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Abstract—The signal-to-interference-plus-noise-ratio perfor-
mance of the multistage linear parallel and successive interference
cancellers (LPIC and LSIC) in a long-code code-division mul-
tiple-access system is analyzed with a graphic approach in this
paper. The decision statistic is modeled as a Gaussian random
variable, whose mean and variance can be expressed as functions of
moments ofR for the LPIC and L for the LSIC, respectively, where
R is the correlation matrix of signature sequences andL is the strict
lower triangular part of R. Since the complexity of calculating
these moments increases rapidly with the growth of the stage index,
a graphical representation of moments is developed to facilitate
the computation. Propositions are presented to relate the moment
calculation problem to several well-known problems in graph
theory, i.e., the coloring, the graph decomposition, the biconnected
component finding, and the Euler tour problems. It is shown that
the derived analytic results match well with simulation results.

Index Terms—Code-division multiple access (CDMA), linear
parallel interference cancellation (LPIC), linear successive inter-
ference cancellation (LSIC), multiuser detection.

I. INTRODUCTION

SEVERAL multiuser detection algorithms [1] have been
proposed to address the multiple-access interference (MAI)

problem and the near–far effect in a direct-sequence code-divi-
sion multiple-access (DS-CDMA) system in the past decade.
Among them, the parallel interference cancellation (PIC) [2]
and the successive interference cancellation (SIC) [3] schemes
have received much attention recently due to the feasibility
of their practical implementation. The basic idea is to adopt a
matched-filter bank to estimate transmitted signals of inter-
fering users. The estimated interferences are then subtracted in
parallel or serially from the received signal. This procedure can
be repeated several times to yield a satisfactory result.

The performance of the multistage linear PIC (LPIC) and
SIC (LSIC) detectors in long-code CDMA systems is analyzed
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in this paper. The performance analysis of various multistage
interference cancellers has been conducted by researchers for
long-code and short-code systems [4]–[9]. The analysis carried
out in previous work was either under some invalid assumptions
[4], [5], [8], or for only one stage of interference cancellation1

[6], [7], [9]. In the former case, the invalid assumptions include:
cancelled interferences from different users are uncorrelated;
and cancelled interferences and Gaussian noise are uncorrelated
[7]. In the latter case, since the simplifying assumptions were not
employed, the signal model became so complex that most pre-
vious analysis was performed for one interference cancellation
stage. In particular, the formula of the conditional mean of the
decision statistic was derived up to the second stage of the PIC
receiver in [6]. The conditional variance of the decision statistic
was also calculated up to the second stage in [7] for the PIC.

In this paper, the correlation effect among all terms in the
received signal is carefully examined via matrix algebra, and the
closed-form expressions for the conditional mean and variance
of each user’s decision statistic in each stage are derived accord-
ingly. The performance of LPIC and LSIC receivers depends on
high-order moments of and , respectively, where is the
correlation matrix of signature sequences andis the strict lower
triangular part of . In this paper, propositions are presented
to relate the moment calculation problem to four well-known
problems in graph theory, i.e., the vertex coloring, the Euler
tour, the graph decomposition, and the biconnected component
finding problems. Consequently, graph theory can be employed
to calculate high-order moments ofand to study the perfor-
mance of LPIC and LSIC receivers. Furthermore, even though
the properties of LPIC and LSIC receivers are understood
to a certain degree today, our research provides a complete
quantitative study of the signal-to-interference-plus-noise ratio
(SINR) performance of LPIC and LSIC receivers with an
arbitrary number of interference cancellation stages.

The rest of the paper is organized as follows. The system
model is presented in Section II. The conditional mean and vari-
ance of the decision statistic are derived in Section III. A graph-
ical representation is introduced in Section IV to facilitate cal-
culation of the conditional mean and variance of the decision
statistic. A method of computing the chromatic polynomial of
a digraph is presented in Section V. In Section VI, we demon-
strate the method of computing the expectation of expressions
formed by graphs. Simulation results are shown in Section VII,
and concluding remarks are given in Section VIII.

