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An adaptive speaker identification system which employs both audio and visual cues is proposed in this work
for movie content analysis. Specifically, a likelihood-based approach is first applied for speaker identification
using pure speech data, and techniques such as face detection/recognition and mouth tracking are applied for
talking face recognition using pure visual data. These two information cues are then effectively integrated under
a probabilistic framework for achieving more robust results. Moreover, to account for speakers’ voice variations
along time, we propose to update their acoustic models on the fly by adapting to their incoming speech data. An
improved system performance (80% identification accuracy) has been observed on two test movies.
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1. Introduction

A fundamental task in video analysis is to or-
ganize and index multimedia data in a meaning-
ful manner so as to facilitate user’s access such
as browsing and retrieval. This work proposes
to extract an important type of information, the
speaker identity, from feature films for the content
indexing and browsing purpose.

So far, a large amount of speaker identifica-
tion work has been reported on standard speech
databases. For instance, Chagnolleau et al.
(1999) adopted a likelihood-based speaker detec-
tion approach to estimate target speakers’ seg-
ments with Hub4 broadcast news, which is the
benchmark test set provided by NIST (National
Institute of Standards and Technology). How-
ever, while acceptable results were reported in its
one-target-speaker case, the system performance
degraded dramatically in two-target-speaker case.
Similar work was also reported by Rosenberg et
al. (1998) where the NBC Nightly News broad-
casts were used. Johnson (1999) addressed the
problem of labeling speaker turns by automati-
cally segmenting and clustering a continuous au-
dio stream. A frame-based clustering approach

was proposed, and an accuracy of 70% was ob-
tained on the 1996 Hub4 development data.

Recently, with the increase of the accessibil-
ity to other media sources, researchers have at-
tempted to improve system performance by inte-
grating knowledge from all available media cues.
For instance, Tsekeridou and Pitas (2001) pro-
posed to identify speakers by integrating cues
from both speaker recognition and facial analysis
schemes. This system is, however, impracticable
for generic video types since it assumes there is
only one face in each video frame. Similar work
was also reported by Li et al. (2001), where TV
sitcoms were used as test sequences. In (Li et al.,
2002), a speaker identification system was pro-
posed for indexing the movie content, where both
speech and visual cues were employed. This sys-
tem, however, has certain limitations since it only
identifies speakers in movie dialogs.

From the other point of view, most existing
work in this field deals with supervised identi-
fication problems, where speaker models are not
allowed to change once they are trained. Two
drawbacks arise when we apply supervised iden-
tification techniques to feature films.
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1. The insufficiency of training data. A
speaker’s voice can have dramatic varia-
tions along time, especially in feature films.
Therefore, a model built with limited train-
ing data (e.g. 40- or 50-second speech) can-
not model a speaker well for a long video
sequence. Moreover, to manually transcribe
training data is a very time-consuming task.

2. The decrease of system efficiency. Because
we have to go through movies at least once
to collect and transcribe training data be-
fore the actual identification process can be
started, it wastes time and decreases system
efficiency.

An adaptive speaker identification system is
thus proposed in this work which aims to of-
fer a better solution to speaker identification for
movie content analysis. Specifically, a set of ini-
tial speaker models are first constructed during
the system initialization stage; then we keep up-
dating them on the fly by adapting to speakers’
newly incoming data. By doing so, we are able to
capture the speakers’ voice variations along time,
thus to achieve a higher identification accuracy.
Both audio and visual sources are exploited in
the identification process, where the audio con-
tent is analyzed to recognize speakers using a
likelihood-based approach, while the visual con-
tent is parsed to recognize talking faces using face
detection/recognition and mouth tracking tech-
niques.

The rest of the paper is organized as follows.
Section 2 will elaborate on the proposed identi-
fication scheme which includes speech segmenta-
tion and clustering, mouth detection and track-
ing, audiovisual-based speaker identification and
unsupervised speaker model adaptation. Exper-
imental results obtained on two test movies are
reported and discussed in Section 3. Finally, con-
cluding remarks and possible future extensions
are given in Section 4.

2. Adaptive speaker identification

Figure 1 shows the proposed system frame-
work that consists of the following six major mod-
ules: (1) shot detection and audio classification,

(2) face detection, recognition and mouth track-
ing, (3) speech segmentation and clustering, (4)
initial speaker modeling, (5) audiovisual (AV)-
based speaker identification, and (6) unsuper-
vised speaker model adaptation. As shown, given
an input video, we first split it into audio and
visual streams, then perform a shot detection on
the visual source. Following this, a shot-based
audio classification is carried out which catego-
rizes each shot into either environmental sound,
silence, music, or speech. Next, with non-speech
shots being discarded, all speech shots are fur-
ther processed in the speech segmentation and
clustering module where speeches from the same
person are grouped into one cluster. Meanwhile,
a face detection/recognition and mouth tracking
process is also performed on speech shots for rec-
ognizing talking faces. Both of the speech and
face cues are then effectively integrated to recog-
nize speakers in the audiovisual-based identifica-
tion module, under the assistance of either initial
or updated speaker models. Finally, the identi-
fied speaker’s model is updated in the unsuper-
vised model adaptation module, which becomes
effective in the next round of the identification
process.

