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ABSTRACT: This research addresses the problem of automatically
extracting semantic video scenes from feature films based on multi-
modal information. A three-stage scene detection scheme is pro-
posed. First, we use pure visual information to extract a coarse-level
scene structure based on generated shot sinks. Second, audio cue is
integrated to refine the scene detection results by considering various
kinds of audiovisual scenarios. Finally, we introduce users into this
process by allowing them to interactively tune the final results to their
own satisfaction. The generated scene structure forms a compact yet
meaningful abstraction of the video data, which can help facilitate the
content access. Preliminary experiments on integrating multiple me-
dia cues for movie scene extraction have yielded encouraging results.
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Published online in Wiley InterScience (www.interscience.wiley.com). DOI
10.1002/ima.10063
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1. INTRODUCTION
The amount of multimedia information generated in today’s society
is growing rapidly, which poses a serious technological challenge on
how the information is integrated, processed, organized, summa-
rized, and indexed in a semantically meaningful manner. Of all
existing media types, video is the most challenging one because of
its rich content. Recently, research on efficient video indexing,
browsing, and retrieval has attracted increasing attention. Many
applications have emerged in areas such as video-on-demand, dis-
tributed multimedia systems, digital video libraries (Flickner et al.,
1995; Wactlar et al., 1996), distance education, entertainment, sur-
veillance, and geographical information systems (MPEG-7 Require-
ment Group, 1999).

When the amount of data is small, users can retrieve the desired
content in a linear fashion by simply browsing the data sequentially.
However, with a huge amount of data, a linear search is no longer
feasible. What is needed is the capability of automatically abstract-
ing the essential video content and forming a compact yet meaning-
ful data representation for effective information access. To accom-

plish this goal, a hierarchy with multiple layers of abstraction is
desired as shown in Figure 1.

Most earlier work on video abstraction was centered around
shot-based video representation, where a video program was repre-
sented in the form of cascaded shots (Zhang et al., 1993; Yeo and
Liu, 1995). However, low-level shot detection usually results in a
video segmentation result that is too fine to be useful. Besides, the
syntactic shot structure does not correspond to the underlying video
semantics in a direct and convenient way. Therefore, most current
work focuses on group- or scene-based video segmentation. Along
this direction, a video sequence is first segmented into shots and then
is semantically related and temporally adjoining shots are further
grouped into scenes based on either color similarity, motion conti-
nuity, or temporal locality as reported by Yeung et al. (1996), Rui et
al. (1996), and Lin et al. (2001). More recently, people have started
to integrate audio cues into the system framework because the
accompanying audio source also contains important information.
For instance, Li and Ming (2001) proposed to integrate the shot-
based audio classification results with visual analysis results for a
better system performance. Similar ideas were also explored by
Jiang et al. (2000), except that they used audio classification results
to guide visual content analysis. To extract scenes from TV news,
Nam et al. (1997) performed a speaker change detection by tracking
voiced phonemes in audio signals. A more sophisticated audio-
visual-based scene detection scheme was proposed by Yoshitaka
and Miyake (2001), where analyses on cut detection and video
editing effects as well as background noise/music detection were
combined to make the final decision.

The goal of this research is to develop a robust video scene
extraction scheme by integrating audiovisual cues. In particular, we
first use pure visual information to generate a coarse-level scene
structure based on computed shot sinks. Then, the audio cue is
integrated to refine the scene results by considering various kinds of
audiovisual scenarios. Finally, we introduce users into this process
by allowing them to interactively tune the results to their own
satisfaction. The major difference between this and other existing
work is that we have considered more complex and thus more
practical audiovisual scenarios for generic video contents. More-
over, the proposed system is built on a more sophisticated audio
classification scheme.

Movie is our major application target because it has a clear story
structure that can be well exploited and exemplified by our ap-
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proach. Moreover, movie has many special characteristics, such as
the use of complex film-editing techniques. It is possible that dif-
ferent editing styles on content presentation, shot selection, ordering,
and timing may result in different stories (Reisz and Millar, 1968).
Therefore, it is not only interesting but also challenging to work with
movies, because all these special features need to be taken into
account for better content understanding and abstraction.