1Note that the first stage of the PIC receiver is a matched-filter bank, so that
the first interference cancellation step is conducted at the second stage of the PIC
receiver.
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II. SYSTEM MODEL

Let us consider a synchronous DS-CDMA system with
users. For theth user, a binary data symbol, ,
with the symbol duration is spread by the binary random
signature rectangular waveform with chip duration ,
spreading ratio , and the amplitude of equal to

. The spread signal is modulated by a carrier and then
transmitted over a wireless channel. The received signal at the
base station can be expressed as

where and are the received energy per symbol and the
random carrier phase of user, respectively, and is the addi-
tive white Gaussian noise (AWGN) with the single-sided power
spectral density . It is assumed throughout this paper that user

is the user of interest.
Let and be the decision statistics of the LPIC and

LSIC receivers, respectively, of userat the th stage. Simi-
larly, we use and to denote the decision statistic vec-
tors of the LPIC and LSIC receivers, respectively, at theth
stage, i.e., , . The recursive
relations of the LPIC and LSIC are given by [10], [11]

(1)

and

( )
(2)

where is the identity matrix, is equal to with
and being the normalized crosscor-

relation of and , is the strict lower triangular part of
, and the superscript denotes the matrix transpose operator.

The first-stage decision statistic vector in (1) and in (2)
are given by

where , ,
, and is the AWGN output at the user’s matched

filter.

III. CALCULATION OF CONDITIONAL MEAN AND VARIANCE

By assuming the equalpriori probability of , i.e.,
, the output SINR of user at the th

stage, , , is given by

(3)

The goal of this section is to obtain the conditional mean
and variance of decision statistic, i.e., and

, for arbitrary , , and .

A. LPIC

The recursion in (1) can be expressed as a one-shot matrix
filter

(4)

where
. By (4), we have the conditional mean and

variance of as shown in (5) at the bottom of the page,
where we have

(6)

Since each component of is a random variable of signature se-
quence crosscorrelation and carrier phase difference, and

are obtained by averaging over these two random variable
sets. Detailed derivations of (5), (6), and the results presented in
Section III-B can be found in [12].

B. LSIC

By defining , the recursion in (2) leads to
a one-shot matrix filter [11]

(7)

where .
From (7), we have (8), as shown at the bottom of the page, where

(9)

with .

(5)

(8)
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As given in (5) and (8), we note that and

, , are determined by the moments of
matrices composed by , , , , and as
presented in (6) and (9).

In the following, we use and as examples to il-
lustrate our strategy in computing their values. By expanding
matrix multiplications, can be written as

(10)

Similarly, can be expressed as

(11)

Since is a strict lower triangular matrix,
and the th element in can be given as

(12)

By plugging (12) into (11), we obtain the expression of
in terms of ’s and ’s.

Thus, we observe that the computation of requires the
grouping of indexes ’s according to index values and the cal-
culation of the expected cosine and crosscorrelation terms for
each grouping. For , besides grouping of ’s and expec-
tation calculations, we need one more step of grouping values
for indexes ’s, , according to the inequality con-
straints imposed at the last equality of (12). These observations
also apply to , and . As the complexity
of grouping and expectation calculation grows rapidly with the
increase of stage index and the number of users , we in-
troduce a graphical representation to facilitate the evaluation of

, , , and in Section IV.

IV. GRAPHICAL APPROACH TOMOMENT CALCULATION

An undirected graph is a pair of sets denoted by ,
where is the finite vertex set of , and its elements are called
vertices. is the edge set of , and its elements are called edges.

(a) (b)

(c)

Fig. 1. Graph interpretations ofX andY . (a) Graphical representation
of X . (b) Graphical representation ofY . (c) Four evolved graphs of
X .

An edge with two end vertices and is denoted by . A
directed graph consists of a finite set of ver-
tices and a set of ordered pairs of vertices called arcs. An
arc from to , where , is denoted by . Exam-
ples of undirected and directed graphs are shown in Figs. 1(a)
and 2(a), respectively. For definitions of other terminologies in
graph theory, we refer to [13].

For simplicity, we usegraph for an undirected graph anddi-
graph for a directed graph throughout the paper. Graphs and
digraphs provide excellent tools for the analysis of LPIC and
LSIC receivers, respectively, as discussed below.

A. LPIC

The two graphs in Fig. 1(a) and (b) are the graphical represen-
tations of and , respectively, where except for vertex
1, the remaining vertices, , represent summation vari-
ables, e.g., in (10) for . Each of them takes an integer from
1 to , while vertex 1 always takes the integer(the index of
the desired user). Besides, there is a constraint, i.e.,, adjacent
vertices cannot take the same integer. This is the same as the
constraint in the coloring problem, e.g., [13], where we attempt
to find a mapping such that
for every edge .