2.1. Shot Detection and Audio Classifica-
tion

The first step towards visual content analysis is
shot detection. In this work, a color histogram-
based approach is employed to fulfill this task.
Specifically, once a distinct peak is detected in the
frame-to-frame histogram difference, we declare it
as a shot cut (Li and Kuo, 2000).

In the second step, we analyze the audio con-
tent of each shot and classify it into one of the
following four classes: silence, speech (including
speech with music), music, and environmental
sound. Five different audio features including
short-time energy function, short-time average
zero-crossing rate (ZCR), short-time fundamen-
tal frequency (SFuF), energy band ratio (EBR)
and silence ratio (SR), are extracted for this pur-
pose. Specifically, silence is detected by thresh-
olding the energy and ZCR features; speech is
recognized by exploiting the inter-relationship be-
tween energy, ZCR and SFuF features, as well as
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Figure 1. Block diagram of the proposed adaptive speaker identification system.

by checking EBR and SR values; finally, music
is distinguished from other audio signals by mea-
suring both ZCR and SFuF features (Zhang and
Kuo, 1999).

2.2. Face Detection, Recognition and
Mouth Tracking

The goal of this module is to detect and recog-
nize talking faces in speech shots.

2.2.1. Face Detection and Recognition
The face detection and recognition library we

used was developed by Hewlett-Packard Research
Labs based on a neural network technology (HP,
1998). Currently, this library can only detect up-
right frontal faces or faces rotated by plus or mi-
nus 10 degrees from the vertical. To speed up the
process, we will only carry out face detection on
speech shots as shown in Figure 1. Figure 2(a)
shows a detection example where the detected
face is bounded by a rectangle and two eyes are
indicated by crosses. To facilitate the subsequent
recognition process, we organize the detection re-
sults into a set of face sequences, where all frames
within each sequence contain the same number
(nonzero) of human faces.

The face database used for face recognition is
constructed as follows. During the system ini-
tialization, we first ask users to select their N
interested casts (also called target speakers) by
randomly choosing video frames that contain the

casts’ faces. These faces are then detected, asso-
ciated with the casts’ names, and added into the
face database.

During the face recognition process, each de-
tected face in the first frame of each face sequence
is recognized. The result is returned as a face
vector ~f = [f1, . . . , fN ], where fi is a value in [0,
1] which indicates the confidence of being target
cast i.

2.2.2. Mouth detection and tracking
At this step, we will first apply a weighted block

matching approach to detect the mouth for the
first frame of a face sequence, then we track it for
the rest of its frames. Note that if more than two
faces are present in the sequence, we will virtually
split it into a number of sub-sequences with each
focusing on one face.

There has been some work reported on mouth
detection and tracking for video indexing and
speaker detection purposes. For example, Tsek-
eridou and Pitas (2001) employed a mouth-
template tracking process to assist in talking
face detection. In (Sobottka and Pitas, 1998),
a facial feature extracting and tracking system
was reported, where features including eyebrows,
eyes, nostrils, mouth and chin were determined
by searching the minima and maxima in a topo-
graphic grey-level relief. A block matching mech-
anism was further applied to track the mouth
in the sequence. This approach, however, is not
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Figure 2. (a) A detected human face, (b) the coarse mouth center, the mouth search area, and two small
squares for skin-color determination, and (c) the detected mouth region.

suitable for our research since the block match-
ing method will not work well in talking mouth
tracking.

1. Mouth detection
Figure 3 shows three abstracted face models

where (a) gives a model of an upright face, and
(b), (c) give models for rotated faces. Accord-
ing to the facial biometric analogies, we know
that there is a certain ratio between the interoc-
ular distance and the distance dist between eyes
and mouth. Thus, once we obtain the eyes posi-
tions from the face detector, which are denoted
by (x1, y1) and (x2, y2) in the figure, we can sub-
sequently locate the coarse mouth center (x, y)
for an upright face.
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Figure 3. Three abstracted face models for (a):
upright face, (b) and (c): rotated faces.

