
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 11, NOVEMBER 2004 1249

A Progressive View-Dependent Technique for
Interactive 3-D Mesh Transmission

Sheng Yang, Student Member, IEEE, Chang-Su Kim, Member, IEEE, and C.-C. Jay Kuo, Fellow, IEEE

Abstract—A view-dependent graphics streaming scheme is
proposed in this work that facilitates interactive streaming and
browsing of three-dimensional (3-D) graphics models. First, a 3-D
model is split into several partitions. Second, each partition is
simplified and coded independently. Finally, the compressed data
is sent in order of relevance to the user’s requests to maximize
visual quality. Specifically, the server can transmit visible parts
in detail, while cutting out invisible parts. Experimental results
demonstrate that the proposed algorithm reduces the required
transmission bandwidth, and provides an acceptable visual quality
even at low bit rates.

Index Terms—Graphics streaming, mesh partitioning, mesh
simplification, progressive mesh coding, view-dependent.

I. INTRODUCTION

RECENTLY, virtual reality has attracted a lot of attention,
and the demand of three-dimensional (3-D) models has

increased significantly. Triangle meshes have been widely used
for modeling 3-D objects. Both geometry data and topology data
are required to represent a triangle mesh. The geometry data
specify vertex properties, for example, locations, colors, and
normal vectors while topology data describe the connectivity
between vertices. The mesh representation, however, requires a
huge amount of storage space in general, and the distribution
of 3-D mesh models over communication channels is limited
by the available bandwidth. Mesh compression techniques must
be used to reduce the storage requirement and the transmission
bandwidth.

In this work, we consider a graphics streaming scenario, where
graphics models are stored in a server and clients send requests to
the server fordata retrieval in order to browseoneormany models
fromvariousviewinganglesanddistances.Oneapplicationofthis
technique is toallowaviewer tobrowseafinegraphicsmodelover
a low bit rate channel with a simple device, say, wireless PDA.
Most previous work on graphics compression has paid little at-
tention to this server-client communication issue. In a traditional
setting, acompletegraphicsmodel is transmittedeither inasingle
or progressive resolution mode, yet no dynamic viewing is taken
intoaccount in thesystem.Asa result, aviewerhas tosuffera long

Manuscript received January 30, 2002; revised April 3, 2003. This paper
was supported in part by the Integrated Media Systems Center, National Sci-
ence Foundation Engineering Research Center, Cooperative Agreement EEC-
9529152. This paper was recommended by Associate Editor H. Shum.

S. Yang and C.-C. J. Kuo are with the Department of Electrical Engineering
and the Integrated Media Systems Center, University of Southern Cali-
fornia, Los Angeles, CA 90089-2564 USA (e-mail: sheng@costard.usc.edu;
cckuo@sipi.usc.edu).

C.-S. Kim is with the Department of Information Engineering, Chinese Uni-
versity of Hong Kong, Shatin, N.T., Hong Kong (e-mail: cskim@ieee.org).

Digital Object Identifier 10.1109/TCSVT.2004.835153

period of initial download time. In the streaming context, trans-
mission of invisibleparts is actually unnecessary so that the initial
waiting time can be greatly reduced.

In this research, we propose a view-dependent graphics
streaming system based on viewing and network parameters.
The system can adaptively transmit graphics models according
to user’s requests and network constraint. The view-dependent
progressive mesh (VDPM) compression algorithm first divides
an input mesh into several partitions, and compresses each
partition progressively and independently. According to the
viewing parameters provided by a client, the server assigns an
appropriate resolution to each partition, and then reorganizes
and transmits topology and geometry data to maximize visual
quality subject to a bandwidth constraint. Experimental results
demonstrate that the proposed algorithm can offer desirable
visual quality even at low bit rates by allocating the major
portion of the available bandwidth to visible parts.

The rest of the paper is organized as follows. The system
overview is introduced in Section II. In Section III, we present
our techniques for mesh partitioning, simplifying and coding. In
Section IV, we describe the details involved in visibility determi-
nation and resolution setting. Subsequently, we address how to
allocate bandwidth to partitions subject to a network constraint
in Section V. Experimental results are reported in Section VI to
verify the performance of the proposed algorithm. Finally, con-
cluding remarks and future work are given in Section VII.