Our task is to determine all possible ways in coloring the
graph. This problem can be solved in two steps. The first one,
performed by computer search, is to find all possible groupings
of vertices such that adjacent vertices are not in the same group.
The second step is to draw vertices in one group with the same
color such that the color for each group is different. In the cur-
rent context, we should find out all possible ways of merging
nonadjacent vertices in the graphical representation. Then, an
integer from 1 to is assigned to each merged vertex, such that
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Fig. 2. Graphical representation ofX , Y , andV . (a)–(c) Macro representations ofX , Y , andV , respectively. (d)–(f) Detailed
representations of the arc(r; s) of the macro representations in (a)–(c), respectively.

the integer for the merged vertex where vertex 1 is located is
, and the assigned integer is different for every merged vertex.

A graph, yielded by the mergence of vertices of, is called an
evolved graphof .

Fig. 1(c) shows four possible evolved graphs for or .
The upper left one corresponds to the case that none of vertices
1, , , and are merged together. Since vertex 1 always takes
integer , the total number of methods in assigning vertices with
integers from 1 to is equal to . For
the upper right one, vertices and are merged, and there are

ways of assigning integers. For the lower left
one, vertices 1 and are merged together, and the total number
of assignment is . For the lower right, there are
two vertices in the evolved graph, which are merged via pairs

and . There are possible assignments.

Let denote the integer assigned to vertex, then

and can be obtained by calculating

for each evolved graph of . Let and
denote the first and the second expectations, respectively. In
Fig. 1(c), is equal to

, ,
, and

for the upper left, the upper right, the

lower left, and the lower right evolved graphs, re-
spectively. Similarly, is equal to

,
,

, and

for evolved graphs in the same order. Then, the value of
is given by

However, if the current representationis for , the com-
putation is somewhat different. As shown in (6), there is an en-
ergy matrix in the expression of , which contributes
a factor of . Therefore, in the computation, we can di-
vide all the evolved graphs into two groups. The first group is
for the evolved graphs with vertices 1 and merged together,
while the second is for those in which vertices 1 andare
not merged. For example, in Fig. 1(c), the two lower graphs be-
long to the first group, while the two upper ones belong to the
second group. The contribution of the evolved graphs from the
first group is equal to
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The contribution from the second group is equal to

The reason for counting factors and is
that vertex 1 is assigned with the fixed integer, and the integer
taken by vertex is a summation variable.

B. LSIC

Digraphs used to interpret , , and are
given in Fig. 2(a)–(c). Identical to the case in LPIC, ex-
cept for vertex 1, the remaining vertices represent
the summation variables, e.g., in (11) for . Each of
them takes an integer from 1 to , while vertex 1 always
takes the integer . In Fig. 2(a), arcs represent elements in
matrix . In Fig. 2(b), arcs and

represent elements in and ,
respectively. In Fig. 2(c), , ,
and are elements in , ,
and , respectively. More specifically, arc represents
the th element in the corresponding matrix. The
reason that digraphs are used here is because, ,
and are not symmetric matrices.

An arc in Fig. 2(a)–(c), signifying elements in ,
, and , can be represented by detailed digraphs

in Fig. 2(d) and (e) and a detailed mixed graph in Fig. 2(f),
respectively. Fig. 2(f) is a mixed graph since it contains one
edge. Let us take Fig. 2(d) as an example. It can be seen from
(12) that each path from vertex to represents a specific
value of . The rightmost path corresponds
to , while the leftmost one corresponds to .
There is a sign associated with each path, which comes from
the factor term in (12). Also, the directions of arcs reflect
the constraints on the summation variables .
Each vertex in Fig. 2(d)–(f) takes an integer from 1 to.
An arc in Fig. 2(d)–(f) represents the th
element in , which is equal to , if

, and 0, otherwise. Thus, the direction of arc
in Fig. 2(d)–(f) indicates that should be larger

than to yield a nonzero value for this arc. On the other
hand, the edge in Fig. 2(f) represents the identity matrixin

. Thus, the edge has value
1, if , and 0, otherwise.

