal continues until all
nodes and links are exhausted. Each link visited during traversal
can be a branch or a merger depending on the type of its end
nodes. The valence of the end node of each branch is recorded.
For a merger, the index id of the end node and the position of
the link is required. Both of them are efficiently represented
by exploiting the neighboring topology. The symbols are then
encoded by an adaptive binary arithmetic coder.

Fig. 8(b) shows the traversal of the mesh growing from the
single node up to the fourth level, where each node of
the graph is labeled by two subscripts. That is,serves as the
level index while is the order index in the queue of that level.
For this example, all links traversed in the first and second levels
are branches. Links and
denoted by dashed lines are mergers at the third level.

D. Encoding of Piece Geometry

The geometry data of each piece are encoded via three steps:
local vertex position prediction, successive quantization, and
entropy coding [4], [5]. Usually, strong local correlation exists
between positions of adjacent vertices. Vertices are usually ar-
ranged in a certain order so that the local relationship among
vertices can be described and exploited more efficiently. The
vertex data prediction procedure predicts the current vertex po-
sition locally based on neighboring vertices and generates a se-
quence of prediction residues as a result. This prediction process
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is causal. With this method, the decoder can decode data cor-
rectly in an error-free environment. Then, a successive quanti-
zation scheme is applied to prediction residues. It adopts a se-
quence of gradually refined quantization steps instead of a single
quantization step. The quantization step size is refined so that
coefficients are approximated by an increasing precision. For
each quantization, a binary output is produced for each coeffi-
cient to record the quantization result. All symbols generated
by using the same quantization step are then grouped together
to form a bit-plane in this level. This embedded coding scheme
can encode a mesh with a progressive resolution which meets
any specific bit budget easily. At the final step, an entropy coder
(i.e., the arithmetic coder) is used to encode bits in the bit-plane
according to a certain scanning order.

E. Data Partitioning

We have used a data-partitioning technique for joint boundary
and piece data to limit the error-propagation effect to the current
encoded unit only. In our design, the encoded topology data of
all joint boundaries of a connected component are packed to-
gether. This helps in arranging the data in suitable length blocks
(51 message bits per block) for applying the BCH(63, 51, 5)
code. Each unit is preceded by headers that identify the joint
boundary sequence number in the connected component and the
number of coded bits and vertices in each joint boundary along
with other necessary information. The encoded geometry data
of all joint boundaries of the connected component are packed
in the same fashion and suitable headers are applied. Each type
of data is preceded by a unique 2-byte resynch word.

The coded topology or geometry data of each piece in a con-
nected component is treated as an independent coded unit (i.e.,
a segment). Each segment has its own 2-byte resynchronization
word and header. The header information contains important
segment parameters such as the segment length, the piece se-
quence number, the number of coded vertices, etc. The resynch
word, the header, and the encoded data of each segment together
are always made byte-aligned. It is assumed that the channel is
binary symmetric and the header and resynch words are free
of channel error. In a binary symmetric channel, an error in a
segment of bit stream causes reversal of one bit. The resynch
word and the header help in distinguishing a segment from other
segments and identifying segments that have been corrupted by
channel errors.

IV. ERROR-RESILIENT DECODING SCHEME

As shown in Fig. 2, the four types of data of each connected
component (i.e., the coded joint boundary topology, coded joint
boundary geometry, coded piece topology, and coded piece ge-
ometry, in order) are extracted from the coded bit stream. The
joint boundary topology and geometry data of each connected
component are decoded first. Note that BCH(63, 51, 5) can al-
most always correct channel errors for BER up to .

Coded data of some pieces might be corrupted by channel er-
rors, since they are not well protected against channel errors.
Techniques of error detection, recovery, and concealment are,
however, applicable by using the information of anchor vertices

and links of the joint boundary. After decoding data of the cur-
rent connected component, the other connected components are
decoded one by one by following the same procedure. A de-
tailed description of the decoding system is given below.

A. Decoding of Joint-Boundary Topology

The topology of a joint boundary is encoded by using the
fixed length representation. As discussed in Section III-A, for a
graphic model of a moderate size at BER of , the length of
coded joint-boundary topology data is only
31 bits. Forward error correction will add several more bits
to it. Due to error protection, the joint boundary topology can
be decoded free of error in most cases. The decoded topology
data shall provide us sufficient information about the two adja-
cent pieces, such as starting vertices and traversal directions for
stitching them together.