II. SYSTEM OVERVIEW

When a viewer browses a 3-D mesh model, the model need
not be rendered at the full resolution over its entire surface,
since the most urgent data are those that refine the visible re-
gions. Therefore, surface partitioning is needed to allow visible
regions being separated from invisible ones. To be more spe-
cific, to enable adaptive browsing of 3-D graphics models, these
models should be divided into partitions so that each partition
can be coded and transmitted independently. Our basic idea is
illustrated in Fig. 1.

As shown in Fig. 1(a), the encoded bit stream consists of a
base model and several layered partitions. Fig. 1(b) gives an
example of view-dependent transmission. The client informs the
server of its viewing parameters. Then, the server transmits each
partition with an appropriate resolution. Typically, it transmits
visible partitions at a higher resolution, while transmits few data
for invisible partitions.

It is important for the server to determine the visible regions
from the view point of viewers before transmission. This de-
pends on the viewing parameters and the visibility determina-
tion algorithm. Here, the relative locations of the viewer and the

1051-8215/04$20.00 © 2004 IEEE

1250 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 11, NOVEMBER 2004

Fig. 1. (a) Data organization of the compressed model. (b) Example of
view-dependent transmission.

object and the viewing direction are used to determine the vis-
ibility and the proper resolution of each partition. Furthermore,
the actual data transmission is also affected by the available net-
work bandwidth.

The proposed graphics streaming system is shown in Fig. 2. It
consists of three main modules: 1) mesh representation; 2) vis-
ibility determination and resolution setting; and 3) rate control.
Each module will be described in detail in Sections III–V.

III. MESH REPRESENTATION

A. Background Review

Since there is a large amount of literature on mesh represen-
tation, let us first review previous work in this field. Then, we
will describe our novel mesh representation scheme which takes
mesh partitioning into account.

Since Deering [5] introduced the concept of generalized
triangle strip, much effort has been made in the single-res-
olution mesh compression technique. Taubin and Rossignac
[18] developed the topological surgery algorithm, which com-
presses triangle meshes by using two interlocked trees, called
the vertex spanning tree and the triangle spanning tree. Touma
and Gotsman [19] proposed the use of the breadth-first traversal
method and the parallelogram rule to compress topology and
geometry data of triangle meshes, respectively. Also, Gumhold
and Straßer [7] developed a fast compression algorithm for
topology data, which can be employed in real time applications.

These single-resolution algorithms encode the entire data as
a whole. It is however advantageous to progressively compress
and transmit the graphics models streaming over IP networks. If
the scene is rendered or played after the reception of the entire
data, viewers have to wait for a long time. On the contrary, if
the data are progressively transmitted, the graphics models can

be updated from low to high resolutions continuously at the de-
coder, alleviating the annoying waiting experience.

Hoppe [8] proposed the notion of progressive meshes based
on edge collapse and vertex split operations. The progressive
mesh enables continuous transition from the coarsest to the
finest resolutions. Cohen et al. [3] introduced the simplification
envelope method, which generates a hierarchy of level-of-detail
approximations from a given polygonal model. Li and Kuo [11]
developed a hierarchical 3-D graphics compression scheme to
progressively compress an arbitrary triangle mesh into a single
bit stream. The receiver can stop at any point within the bit
stream to reconstruct the original model with a rate-distortion
tradeoff. Khodakovsky et al. [10] investigated an alternative
progressive coding method by employing the wavelet trans-
form after converting an input mesh into a semi-regular mesh.
Alliez and Desbrun [1] proposed a progressive scheme with an
excellent compression ratio, which provides the state-of-the-art
compression performance. However, these algorithms do not
exploit the fact that only the front parts of 3-D models are
visible to the viewer and the transmission of invisible parts is
actually a waste of the limited bandwidth.