Digraphs in Fig. 2(a)–(c) are called macro representations of
, , and , since their arcs represent elements in

, , and . The complete representations of ,

, and can be obtained by replacing each arc of these
macro representations with the corresponding detailed digraph
or mixed graph in Fig. 2(d)–(f). For each arc in a macro
representation, there are paths between verticesand in
its complete representation. Therefore, if there arearcs in a

Fig. 3. (a) Macro representation ofX . (b) Complete representation of (a)
whenK = 3. (c) Nine subrepresentations of (b).

macro representation, the complete representation is equivalent
to the summation of subgraphs, which have only one path
between each . These subgraphs are called subrepre-
sentations. Each subrepresentation has a sign associated with it,
which is the multiplicity of the signs of paths within it. Fig. 3
shows examples of the macro representation, the complete rep-
resentation, and subrepresentations. Fig. 3(a) is the macro repre-
sentation of . Fig. 3(b) is the complete representation when

, obtained by replacing two arcs in Fig. 3(a) with the di-
graph in Fig. 2(d). Fig. 3(c) shows subrepresentations
of Fig. 3(b) with the signs indicated at the center.

The values of , , and can be obtained by
summing up the contribution of all subrepresentations. The con-
tribution of a subrepresentation can be computed via the fol-
lowing steps.

Step 1) Find out all possible ways of vertex mergence in
the subrepresentation under the constraint that the
two end vertices of an arc shouldnot be merged to-
gether and the two end vertices of an edge should be
merged together.2 Note that an edge is degenerated
to a vertex after mergence, i.e., , there is no self loop.
Each digraph yielded by vertex mergence is called an
evolved digraph3 of the subrepresentation.

Step 2) Evaluate and formed by the un-
derlying graph of each evolved digraph .

Step 3) Let and
denote the set of

evolved digraphs of the subrepresentation with
vertices 1 and of the macro representation
being merged and not being merged, respectively.
For ’s, compute the total number of valid
integer assignments
of with the following rule: except that

2An arc(u; v) is equal to zero if (u) =  (v), and an edge(u; v) is equal
to zero if (u) 6=  (v).

3Since vertices connected by edges are merged together, there are no edges
after vertex mergence.
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the vertex corresponding to vertex 1 (and )
of the macro representation is assigned with
the integer , assign each vertex a unique
integer , where such
that if there exists an arc from
vertex to . For ’s, compute the total
number of valid integer assignments of ,

, for each
with the same rule as

above, except that both vertices 1 and of the
macro representation are assigned with the integers

and , respectively.
Step 4) The contribution of the subrepresentation is given by

(13)

where is the sign associated with the subrepresen-
tation, , if the current subrepre-

sentation is for or , and

if the subrepresentation is for .

Note that and
in Step 3 above are different from the com-

putation in the LPIC case, where we dealt with the undirected
evolved graphs whose vertex was assigned an integer different
from those of all others. On the other hand, in the current con-
text, the integer assigned to a vertex should not only be distinct,
but also satisfy the constraints given by arc directions. The cal-
culation of valid integer assignment is equivalent to finding the
chromatic polynomial of a digraph, where the coloring problem
for a digraph is defined to be
such that for every arc . In Section V,
we introduce an approach for computing the chromatic polyno-
mial of any digraph.

V. CHROMATIC POLYNOMIAL OF A DIGRAPH

The chromatic polynomial of a digraph or mixed graph was
discussed in the literature, e.g., [14] and [15], with various def-
initions of coloring problems. Here, we propose an approach
suitable for our application. Before describing the computation
of the chromatic polynomial of an arbitrary digraph, let us start
with a specific type of digraphs: forests composed of directed
trees. A directed tree (or ditree) is a connected acyclic digraph
with each vertex having in degree, at most, one. The root of a
ditree is the vertex with in degree equal to zero. For simplicity,
unless otherwise stated, a forest indicates a forest composed of
ditrees below. Also, a ditree is considered as a forest with one
component.

Definition 1: Assume that there are ditrees,
, from left to right in a forest . The right

siblings of a nonroot vertex are vertices that share the same

parent vertex with and lie in the right side of . The right
siblings of the root vertex of are defined as the root vertices
of ’s . The descendant number of a vertex is
the number of descendants4 of the vertex. The right-sum
descendant number of a vertex is the sum of the descendant
numbers of the vertex itself and its right siblings.