B. Decoding of Joint-Boundary Geometry

The geometry of the joint boundary has been encoded by
using a linear vertex prediction and by applying successive
quantization and entropy coding to the prediction residual.
Compared with the number of vertices in two adjacent pieces,
the number of vertices in the joint boundary is only 10% to
20%. Due to the use of error-correction codes, the first three
bit-planes of geometry data can be decoded free of error in
most cases. Since the position of joint boundary vertices can be
roughly located by using the first three bit-plane values, errors
in the remaining bit-planes do not have much impact on the
final positions of these vertices, and cracks can be avoided. We
treat these vertices and links in the joint boundary as fixed in
the 3-D space, and use them as anchor vertices and anchor links
in the subsequent decoding of the piece topology and the piece
geometry for error recovery and concealment, respectively.

C. Decoding of Piece Topology and Data Recovery

The topology of each piece has been encoded by using the
constructive traversal scheme and the entropy coder. The con-
structive traversal scheme generates a sequence of symbols of
branchandmerger. Each of these symbols is critical in the de-
coding procedure to reconstruct the topology. However, the en-
tropy coder is very sensitive to errors, and even one bit error may
corrupt several branch or merger symbols and their property in-
formation, such as the vertex valence information for a branch,
the vertex index information for a merger, etc. This would result
in holes, broken links or unconnected vertices in the decoded
mesh. Error detection and concealment is thus necessary to cor-
rectly reconstruct the corrupted mesh.

1) Error Detection: The presence of errors in the bit stream
of piece topology can be easily detected by using the following
three criteria: 1) broken links or unconnected vertices are found;
2) anchor links do not match with the corresponding links in the
decoded mesh; and 3) the number of vertices in the decoded
mesh does not match with that stored in the corresponding seg-
ment header. If none of the above three situations occur, the
piece is treated as error free.

We have observed that an error in the encoded bit stream al-
most always results in a mismatch between anchor links and
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Fig. 9. Error-detection and recovery procedure for the decoding of the: (a) piece-topology bit stream and (b) piece-geometry bit stream.

their corresponding links in the decoded mesh, due to the fol-
lowing reason. In our mesh segmentation scheme, the starting
seed is normally located close to the center of the piece, which
is usually far from its joint boundaries. As a result, vertices on
joint boundaries are normally traversed later than intermediate
vertices. Here, the termintermediaterepresents all the vertices
of a piece other than anchor vertices. Therefore, errors in the
encoded bit stream would propagate with traversal and the de-
coding procedure should easily find errors in anchor vertices.
This type of error appears in the form of anchor-link mismatch.

To more clearly explain the anchor-link mismatch, let us con-
sider the relationship between a piece and its joint boundary. The
geometry information of each anchor vertex is coded three times
during the encoding procedure, i.e., once in the joint boundary
and twice in the two adjacent pieces. During the decoding of
a piece, if the decoded vertex is identified as an anchor vertex,
then decoded links associated with it in the piece will be com-
pared with its anchor links. A mismatch indicates the presence
of errors. The following example is helpful in illustrating the
above discussion. As shown in Fig. 7, vertex 32 in piece 8 is
an anchor vertex. It is connected to anchor vertex 47 by the an-
chor link (32, 47). Anchor vertex 47 is also connected to an-
chor vertex 17 by an anchor link (47, 17). Let us assume that
vertex 47 has been correctly decoded and identified as an an-
chor vertex during the decoding of piece 8. All links associated
with it will be compared with anchor links (47, 32) and (47,
17). If link (47, 17), for example, is found missing in piece 8,
we know that some error has occurred and a data recovery pro-
cedure should be adopted to recover the corrupted data, as ex-
plained below. Please note that this data recovery procedure is
not simply adding link (47, 17), which can introduce other de-
fects.