The rest of this article is organized as follows. We briefly review
our previous work on low-level audiovisual content analysis in
Section 2. In Section 3, we elaborate on the proposed scene detec-
tion scheme, which includes the sink-based scene extraction, the
audiovisual-based scene refinement, and the user-interaction three
parts. Experimental results obtained on five test TV programs and
movies are reported in Section 4. Finally, concluding remarks are
drawn in Section 5.

2. AUDIO AND VISUAL CONTENT PREANALYSIS
The first step toward visual content analysis is shot detection. In this
work, a color histogram-based approach is used to perform this task.
Specifically, once a distinct peak is detected in the frame-to-frame
histogram difference, we declare it as a shot cut (Li and Kuo, 2000).
An average of 92.5% recall and 99% precision rates have been
achieved in this work. In the second step, we proceed to extract one
or more keyframes from each shot to represent its underlying con-
tent. For simplicity, we assign the first and last frames of each shot
as its keyframes.

In the audio domain, the following two major tasks are carried
out to analyze the embedded audio content:

1. Audio feature extraction. Six types of audio features are
considered in this work, which include short-time energy
function, short-time average zero-crossing rate (ZCR), short-
time fundamental frequency (SFuF), energy band ratio (EBR),
silence ratio (SR), and Mel-Frequency Cepstral Coefficients
(MFCCs; Zhang and Kuo, 2001; Reynolds and Rose, 1995).
Specifically, the short-time energy feature provides a repre-
sentation of the signal’s amplitude variation along time, and
the ZCR feature gives a simple measure of the signal’s fre-
quency content. The SFuF feature is mainly extracted to
determine the signal’s harmonic nature, and the energy ratio
of low- to high-frequency bands is an important indicator for
voiced and unvoiced signal detection. Finally, the SR feature
measures the ratio of accumulated silence intervals to the
entire signal period, and the MFCC feature gives the signal’s

frequency spectrum on the mel-frequency scale. In summary,
the first five features are primarily extracted for audio classi-
fication purpose, whereas the MFCC feature is mainly used
for speech similarity comparison because of its successful
usage in various speech processing applications.

2. Shot-based audio classification. In this step, each shot is
classified into one of the following six classes based on the
five features extracted from its audio content: silence, speech,
environmental sound, music, speech with music background,
and environmental sound with music background. Specifi-
cally, silence is detected by thresholding the energy and ZCR
features; speech is recognized by exploiting the inter-relation-
ships among energy, ZCR and SFuF, as well as by checking
EBR and SR values. Finally, music is separated out by eval-
uating both ZCR and SFuF features. More detailed discussion
on this work can be found in Zhang and Kuo (2001). For the
rest of this article, we call the first three classes as the
nonmusic class, and the last three, the music class.

3. VIDEO SCENE CONSTRUCTION
Scene is a subjectively defined concept that depicts and conveys a
high-level story. Generally speaking, a scene contains a collection of
semantically related and temporally adjacent shots that have the
following three features.

● Visual similarity. Similar visual contents, such as similar color
layout and continuous object activities, could be observed in
these shots, especially in movies because of one of the filming
techniques called montage. As described by Tarkovsky (1986),
“One of the binding and immutable conditions of cinema is
that actions on the screen have to be developed sequentially,
regardless of the fact of being conceived as simultaneous or
retrospective…. In order to present two or more processes as
simultaneous or parallel you have to show them one after the
other, they have to be in sequential montage.” This means that,
in order to convey conversations, innuendos, or reactions,
filmmakers have to repeat important shots to express the con-
tent and motion continuity. This type of editing style is actu-
ally very popular in daily TV series and movies, where repeat-
ing shots of persons or settings are frequently interleaved with
other shots.

● Audio similarity. The similarity of audio contents is mani-
fested as similar background noise that exists in these shots. In
addition, if the same person is talking in several shots, his
speeches in all these shots should present similar acoustic
characteristics.

● Time locality. Shots are temporally close to each other if they
are within the same scene; otherwise, it is less likely that they
belong to the same thematic topic. For instance, given two
shots of the same person, if they are juxtaposed together, they
are more likely to be in the same scene than the case where
they are placed far apart from each other.

By taking the above three features into account, we have devel-
oped a robust scene detection scheme that consists of the following
three stages: sink-based scene construction, audiovisual-based scene
refinement, and user interaction. Each of them is detailed below.