Proposition 1: Let and denote the descendant
number and the right-sum descendant number of a vertex,
respectively. Also, let 5 denote the chromatic poly-
nomial, which represents the number of coloring methods for
a forest using colors with the following two constraints:
each vertex should be assigned with a distinct color or integer

; and should be larger than if there
exists an arc in . Then, is given by

(14)

where is the number of vertices in .
Proof: Let us assume that there areditrees

from left to right in the forest . Since there are vertices, we
first select colors from colors, which has methods.

Let denote the root of . We divide colors into ditrees
such that is given colors. Note that is equal to the
number of vertices in . There are

methods for the division. Then, for ditree , the root vertex
is assigned with the largest color or integer among the

colors to satisfy the second constraint on the coloring method.
If root vertex has children from left to right, the
remaining colors are further divided into groups
with the number of colors in theth group equal to , which
yields methods. Then, in each group, the largest
color is assigned to the highest vertex. Similarly, all vertices
in the forest can be colored by recursive application of the di-
vision and the assignment of the largest color. Therefore, the
number of coloring methods for the forest is given by (14).

As shown in these examples, it is easy to obtain the chro-
matic polynomial of a forest. The following proposition, which
is a generalization of Birkhoff’s Reduction Theorem (see, e.g.,
[13]), enables us to obtain the chromatic polynomial of any di-
graph by decomposing the digraph into several forests.

Proposition 2: Let be the arc obtained by inverting the
direction of arc , be the digraph obtained by removing

from a digraph , and be the digraph obtained
by inverting the direction of in . Then, we have

Proof: Let . The coloring for has the con-
straint that . For , both

4A vertex is a descendant of itself.
5Unlike P (~G;K; [k ! v ]) andP (~G;K; [k ! 1]; [ (t ) ! v ])

having one and two vertices being assigned with predetermined integers, re-
spectively, in the calculation ofP (~G;K), none of the vertex in~G is specified
with a fixed integer.
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Fig. 4. Illustration of successive application ofProposition 2, where~G , ~G , ~G are equivalent to~G , ~G , ~G , respectively.

and are allowed. For , the con-
straint is . As a result, we obtain

.
Fig. 4 shows the application ofProposition 2to decomposing

a digraph into forests. By applyingProposition 2to in the
digraph , the chromatic polynomial is given by

. Note that arc is removed in and
, since the inequality relations imposed byand make
redundant in the computation of the chromatic polynomial.

Also, of is removed because of , , and . Since
is still not a forest,Proposition 2is applied again to decom-
pose into two forests and . Consequently, we have

. It is given
by .

The decomposition procedure in Fig. 4 can be represented
with sequence notations by .
A sequence whose element is a forest or a digraph containing a
directed cycle is called areduced sequence.Note that we need
not decompose a digraph containing a directed cycle, since its
chromatic polynomial is 0. By [12], any digraph can be decom-
posed into a finite reduced sequence by applyingProposition 2
successively.

As shown in (13), we have to consider the chromatic polyno-
mials of digraphs with one or two of the vertices assigned with
fixed integers. The chromatic polynomial of a digraph is called
the constrained-chromatic polynomial, if there arefixed as-
signed values. To obtain the constrained-chromatic polyno-
mial, Proposition 2can be employed iteratively to make ver-
tices with fixed colors the root vertices, and apply the following
corollary.

Corollary 1: Let be a forest composed of ditrees
with roots . The first roots

are already assigned with colors
such that . If

there are available colors, then the number of coloring
methods for under this constraint, called the constrained-
chromatic polynomial of , is given by

(15)

where is the chromatic polynomial of digraph
using colors, and is the descendant number of.

Proof: For , the number of available colors for
is . As a result, the total number

of coloring methods for ’s is
. For ’s, , the total number of

coloring methods is . Hence,
the constrained- chromatic polynomial of is given by (15).

