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Abstract—A new quality-scalable high-fidelity multichannel
audio compression algorithm based on MPEG-2 Advanced Audio
Coding (AAC) is presented in this research. The Karhunen-Loève
Transform (KLT) is applied to multichannel audio signals in the
pre-processing stage to remove inter-channel redundancy. Then,
signals in de-correlated channels are compressed by a modified
AAC main profile encoder. Finally, a channel transmission control
mechanism is used to re-organize the bitstream so that the multi-
channel audio bitstream has a quality scalable property when it is
transmitted over a heterogeneous network. Experimental results
show that, compared with AAC, the proposed algorithm achieves
a better performance while maintaining a similar computational
complexity at the regular bit rate of 64 kbit/sec/ch. When the
bitstream is transmitted to narrow-band end users at a lower
bit rate, packets of some channels can be dropped, and slightly
degraded yet full-channel audio can still be reconstructed in a
reasonable fashion without any additional computational cost.

Index Terms—Advanced audio coding (AAC), Karhunen-Loève
transform (KLT), MPEG, multichannel audio, quality scalable
audio.

I. INTRODUCTION

E VER since the beginning of the twentieth century, the art of
sound coding, transmission, recording, mixing, and repro-

duction has been constantly evolving. Starting from the mono-
phonic technology, technologies on multichannel audio have
been gradually extended to include stereophonic, quadraphonic,
5.1 channels, and more. Compared with traditional mono or
stereo audio, multichannel audio provides end users with a more
compelling experience and becomes more and more appealing
to music producers. As a result, an efficient coding scheme is
needed for multichannel audio’s storage and transmission, and
this subject has attracted a lot of attention recently.
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Among several existing multichannel audio compression
algorithms, Dolby AC-3 and MPEG Advanced Audio Coding
(AAC) are the two most prevalent perceptual digital audio
coding systems. Dolby AC-3 is the third generation of digital
audio compression systems from Dolby Laboratories, and has
been adopted as the audio standard for High Definition Tele-
vision (HDTV) systems. It is capable of providing transparent
audio quality at 384 kbit/sec for 5.1 channels [1]. AAC is cur-
rently the most powerful multichannel audio coding algorithm
in the MPEG family. It can support up to 48 audio channels
and provide perceptually lossless audio at 320 kbit/sec for 5.1
channels [2]. In general, these low bit rate multichannel audio
compression algorithms not only utilize transform coding to
remove statistical redundancy within each channel, but also
take advantage of the human auditory system to hide lossy
coding distortions.

Despite the success of AC-3 and AAC, not much effort
has been made in reducing inter-channel redundancy inherent
in multichannel audio. The only technique used in AC-3
and AAC to eliminate redundancy across channels is called
“Joint Coding”, which consists of Intensity/Coupling and
Mid/Side(M/S) stereo coding. Coupling is adopted based on
the psychoacoustic evidence that, at high frequencies (above
approximately 2 kHz), the human auditory system localizes
sound primarily based on envelopes of critical-band-filtered
signals that reach human ears, rather than signals themselves
[3], [4]. M/S stereo coding is only applied to lower frequency
coefficients of Channel-Pair-Elements (CPEs). Instead of direct
coding of original signals in the left and right channels, it
encodes the sum and the difference of signals in two symmetric
channels [5], [6].

Our experimental results show that high correlation is very
likely to be present between every pair of channels besides
CPE in all frequency regions, especially for those multichannel
audio signals that are captured and recorded in a real space
[7]. Since neither AAC nor AC-3 exploits this property to
reduce redundancy, none of them can efficiently compress
this kind of multichannel audio content. On the other hand,
if the input multichannel audio signals presented to the en-
coder module have little correlation between channels, the
same bit rate encoding would result in higher reconstructed
audio quality. Therefore, a better compression performance
can be achieved if inter-channel redundancy can be effec-
tively removed via a certain kind of transform together with
redundancy removal techniques available in the existing mul-
tichannel audio coding algorithms. One possibility to reduce
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the cross-channel redundancy is to use inter-channel prediction
[8] to improve the coding performance. However, a recent
study [9] argues that this kind of technique is not applicable
to perceptual audio coding. In this paper, we present a new
algorithm called MAACKLT, which stands for Modified AAC
with Karhunen-Loève Transform (KLT). In MAACKLT, a
temporal-adaptive KLT is applied in the pre-processing stage to
remove inter-channel redundancy. Then, de-correlated signals
in the KL transformed channels, called eigen-channels, are
compressed by a modified AAC main profile encoder module.
Finally, a prioritized eigen-channel transmission policy is
enforced to achieve quality scalability.

As the world is evolving into the information era, media
compression for a pure storage purpose is far less than enough.
The design of a multichannel audio codec which takes the
network transmission condition into account is also important.
When a multichannel audio bitstream is transmitted through a
heterogeneous network to multiple end users, a quality-scalable
bitstream would be much more desirable than the nonscalable
one. The quality scalability of a multichannel audio bitstream
makes it possible that the entire multichannel sound can be
played at various degrees of quality for end users with different
receiving bandwidths. To be more precise, when a single quality-
scalable bitstream is streamed to multiple users over the Internet
via multicast, some lower priority packets can be dropped, and a
certain portion of the bitstream can be transmitted successfully
to reconstruct different quality multichannel sound according
to different users’ requirement or their available bandwidth.
This is called the multicast streaming [10]. With nonscalable
bitstreams, the server has to send different users different
unicast bitstreams. This is certainly a waste of resources.
Not being considered for audio delivery over heterogenous
networks, the bitstream generated by most existing multichannel
audio compression algorithms, such as AC-3 or AAC, is not
scalable by nature [11]. In this work, we show that the proposed
MAACKLT algorithm provides a coarse-grain scalable audio
solution. That is, even if packets of some eigen-channels are
dropped completely, a slightly degraded yet full-channel audio
can still be reconstructed in a reasonable fashion without any
additional computational cost.