3.1. Sink-based Scene Construction. In this step, we aim at
extracting all video segments that are characterized by a repetitive

FIGURE 1. A hierarchical representation of video content.
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visual structure. A new concept called shot sink is introduced for this
purpose. Particularly, a shot sink contains a pool of shots that are
temporally close and visually similar. Shot sinks are generated using
the proposed window-based sweep algorithm as described below.

3.1.1. Window-based Sweep Algorithm. Given shot i, this algo-
rithm finds all shots that are visually similar to i and pushes them
into its sink. However, because of the scene’s temporal locality
feature discussed earlier, this search will be constrained to a certain
temporal range, as indicated by the timing window in Figure 2(a),
where the current window contains n � i � 1 shots and has a length
of winL. To compare the visual similarity of two shots, in principle
we should compare every pair of video frames, with each taken from
one shot. However, to reduce the complexity of this process, only
keyframes are used for comparison. This is acceptable because
keyframes are representatives of the shot.

Denote shots i and j’s keyframes by bi, ei, and bj, ej (i � j) as
shown in Figure 2(a); we compute the similarity between shots i and
j as

Disti,j �
1

4
�w1 � dist�bi, bj� � w2 � dist�bi, ej�

� w3 � dist�ei, bj� � w4 � dist�ei, ej��, (1)

where dist(bi, bj) could be either the Euclidean distance or the
histogram intersection between bi and bj’s color histograms. w1, w2,
w3, and w4 are four weighting coefficients that are computed as

w1 � 1 �
Li

winL
, w2 � 1 �

Li � Lj

winL
,

w3 � 1, w4 � 1 �
Lj

winL
, (2)

where Li and Lj are lengths of shots i and j in terms of frames,
respectively. The derivation of these four coefficients is explained as
follows. First, due to the montage effect, we know that when shots
i and j are within the same thematic topic, they would share certain
visual similarity although shot j further advances shot i’s content. To
measure the content similarity between these two shots, we first
check the similarity between ei and bj since they form the closest
frame pair and should have the smallest distance if shot j does
continue shot i’s content. Thus, we set w3 to 1. In contrast, the
similarity between bi and bj becomes smaller as shot i gets longer,
thus we set w1 to be 1 � (Li/winL), where winL is introduced for the

normalization purpose. Similarly, we can derive the formulas for w2

and w4.
Now, if Disti,j is less than a predefined threshold shotT, we

consider shots i and j to be similar and put shot j into shot i’s sink.
As shown in Figure 2(b), all shots similar to shot i are nicely linked
together in their temporal order. One thing worth mentioning is that
if shot i’s sink is not empty, we have to compute distances from the
current shot, say, shot m, to all other resident shots in the sink (shots
i and j in this case). Shot m is only qualified to be in the sink when
the average of all distances is less than shotT.

Basically we will run this algorithm for every shot. However if
one shot has already been included in a sink, we will skip this shot
and continue with the next.

Two parameters are used in this algorithm, i.e., the window
length winL and the threshold shotT. Below are some discussions on
how to determine them.

1. Determining window length winL. We have tried two ways to
choose parameter winL, namely, a fixed value and an adaptive value
that varies with every incoming movie. In the former case, we
empirically set winL to be a predefined value that covers the duration
of an ordinary movie scene. In the latter case, winL is set to be
proportional to the average shot length. Hence, the faster the movie
tempo, the shorter the window length. On the basis of our experi-
ments, we find that a fixed value usually produces better results,
which is perhaps due to the reason that as a semantic unit, scene is
somehow independent of the underlying shot structure. winL is set to
be 2000 (frames) in this work.

2. Determining threshold shotT. Parameter shotT is used to
threshold the similarity measurement between two shots. Because
our distance metric uses the color information and because different
movies tend to have different primary hue, an empirically set thresh-
old may not always work. Figure 3(a) shows a shot distance histo-
gram for one test movie where each distance is computed from one
shot to another within the temporal window. As we can see, a
Gaussian density function N(�; �) can be used to approximate this
distance distribution. Inspired by this finding, we propose to deter-
mine the threshold as follows. First, we normalize each computed
distance Disti,j with � and �, i.e.,

Disti,j �
Disti,j � �

�
. (3)

Then, we compare it with another threshold shotT� which is derived
from the Gaussian density function. Parameter shotT� can be easily
adjusted to fit all movies because it applies to normalized distances.
Empirically, we find that shotT� � �1.35 produces a good result for
all test data, where about 9% of the shots in the timing window are
qualified for the sink because P(X � x � x � shotT� � �1.35) �
0.089 as shown in Figure 3(b).