When a face is rotated as shown in Figure 3(b)

or (c), we compute its mouth center as




x = x1+x2
2 ± dist× sin(θ),

y = y1+y2
2 + dist× cos(θ),

(1)

where θ is the head rotation angle.
We then expand the coarse mouth center (x, y)

into a rectangular mouth search area as shown
in Figure 2(b), and perform a weighted block-
matching process to locate the target mouth. The
intuition we used to detect the mouth is that it
presents the largest color difference from the skin
color, which is determined from the average pixel
color in the two small under-eye squares as shown
in Figure 2(b).

Now, denote the size of the mouth search area
by (SW,SH), and the size of the desired mouth
by (MW,MH), its upper-left corner is located as

(̂i, ĵ) = arg max
(i,j)



ci,j ×

i+MW∑

w=i

j+MH∑

h=j

dist(w, h)



 ,(2)

where

dist(w, h) = dist(Y UV (w, h), Y UV (skin-color)),

0 ≤ i ≤ (SW −MW ), and 0 ≤ j ≤ (SH −MH).
dist() is a plain Euclidean distance in YUV color
space, and ci,j is a Gaussian weighting coeffi-
cient. An example of a correctly detected mouth
is shown in Figure 2(c). For the rest of the dis-
cussion, we denote the detected mouth center by
(cx, cy).
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2. Mouth tracking
To track the mouth for the rest of frames, we

assume that for each subsequent frame, the cen-
troid of its mouth mask can be derived from that
of the previous frame as well as from its eye po-
sitions. Moreover, we assume that the distance
between the coarse mouth center (x, y) and the
detected mouth center (cx, cy) remains the same
for all frames.

Now, assume that we have obtained all feature
data for frame fi including the eye positions, the
coarse and final mouth centers (x, y) and (cx, cy),
frame fi+1’s mouth centroid (cx′, cy′) can be com-
puted as

{
cx′ = cx− (x− x′),
cy′ = cy − (y − y′),

where x, x′, y and y′ are calculated via Equation
(1).

Figure 4 shows the mouth detection and track-
ing results, as marked by rectangles, on a face
sequence containing ten consecutive frames.

Finally, we apply a color histogram-based ap-
proach to determine if the tracked mouth is talk-
ing. Particularly, if the normalized accumulated
histogram difference in the mouth area of the en-
tire or part of the face sequence f exceeds a cer-
tain threshold, we label it as a talking mouth; and
correspondingly, we mark sequence f as a talking
face sequence.

2.3. Speech segmentation and clustering
For each speech shot, the two major speech pro-

cessing tasks are speech segmentation and speech
clustering. In the segmentation step, all individ-
ual speech segments are separated from the back-
ground noise or silence. In the clustering step,
we group the same speaker’s segments into ho-
mogeneous clusters so as to facilitate successive
processes.

2.3.1. Speech segmentation
A general solution to separate speech from

the background, or equivalently, to detect silence
from the voice segment, is to apply a global
energy/zero-crossing ratio thresholding scheme
(Zhang and Kuo, 1999). However, while a global
threshold works well on static audio content, it is

not suitable for movies which have complex audio
background.

In this work, we propose to determine the
threshold by adapting it to dynamic audio con-
tent. Particularly, given the audio signal of a
speech shot, we first segment it into 15ms-long
audio frames, then we sort them into an ar-
ray based on their energies computed in the dB
scale. Next, for all frames whose energy values are
greater than a preset threshold Discard thresh,
we quantize them into M bins where bin1 has
the lowest and binM has the highest average en-
ergy. Now that both speech and silence sig-
nals are present in the shot, the threshold that
separate them must be a value between these
two extremes. Specifically, we determine it from
the sums of the first and last three bins, as
well as a predefined Speech thresh that gives
the minimum dB difference between the two sig-
nals. Currently, we set Discard thresh to be
30.0, Speech thresh to be 9.0, and M to be 10.

Next, a 4-state transition diagram is employed
to separate speech segments from the back-
ground. As shown in Figure 5, the diagram has
four states: in-silence, in-speech, leaving-silence
and leaving-speech. Either in-silence or in-speech
can be the starting state, and any state can be a
final state. The input of this state machine is a
sequence of frame energy, and the output is the
beginning and ending frame indices of detected
speech segments. The transition conditions are
labeled on each edge with the corresponding ac-
tions described in parentheses. Here, Count is a
frame counter, E denotes the frame energy, and
L indicates the minimum length of a silence or
speech segment. As we can see, this state ma-
chine basically groups blocks of continuous si-
lence/speech frames as a silence/speech segment
while removing impulsive noises.

This algorithm works best when it is performed
within a shot range since the background can be
assumed to be quasi-stationary in this case. A
segmentation example is shown in the upper part
of Figure 8 where the detected speech segments
are bounded by the passbands of a pulse curve.
As we can see, all speech fragments have been
successfully isolated from the impulse noise. The
loud background sounds are removed as well.
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Figure 4. Mouth detection and tracking results on ten consecutive video frames, where eyes are indicated
by crosses and mouthes are bounded by rectangles.