VI. COMPUTATION OF EXPECTATIONS ONGRAPHS

As shown in Section V, we require the computation of
and to obtain the matrix moments. In this section, we in-
troduce an approach for computing and based on
some well-known problems in graph theory. Several definitions
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and propositions are presented below to facilitate the evaluation
of and . For simplicity, we use to represent

in the following discussion.
Definition 2: An Euler tour of a connected, undirected graph
is a cycle that traverses each edge ofexactly once. Let us

denote the number of vertices and edges inby and ,
respectively. Vertices in are labeled from 1 to , and edges
are labeled from 1 to . The Euler tour vector corresponding
to an Euler tour is a vector, where if the th edge is
traversed from a lower-label vertex to a higher-label vertex, and

, otherwise. Two Euler tours are said to be equivalent if
their Euler tour vectors are the same.

It is obvious that the simple cycle in Fig. 1(a) has two Euler
tours. Furthermore, the evolved graphs of a simple cycle have at
least two Euler tours.

Proposition 3: If there are distinct Euler tours for , then
.

Proof: Let and denote the random carrier phases
associated with the lower-label and the higher-label vertices
connected by theth edge of , respectively. Then can
be written as

(16)

We have if and only if
forms an Euler tour. Thus, if there are dis-

tinct Euler tours for , .
Definition 3: A graph is said to be decomposed

into subgraphs , , ,
, if , and for , and

is one of two vertices of an edge for
. An even decomposition is a decomposition such that

the number of edges incident on each vertex of each subgraph
is an even number. The supergraph for the decomposition of
is a graph formed by replacing each subgraph
with a vertex. Two vertices in the supergraph are connected by
an edge, if the corresponding two subgraphs are connected in

. Subgraphs and of are said to be connected inif
they share at least one vertex in.

Fig. 5(b) shows examples of the graph decomposition. Let
us assume the upper left one to be the original. Then, there are
four even decompositions, including the original graph itself.
The corresponding supergraphs are shown in Fig. 5(c).

Proposition 4: If there are even decompositions for a graph
, and denotes the supergraph for theth even decomposi-

tion, then, we have , where
is the number of coloring methods for with

colors (which corresponds to the spreading ratio) such that ad-
jacent vertices in have different colors.

(a) (b)

(c)

Fig. 5. (a) A graphG. (b) All the even decompositions for the lower subgraph
of G in (a). (c) Supergraphs for the four even decompositions in (b).

Proof: Let and denote the signature se-
quences of the lower- and the higher-label vertices of theth
edge in , respectively. If the lower- or the higher-label vertex
of the th edge is the th vertex in , its signature sequence is
denoted also by . Then, is given by

(17)

where , ,
and is the index set of edges that are incident on vertex
. The incident index set is calledpaired, when indexes

are divided into partitions according to values, and each
partition has an even number of elements. For example,

is paired, when , and
. Note that if and only if the

incident index set is paired. Otherwise, .
Therefore, can be obtained by counting the number of

’s such that all ’s are paired, and dividing it by . All
’s are paired, if is evenly decomposed into subgraphs, and

all edge indexes within each subgraph are assigned the same
value between 1 and . This is equivalent to drawing vertices
of the corresponding supergraph withcolors. Thus, the cal-
culation of is translated into counting the number of col-
oring methods for all supergraphs. We should, however, restrict
adjacent vertices in each supergraph to be drawn with different
colors, to avoid duplicated counting among supergraphs. Con-
sequently, we have .
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(a)

(b)

Fig. 6. Analytic and simulated results for normalizedE[Z jb = 1] and
Var[Z jb = 1] of the LPIC at the first to fifth stages when SNR= 10 dB
for the desired user andN = 31. (a)E[Z jb = 1]. (b)Var[Z jb = 1].

One more property shows that if graphis disconnected by
articulation points into biconnected components ,
then and . The
proposition and its proof can be found in [12].

Using these propositions, one can obtain and
for an evolved graph with tools in solving the Euler tour, the
graph decomposition, the coloring, and the biconnected compo-
nents finding problems. For example, let us compute and

for the graph in Fig. 5(a). The graph in Fig. 5(a) can
be divided into two biconnected components by an articulation
point . Let and denote the upper and lower components,
respectively. We have and

. Since is a simple cycle,
and by Propositions 3and4.

Fig. 5(b) shows all even decompositions of, and Fig. 5(c)
shows the corresponding supergraphs. ByProposition 4,

. There are

(a)

(b)

Fig. 7. Analytic and simulated results of the LPICs BEP for a different number
of users with SNR= 10 dB for the desired user andN = 31. (a) From the first
to the third stages. (b) From the fourth to the fifth stages.

six distinct Euler tours for . They are
, ,

, and .
By Proposition 3, . As a re-
sult, , and

. Without these proposi-
tions, it is difficult to directly compute

and
.