After obtaining shot sinks, we proceed to extract the coarse-level
scene structure. The basic principle applied here is, whenever there
is a temporal overlap between two sinks, we label them to be in one
scene. This is due to the fact that no shots that are inter-related will
belong to different scenes, because different scenes usually focus on
different thematic topics and do not overlap in the time domain.
Moreover, the shots that do not belong to these sinks but are covered
by their temporal ranges are also included into the same scene. For
instance, if shot 1’s sink contains shots 1, 3, 5, 7, and 10, and shot
2’s sink contains shots 2, 4, 6, 8, and 12, it is natural for us to group
shot 1 to shot 12 into one scene, because apparently something is

FIGURE 2. (a) Shots contained in a window of length winL, and (b)
shot i’s sink.
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going on among these two sets of shots. This type of repetition
pattern can be frequently found in TV series and movies. When a
scene contains only one shot, we label it as an isolated scene.

3.2. Audiovisual-based Scene Refinement. Two major
types of errors are observed in coarse-level scene detection: false
negatives (misses) and false positives (false alarms). When the
temporal window is too narrow, false alarms might occur because
the shot sink cannot cover all similar shots, and a similar new scene
would be initialized by mistake. Moreover, scenes without any
repetition patterns, which are called progressive scenes, may result
in isolated scenes. On the other hand, when the temporal window is
too wide, we might introduce false negatives, where one scene is
falsely merged into another scene. This situation usually occurs
when the two neighboring scenes have similar background or the
same movie characters, but different thematic topics.

Because we can reduce false negatives by shortening the timing
window, we will mainly focus on the solution to reduce false

positives by using the accompanying audio information. To achieve
this goal, we first classify each shot into one of the six audio classes
as described in Section 2. Then, neighboring scenes are possibly
merged according to a set of heuristically derived rules as detailed
below.

3.2.1. Rule-based Scene Mergence. At this step, a set of audio-
visual-based rules are developed to possibly merge two neighboring
scenes. For convenience, let us take scenes k and k � 1 as an
example. Figure 4 shows the structure of these two scenes, where
shot j is the last shot of scene k and shot j � 1 is the first shot of
scene k � 1. The starting and ending frames of shot j are denoted by
bj and ej, respectively. For the rest of this subsection, we will mainly
work with these two shots because they form the actual connecting
interface of the two neighboring scenes.

On the basis of extracted audiovisual features of these two shots,
we have considered five different scenarios as described below.
Within each scenario, one or two rules are derived to determine if
these two scenes should be merged or not.

Scenario I: Both shots belong to the music class:

● Rule 1: If both shots belong to the music class, i.e., they are
either pure music, speech with music background, or environ-
mental sound with music background, we merge these two
scenes together.

The rationale of this rule is that music is usually mixed by the
music director during the postproduction so as to convey the inner
feeling of a key story figure or to reflect the atmosphere under a
certain circumstance. In other words, music is deliberately added so
as to enhance viewers’ experience for an unbreakable story unit.
Therefore, in most cases, two neighboring scenes of different the-
matic topics do not share the same background music.

When several temporally consecutive, but visually different shots
share the same piece of music, it is the director’s implication that all
of them are actually semantically related and thus, should be rec-
ognized as one unit. This situation is not common, but does exist in
feature films, which could be seen as a type of directorial style. For
instance, one of our test movies contains a very long scene which
describes a girl’s daily life in a ranch farm from various view
aspects. Consequently, this scene consists of many shots with totally
different visual contents. Nevertheless, its continuous music back-
ground gives us the clue that all shots contribute to the same story
unit.

Finally, it is worthwhile to point out that when we apply Rule 1,
we assume that both shots share the same music piece. This assump-
tion may not be true in certain types of movies, e.g., in a musical,
where there are many music or songs constantly changing from time
to time or from shots to shots. However, because it needs some extra
work to distinguish two different music pieces, currently we assume
that in our test movies, no two music pieces with different themes
are played successively.

FIGURE 3. (a) The shot distance histogram for a test movie, and (b)
the normalized distribution of shot differences.