Toexploit thedynamicvisual importance, severalview-depen-
dent rendering algorithms have been proposed in the literature
[9], [13], [16], [21]. These view-dependent methods organize a
given mesh into a hierarchy and continuously query the hier-
archy to generate a set containing only visible primitives. They
work well when dealing with mesh data without entropy coding.
This setting is likely to happen in an environment where all data
are stored locally and a compact description of graphics data
is not an essential requirement. They are however not suitable
for compressed graphics data streaming. Note that the 3-D mesh
model is usually encoded by entropy coders at the last stage to
reduce the file size. Then, the coded bits in the resulting bit stream
cannot be easily reorganized to take advantage of selective trans-
mission when the viewing parameters are changed dynamically.
Some partitioning schemes are proposed in [15], [22] for error
resiliency or large model management. In this paper, we develop
a new partitioning scheme to facilitate view-dependent graphics
data transmission, which is different from the work in [15], [22]
for the overall objective and, consequently, the detailed imple-
mentation. The proposed mesh compression algorithm is able to
transmit visible entropy-coded mesh data according to the dy-
namic change of viewing parameters.

B. Partitioning

To enable view-dependent compression and transmission of
a given graphics model, the proposed algorithm divides a mesh
into several partitions, and simplifies each partition indepen-
dently. Fig. 3 illustrates the mesh partitioning and simplifica-
tion procedures. Let us assume that the original mesh is divided
into three partitions as shown in Fig. 3(a), where partitioning
boundaries are drawn with thick lines. The proposed algorithm
simplifies the mesh into a base model by merging inner vertices
of each partition into a single vertex as shown in Fig. 3(b).

The following definitions are useful in developing the pro-
posed algorithm. A boundary node is a vertex that lies on par-
tition boundaries, and an inner vertex is a vertex that is not a
boundary node. A boundary node is also called a corner vertex,

YANG et al.: A PROGRESSIVE VIEW-DEPENDENT TECHNIQUE FOR INTERACTIVE 3-D MESH TRANSMISSION 1251

Fig. 2. Overview of the proposed graphics streaming system. (1) mesh representation; (2) visibility determination and resolution setting; and (3) rate control.

Fig. 3. Mesh partitioning and simplification. (a) Original mesh. (b) Simplified mesh. (c) Final polygonal mesh.

if it is incident on three or more partitions, or if it lies on the
physical boundary of the object and is incident on two or more
partitions. A boundary node, which is not a corner vertex, is
called a boundary vertex. A root vertex is a vertex to which all
inner vertices of a partition are eventually merged during the
simplification process. For example, as shown in Fig. 3, , ,
and are boundary vertices, , , and are corner vertices,
and , , and are root vertices, respectively.

A boundary loop is a loop connected by a series of boundary
nodes. If there is one and only one root vertex within each
boundary loop of a base model, we call it a perfect base model,
as shown in Fig. 3(b). Fig. 4(a) shows an example of an imper-
fect base model. Note that , , and form a boundary loop,
but there is no root vertex within it. The proposed scheme gen-
erates a perfect base model, since it yields a higher coding gain
as will be shown in Section III-C. Note that a hole is naturally
declared as a partition and the vertices surrounding it form a
boundary loop. We can imagine there is a virtual root located at
the center of the hole.

To reduce the initial waiting time while maintaining an ac-
ceptable visual quality of the base model, there is a tradeoff in

Fig. 4. (a) Imperfect base model. (b) Eliminating the irregular loop in (a).

determining how many partitions a model should be split into.
The curves describing how the base mesh size and the distor-
tion vary with the partition number are shown in Fig. 5. The
distortion is obtained by computing the mean distance between
the base mesh and the original one [2]. The base mesh size lin-
early increases with the partition number, while the distortion
decreases exponentially. Other models also comply with these

1252 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 11, NOVEMBER 2004

Fig. 5. Relationship between partition number and (a) base mesh size and (b) base mesh distortion.

curves in the general trend. Moreover, if we ignore the geom-
etry data of the base mesh, the base mesh size is dependent of the
partition number only, no matter how large the original model
is, as described in Section III-D1. According to our experience,
it is appropriate to split a given model into 40–60 partitions in
most applications.