2.3.2. Speech clustering
Speech clustering has been studied for a long

time, and many approaches have been pro-
posed. Among them, the Kullback-Leibler dis-
tance metric, Generalized Likelihood Ratio cri-
terion (GLR), Bayesian Information Criterion
(BIC), GMM likelihood measure, and VQ dis-
tortion criterion are the most popularly applied
(Siegler et al., 1997), (Mori et al., 2001), (Chen et
al., 1998). In this work, we use BIC to measure
the similarity between two speech segments.

When comparing two segments using the BIC,
the distance measure can be stated as a model se-
lection criterion where one model is represented
by two separate segments X1 and X2, and the
other model represents the joined segment X =
{X1, X2}. The difference between these two mod-
eling approaches is given by (Chen et al., 1998)

∆BIC(X1, X2) =
1
2
(M12 log |Σ12| −M1 log |Σ1|

−M2 log |Σ2|)− 1
2
λ(d +

1
2
d(d + 1)) log M12, (3)

where Σ1, Σ2, Σ12 are X1, X2 and X’s covari-
ance matrices, and M1, M2, M12 are their fea-
ture vector numbers, respectively. λ is a penalty
weight and equals 1 in this case. d gives the di-
mension of the feature space. According to the
BIC theory, when ∆BIC(X1, X2) is negative, the

two speech segments can be considered from the
same speaker.

Now, assume cluster C contains n homoge-
neous speech segments, then given an incoming
speech segment X, we compute their distance as

Dist(X, C) =
n∑

i=1

wi ×∆BIC(X, Xi), (4)

where wi is the weighting coefficient of segment
Xi, and is computed as wi = Mi/

∑n
j=1 Mj . Fi-

nally, if Dist(X, C) is less than 0, we merge X to
cluster C; otherwise, if none of existing clusters
is matched, a new cluster will be initialized.

2.4. Initial speaker modeling
To bootstrap the identification process, we

need initial speaker models as shown in Figure 1.
This is achieved by exploiting the inter-relation
between the face and speech cues. Specifically,
the following two steps are applied.

First, for each target cast A, we identify its 1-
face shot where a 1-face shot is a speech shot that
contains only 1 face in most of its frames. When
multiple 1-face shots are identified for cast A, we
choose the one having the highest face recogni-
tion rate and the longest shot length. Moreover,
to make sure that the selected 1-face shot only
contains A’s speech, we can return it to the user
for further verification.
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Figure 5. A state transition diagram for speech-silence segmentation, where T stands for the derived
adaptive threshold, E denotes the frame energy, count is a frame counter and L indicates the minimum
speech/silence segment length.

Next, we collect A’s speech segments from its
1-face shot as described in Section 2.3.1, and
build its initial model. Currently, the Gaussian
Mixture Models (GMM) are employed to model
speakers which will be introduced in the next sec-
tion. Note that at this stage, each model will only
contain one Gaussian component with its mean
and covariance computed as the global ones due
to the limitation of training data.

2.5. Likelihood-based speaker identifica-
tion

At this stage, we will identify speakers based
on pure speech information. Specifically, given a
speech signal, we first decompose it into a set of
overlapped audio frames; then 14 Mel-frequency
cepstral coefficients (MFCC) are extracted from
each frame to form an observation sequence X.
Next, we calculate the likelihood L(X;Mi) be-
tween X and all speaker models Mi based on
the multivariate analysis. Finally, we obtain a
speaker vector ~v with its ith component indicat-
ing the confidence of being target speaker i.

2.5.1. Likelihood calculation
Due to its successful usage in both speech and

speaker recognition, MFCC coefficients are cho-
sen as the audio features in this work. Moreover,
considering that there are various noises in movie
data, we have also performed a cepstral mean nor-
malization on all cepstral coefficients (Young et
al., 2000).

To model speakers, we choose to use GMM
(Gaussian Mixture Model) since the Gaussian
mixture density can provide a smooth approxi-
mation to the underlying long-term sample dis-
tribution of a speaker’s utterances (Reynolds and
Rose, 1995). A GMM model M can be repre-
sented by the notation M = {pj , ~µj ,Σj}, j =
1, . . . , m. where m is the total number of compo-
nents in M , and pj , ~µj , Σj are the weight, mean
vector and covariance matrix of the ith compo-
nent, respectively.