FIGURE 4. An example of two temporally adjoining scenes.
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Scenario II: Both shots belong to the nonmusic class:
We will further divide this scenario into the following two

subscenarios according to their specific audio types.
Subscenario II (a): Both shots contain speech:

● Rule 2: If both shots contain speech and such continuous
speech is detected across the scene boundary, we merge these
two scenes together.

The rationale of this rule is rather intuitive. A continuous speech
flow across the scene boundary means that there is a continuous
story flow over the two scenes. Thus it is natural for us to merge
them together. The two steps adopted in this process are given
below.

1. For the video segment starting from bj and ending at ej�1, i.e.,
the segment containing both shots, we identify and isolate the
“speech segments” from the background using the proposed
“adaptive silence detection” algorithm, which will be de-
tailed below.

2. Check if the scene boundary is contained in one of the
detected speech segments. If yes, it means that a continuous
speech flow is detected across the scene boundary, and thus
we merge the two scenes together. Otherwise, we proceed to
subscenario II (b).

Adaptive Silence Detection. A classical approach to silence
detection relies on a global energy thresholding scheme (Zhang and
Kuo, 2001; Rabiner and Schafer, 1978). Although this simple
scheme works well for the static audio content, it is not suitable for
movies where various complex audio types exist. More recent work
in this area focuses on the end-of-utterance detection, which mainly
targets at real-time ASR (automatic speech recognition) under an
adverse environment (Li and Zheng, 2001; Hariharan et al. 2001).
These methods are also not applicable to our work because their
ultimate goal is to collect every utterance, rather than excluding
every silent period as demanded by our case.

In this work, we propose to detect silence by adapting to the
underlying dynamic audio content. Particularly, given the audio
signal of one speech shot, we first sort all audio frames into an array
based on their energies precomputed in the dB scale. Then, for all
frames whose energy values are greater than a preset threshold
engyT, we quantize them into N bins where bin1 has the lowest and
binN has the highest average energy. Because we already know that
both silence and speech signals are present, obviously bin1 gives the
lower boundary of the silence energy and binN has the upper limit of
the speech energy. Thus, the threshold T separating speech and
silence should be a value between these two extremes. Specifically,
we calculate T as

T � ENGYsl � � � �ENGYsp � ENGYsl�, (4)

where ENGYsl and ENGYsp are the average energies in the first and
last three bins, respectively, and � is a weighting coefficient that is
set to 0.4 in this work. Also, we set engyT to 30.0 and N to 10.
Obviously, with this approach, no matter how the background noise
changes, the threshold could always be adaptively adjusted.

Next, we use a four-state transition diagram (Li and Zheng,
2001) to separate speech segments from the background using the
obtained threshold T. As shown in Figure 5(a), the diagram has the

following four states: in-silence, in-speech, leaving-silence and leav-
ing-speech. Either in-silence or in-speech can be the starting state,
and any state can be a final state. The input of this state machine is
a sequence of frame energies, and the output is the beginning and
ending frame indices of detected speech segments. The transition
conditions between two states are labeled on each edge, and the
corresponding actions are described in parentheses. In particular,
Count is a frame counter, E denotes the frame energy, and L
indicates the minimum length of a silence or speech segment, which
is set to be 300 ms in the current work. As we can see, this state
machine basically groups blocks of continuous silence/speech
frames as silence/speech segments while removing impulsive noise
at the same time.

FIGURE 5. (a) A state transition diagram for speech-silence seg-
mentation where T stands for the derived adaptive threshold, E de-
notes the frame energy, count is a frame counter, and L indicates the
minimum speech/silence segment length, and (b) a speech-silence
segmentation example where detected speech segments are
bounded by the passbands of the superimposed pulse curve.
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This algorithm works best when it is performed within a shot
because we can assume a quasi-stationary background in this case.
For the rest of this subsection, the two terms silence and background
noise will be used interchangeably because they mean the same
thing in this work.

Figure 5(b) gives a speech-silence segmentation example on an
audio signal recorded from a speech shot. A pulse curve is used to
illustrate the results where detected speech segments are bounded by
the passbands. As we can see, all speech fragments are successfully
isolated from the impulse noise. The loud background sounds are
also removed.