To summarize, we focus on two issues in this research. First,
the proposed MAACKLT algorithm exploits inter-channel
correlation existing in audio data to achieve a better coding
gain. Second, it provides a quality-scalable multichannel audio
bitstream which can be adaptive to networks of time-varying
bandwidth. The rest of this paper is organized as follows.
Section II summarizes the inter-channel de-correlation scheme
and its efficiency. Section III discusses the temporal adaptive
approach. Section IV describes the eigen-channel coding
method and its selective transmission policy. Section V demon-
strates the audio concealment strategy at the decoder end when
the bitstream is partially received. The system overview of
the complete MAACKLT compression algorithm is provided
in Section VI. The computational complexity of MAACKLT
is compared with that of MPEG AAC in Section VII. Experi-
mental results are shown in Section VIII. Finally, concluding
remarks are given in Section IX.

II. I NTER-CHANNEL REDUNDANCY REMOVAL

A. Karhunen-Loève Transform

For a given time instance, removing inter-channel redun-
dancy would result in a significant bandwidth reduction. This
can be done via an orthogonal transform , where

and denote the vector whose elements are samples
in original and transformed channels, respectively. Among
several commonly used transforms, including the Discrete
Cosine Transform (DCT), the Fourier Transform (FT), and
the Karhunen-Loève Transform (KLT), the signal-dependent
KLT is adopted in the pre-processing stage because it is
theoretically optimal in de-correlating signals across channels.
If is the KLT matrix, the transformed channels are called
the eigen-channels. Fig. 1 illustrates how KLT is performed
on multichannel audio signals, where the columns of the KL
transform matrix is composed by eigenvectors calculated from
the covariance matrix associated with original multichannel
audio signals .

Suppose that an input audio signal haschannels, then the
covariance of KL transformed signals is

...
...

. . .
...

(1)

where represents mean removed signal ofand
, are eigenvalues of . Thus, the transform pro-

duces statistically de-correlated channels in the sense of having
a diagonal covariance matrix for transformed signals. Another
property of KLT, which can be used in the reconstruction of
audio of original channels, is that the inverse transform matrix
of is equal to its transpose. Since is real and symmetric,
the matrix formed by normalized eigenvectors is orthonormal.
Therefore, we have in reconstruction. From KL
expansion theory [12], we know that selecting eigenvectors as-
sociated with the largest eigenvalues can minimize the error be-
tween original and reconstructed channels. This error will go to
zero if all eigenvectors are used. KLT is thus optimum in the
least-square-error sense.

B. Evidence for Inter-Channel De-Correlation

Multichannel audio sources can be roughly classified into
three categories. Those belonging to class I are mostly used in
broadcasting, where signals in one channel may be completely
different from the other. Either broadcasting programs are dif-
ferent from channel to channel, or the same program is broadcast
but in different languages. Samples of audio sources in class I
normally contain relatively independent signals in each channel
and present little correlation among channels. Therefore, this
type of audio sources will not fall into the scope of high-quality
multichannel audio compression discussed here.

The second class of multichannel audio sources can be found
in most film soundtracks, which are typically in the format of 5.1
channels. Most of this kind of program material has a symmetry
property among CPEs and presents high correlation in CPEs, but
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Fig. 1. Inter-channel de-correlation via KLT.

little correlation across CPEs and SCEs (Single Channel Ele-
ments). Almost all existing multichannel audio compression al-
gorithms such as AAC and Dolby AC-3 are mainly designed to
encode audio material that belongs to this category. Fig. 2 shows
the normalized covariance matrix generated from one sample
audio of class II, where the normalized covariance matrix is de-
rived from the cross-covariance matrix by multiplying each co-
efficient with the reciprocal of the square root of the product of
their individual variance. Since the magnitude of nondiagonal
elements in a normalized covariance matrix provides a conve-
nient and useful measure for the degree of inter-channel redun-
dancy, it is used as a correlation metric throughout the paper.

A third emerging class of multichannel audio sources
consists of material recorded in a real space with multiple
microphones that capture acoustical characteristics of that
space. Audio of class III is becoming more prevalent with the
introduction of consumer media such as DVD-Audio. This type
of audio signals has considerably larger redundancy inherent
among channels especially adjacent channels as graphically
shown in Fig. 3, which corresponds to the normalized covari-
ance matrix derived from a test sequence named “Messiah.”
As shown in the figure, a large degree of correlation is present
between not only CPEs (e.g., left/right channel pair and
left-surround/right-surround channel pair) but also SCE (e.g.,
the center channel) and any other channels.

The work presented in this research will focus on improving
the compression performance for multichannel audio sources
that belong to classes II and III. It will be demonstrated that the
proposed MAACKLT algorithm not only achieves good results
for class III audio sources, but also improves the coding perfor-
mance to a certain extent for class II audio sources compared
with original AAC.