Now, let Mi be the GMM model correspond-
ing to the ith enrolled speaker with Mi =
{pij , ~µij , Σij}, and let X be the observation se-
quence consisting of T cepstral vectors ~xt, t =
1, . . . , T , under the assumption that all observa-
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tion vectors are independent, the likelihood be-
tween X and Mi can be computed as

L(X; Mi) =
m∑

j=1

pij × L(X; ~µij , Σij), (5)

where L(X; ~µij ,Σij) is the likelihood of X’s be-
longing to Mij . Based on the multivariate anal-
ysis in Mardia et al. (1979), the log likelihood of
L(X; ~µij , Σij) can be computed as

`(X; ~µij , Σij) = −T

2
log |2πΣij | − T

2
tr(Σ−1

ij S)

− T

2
(X̄ − ~µij)′Σ−1

ij (X̄ − ~µij),

where S and X̄ are X’s covariance and mean,
respectively. Note that when S equals Σij , the
above log likelihood becomes the Mahalonobis
distance.

Now, based on this identification scheme, given
any speech cluster C, we will assign it a speaker
vector ~v = [v1, . . . , vN ], where vi is a value in
[0, 1] which equals the normalized log likelihood
value `(X; ~µij , Σij), and indicates the confidence
of being target speaker i.

2.6. Audiovisual integration for speaker
identification

In this step, we will finalize the speaker iden-
tification task for cluster C (in shot S) by in-
tegrating the audio and visual cues obtained in
Sections 2.2, 2.3 and 2.5. Specifically, given clus-
ter C and all recognized talking face sequences F
in shot S, we examine if there is a temporal over-
lap between C and any sequence Fi. If yes, and
also the overlap ratio exceeds a preset threshold,
we assign Fi’s face vector ~f to C; otherwise, we
set its face vector to null. However, if C is over-
lapped with multiple Fi due to speech clustering
or talking face detection errors, we choose the one
with the highest overlap ratio. Finally, to accom-
modate for detection errors, we can extend the
talking face sequence to both ends by a certain
number of frames during the overlap checking. A
slightly better performance has been gained from
this extra effort.

Now, we determine the speaker’s final identity
in cluster C as

speaker(C) = arg max
1≤j≤N

(w1 · f [j] + w2 · v[j]), (6)

where ~f and ~v are C’s face and speaker vectors,
respectively. w1 and w2 are two weights that sum
up to 1.0. Currently we set them to be equal in
the experiment. In fact, instead of choosing the
top speaker in the above equation, we can also
obtain a sorted list of possible speakers for cluster
C, which can be used to smooth the identification
results over neighboring shots.

The detected speaker’s model is then updated
using his or her current speech data as will be
detailed in the next section. However, one thing
worth mentioning here is that if the current shot
contains music (i.e. it is a speech with music
shot), then no model adaptation is carried out
since otherwise, it will corrupt the model.

2.7. Unsupervised Speaker Model Adapta-
tion

Now, after we identify speaker P for cluster C,
we will update P’s model using C’s data in this
step. Meanwhile, a background model will be ei-
ther initialized or updated to account for all non-
target speakers. Specifically, when there is no a
priori background model, we use C’s data to ini-
tialize it if the minimum of L(C;Mi), i = 1, . . . , N
is less than a preset threshold. Otherwise, if
the background model produces the largest like-
lihood, we denote the identified speaker as “un-
known”, and use C’s data to update the back-
ground model.

The following three approaches have been in-
vestigated to update the speaker model: Average-
based model adaptation, MAP-based model adap-
tation, and Viterbi-based model adaptation.

2.7.1. Average-based model adaptation
With this approach, the P ’s model is updated

in the following three steps.
Step 1: Compute the BIC distances between

cluster C and all of P ’s mixture component bi.
Denote the component that gives the minimum
distance as b0.

Step 2: If the minimum distance is less than
an empirically determined threshold, we consider
C to be acoustically close to b0, and use C’s
data to update this component. Specifically, let
N(µ1, Σ1) and N(µ2,Σ2) be C and b0’s Gaussian
models, respectively, we update b0’s mean and
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covariance as (Mokbel, 2001)

µ′2 =
N1

N12
µ1 +

N2

N12
µ2, (7)

Σ′2 =
N1

N12
Σ1+

N2

N12
Σ2+

N1N2

N2
12

(µ1−µ2)(µ1−µ2)T ,(8)

where N1 and N2 are the number of feature vec-
tors in C and b0, respectively. In practice, be-
cause the mean can be easily biased by different
environment conditions, the third item in Equa-
tion (8) is actually discarded in our implemen-
tation, which results in a slightly better perfor-
mance.

Otherwise, if the minimum distance is larger
than the threshold, we will initialize a new mix-
ture component for P , with its mean and covari-
ance equaling to µ1 and Σ1. However, once the
total number of P ’s components reaches a certain
value, which is currently set to be 32, no more
components will be initialized and only compo-
nent adaptation is allowed. This is adopted to
avoid having too many Gaussian components in
one model.