Subscenario II (b): For all other cases:

● Rule 3: For all other cases, if these two shots have similar
background noise, we merge these two scenes together.

The philosophy behind this rule is that, because a scene usually
progresses under a certain circumstance; if two shots share similar
background noise, it is highly possible that they belong to the same
scene. To measure the background similarity, we use the following
two processing steps.

1. Detect all speech and silence segments for both shots using
the proposed adaptive silence detector. Then, we compute
short-time energy for every detected background segment.
Finally, for all background segments within each shot, we
compute the mean � and standard deviation � in terms of their
energy values, and denote the parameters by E(�j, �j), and
E(�j�1, �j�1) for shots j and j � 1, respectively.

2. Compute the Kullback Leibler 2 (KL2) distance between the
above two parameter pairs. If it is less than threshold spbgT,
it means that similar background noise is detected in these two
scenes, and we thus merge them together. Currently, the
threshold spbgT is empirically determined and is set to be 7.0
in this work.

The adopted KL2 distance is briefly reviewed below.

Kullback Leibler Distance. The Kullback Leibler distance (or
the relative cross-entropy) between two random variables A and B is
an information theoretic measure that equals the additional bit rate
accrued by encoding random variable B with a code that was
designed for optimal encoding of A (Cover and Thomas, 1991). The
larger this value, the greater the distance between the probability
density functions (PDFs) of these two variables. Its formulation is
given as

KL�A; B� � EA�log�PA� � log�PB��, (5)

where PA and PB are A and B’s PDFs, respectively. EA( � ) is the
expectation operation performed with respect to A’s PDF.

Because this expression is asymmetric, it is not strictly a distance
metric. Thus in practice, the KL2 distance, which is defined as
(Siegler et al., 1997)

KL2�A; B� � KL�A; B� � KL�B; A�, (6)

is often used as an alternative.
When both A and B have Gaussian distributions as A(�A, �A) and

B(�B, �B), the KL2 distance becomes

KL2�A; B� �
� A

2

� B
2 �

� B
2

� A
2 � ��A � �B�

2 � � 1

� A
2 �

1

� B
2� � 2. (7)

Again, the larger the value, the greater the distance between the two
variables. When A and B have the same PDF, this distance will
reduce to 0.

The Kullback Leibler distance has been successfully used in
speech and speaker recognition areas because of its effectiveness
(Beigi et al., 1998) and is thus used in this work.

One thing worth pointing out is that although we can also use
pure visual information to detect the background change, for in-
stance, we can first segment the foreground objects from the back-
ground and then compare the background. Yet intelligent object
segmentation still remains to be a difficult problem today; thus the
use of audio information in this task appears to be a better solution.

Scenario III: One of the shots is from the music class, whereas
the other is from the nonmusic class:

In most cases, this scenario will naturally result in two different
scenes according to our discussion in Scenario I. However, we found
in experiments that sometimes music will suddenly start or get
stronger enough to be detected in the middle of a scene, thus causing
two consecutive shots to have different audio background. To handle
such a scenario, we use the following rule:

● Rule 4: In Scenario III, when both shots contain speech sig-
nals, i.e., one of them contains pure speech and the other,
speech with music background, the two scenes will be merged
if any of their speech segments are acoustically similar.

The rationale of this rule is, when acoustically similar speeches
are detected in these two shots, it is likely that the same speaker is
present or talking in both shots, which implies that they may belong
to the same scene. The following three-step process is performed to
measure the speech similarity:

1. For each shot, find all of its speech segments using the
adaptive silence detector. For simplicity, let us assume that
shot j has N1 and shot j � 1 has N2 speech segments.

2. Compute a 14-dimensional MFCC feature vector for every
speech frame and subsequently calculate the mean vector E�

and covariance matrix C for every speech segment. To sim-
plify the computation, we assume C to be a diagonal covari-
ance matrix. As a result, we have totally N1 pairs of (E� , C) for
shot j, and N2 pairs for shot j � 1.

3. Compute the KL2 distance between any pair of speech seg-
ments, with each taken from one shot, respectively. Finally,
we calculate the minimum distance mDist as

mDist � min
1�i�N1,1�j�N2

�KL2��E� i, Ci�, �E� j, Cj��	, (8)

where

KL2��E� i, Ci�, �E� j, Cj�� �
1

2
tr��Ci � Cj��Cj

�1 � Ci
�1�	

�
1

2
tr��Ci

�1 � Cj
�1��E� i � E� j��E� i � E� j�

T	, (9)
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which is the vector version of Equation 7. When mDist is less
than the threshold spbgT, it is very possible that the corre-
sponding two speech segments are from the same person, we
thus merge scenes k and k � 1 together.