Two test data sets are used to illustrate the de-correlation ef-
fect of KLT. One is a class III 10-channel audio piece called
“Messiah”1 . It is a piece of classical music recorded live in a

1The 10 channels include Center (C), Left (L), Right (R), Left Wide (Lw),
Right Wide (Rw), Left High (Lh), Right High (Rh), Left Surround (Ls), Right
Surround (Rs) and Back Surround (Bs). They were obtained by mixing signals
from 16 microphones placed in various locations in a concert hall.

concert hall. Another one is a class II 5-channel audio piece
called “Herre,”2 which is a piece of pop music and was used
in MPEG-2 AAC standard (ISO/IEC 13 818-7) conformance
work. These test sequences are chosen because they contain a di-
verse range of frequency components played by several different
instruments so that they are very challenging for inter-channel
de-correlation and subsequent coding experiments. In addition,
they provide good samples for result comparison between orig-
inal AAC and the proposed MAACKLT algorithm.

Figs. 4 and 5 show absolute values of elements in the lower
triangular part of the normalized cross-covariance matrix after
KLT for 5-channel set “Herre” and 10-channel set “Messiah.”
These figures clearly indicate that KLT method achieves a
high degree of de-correlation. Note that the nondiagonal ele-
ments are not exactly zeros because we are dealing with an
approximation of KLT during calculation. We predict that by
removing redundancy in the input audio with KLT, a much
better coding performance can be achieved when encoding
each channel independently, which will be verified in later
sections.

C. Energy Compaction Effect

The KLT pre-processing approach not only significantly
de-correlates the input multichannel audio signals but also
considerably compacts the signal energy into the first several
eigen-channels. Fig. 6(a) and (b) show how energy is accumu-
lated with an increased number of channels for original audio
channels and de-correlated eigen-channels. As clearly shown
in these two figures, energy accumulates much faster in the
case of eigen-channels than original channels, which provides
a strong evidence of data compaction of KLT. It implies that,
when transmitting data of a fixed number of channels with the
proposed MAACKLT algorithm, more information content
will be received at the decoder side, and better quality of
reconstructed multichannel audio can be achieved.

Another convenient way to measure the amount of data
compaction can be obtained via eigenvalues of the cross-
covariance matrix associated with the KL transformed data.
In fact, these eigenvalues are nothing else but variances of
eigen-channels, and the variance of a set of signals reflects its
degree of jitter, or the information content. Fig. 7(a) and (b)
are plots of variances of eigen-channels associated with the
“Messiah” test set consisting of 10 and 5 channels, respectively.
As shown in figures, the variance drops dramatically with the
order of eigen-channels. The steeper the variance drop is,
the more efficient the energy compaction is achieved. These
experimental results also show that the energy compaction
efficiency increases with the number of input channels. The area
under the variance curve reflects the amount of information to
be encoded. As illustrated from these two figures, this particular
area is substantially much smaller for the 10-channel set than
that of the 5-channel set. As the number of input channels
decreases, the final compression performance of MAACKLT
tends to be more influenced by the coding power of the AAC
main profile encoder.

2The 5 channels include C, L, R, Ls, and Rs.
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Fig. 2. Absolute values of elements in the lower triangular normalized covariance matrix for 5-channel “Herre.”

Fig. 3. Absolute values of elements in the lower triangular normalized covariance matrix for 10-channel “Messiah.”

Fig. 4. Absolute values of elements in the lower triangular normalized covariance matrix after KLT for 5-channel “Herre.”

Fig. 5. Absolute values of elements in the lower triangular normalized covariance matrix after KLT for 10-channel “Messiah.”

D. Frequency-Domain Versus Time-Domain KLT

In all previous discussion, we considered only the case of
applying KLT to time-domain signals across channels. How-
ever, it is also possible to apply the inter-channel de-correlation

procedure after time-domain signals are transformed into the
frequency-domain via MDCT (Modified Discrete Cosine Trans-
form) in the AAC encoder.

One frame of the audio signal from the center channel of
“Herre” in the frequency-domain and in the time-domain are
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Fig. 6. Comparison of accumulated energy distribution for (a) 5-channel “Herre” and (b) 10-channel “Messiah.”

Fig. 7. Normalized variances for (a) 10-channel “Messiah” and (b) 5-channel “Messiah,” where the vertical axis is plotted in the log scale.

Fig. 8. (a) Frequency-domain and (b) time-domain representations of the center channel from “Herre.”

shown in Fig. 8(a) and (b), respectively. The energy compaction
property can be clearly seen from the simple comparison
between the time-domain and the frequency-domain plots.
Generally speaking, applying KLT to frequency-domain signals
achieve a better performance than directly applying KLT to
time-domain signals. In addition, a certain degree of delay and
reverberant sound copies may exist in time-domain signals
among different channels, which is especially true for class III
multichannel audio sources. The delay and reverberation effects
affect the time-domain KLTs de-correlation capability, how-
ever, they may not have that much impact on frequency-domain
signals. Figs. 9 and 10 show absolute values of off-diagonal
nonredundant elements for normalized covariance matrices
generated from frequency- and time-domain KL transforms
with test audio “Herre” and “Messiah,” respectively. Clearly,
the frequency-domain KLT has a much better inter-channel

de-correlation capability than that of the time-domain KLT.
This implies that applying KLT to frequency-domain signals
should lead to a better coding performance, which will be
verified by experimental results shown in Section VIII. Any
result discussed hereafter will focus on frequency-domain KLT
method unless otherwise mentioned.

III. T EMPORAL-ADAPTIVE KLT

A multichannel audio program may comprise different pe-
riods, each of which has its unique spectral signature. For
example, a piece of music may begin with a piano prelude
followed by a chorus. In order to achieve the highest informa-
tion compactness, the de-correlation transform matrix should
be adaptive to the characteristics of different periods. In this
section, we present a temporal-adaptive KLT approach, in which
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Fig. 9. Absolute values of off-diagonal elements for the normalized covariance matrix after (a) frequency-domain and (b) time-domain KL transformswith test
audio “Herre.”