In our algorithm, root vertices are first selected from a given
mesh, and then each partition is expanded from a root vertex. As
shown in Fig. 3(b), only root vertices and partitioning bound-
aries are retained to generate the base model. Therefore, the vi-
sual quality of the base model depends on the locations of root
vertices. To select root vertices, we adopt the maximum distance
method, which is used for the codebook design in vector quan-
tization [20]. The basic notion is to maximize the base mesh
visual quality by making the distance between two root vertices
as far as possible, as detailed below.

An arbitrary vertex is selected as the first root vertex . Then,
the distances between this vertex and all other vertices are com-
pared. The vertex with the maximum distance is chosen as the
second root vertex . Similarly, the vertex that has the max-
imum distance from the vertex set is
selected as the new root vertex . The distance from a vertex
to the set of vertices is defined as

where denotes the Euclidean norm in the 3-D space. This
step is repeated until a prespecified number of root vertices have
been selected. The Euclidean distance is adopted here due to its
simplicity and practicability for our test meshes. However, the
adoption of the Euclidean norm may fail to achieve this “equal
size partitioning” goal around areas where the mesh undulates
very much. For such a mesh, other distance measures such as
the geodesic measurement may be considered.

After determining the set of root vertices, the proposed al-
gorithm extends each root vertex to a partition by using bidi-
rectional breadth-first mesh traversal algorithm extended from
[12]. To assign each vertex to the partition whose root vertex

Fig. 6. Bidirectional traversal.

is nearest to , we maintain a first-in–first-out (FIFO) list of
vertices. The principal link of vertex is defined as the edge,
incident on , from which the traversal starts. First, we select
arbitrarily the principal links of root vertices, and push all root
vertices into the list in order of their indices. Then, a vertex is
popped from the list to perform the traversal. We check its adja-
cent vertices in a bidirectional way, starting from the principal
link. If an adjacent vertex has not been traversed yet, then it is
assigned the same partition index as vertex , and is pushed into
the buffer. The principal link of is set as edge . The
process is iteratively performed, until the list becomes empty.

For example, in Fig. 6, let us assume that vertices and ,
both of which belong to partition 1, have already been traversed,
and that all their adjacent vertices are assigned the same parti-
tion index 1. Also, assume that , which belongs to partition 2,
is popped from the FIFO list. The traversed links are depicted
in solid lines, and the untraversed links in dash lines. If we as-
sign partition index 2 to the untraversed vertex , which is lo-
cated between and in partition 1, the boundary will be of a
saw-toothed shape. This is undesirable, since the irregular shape
of partition boundary degrades the compression performance.
To avoid this undesirable effect, we perform the bidirectional
traversal in the following way. We first check the adjacent ver-
tices of from the principal link in a counterclockwise
order until that belongs to another partition is reached. Then,
we repeat the procedure in a clockwise order. Vertex remains
untraversed, until is popped from the FIFO list later.

YANG et al.: A PROGRESSIVE VIEW-DEPENDENT TECHNIQUE FOR INTERACTIVE 3-D MESH TRANSMISSION 1253

TABLE I
STATISTICS OF FOUR TEST BASE MODELS. THE NUMBER OF ROOTS (OR PARTITIONS), CORNER VERTICES, BOUNDARY VERTICES, IRREGULAR

LOOPS, THE TOTAL NUMBER OF VERTICES, THE FILE SIZE, AND THE DISTORTION

Fig. 7. Illustration of the half edge collapse operation.

After assigning a partition index to each vertex, we detect
boundary nodes. Let be the th partition. We check each
vertex in . A vertex is declared as a boundary node, if its ad-
jacent vertex has the partition index different from 0. Similarly,
we check each vertex in , . A vertex in is de-
clared as a boundary node, only if its adjacent vertex has the
partition index different from , and has not been detected as
a boundary node in previous steps.

Finally, the given mesh is partitioned into a Voronoi space
in terms of the topological distance (rather than the Euclidean
norm). This guarantees that vertices can be averagely assigned
to partitions.

C. Simplification

We employ the half edge collapse operation [6] to merge all
inner vertices of a partition eventually into the root vertex. The
half edge collapse operation is widely used in mesh compres-
sion, since the position of a merged vertex need not be encoded.
It is worthwhile to point out that the view-dependent compres-
sion algorithm is not limited to the use of the edge collapse op-
eration. Any simplification method can be adopted under the
view-dependent framework, as long as it can achieve layer sim-
plification within each partition.