Here is one example scene of this particular scenario taken from
a test movie. Particularly, it has two shot. The first shot shows a
landscape of snow-capped mountains, while the second one is about
a woman walking in a forest with a horse. Clearly, these two shots
cannot be merged if only the visual cue is considered. Moreover, as
the background music suddenly starts in the second shot, we should
not merge them either based on the rules derived before. However,
by noticing that there is a continuous speech flow of an off-screen
voice throughout these two shots, we know that they are actually
semantically related, or at least they are purposefully correlated by
the director, thus they should belong to the same scene.

Scenario IV: A special transition effect exists across a shot
boundary:

● Rule 5: If a special effect is detected across a shot boundary,
we declare a scene break.

Special effects such as dissolve, wipe, fade-in, and fade-out are
usually used to convey passages of time, changes of the place, or any
other scenes of transition (Reisz and Millar, 1968). Thus, a scene
break is declared in this case.

Scenario V: One or both scenes are isolated scenes:

● Rule 6: If the two scenes are visually similar, we merge them
together.

Because a scene normally contains more than one shot, the
purpose of this rule is to correlate isolated scenes to their neighbors.
Specifically, assume scene k � 1 is an isolated scene, the similarity
between scenes k and k � 1 is measured as follows.

1. Assume scene k contains shot 1 to shot j, and scene k � 1
contains shot j � 1, we compute the minimum distance
between these two scenes as

Sdistk,k�1 � min
1�i�j

�Disti,j�1	, (10)

where the distance Disti,j�1 between shots i and j � 1 is
computed using Equation 1 with the 4 weighting coefficients
set to be equal.

2. Distance Sdistk,k�1 is then normalized as described in Section
3.1.1 and compared with threshold shotT�. If it is smaller, it
means that parts of these two scenes are visually similar, thus
we could merge them together.

Note that the above process demands a lot of computations, thus
it could be omitted if the speed is a concern.

3.3. User Interaction. After obtaining the refined scene results
via mergence of scenes detected in the coarse level, we could go
one step further, i.e., to let the user tune the results to their own
satisfaction. This is a highly desirable feature because “scene” is
a subjectively defined concept, and different people may have
different opinions of what comprises a scene. For example, in one
of our experiments, we find that there are scenarios where the
speech flow continues over two consecutive shots while the
visual background has changed. In this case, on one hand, be-
cause the background has changed, a scene boundary should be
declared. But on the other hand, because a continuous speech
flow is detected, the two shots should be merged together ac-
cording to Rule 2 or 4. Apparently, the information collected
from the audio and visual cues has resulted in conflicting con-
clusions. One solution to this problem is that we shall only stick
to one cue, i.e., we either follow the visual hint and ignore the
audio cue, or vice versa. The second solution is to let the user
make the decision by interacting with the system. Note that if a
completely automatic scene detector is preferred, we may choose
the first solution.

4. EXPERIMENTAL RESULTS
The proposed scene detection scheme has been studied using five
test sequences with two TV sitcoms and three feature films. All of
them are stored in MPEG-1 format with a frame rate of 29.97
frames/sec. To validate the effectiveness of the proposed algorithms,
representatives of various movie genres are selected. Specifically,
Movie 1 is a thrilling, tragic romance, Movie 2 is a comedic drama,
and Movie 3 is an action movie. Totally there are 2025 shots in these
test programs.

Tables I and II give the scene extraction results for the above five
test sequences. Precision and recall rates are computed to evaluate
the system performance, where

precision � hits/�hits � false alarms�,

recall � hits/�hits � misses�. (11)

Particularly, results in Table I are the coarse-level results obtained
using pure visual information, whereas results in Table II are refined
ones achieved by integrating the audio and visual cues. The ground
truth is manually collected by the first author of this article, and in
case there are conflicting conclusions from audio and visual cues, a
higher priority is given to the audio cue because human involvement
cannot be quantitatively experimented. In fact, we found in exper-

Table I. Scene extraction results obtained with the pure visual cue.