Fig. 10. Absolute values of off-diagonal elements for the normalized covariance matrix after (a) frequency-domain and (b) time-domain KL transforms with test
audio “Messiah.”

the covariance matrix (and, consequently, the corresponding
KL transform matrix) is updated from time to time. Each
adaptation period is called a block.

Fig. 11 shows the variance of each eigen-channel of one
nonadaptive and two temporal-adaptive approaches for test set
“Messiah.” Compared with the nonadaptive method, the adap-
tive method achieves a smaller variance for each eigen-channel.
Furthermore, the shorter the adaptation period, the higher
inter-channel de-correlation is achieved. The only drawback of
the temporal-adaptive approach over the nonadaptive approach
goes to the overhead bits, which have to be transmitted to the
decoder so that the multichannel audio can be reconstructed to
its original physical channels. Due to the increase of the block
number, the shorter the adaptation period is, the larger the
overhead bit rate is. The trade-off between this block size and
the overhead bit rate will be discussed below.

Since the inverse KLT has to be performed at the decoder side,
the information of the transform matrix should be included in
the coded bitstream. As mentioned before, the inverse KLT ma-
trix is the transpose of the forward KLT matrix, which is com-
posed by eigenvectors of the cross-covariance matrix. To reduce
the overhead bit rate, elements of the covariance matrix are in-
cluded in the bitstream instead of those of the KLT matrix since
the covariance matrix is real and symmetric and we only have
to send the lower (or higher) triangular part that contains nonre-
dundant elements. As a result, the decoder also has to calculate

Fig. 11. De-correlation efficiency of temporal-adaptive KLT.

eigenvectors of the covariance matrix before the inverse KLT
can be performed.

Only one covariance matrix has to be coded for the non-
temporal-adaptive approach. However, for the temporal-adap-
tive approach, every covariance matrix must be coded for each
block. Assume that channels are selected for simultaneous
inter-channel de-correlation, and the adaptation period issec-
onds, i.e., each block contains seconds of audio. The size of
the covariance matrix is , and the number of nonredun-



YANG et al.: HIGH-FIDELITY MULTICHANNEL AUDIO CODING WITH KARHUNEN-LOÈVE TRANSFORM 371

dant elements is . In order to reduce the overhead
bit rate, the floating-point covariance matrix is quantized to 16
bits per element. Therefore, the total bit requirement for each
covariance matrix is bits, and the overhead bit rate

is

(2)

in bit per second per channel (bit/sec/ch). The above equation
suggests that the overhead bit rate increases approximately lin-
early with the number of channels. The overhead bit rate is, how-
ever, inversely proportional to the adaptation time (or the block
size).

Fig. 12 illustrates the overhead bit rate for different channel
numbers and block sizes. The optimal adaptation time is around
10 seconds, since shorter adaptation time dramatically increases
the overhead bit rate. Extensive experimental results [13] sug-
gest that, when shorter adaptation time is adopted, the improve-
ment of de-correlation efficiency is not sufficient to compensate
for coding performance degradation due to the excessive over-
head bit rate.

IV. EIGEN-CHANNEL CODING AND TRANSMISSION

A. Eigen-Channel Coding

The main profile of the AAC encoder is modified to compress
audio signals in de-correlated eigen-channels. The detailed en-
coder block diagram is given in Fig. 13, where the shaded parts
represent coder blocks that are different from the original AAC
algorithm.

The major difference between Fig. 13 and the original AAC
encoder block diagram is the KLT block added after the filter
bank. When the original input signals are transformed into
frequency domain, the cross-channel KLT are performed to gen-
erate the de-correlated eigen-channel signals. Masking thresh-
olds are then calculated based on the KL transformed signals in
the perceptual model. The KLT-related overhead information
is sent into the bitstream afterwards.

The original AAC is typically used to compress class II audio
sources. Its M/S stereo coding block is specifically used for
symmetric CPEs. It encodes the mean and difference of CPEs
instead of two independent SCEs, which reduces redundancy
existing in symmetric channel pairs. In the proposed algorithm,
since inter-channel de-correlation has been performed in an ear-
lier stage and audio signals after KLT are from independent
eigen-channels with little correlation between any channel pairs,
the M/S coding block is no longer needed. Thus, the M/S coding
block of the AAC main profile encoder is disabled.

The AAC encoder module originally assigns an equal amount
of bits to each input channel. However, since signals into the
iteration loops are no longer the original multichannel audio in
the new system, the optimality of the same strategy has to be
investigated. Experimental results indicate that the compression
performance will be strongly influenced by the bit assignment
scheme for de-correlated eigen-channels.

According to the bit allocation theory [14], the optimal bit
assignment for identically distributed normalized random vari-

Fig. 12. Overhead bit rate versus the number of channels and the adaptation
period.

ables under the high rate approximations while without nonneg-
ativity or integer constraints on the bit allocations is

(3)

where is the average number of bits per parameter,

is the number of parameters, and is the
geometric mean of the variances of the random variables. A nor-
malized random variable of is

(4)

where and represent the mean and the standard
deviation of , respectively. It is verified by experimental
data that the normalized probability density functions of
signals in eigen-channels are almost identical. They are given
in Figs. 14 and 15. This optimal bit allocation method is
adopted for rate/distortion control processing when encoding
eigen-channel signals.