Fig. 7 illustrates the half edge collapse operation, which
merges vertex to its adjacent vertex . Two adjacent tri-
angles and are removed accordingly.
Vertices , , , and are called the parent, left, right,
and child vertices, respectively. The vertex split is the inverse
operation of the half edge collapse, used to refine a mesh. ,

and are required to uniquely identify an edge collapse
operation. To improve the compression performance, it is desir-
able to record the relative locations of and in the incident
vertex list of , instead of their absolute indices. Therefore,
cannot be a boundary node due to this concern; otherwise, the
partitions cannot be simplified and coded independently.

Accordingly, we perform successive edge collapse operations
within a partition until all inner vertices are removed, subject to
the constraint that only inner vertices can be merged to inner or
root vertices. We first compute the quadric error metrics (QEM)
[6] for each edge. Then, edge is selected to be deci-
mated, if has the minimum error.

Fig. 8. Four base models.

The proposed algorithm encodes the base model, assuming
that the simplified mesh is a perfect base model. However, even
after all inner vertices have been merged into root vertices,
there can be irregular boundary loops as shown in Fig. 4(a). In
this example, triangle is an irregular boundary loop,
since there is no root vertex within it. In our approach, these
irregular loops are removed using a postprocessing technique.
That is, we detect irregular boundary loops by checking the
three vertices of each triangle in the simplified mesh. If all
three vertices are boundary nodes, they form an irregular loop.
Then, we perform one edge collapse operation to eliminate
one of the three boundary nodes. But the child vertex is not
restricted to be merged to the root vertex. The operation is
permitted as long as the irregular loop can be removed. The
irregular loop in Fig. 4(a) can be eliminated by merging
into , as shown in Fig. 4(b).

Some statistics of four test base models are reported in
Table I. They include the number of partitions (or roots), corner
vertices, boundary vertices, irregular loops, the total number of
vertices, the file size and the distortion. The four base models
are depicted in Fig. 8.

1254 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 11, NOVEMBER 2004

Fig. 9. Data structure of a graphics model.

D. Progressive Coding

1) Coding of the Base Model: The previous section de-
scribed how to generate a perfect base model from a given
mesh. The perfect base model has two properties, which can
be exploited to effectively encode its topology data. First, a
boundary vertex is always connected to two root vertices and
two boundary nodes, as shown in Fig. 3(b). Thus, to preserve
the topology, it is sufficient to record the number of boundary
vertices between every two corner vertices. Second, since each
boundary loop contains a single root vertex, we can remove
root vertices without losing any topology information.

Fig. 3(c) shows the final polygonal mesh, which is obtained
by removing the boundary and root vertices from the perfect
base model in Fig. 3(b). The topology of the perfect base model
can be losslessly reconstructed from that of the final polygonal
mesh and the number of boundary vertices between every two
corner vertices. This is why we claim that the size of the base
mesh topology is only dependent of the partition number in Sec-
tion III-B. Finally, the topology of the final polygonal mesh is
encoded by the breadth-first mesh traversal algorithm [12].

After encoding the topology of the base model, we quantize
and encode the geometry. We take vertex positions as illustra-
tion, which are encoded in the order of the root, corner, and
boundary vertices. The positions of root vertices are entropy-en-
coded by a QM coder [17]. It is expected that a corner vertex
is located near the center of its adjacent root vertices. Thus, we
predict its position via

where denotes an adjacent root vertex, and is the number
of adjacent root vertices. Then, the prediction error,

, is encoded by the QM coder. Similarly, the position of a
boundary vertex is predicted from those of two corner vertices,
and the prediction error is encoded. Let us assume that there

are boundary vertices between two corner
vertices and . sequentially lie on a
boundary segment. Then, the position of is estimated by linear
interpolation, given by

2) Coding of Partitions: Before encoding each partition, the
irregular loops must be recorded to preserve the topology data.
Since an irregular loop is eliminated by an edge collapse oper-
ation, it can be uniquely recorded by the parent, left, and right
vertices that determine this edge collapse operation. Thereafter,
each partition is encoded independently by using the conven-
tional progressive mesh coding techniques. We adopt the com-
pressed progressive mesh (CPM) method [14] to represent each
partition into layers

where is the coarsest mesh partition, already transmitted as
parts of the base model, and is the finest mesh partition.
In this work, the index in is called the resolution of the
partition.