Video
Duration

(min) Hits Misses
False

Alarms
Precision

(%)
Recall

(%)

Sitcom 1 20 12 0 2 86 100
Sitcom 2 28 13 0 3 81 100
Movie 1 58 34 0 37 48 100
Movie 2 61 38 1 68 36 97
Movie 3 60 40 1 50 44 98

Table II. Scene extraction results obtained with both audio and visual
cues.

Video
Duration

(min) Hits Misses
False

Alarms
Precision

(%)
Recall

(%)

Sitcom 1 20 12 0 0 100 100
Sitcom 2 28 13 0 1 93 100
Movie 1 58 34 0 1 97 100
Movie 2 61 38 1 3 93 97
Movie 3 60 40 1 6 87 98
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iments that the audio cue can generally bring more meaningful
results than the visual cue. Below we give some discussions on the
obtained results.

● Overall, very satisfactory precision and recall rates have been
achieved when both audio and visual cues were utilized. More-
over, by comparing the two tables, we see that the average
precision rate has been increased by almost 35% when we
applied the scene refinement process, which is very impres-
sive.

● We see from Table II that the precision rate is slightly lower
than the recall rate because some false alarms still cannot be
completely removed. For instance, in Movie 2 there were
three false alarms, with each corresponding to an isolated
football scene. In particular, the first scene is a close-up
view of the ball, the second contains cheering audiences,
and the last gives a snapshot of football players. Apparently,
none of them share similar visual or audio content. As a
result, no previous rules could be applied to merge these
scenes. In fact, they could only be merged based on a real
semantic understanding, e.g. we humans know that these are
all typical scenes related to a football game, thus they
should be merged together. However, with our current tech-
nology, the real semantic understanding still remains to be
a very difficult problem. Therefore, to let the user interact
with the system may be the only feasible solution.

● Our system performs slightly better in “slow” movies than in
“fast” movies. There are two reasons for this observation.
First, some speech or music shots cannot be correctly detected
because of the loud background sounds in action movies. This
undoubtedly brings negative effects to our detection scheme.
Second, in “fast” movies, visual contents are normally more
complex and thus more difficult to capture. In fact, we even
had different scene segmentation results from different people
who were invited to watch the movie and gave their respective
scene understanding.

● The missed detections were mainly caused by the errors intro-
duced during the shot sink generation, where visually similar
shots, which actually belong to different scenes, were mistak-
enly linked together. Moreover, despite the high recall rate we
obtained, some scene boundaries were not precisely located,
which was also caused by the sink error.

● Compared to the 2025 shots in the original test sequences, only
137 scenes are detected from them now, which gives us an
almost 14-orders of magnitude reduction. Apparently, the
video content can be represented more compactly and more
meaningfully in the scene structure than in shot structure.

As for the system execution time, currently it took our system,
which runs on a Dell-PC with Pentium II processor, approximately
8 minutes to generate the final results for a 1-hour-long movie.
However, if we also consider the time used for audio and visual
content preanalysis, including the shot detection and audio classifi-
cation, it may take about 40 minutes, which is still faster than real
time.

A system with a friendly GUI has been developed for the
proposed scene extraction scheme using MFC and DirectShow
technology. When a movie clip is opened, all of its detected
scenes will be displayed, together with their respective key-
frames. Besides, all shots contained in each selected scene are
also displayed simultaneously. The purpose of showing key-

frames is to give users a glimpse of the scene content. Neverthe-
less, when more detailed information is needed, an active movie
player can be initialized to playback the corresponding video
segment. Finally, when keyword extraction results are available,
they can also be displayed so as to better assist users in the
content understanding.

5. CONCLUSION
The scene structure forms a compact yet meaningful abstraction
of the video data, and thus it can be used to facilitate efficient
video indexing and browsing. This work presented a content-
based video scene extraction scheme, which aims at detecting
semantically meaningful scenes from feature films. Multiple me-
dia modalities including audio and visual cues were exploited,
and special film editing techniques were also investigated to
achieve a better system performance. Although currently movie
is our major focus, the methodology presented in this article
could be easily extended to other types of generic video. As for
our future work, we plan to incorporate other image/video pro-
cessing techniques, such as human face detection/recognition and
object tracking, into the system.
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