2) Data Recovery:During decoding of the coded
piece-topology bit stream, anchor vertices are decoded
one by one. Between the decoding of two anchor-vertices, their
associated intermediate vertices are also decoded. In Fig. 9(a),
anchor-vertices are denoted by , and ,
respectively, according to their decoding order. If up
to vertex are decoded correctly and a mismatch is detected
in the anchor link associated with vertex , we know that
some error has occurred in the portion of the bit stream, which
lies between the decoding of and . Data recovery
can be achieved by flipping bits in this portion one at a time,
and repeating the decoding process from to until
we get the correct anchor-link information for . After this,
we can proceed with the decoding process from the next anchor
vertex onwards.

The above data recovery scheme is based on the following
two assumptions. First, there is only 1 bit error inside the cor-
rupted portion of the bit stream. The probability of more than
one bit error is minimized by adaptively choosing the piece size
in Section II-A according to target BER. Second, the length of
this portion is not too long so that the computation time is rea-
sonable. The size of the corrupted portion is around of the
piece-topology bit stream, whereis the number of anchor ver-
tices that is usually about 10%–20% of the piece size. We have
observed that there is normally one anchor-vertex after every
4–9 intermediate vertices, in our coding scheme, which corre-
sponds to about 10–20 bits in the corresponding bit stream por-
tion. If there are two bit errors in a portion of the bit stream of
piece topology, successful data recovery requires the flipping of
an arbitrary combination of any 2 bits in this portion to explore
all error possibilities. To avoid the computational overhead, we
simply treat such piece as nondecodable.
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It is clear from the above discussion that the main role of
the joint boundary data is to help identify errors in the coded
piece-topology data. The error is corrected by flipping bits in
the corrupted portion. As long as the encoding and decoding
algorithms for the individual piece work well on both simply
and multiply connected cases, error-detection and -correction
schemes will also work well. This is also true for the coded
piece-geometry data to be discussed below.

D. Decoding of Piece Geometry and Error Concealment

The geometry of each piece is encoded by applying succes-
sive quantization and entropy coding to the prediction residue.
If we use 20 bit-planes, the average number of bits per vertex
for geometry data is 20, which is much larger than the average 2
bits per vertex for topology data. As a result, errors would occur
more often in the coded geometry bit stream as compared to the
topology bit stream at the same BER. However, the effect of an
error in geometry data is not as critical as that in topology data.

1) Error Detection: In most cases, errors in the coded bit
stream of piece geometry can be detected by using the following
two criteria. First, nonzero bits are left in the coded bit stream,
after decoding of the required number of vertices, as specified
in the corresponding segment header. Second, the positions of
anchor vertices in joint boundaries do not match with the corre-
sponding vertices in the decoded mesh.

Errors in several most significant bit planes will have more
impact than those in the remaining less significant ones. Fur-
thermore, a bit error introduced in a bit- plane will corrupt all
subsequent codewords in that bit plane. The decoding of the
first (or the second, the third) bit plane of a coded bit stream
of the piece geometry is shown in Fig. 9(b). In each bit plane,
anchor vertices are sequentially decoded one by one. The asso-
ciated intermediate vertices lying between these two successive
anchor vertices are also simultaneously decoded. A decoded bit
“1” indicates that the residue of the current vertex is higher than
the threshold of the current bit-plane. In the decoding proce-
dure, the decoded value of an anchor vertex is compared with
the threshold for the current bit-plane and the actual value of
the corresponding anchor vertex. Errors can be easily detected
if there is a contradiction. For example, let us assume that an-
chor vertex in Fig. 9(b) has a value 1.5, and the threshold
for the current bit-plane is 1.2. If the decoded bit for this vertex
is “1,” there is no contradiction. Otherwise, the data contain er-
rors.

2) Error Concealment:We adopt an error-concealment
scheme only for the first 3 bit-planes of piece geometry, because
errors in the remaining bit-planes will only marginally distort
the final decoded mesh. If decoded results of an anchor vertex

, until in Fig. 9(b) have no contradiction
between their actual value and the threshold but there exists a
contradiction for anchor vertex , an error is detected to lie
before . Note that this is different from the data recovery
procedure used to correct errors in the piece topology, where an
error was claimed to be in the bit stream portion lying between

and . It is possible that errors in the piece geometry
occurred before this portion, yet we got a correct decoded
value of . Since the decoded bit is either “1” or “0,” the
probability that errors are not in this portion is 1/2. To reduce

the probability of a false alarm, we assume that the error is
located in the bit stream portion lying between decoding of

and . Thus, the probability that the error location
is outside this portion is reduced to 1/16. Similar to the error
recovery discussed before, error concealment of the piece
geometry is achieved by flipping bits one by one in the located
bit stream portion.