VII. SIMULATION RESULTS

Numerical simulations were performed under an environment
of synchronous transmission, coherent detection, random sig-
nature waveforms with and the AWGN channel. The
power levels for all users were fixed. To fully demonstrate the
properties of LPIC and LSIC, we present two different power
distributions for these two receivers.
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Fig. 8. Analytic and simulated results for normalizedE[Z jb = 1] andVar[Z jb = 1] of the LSIC when SNR= 10 dB for the first user.
(a) E[Z jb = 1] (the first user). (b)E[Z jb = 1] (the middle user). (c)E[Z jb = 1] (the last user). (d)Var[Z jb = 1].

(e)Var[Z jb = 1]. (f) Var[Z jb = 1].

A. LPIC
Since all users in LPIC were equivalent in the LPIC simula-

tion, we chose user 1 as the desired user. In this environment,
users had the same received energy per symbol

as that of the desired user , and the remaining users
had the energy level equal to .

Fig. 6(a) compares analytic and simulated results for the nor-
malized from the first to the fifth stages. In this
test, the signal-to-AWGN-noise ratio (SNR) is equal to 10 dB
for the desired user. The normalization is performed by dividing

with a factor . It can be seen that analytic
results match well with simulation results. As given in (5), the
bias of from is negative when

the stage number is even, and positive when it is odd. The bias
grows with the number of users in the system. As analyzed
in [6], the bias effect comes from the fact that the decision sta-
tistics of interferers (hence, the estimates of interfering signals)
are correlated with the desired user’s power and information bit.
When these estimates are used to construct and remove the in-
terference, the bias effect appears.

Fig. 6(b) compares analytic and simulated results for the nor-
malized from the first to the fifth stages. As
before, SNR is equal to 10 dB for the desired user. The nor-
malization is done with a factor . When the stage index is
larger than two, the variance tends to increase as the stage index
goes up, which indicates that interference cancellations at higher
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Fig. 9. Analytic and simulated results of the LSICs BEP from the first to third stages when SNR= 10 dB for the first user. (a) First user. (b) Middle user.
(c) Last user.

stages are not effective when the number of users is larger than
a threshold. The divergence effect occurs when the spectral ra-
dius of the matrix in (1) is greater than one, which
is very likely when random signature sequences are employed.
The divergence effect of the PIC receiver has been experimen-
tally investigated by researchers [16], which leads to the study
of the partial PIC receivers [10], [17], [18]. In this paper, we
give an exact analysis of the divergence effect. The analytical
formulas for the mean and the variance of the decision statistics
will be useful in the determination of partial cancellation factors
in partial PIC receivers, which were found empirically or with
adaptive methods [6], [10], [18].

In Fig. 7(a), we present analytic and simulated bit-error prob-
ability (BEP) performances from the first to the third stages with
SNR dB. The analytic BEP is obtained using the method
presented in [19, App. E], i.e., inserting the data of Fig. 6(a) and
(b) into (3) and plugging into the function. It can be seen
that, when the stage index is larger than one, analytic and simu-
lated BEPs do not match well if the number of users is less than
15. The discrepency between simulated and analytic results is
due to the breakdown of the central limit theorem (CLT). Al-
though CLT proves the convergence of the decision statistic in
distribution to a Gaussian function, the Gaussian assumption ac-
tually leads to inaccurate results, especially at low BEP. This
was explained well in [1].

In Fig. 7(b), we show simulated and analytic BEP results at
the fourth and fifth stages with SNR dB for the desired
user. Compared with cases from to , the results for

and are less accurate. It is observed from Fig. 7(a)
and (b) that the convergence speed is inversely proportional to
the stage index. Also, based on (5), the user number should be
constrained such that is larger than zero. Oth-
erwise, the sign of the decision statistic is inverted from that of
the actual data. This limit can be observed from the curve of the
fourth stage in Fig. 7(b). If , is smaller than

zero, and the BEP at the fourth stage is almost 0.5, which leads
to almost zero channel capacity.

It is also observed that the BEP performance depends mainly
on the ratio , which indicates that large-system results can
be very useful in many cases of interest.