Step 3: Update the weight pi for each of P ’s
mixture component. Specifically, pi is propor-
tional to the number of feature vectors contribut-
ing to component bi.

2.7.2. MAP-based model adaptation
MAP adaptation has been widely and success-

fully used in speech recognition, yet it has not
been well explored in speaker recognition. In
this work, due to the limited speech data, only
Gaussian means will be updated. Specifically,
given P ’s model Mp, we update its component
bi’s mean via

µ′i =
Li

Li + τ
µ̄ +

τ

Li + τ
µi, (9)

where τ defines the “adaptation speed”, and is
currently set to 10.0. Li gives the occupation
likelihood of the adaptation data to component
bi, and is defined as

Li =
T∑

t=1

p(i|~xt,Mp), (10)

where p(i|~xt,Mp) is the a posteriori probability
of ~xt to bi, and is computed as

p(i|~xt, Mp) =
pibi(~xt)∑m

k=1 pkbk(~xt)
. (11)

Finally, µ̄ in Equation (9) gives the mean of ob-
served adaptation data, and is defined as

µ̄ =
∑T

t=1 p(i|~xt, Mp)~xt∑T
t=1 p(i|~xt, Mp)

. (12)

Unlike the previous method, this MAP adapta-
tion is applied to every component of P based on
the principle that every feature vector has a cer-
tain possibility of belonging to every component.
Thus, MAP adaptation provides a soft decision
on which feature vector belongs to which compo-
nent.

Now that we can no longer say which feature
vector occupies which component, we must define
a new way to update the number of feature vec-
tors belonging to each component. Specifically,
if cluster C contains M frames, then the num-
ber of bi’s feature vectors shall be increased by
M × Li/

∑m
j=1 Lj .

2.7.3. Viterbi-based Model Adaptation
Widely used in speech recognition, the Viterbi

algorithm performs an alignment of training ob-
servations to the mixture component that gives
the highest probability within a certain state
(Young et al., 2000). As a result, every obser-
vation will be associated with one single mixture
component. This is the key concept that we em-
ploy in this approach.

Similar to the MAP-based approach, this ap-
proach also allows different feature vectors be-
longing to different components. Nevertheless,
while the MAP approach gives a soft decision,
this approach implies a hard one, i.e. for any one
particular feature vector ~xt, it will either occupy
component bi or not. Therefore, the probability
function p(i|~xt,Mp) in Equation (10) will now be
replaced by an indicator function which is either
0 or 1. Thus given any feature vector ~xt, the mix-
ture component it occupies will be determined by

m0 = arg max
1≤i≤m

p(i|~xt,Mp). (13)
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Finally, we use Equations (7) and (8) to update
P ’s components after we assign every feature vec-
tor to its belonged component. Clearly, this ap-
proach is a compromise between the previous two
methods.

To summarize, based on the proposed model
adaptation approaches, a speaker model will grow
from 1 Gaussian mixture component up to 32
components as we go through the entire movie se-
quence. Strictly speaking, the GMMs generated
in this way are not the same as original GMMs,
and they are also less accurate than the mod-
els trained using the EM (Expectation Maximiza-
tion) algorithm. However, compared to EM, this
approach is computationally simpler. Moreover,
since no iteration is needed, it can better meet
the real-time processing goal.

3. Experimental results

To evaluate the performance of the proposed
adaptive speaker identification system, studies
have been carried out on two movies, each of
which is approximately 1-hour long. The first
movie is a comedic drama (“When Harry Met
Sally”) with many conversation scenes while the
second one is a tragic romance (“The Legend
of the Fall”) with fewer dialogs but more back-
ground music.

3.1. Results for Movie 1
Three interested characters were chosen for

Movie 1, and totally 952 speech clusters were gen-
erated. An average of 90% clustering purity was
achieved which is defined as the ratio between the
number of segments from the dominant speaker
and the total number of segments in a cluster.

Regarding the talking face detection, we have
achieved 83% precision and 88% recall rates on
425 detected face sequences. However, the ra-
tio of talking face-contained frames over the total
number of video frames is as low as 11.5%. This is
because movie casts are always in constant mov-
ing status, thus making it difficult to detect their
faces.

The identification results for all obtained
speech clusters are reported in the form of a con-
fusion matrix as shown in Table 1. The three

speakers are indexed by A, B, C, and their cor-
responding movie characters are denoted by A’,
B’ and C’. “Unknown” is used for all non-target
speakers. The number in each grid, say grid
(A’, B), indicates the number of speech segments
where character A’ is talking yet actor B is iden-
tified. Obviously, the larger the number in the
diagonal, the better the performance. Three pa-
rameters, namely, false acceptance (FA), false re-
jection (FR) and identification accuracy (IA) are
calculated to evaluate the system performance.
Particularly, for each cast or character, we have

FR =
sum of off-diagonal numbers in the row

sum of all numbers in the row
,

FA =
sum of off-diagonal numbers in the column

sum of all numbers in the column
,

IA = 1− FR.