We have observed that 1 bit error in each portion of a bit plane
of the piece-geometry data can be corrected most of the time. No
error concealment is attempted when there are more than one bit
error in our current scheme.

V. PIECEWISERECONSTRUCTION

After the decoding procedure, most or all pieces can be
decoded successfully. The topology of each successfully de-
coded piece is free of error. The geometry of some successfully
decoded pieces may, however, be distorted, depending on the
channel BER. We stitch all recovered adjacent pieces to form
the mesh structure of the connected components by using
anchor vertices and anchor links, as discussed below.

1) Collect all successfully decoded pieces of a connected
component, and record their piece sequence number.

2) Collect all joint boundaries. Based on the joint boundary
information, mark each piece that has a joint boundary
with other pieces.

3) Put unmarked pieces, which represent small connected
components, in the final mesh directly.

4) For each joint boundary, look for its two adjacent pieces.
If only one of them is successfully decoded, no further
action is needed. If both are available, search each piece
to find the starting stitching vertex, and traverse along
the traversing direction to stitch vertices one by one. It is
possible that the position of an anchor vertex has different
decoded values in the joint boundary and two adjacent
pieces due to uncorrected channel errors in less significant
bit-planes (other than the first three most significant bit-
planes). If this occurs, use anchor vertex value in the joint
boundary.

5) Repeat Step 4 until all joint boundaries are explored. Put
all stitched pieces in the final mesh. The connected com-
ponent is thus formed.

6) Combine all connected components to reconstruct the
3-D graphic model.

VI. EXPERIMENTAL RESULTS

We applied the proposed error-resilient coding scheme to 12
test models at different random and burst BERs. Burst errors
have been generated by using the 2-state Markov model as done
in MPEG-4. We have assumed a bit-rate of 32 kbits/s and the
burst BER is 0.5. The transmission channel was assumed to be
binary symmetric, and there was no loss of an entire packet as
synchronization words and headers are free of errors.

Two original test models “Spock” and “Dinosaur” are given
in Fig. 10 while reconstructed models at random BER of
are shown in Fig. 11. We see from these two figures that recon-
structed models are almost identical to original ones. Recon-
structed models at a random BER of are shown in Fig. 12,



870 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 7, JULY 2001

Fig. 10. Original graphic models of Spock and Dinosaur.

Fig. 11. Reconstructed graphic models for Spock and Dinosaur with BER equal to10 .

Fig. 12. Reconstructed graphic models for Spock and Dinosaur with BER equal to10 .

which have fair visual quality. Figs. 11 and 12 represent cases
where the topology and the three most significant bit planes of
all pieces are correctly decoded/recovereded. The deterioration
in the quality of reconstructed models as shown in Fig. 12 with

an increase in BER is due to uncorrected errors in remaining
less significant bit planes of the piece-geometry data.

If the topology of one or more pieces cannot be decoded suc-
cessfully, there would be some holes in the reconstructed model.
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Fig. 13. Reconstructed graphic models for Spock and Dinosaur with one piece not decodable for BER equal to10 , where the arrow points to the missing piece.

Fig. 14. Reconstructed graphic models for Spock and Dinosaur with a distorted piece for BER equal to10 , where the arrow points to the distorted piece.

Fig. 13 shows decoded models when one of their pieces is not
decodable with BER equal to . The hole, pointed to by an
arrow, appears dark in the figure. If the topology of all pieces is
decoded correctly while at least one out of the three most sig-
nificant bit planes of a piece is not correctly decoded, the corre-
sponding piece is still considered as decodable. But it will result
in visible distortion in the reconstructed model. For example, see
the area of the corrupted piece, as shown in Fig. 14 with BER
equal to .