B. Eigen-Channel Transmission

Fig. 6(a) and (b) show that the signal energy accumulates
faster in eigen-channel form than original multichannel form.
This implies that, with a proper channel transmission and re-
covery strategy, transmitting the same number of eigen-chan-
nels and of original multichannels, the eigen-channel approach
should result in a higher quality reconstructed audio since more
energy is transmitted.

It is desirable to re-organize the bitstream so that bits of more
important channels can be received at the decoder side first for
audio decoding. This should result in the best audio quality
given a fixed amount of received bits. When this re-organized
audio bitstream is transmitted over a heterogeneous network,
for those users with a limited bandwidth, the network can drop
packets belonging to less important channels.

The first instinct about the metric of channel importance
would be the energy of the audio signal in each channel.
However, this metric does not work well in general. For
example, for some multichannel audio sources, especially those
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Fig. 13. Modified AAC encoder block diagram.

Fig. 14. Empirical probability density functions of normalized signals in 5 eigen-channels generated from test audio “Herre”, wherex axes represent the value
of normalized random variable andy axes represent the corresponding probability.

belonging to class II, since they are re-produced in a music
studio artificially, the side channel which normally does not
contain the main melody may even have larger energy than
the center channel. Based on our experience with multichannel
audio, loss or significant distortion of the main melody in
the center channel would be much more annoying than loss
of melodies in side channels. In other words, the location of
channels also plays an important role. Therefore, for a regular
5.1 channel configuration, the order of channel importance
from the largest to the least should be

1) Center channel;
2) L/R channel pair;
3) Ls/Rs channel pair;
4) Low frequency channel.

Between channel pairs, their importance can be determined by
their energy values. This rule is adopted in experiments below.

After KLT, eigen-channels are no longer the original physical
channels, and sounds in different physical channels are mixed

in every eigen-channel. Thus, spatial dependency of eigen-chan-
nels is less trivial. We observe from experiments that although
it is true that one eigen-channel may contain sounds from more
than one original physical channel, there still exists a close cor-
respondence between eigen-channels and physical channels. To
be more precise, audio of eigen-channel 1 would sound similarly
to that of the center channel, audio of eigen-channels 2 and 3
would sound similarly to that of the L/R channel pair etc. There-
fore, if eigen-channel 1 is lost in transmission, we would end up
with a very distorted center channel. Moreover, it happens that,
sometimes, eigen-channel 1 may not be the channel with a very
large energy and could be easily discarded if the channel en-
ergy is adopted as the metric of channel importance. Thus, the
channel importance of eigen-channels should be similar to that
of physical channels. That is, eigen-channel 1 corresponding to
the center channel, eigen-channel 2 and 3 corresponding to the
L/R channel pair, eigen-channel 4 and 5 corresponding to the
Ls/Rs channel pair. Within each channel pair, the importance is
still determined by their energy values.
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Fig. 15. Empirical probability density functions of normalized signals in the first 9 eigen-channels generated from test audio “Messiah”, wherex axes represent
the value of normalized random variable andy axes represent the corresponding probability.

V. AUDIO CONCEALMENT FOR

CHANNEL-SCALABLE DECODING

Consider the scenario that an AAC-coded multichannel bit-
stream is transmitted in a heterogeneous network such as the
Internet. For end-users who do not have enough bandwidth to
receive full channel audio, some packets have to be dropped. In
this section, we consider the bitstream of each channel as one
minimum unit for audio reconstruction. When the bandwidth
is not sufficient, we may drop bitstreams of a certain number
of channels to reduce the bit rate. It is called channel-scalable
decoding, which has an analogy in MPEG video coding, i.e.,
dropping B frames while keeping only I and P frames.

For an AAC channel pair, the M/S stereo coding block will
replace low frequency coefficients in symmetric channels to be
their sum and difference at the encoder, i.e.,

(5)

(6)

where and are the th frequency-domain
coefficient in the left and right channels of the channel pair,
respectively.

The intensity coupling coding block will replace high fre-
quency coefficients of the left channel with a value proportional
to the envelope of the sound signal in the symmetric channel,
and set the value of right channel high frequency coefficients to
zero, i.e.,

(7)

(8)

where , and are, respectively, en-
ergy values of the left channel, the right channel and the sum
of left and right channels of the scale factor band that sample
belongs to. Values of are included in the
coded bitstream as scaling factors.

At the decoder end, the low frequency coefficients of the left
and right channel are reconstructed via

(9)

(10)

For high frequency coefficients, audio signals in the left channel
will remain the same as they are received from the bitstream,
while those in the right channel will be reconstructed via

(11)

where is a function of the scaling factor.
When packets of one channel of a channel pair are dropped,

we drop frequency coefficients of the right channel while
keeping all other side information including scaling factors.
Therefore, what we receive at the decoder side are just co-
efficients in the left channel. For low frequency coefficients,
they correspond to the mean value of the original frequency
coefficient in the left and right channels. For high frequency
coefficients, they correspond to the energy envelope of the
symmetric channel. That is, we have

(12)

(13)
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Fig. 16. Block diagram of the proposed MAACKLT encoder.

for the low frequency part and

(14)

(15)

for the high frequency part.
Note that since scaling factors are contained in the received

bitstream, reconstruction of high frequency coefficients in the
right channel will remain the same as the original AAC when
data of all channels are received. Therefore, only low frequency
coefficients in the right channel need to be recovered. The
strategy used to reconstruct these coefficients is just to let
values of right channel coefficients equal to values of received
left channel coefficients. This is nothing else but the mean
value of coefficients in the original channel pair, i.e.,

(16)

Audio concealment for the proposed eigen-channel coding
scheme is relatively simple. All coefficients in dropped channels
will be set to 0, then a regular decoding process is performed
to reconstruct full multichannel audio. For the situation where
packets of two or more channels are dropped, the reconstructed
dropped channel may have a much smaller energy than other
channels after inverse KLT. In order to get better reconstructed

audio quality, an energy boost up process can be enforced so that
the signal in each channel will have a similar amount of energy.