B. LSIC

Users were assigned with three different received energy
levels , , and in the simulation of the LSIC re-
ceiver. Since the LSIC receiver sorts users in a descending order
according to their received powers, was assumed to be as-
signed to users 1 to ; to users to ;
and to users to . The BEP performances of
the first, the middle ( th), and the last ( th) users
are analyzed and compared with experimental results.

Fig. 8(a)–(c) compare analytic and simulated results for the
normalized , , , , at three
stages. The SNR for the highest power users is set to 10 dB,
and the normalization is done by a factor of . In this test,
the second-order approximation, ,
is used for the detailed representation of when computing

. It is observed that analytic and simulated results match
each other well.

Also, note that there is no bias effect for the conditional mean
of the first user’s decision statistic, while the conditional means
for the medium and last users are negatively biased from 1. This
can be seen from (8). Let us take Fig. 3(c) as an example. In all
subrepresentations of , the out degree of vertex 1 is larger
than 0. But, vertex 1 is constrained to be colored with the smallest
color index 1 when computing . Therefore, .

Fig. 8(d)–(f) compare analytic and simulated results for the
normalized , , , , at
the first three stages when SNR dB for the first user.
The second-order approximation is used for the inverse matrix

, if there are less than or equal to four arcs in the
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Fig. 10. SINR performance comparison of LPIC and LSIC receivers whenN = 31 andK = 5 to 25. (a) First user of the LPIC. (b) Middle user of the LPIC.
(c) Last user of the LPIC. (d) First user of the LSIC. (e) Middle user of the LSIC. (f) Last user of the LSIC.

macro representation. Otherwise, the first-order approximation
that with listed in [12]. In
this way, the total number of vertices is restricted to no greater
than 12 to alleviate the computational complexity. The normal-
ization is performed using the factor . We see that, except for
the cases of in Fig. 8(f), analytic results match well with
simulated ones. In this case, the discrepancy comes from the
approximation error of the matrix inversion. Since only two or
three rightmost paths are selected frompaths for the detailed
representation, the discrepancy is proportional to the value of

. Moreover, because there are two arcs leaving vertex 1 in the
complete representation of , the chromatic polynomial of

yields a larger value than those of and .

It follows that has the largest approximation error.

In Fig. 9, we present analytic and simulated BEP results when
SNR dB for the first user. It is seen that analytic and
simulated BEP match well, except for the last user with ,
and the first user at the second and third stages. The former case
is due to the inaccurate analytic result for
when . The latter case can be explained in the same
way as the LPIC receiver in Fig. 7. Moreover, the accuracy of
the analytic BEP for theth user at the th stage depends on the
convergence speed of . The convergence speed is inversely
proportional to the stage index due to the structure complexity.
Therefore, the accuracy of BEP at the first stage are better than
those at the second and the third stages. Also, the number of
terms within is less than those in and
for . Hence, analytic BEP for the first user at stages
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two and three are not so accurate as those for the middle and the
last users, because a smaller number of terms results in slower
convergence.

At last, the SINR performance of the LPIC and LSIC is com-
pared. To conduct a fair comparison, the power assignment of
the LPIC is set to be the same as that of the LSIC, i.e., three
different received energy levels , , and for users
1 to , to , and to , re-
spectively. It is shown in Fig. 10 that the SINR of the LSIC is no
smaller than that of the LPIC for a user of the same stage index,
which indicates, in a long-code CDMA, the LSIC outperforms
the LPIC in terms of SINR. Moreover, the SINR curves of the
LSIC increase with respect to the stage index, while those of the
LPIC are in fluctuation.

VIII. C ONCLUSION

The performance of the multistage LPIC and LSIC receivers
in a synchronous long-code DS-CDMA system was analyzed in
this paper. It was shown that the decision statistic is related to the
moment of the matrix for LPIC, and and

for LSIC. We developed a graphical approach to facil-
itate the calculation of these moments, and showed that they can
beobtainedusing toolsarising fromfourwell-knownproblems in
graph theory, i.e., the coloring, the graph decomposition, the bi-
connected component finding, and the Euler tour problems. Sim-
ulation results were performed to verify the correctness of our
theoreticalderivationof themeanand thevarianceof thedecision
statistic. With the Gaussian approximation, the estimated BEP
performance was obtained by plugging the conditional mean
and variance of decision statistics into the function.
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