Table 1(a) gives the identification result when
the average-based model adaptation is applied.
An average of 75.3% IA and 22.3% FA are ob-
served. Result obtained from the MAP-based
approach is given in Table 1(b) where we have
an average 78.6% IA and 21% FA. This result is
slightly better than that in (a), yet at the cost
of a higher computation complexity. The perfor-
mance improvement of applying MAP adaptation
to speaker recognition has also been reported by
Ahn et al. (2000), where a speaker verification
was carried out on a Korean speech database.

Table 1(c) shows the result for the Viterbi-
based approach. As we can see, this table
presents the best performance with an average
82% IA and 20% FA. The fact that this approach
outperforms the MAP approach may imply that,
for speaker identification, a hard decision would
be good enough.

By carefully studying the results, we found two
major factors that degrade the system perfor-
mance: (a) imperfect speech segmentation and
clustering, and (b) inaccurate facial analysis re-
sults. Due to the various sounds/noises existing
in movies, it is extremely difficult to achieve per-
fect speech segmentation and clustering results.
Besides, incorrect facial data can result in mouth
detection and tracking errors, which will further
affect the identification accuracy.



11

Table 1
Adaptive speaker identification results for Movie
1 using: (a) the average-based, (b) the MAP-
based, and (c) the Viterbi-based model adapta-
tion approaches.

A B C Ukn FR IA
A’ 228 42 6 32 26% 74%
B’ 37 281 35 24 25% 75%
C’ 10 9 115 16 23% 77%
Ukn 10 15 4 88
FA 20% 19% 28%

(a)
A B C Ukn FR IA

A’ 239 25 22 22 22% 78%
B’ 59 302 5 11 20% 80%
C’ 10 8 117 15 22% 78%
Ukn 19 16 7 75
FA 27% 14% 22%

(b)
A B C Ukn FR IA

A’ 246 29 13 20 20% 80%
B’ 41 317 13 6 16% 84%
C’ 10 10 123 7 18% 82%
Ukn 18 22 14 63
FA 22% 14% 24%

(c)

Moreover, to examine the robustness of the
three set of speaker models (denoted by AVG,
MAP and VTB) obtained from the three adap-
tation processes, we carried out a supervised
speaker identification based on these models. The
identification results are shown in Table 2, and
a slightly degraded system performance is ob-
served. This is because, when generating these
models during the adaptation process, we have
gradually adapted them to the later part of the
movie data. Thus, when we apply them in super-
vised speaker identification, they may not model
speakers well for the entire movie. Neverthe-
less, this table still presents acceptable results,
especially for the Viterbi-based approach which
presents 80% IA and 23% FA. These results are
also comparable to those reported by other su-

pervised identification work in an adverse audio
environment (Chagnolleau et al., 1999), (Yu and
Gish, 1993).

Table 2
Supervised speaker identification results.

Model IA FA
set A’ B’ C’ A B C
AVG 68% 74% 70% 23% 21% 33%
MAP 71% 81% 72% 25% 21% 26%
VTB 74% 90% 76% 24% 17% 28%

To determine the upper limit of the number of
mixture components in each speaker model, we
examined the average identification accuracy in
terms of 32 and 64 components for all three adap-
tation methods and plotted them in Figure 6(a).
As shown, except for the average-based method
where a similar performance is observed, the use
of 32 Gaussian mixture components has produced
a better performance.

Finally, the average identification accuracy ob-
tained by using or without using face cues is
compared in Figure 6(b). Clearly, without the
assistance of face cue, the system performance
has been significantly degraded, especially for the
average-based adaptation approach. This indi-
cates that the face cue plays an important role in
model adaptation.

3.2. Results for Movie 2
We also tested our algorithms on Movie 2,

which is a tragic romance with fewer dialogs.
Four casts were chosen as target speakers, and the
speech clustering process resulted in 738 speech
clusters. An average 83% clustering purity was
achieved.

As for the talking face detection, similar pre-
cision and recall rates were achieved. However,
the percentage of talking face-contained frames is
only around 3.6% in this movie. Therefore, com-
pared to Movie 1, this time we got less help from
the face cue.

The identification results for all three adapta-
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Figure 6. Identification accuracy comparison for the average-based, the MAP-based, and the Viterbi-
based approaches with: (a) 32-component vs. 64-component for speaker models, and (b) using vs. without
using face cues.

tion approaches are tabulated in Table 3. As
shown, they have yielded similar results. How-
ever, the system performance has significantly
degraded from that in Table 1 due to the fol-
lowing reasons: 1) the fewer dialogs in Movie 2
have made the identification errors more costly
since now the target speakers have much fewer
speech data; 2) the frequent use of background
music in this movie brings a big challenge to our
speech segmentation and clustering scheme; and
3) the casts’ strong emotions have resulted in a
wide variation in their talking rates, volumes and
other related acoustic characteristics, which also
brings a challenge to the current system.