To illustrate that the proposed algorithm MAACKLT has
a better quality-degradation property than AAC (via a proper
audio concealment process described in this section), we
perform experiments with lossy channels where packets are
dropped in a coded bitstream in Section VIII.

VI. COMPRESSIONSYSTEM OVERVIEW

The block diagram of the proposed compression system is
illustrated in Fig. 16. It consists of four modules: (1) data
partitioning, (2) Karhunen-Loève transform, (3) dynamic range
control, and (4) the modified AAC main profile encoder. In
the data partitioning module, audio signals in each channel are
partitioned into sets of nonoverlapping intervals, i.e., blocks.
Each block contains frames, where is a pre-defined value.
Then, data in each block are sequentially fed into the KLT
module to perform inter-channel de-correlation. In the KLT
module, multichannel block data are de-correlated to produce
a set of statistically independent eigen-channels. The KLT
matrix consists of eigenvectors of the cross-covariance matrix
associated with the multichannel block set. The covariance
matrix is first estimated and then quantized into 16 bits per
element. The quantized covariancecoefficients will be sent to the
bitstream as the overhead. Note that the KLT de-correlation
module will add a certain amount of delay in the encoder
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Fig. 17. Block diagram of the proposed MAACKLT decoder.

TABLE I
COMPARISON OFCOMPUTATIONAL COMPLEXITY BETWEEN MAACKLT AND AAC

and the decoder. For the nontemporal-adaptive method, the
delay can be as long as the length of the input audio. For the
temporal-adaptive method, this delay can be reduced to that
of the block length.

As shown in Fig. 1, eigen-channels are generated by multipli-
cation of the KLT matrix and the block data set. Therefore, after
the transform, the sample value in eigen-channels may have a
larger dynamic range than that of original channels. To avoid
any possible data overflow in the later compression module,
data in eigen-channels are rescaled in the dynamic range con-
trol module so that the sample value input to the modified AAC
encoder module does not exceed the dynamic range of that in
regular 16-bit PCM audio files. This rescaling information will
also be sent to the bitstream as the overhead.

Signals in de-correlated eigen-channels are compressed in the
next module by a modified AAC main profile encoder. The AAC
main profile encoder is modified in our algorithm so that it is
more suitable in compressing the audio signal in eigen-chan-
nels. To enable channel-scalability, a transmission strategy con-
trol block is adopted in this module right before the compressed
bitstream is formed.

The block diagram of the decoder is shown in Fig. 17. The
mapping information and the covariance matrix together with
the coded information for eigen-channels are extracted from the
received bitstream. If data of some eigen-channels are lost due
to the network condition, the eigen-channel concealment block
will be enabled. Then, signal values in eigen-channels will be
reconstructed by the AAC main profile decoder. The mapping
information is used to restore from a 16-bit dynamic range of
the decoded eigen-channel back to its original range. The in-
verse KLT matrix can be calculated from the extracted covari-
ance matrix via transposing its eigenvectors. Then, inverse KLT

is performed to generate the reconstructed multichannel block
set. These block sets are finally combined together to produce
the reconstructed multichannel audio signals.

VII. COMPLEXITY ANALYSIS

Compared with the original AAC compression algo-
rithm, the additional computational complexity required
by the MAACKLT algorithm mainly comes from the KLT
pre-processing module, which includes generation of the
cross-covariance matrix, calculation of its eigenvalues and
eigenvectors, and matrix multiplication required by KLT.

Table I illustrates the running time of MAACKLT and AAC
for both the encoder and the decoder at a typical bit rate of
64 kbit/sec/ch, where “-SEC AP” means the MAACKLT
algorithm with a temporal-adaptation period ofseconds while
“NONA” means a nonadaptive MAACKLT algorithm. The
input test audio signals are 20-second 10-channel “Messiah”
and 8-second 5-channel “Herre.” The system used to generate
the above result is a Pentium III 600 PC with 128M RAM.

These results indicate that the coding time for MAACKLT is
still dominated by the AAC compression and de-compression
part. When the optimal 10-second temporal-adaptation period
is used for test audio “Messiah”, the additional KLT compu-
tational time is less than 7% of the total encoding time at the
encoder side while the MAACKLT algorithm only takes about
26.8% longer than that of the original AAC at the decoder side.
The MAACKLT algorithm with a shorter adaptation period will
take a little bit more time in encoding and decoding since more
KL transform matrices are needed to be generated. Note also
that we have not made any attempt to optimize our experimental
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Fig. 18. The MNR comparison for (a) 10-channel “Herbie” using frequency-domain KLT, (b) 5-channel “Herre” using frequency-domain KLT, and (c) 5-channel
“Herre” using time-domain KLT.

codes. A much lower amount of encoding/decoding time of
MAACKLT is expected if the source code for the KLT pre-pro-
cessing part is carefully re-written to optimize the performance.

In channel-scalable decoding, when packets belonging to
less important channels are dropped during transmission in
the heterogeneous network, the audio concealment part adds a
negligible amount of additional complexity in the MAACKLT
decoder. The decoding time remains about the same as that
of regular bit rate decoding at 64 kbit/sec/ch when all packets
are received at the decoder side.