For a given graphic model at a certain BER, the model success
rate is defined as / , where is the number
of times the experiment is repeated on the graphic model and

is the number of times the whole model is successfully
decoded, i.e., all its piece-topology segments are correctly de-
coded. In Table I, we show the success rate for five test graphic
models at different BERs, where is 500 for each BER. For
the Dinosaur model, the success rate is 100% at BER of.
When the BER is , the decoding system fails to get the
complete model only six times, and the success rate is 98.8%.
When the BER is , the number of failures increases to 82,

and the success rate drops to 83.6%. The success rate drops to
zero when the BER is equal to . For this case, there is at
least one piece-topology segment that has more than 1-bit un-
correctable error each time.

The model success rate described above is highly conserva-
tive because the model can still be reconstructed when some
pieces are not decodable, as shown in Fig. 13. To evaluate the
decoding performance more realistically, we adopted another
measure, i.e., the piece success rate, which is the ratio of the
number of successfully decoded pieces divided by the total
number of pieces to be decoded. Experimental results for
five graphic models are given in Table I. The experiment was
repeated 500 times for each BER. For the Dinosaur model,
the piece success rate is 100% for BER of . When BER
is , the number of total pieces to be decoded for all 500
experiments is 4000, and the decoding system fails to decode
only 6 pieces. The piece success rate is therefore 99.9%. When
BER is , the number of failed pieces is 148 out of 30 000
pieces, and the piece success rate is 99.5%. Even when BER
is , 72.1% of the pieces can be successfully decoded.
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TABLE I
SUCCESS RATE FOR GRAPHIC MODELS AT

DIFFERENTRANDOM BERs

TABLE II
SUCCESSRATE FORGRAPHIC MODELS AT DIFFERENTBERsFOR AN AVERAGE

BURST LENGTH OF1 MS

TABLE III
SUCCESSRATE FORGRAPHIC MODELS AT DIFFERENTBERsFOR AN AVERAGE

BURST LENGTH OF10 MS

TABLE IV
BIT-RATE OVERHEAD FOR12 TESTMODELS AT DIFFERENTBERs

Piece success rates for an average burst error length of 1 and
10 ms are given in Tables II and III, respectively. We see that
the success rate depends mainly on target BER and varies very
little for different models at a given BER level.

To calculate the coding cost (i.e., the overhead in terms of
bits per vertex) in comparison with Li and Kuo’s error-free
coding scheme [4], [5], we used 12 MPEG-4 graphic models to
be representatives of large-, medium-, and small-sized models.
The percentage of the bit-rate overhead for these 12 graphic

models is given in Table IV. We observe that the bit-rate over-
head normally increases as the size of the graphic model be-
comes smaller and/or BER increases. The bit-rate overhead is
comparable to that of the error-resilient CODAP technique de-
veloped in MPEG-4 [21].

VII. CONCLUSION

An error-resilient coding system for 3-D graphic models was
presented to exploit the topology and geometry information of
the original mesh. The system can also incrementally render one
connected component of the 3-D graphic model at a time. A
multi-seed mesh traversal scheme was developed to segment a
mesh into a set of smaller and uniform sized pieces. The piece
size is determined according to the channel BER. However,
the scheme still performs well even when the piece size is not
adapted. In that case, pieces that are affected by multiple channel
errors at high BERs may not be successfully decoded some-
times. Different pieces are connected via their joint boundaries.
Since joint boundaries form the basis in data recovery of the
piece topology and error concealment of the piece geometry in
the presence of channel errors, an error-resilient coding scheme
of joint boundaries was carefully developed. The probability of
joint boundary data to be hit by channel errors is low because the
coded joint boundary data are only a small fraction of the total
bit stream. Therefore, a higher protection of joint boundary data
against channel errors introduces only a small amount of over-
head.

It was demonstrated that the proposed system can achieve
very good error resiliency in the presence of random and burst
errors, with an overhead comparable to that of CODAP in
MPEG-4. Although the bit-rate overhead due to the coding
of joint boundary data is small, we would like to investigate
techniques to further improve the mesh segmentation algorithm
so that it is adaptive to the shape of the graphic models. In
other words, mesh segmentation can be carried out according
to semantic details of the underlying graphic model. This will
make error recovery and concealment tasks easier.
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