In order to find the optimal number of Gaussian
mixture components for initial speaker models,
we examined the average identification accuracy
in terms of 1-component, 2-component and 4-
component for all three adaptation methods and
plotted them in Figure 7(a). As shown, for all
three cases, the use of 1 component gives the best
performance. This means that when the amount
of training data is very limited, e.g. the speech
collected from one single shot, the use of multiple
components tends to bring worse performance.

Another experiment was carried out to examine
the performance change when the speaker mod-
els were updated with different amount of train-
ing data. Specifically, we measured the identifica-
tion accuracy when the first 0%, 10%, 30%, 60%,

90%, and 100% of the entire movie data were
used to update the models. The system perfor-
mance evolvement for the average-based, MAP-
based and Viterbi-based approaches are plotted
in Figure 7(b) using circle-, triangle- and square-
marked curves, respectively.

We see from this figure that all curves have
shown a continuous performance improvement
with the increase of the training data volume.
This indicates the effectiveness of the proposed
adaptive identification scheme. Moreover, we ob-
serve that there is a significant performance in-
crease when the data amount rises from 10% to
30%, and from 30% to 60%, for all three cases.
However, the identification accuracy remains rel-
atively stable when the data amount increases
from 90% to 100%. Similarly, the performance
gain is relatively minor when the speaker models
are updated using the first 10% of data, except
for the Viterbi-based approach. This is because
that, the initial speaker models are trained us-
ing the data collected from randomly distributed
shots, thus they may not work well at the very
beginning of the movie.

Figure 8 gives a detailed description of a
speaker identification example. Specifically, the
upper part shows the waveform of an audio signal
recorded from a speech shot where two speakers
take turns to talk. The superimposed pulse curve
illustrates the speech-silence separation result
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Table 3
Adaptive speaker identification results for Movie 2 using: (a) the average-based, (b) the MAP-based, and
(c) the Viterbi-based model adaptation approaches.

IA FA
Method A’ B’ C’ D’ A B C D
AVG-based 73% 80% 79% 64% 27% 43% 26% 13%
MAP-based 66% 78% 80% 70% 30% 34% 19% 28%
VTB-based 63% 82% 79% 65% 26% 36% 28% 32%
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Figure 7. Comparison of identification accuracy for the average-based, the MAP-based, and the Viterbi-
based approaches with: (a) 1, 2 and 4 components in initial speaker models, and (b) different amount of
model training data.

where all detected speech segments are bounded
by the passband of the curve. The speaker iden-
tity for each speech segment is given right be-
low this sub-figure, where speakers A and B are
represented by dark- and light-colored blocks, re-
spectively. The likelihood-based speaker identi-
fication result is given right below the ground
truth, where only the toppest speaker’s identity
is shown. Besides, since two of the speech seg-
ments are too short (indicated by the circles) for
speaker identification, we will disregard them in
later processes. As shown, there are two false
alarms in this result where B is falsely recognized
as A twice. The talking face detection result is
shown in the next sub-figure including both talk-
ing and non-talking cases. Finally, the last sub-
figure shows the ultimate identification result ob-

tained by integrating both speech and face cues
as discussed in Section 2.6. As shown, although
the first error still exists as the face cue cannot
offer help, the second error has been corrected.

4. CONCLUSION AND FUTURE
WORK

In this research, an adaptive speaker identi-
fication system was proposed which recognizes
speakers in a real-time fashion for movie content
indexing and annotation purposes. Both audio
and visual cues were exploited where the audio
source was analyzed to recognize speakers using a
likelihood-based approach, and the visual source
was parsed to recognize talking faces using face
detection/recognition and mouth tracking tech-
niques. Moreover, to better capture speakers’
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voice variations along time, we update their mod-
els on the fly. Extensive experiments were carried
out on two test movies of different genres, and en-
couraging results have been achieved.

As our future work, we plan to continue our
research on face detection and tracking module
since the current face detector has certain diffi-
culty in locating non-upright faces which turns
out to be very common in feature films. More-
over, the performance of the speech clustering
module needs to be further improved.
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Likelihood-based speaker identification result 

Talking face detection result 

Final speaker identification result 

Legends: 

 : A’s non-talking face : B’s non-talking face 

: A’s talking face : B’s talking face 

: Speaker A : Speaker B 

Speakers – Ground Truth 

Figure 8. A detailed description of a speaker identification example.