VIII. E XPERIMENTAL RESULTS

A. Multichannel Audio Coding

The proposed MAACKLT algorithm has been implemented
and tested under the PC Windows environment. We supple-
mented an inter-channel redundancy removal block and a
channel transmission control block to the basic source code
structure of MPEG-2 AAC [15]. The proposed algorithm is
conveniently parameterized to accommodate various input
parameters, such as the number of audio channels, the desired
bit rate, the window size of temporal adaptation, etc.

We have tested the coding performance of the proposed
MAACKLT algorithm with three 10-channel sets of audio
data “Messiah”, “Band”3 and “Herbie”4 and one 5-channel
set audio data “Herre” at a typical rate of 64 kbit/sec/ch.
“Messiah” and “Band” are class III audio files, while “Herbie”
and “Herre” are class II audio files. Fig. 18(a) and (b) show the

3”Band” is a rock band music lively recorded in a football field.
4”Herbie” is a piece of music played by an orchestra.

mean Mask-to-Noise-Ratio (MNR) comparison between the
original AAC5 and the MAACKLT scheme for the 10-channel
set “Herbie” and the 5-channel set “Herre,” respectively. The
mean MNR values in these figures are calculated via

mean MNR
MNR

number of channels
(17)

where SFB represent the “scale factor band.” The mean MNR
improvement shown in these figures are calculated via

mean MNR improvement

mean MNR mean MNR

number of SFB
(18)

Experimental results shown in Fig. 18(a) and (b) are gener-
ated by using the frequency-domain nonadaptive KLT method.
These plots clearly indicate that MAACKLT outperforms
AAC in the objective MNR measurement for most scale
factor bands and achieves mean MNR improvement of more
than 1 dB for both test audio. It implies that, compared with
AAC, MAACKLT can achieve a higher compression ratio
while maintaining similar indistinguishable audio quality. It
is worthwhile to mention that no software optimization has
been performed for any codec used in this section and all coder
blocks adopted from AAC have not been modified to improve
the performance of our codec.

Fig. 18(c) shows the mean MNR comparison between AAC
and MAACKLT with the time-domain KLT method using
5-channel set “Herre.” Compared with the result shown in

5All audio files generated by AAC in this section are processed by the AAC
main profile codec.
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Fig. 18(b), we confirm that frequency-domain KLT achieves a
better coding performance than time-domain KLT.

The experimental result for the temporal-adaptive approach
for 10-channel set “Messiah” is shown in Fig. 19. This result
verifies that a shorter adaptive period de-correlates the mul-
tichannel signal better but sacrifices the coding performance
by adding the overhead in the bitstream. On the other hand, if
the covariance matrix is not updated frequently enough, inter-
channel redundancy cannot be removed to the largest extent. As
shown in the figure, to compromise these two constraints, the
optimal adaptation period for “Messiah” is around 10 s.

B. Audio Concealment With Channel-Scalable Coding

As described in Section V, when packets of one channel from
a channel pair are lost, we can conceal the missing channel at the
decoder side. Experimental results show that the quality of the
recovered channel pair with the AAC bitstream is much worse
than that of the MAACKLT bitstream when it is transmitted
under the same network condition.

Take the test audio “Herre” as an example. If one signal of
the L/R channel pair is lost, the reconstructed R channel using
the AAC bitstream has obvious distortion and discontinuity in
several places while the reconstructed R channel by using the
MAACKLT bitstream has little distortion and is much smoother.
If one signal of the Ls/Rs channel pair is lost, the reconstructed
Rs channel using the AAC bitstream has larger noise in the first
one to two seconds in comparison with that of MAACKLT. The
corresponding MNR values are compared in Fig. 20(a) and (b)
when AAC and MAACKLT are used, missing channels are con-
cealed when packets of one channel from L/R and Ls/Rs channel
pairs are lost. We see clearly that MAACKLT achieves better
MNR values than AAC for about 2 dB per scale factor band for
both cases.

For a typical 5.1 channel configuration, when packets of more
than two channels are dropped, which implies that at least one
channel pair’s information is lost, some lost channel can no
longer be concealed from the received AAC bitstream. In con-
trast, the MAACKLT bitstream can still be concealed to ob-
tain a full 5.1 channel audio with poorer quality. Although the
recovered channel pairs do not sound exactly the same as the
original ones, a reconstructed full multichannel audio would
give the listener a much better acoustical effect than a three-
or mono-channel audio.

Take the 5-channel “Messiah,” which includes C, L, R, Ls and
Rs channels, as an example. At the worst case, when packets of
four channels are dropped and only data of the most important
channel are received at the decoder side, the MAACKLT
algorithm can still recover 5-channel audio. Compared with
the original sound, the recovered Ls and Rs channels lost most
of the reverberant sound effect. Since eigen-channel 1 does
not contain much reverberant sound, the MAACKLT decoder
can hardly recover these reverberant sound effects in the Ls
and Rs channels.

Similar experiments were also performed by using test audio
“Herre.” However, the advantage of MAACKLT over AAC is
not as obvious as that of test audio “Messiah.” The reason can
be easily found out from the original covariance matrix as shown

Fig. 19. Mean MNR improvement over AAC for temporal-adaptive KLT
applied to the coding of 10-channel “Messiah,” where the overhead information
is included in the overall bit rate calculation.

in Fig. 2. It indicates that little correlation exists between SCE
and CPE for class II test audio such as “Herre.” Thus, once one
CPE is lost, little information can be recovered from other CPEs
or SCEs.

C. Subjective Listening Test

In order to further confirm the advantage of the proposed
algorithm, a formal subjective listening test according to ITU
recommendations [16]–[18] was conducted in an audio lab to
compare the coding performance of the proposed MAACKLT
algorithm and that of the MPEG AAC main profile codec. At
the bit rate of 64 kbit/sec/ch, the reconstructed sound clips are
supposed to have perceptual quality similar to that of the orig-
inal ones. This implies that the difference between MAACKLT
and AAC would be so small that nonprofessionals can hardly
hear it. Thus, instead of inviting a large number of nonexpert
listeners, four well-trained professionals, who have no knowl-
edge of either of two algorithms, participated in the listening
test [18]. During the test, for each test sound clip, subjects lis-
tened to three versions of the same sound clip, i.e., the original
one followed by two processed ones (one by MAACKLT and
one by AAC in random order), subjects were allowed to listen
to these files as many times as possible until they were comfort-
able to give scores to the two processed sound files for each test
material.

The five-grade impairment scale given in Recommendation
ITU-R BS. 1284 [17] was adopted in the grading procedure and
utilized for final data analysis. Four multichannel audio ma-
terials, i.e., “Messiah”, “Band”, “Herbie” and “Herre”, are all
used in this subjective listening test. According to ITU-R BS.
1116-1 [16], audio files selected for the listening test are of
short durations (10 to 20 seconds long), so all test files coded
by MAACKLT are generated by nonadaptive frequency-domain
KLT method.

Fig. 21 shows the listening test results, where bars represent
the score given to each test material coded at 64 kbit/sec/ch.
The dark shaded area on the top of each bar represents the 95%
confidence interval, where the middle line shows the mean value
and the other two lines at the boundary of the dark shaded area
represent the upper and lower confidence limits [19]. Fig. 21
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Fig. 20. MNR comparison for 5-channel “Herre” when packets of one channel from the (a) L/R and (b) Ls/Rs channel pairs are lost.

Fig. 21. Subjective listening test results.

indicates that the proposed MAACKLT algorithms outperforms
MPEG AAC in all four test pieces, and indicates statistically
signficant improvements for the “Messiah” and “Band” pieces.

Besides the 95% confidence interval comparison, it is
possible to analyze the obtained listening test results with the
sign-test [20], [21] as shown below. Table II lists listening
test results in terms of signs , 0 and , which represent
cases where the score given to the sound file processed by
MAACKLT is higher than, the same as or worse than that of
AAC, respectively. It is assumed that the score given by each
listener to each sound file is independent of each other so that
these test results can be viewed as 16 independent experiments.
The total number of sign can be viewed as a random
variable having a binomial distribution with parametersand
, where is the number of experiments andis the probability

of getting sign . Let us consider the following null hypothesis
and its counter hypothesis :

The proposed MAACKLT algorithm

is no better than AAC.

The proposed MAACKLT algorithm

is better than AAC.

TABLE II
PERFORMANCECOMPARISON OFAAC AND MAACKLT

Under the null hypothesis, the probability that a listener gives a
higher score to the sound file processed by MAACKLT should
be smaller than or equal to 0.5 (i.e., ).

The Strict Sign Test :In the strict sign test, all experimental
results are taken into account, i.e., . Because
(under ) and

for

where the first inequality is based on the fact that the arithmetic
mean is greater than or equal to the geometric mean. The prob-
ability of getting a result as shown in Table II or getting a result
which is even more favorable to our proposed algorithm under

is

The above inequality indicates that, under null hypothesis,
the probability of getting a listening test result that is so favor-
able (as given in Table II) or even more favorable to the proposed
algorithm would be as small as 1%. Thus, it is concluded that
the null hypothesis is rejected in favor of at the level of
0.01.
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The Loose Sign Test:In the loose sign test, the experiment
that has sign 0 in Table II is not counted. Then, we have total of
14 effective experimental result, i.e., . The probability
of getting a result as shown in Table II or getting a result which
is even more favorable to our proposed algorithm under the null
hypothesis is

This means that, if the null hypothesis is true, the probability of
getting a listening test result so favorable or even more favorable
to the proposed algorithm would be as small as 0.1%. In other
words, the null hypothesis is rejected in favor of at the
level of 0.001.

Based on the strict sign test or the loose sign test shown above,
we reject the null hypothesis with a comfortable degree of con-
fidence and conclude that the proposed algorithm MAACKLT
has a better performance than that of AAC.

IX. CONCLUSION

We presented a new channel-scalable high-fidelity multi-
channel audio compression scheme called MAACKLT based
on the existing MPEG-2 AAC codec. This algorithm explores
the inter- and intra-channel correlation in the input audio
signal and allows channel-scalable decoding. The compression
technique utilizes KLT in the pre-processing stage to remove
the inter-channel redundancy, then compresses the resulting
relatively independent eigen-channel signals with a modified
AAC main profile encoder module, and finally uses a prioritized
transmission policy to achieve quality scalability. The novelty
of this technique lies in its unique and desirable capability to
adaptively vary the characteristics of the inter-channel de-cor-
relation transform as a function of the covariance of a certain
period of music and its ability to reconstruct different quality
audio with single bitstream. It achieves a good coding perfor-
mance especially for the input audio source whose channel
number goes beyond 5.1. In addition, it outperforms AAC ac-
cording to both objective (MNR measurement) and subjective
(listening) tests at the typical low bit rate of 64 kbit/sec/ch
while maintaining a similar computational complexity for both
encoder and decoder modules. Moreover, compared with AAC,
the channel-scalable property of MAACKLT enables users to
conceal full multichannel audio of reasonable quality without
any additional cost.
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