The data structure of a graphics model is illustrated in Fig. 9.
The order in which the data are coded and transmitted is stated
as follows: connectivity of corner vertices, positions of root ver-
tices, residual of corner vertices, number of boundary vertices,
residual of boundary vertices, irregular loops, topology of par-
titions, and geometry of partitions.

IV. VISIBILITY DETERMINATION AND RESOLUTION SETTING

A. Visibility Determination

In this section, we describe a method to determine the visi-
bility of partitions. This is the basis of view-dependent transmis-
sion. The method uses three criteria: viewing frustum, partition
orientation, and occlusion.

YANG et al.: A PROGRESSIVE VIEW-DEPENDENT TECHNIQUE FOR INTERACTIVE 3-D MESH TRANSMISSION 1255

Fig. 10. Use of a sphere to represent a partition. (a) Partitioned Spock model.
(b) Sphere.

Fig. 11. Viewing frustum test.

1) Viewing Frustum: The viewing frustum defines a
volume, and the viewer can only perceive objects located in it.
The viewing frustum is enclosed by a near plane, a far plane,
and four side planes intersected at the view point. The purpose
of this criterion is to cut out the partitions which are located out
of the viewing frustum.

The test can be done by checking whether the intersection be-
tween the viewing frustum and the partition exists. To simplify
the process, we use a sphere to enclose vertices within one parti-
tion. Let us take the Spock model as an example. The partitioned
Spock model is drawn in Fig. 10(a). Note that only the partition
of interest is denoted by , which is rendered at the highest res-
olution. The root vertex of is represented by a black dot and
the vertices within is surrounded by a sphere as shown in (b)
with its center located at root vertex . The radius can be
computed via

where is any inner vertex within .
The viewing frustum is shown in Fig. 11. The normal vec-

tors of four side planes are denoted by , . The
distance from the view point to the near plane and far plane are
denoted by and , respectively. Then, the sphere lies
outside of the frustum if and only if

where denotes the inner product, and

or

By using the above criterion, some experimental results are
shown in Fig. 12, where (a) is the image reconstructed by the

Fig. 12. Visibility determination based on the viewing frustum criterion. (a)
Partial image. (b) Whole image.

Fig. 13. Determining the visibility of a vertex.

Fig. 14. Merging of two Gauss maps. (a) Two Gauss maps. (b) Their mergence.

partitions located in the viewing frustum and (b) is the image of
the whole model. Comparing these two images, we can see that
the details of partitions located out of the viewing frustum are
skipped.

2) Partition Orientation: The purpose of the partition orien-
tation test is to cut out partitions facing away from the viewer.
The way to determine whether a vertex is facing toward the
viewer or not is illustrated in Fig. 13. Let be the vector
pointing from to the viewer, and be the normal vector of

. The angle between and is computed via

If , is visible. Otherwise, it is invisible.

1256 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 11, NOVEMBER 2004

Fig. 15. Occlusion check.

Fig. 16. Example of the occlusion effect.

To find out the overall normal vector (or the orientation) of
vertices in a partition, the Gauss map [21] provides an effec-
tive method. By using the Gauss map, the unit normal vectors
are mapped to the corresponding points on the surface of a unit
sphere, and all vectors are represented by a cone. In our ap-
proach, we obtain the Gauss map for each partition, and employ
the axis of the cone as the representative normal vector for that
partition.

In mesh simplification, each partition is implicitly organized
as a hierarchical tree, where the root vertex is the root of the
tree, and the edge collapse operation determines the parent-child
relationship. Thus, we can obtain the Gauss map of the partition
in a bottom-up approach. We start with the trivial Gauss maps of
leaf nodes or vertices, whose radius are 0, and iteratively obtain
the Gauss map of the parent node by merging the Gauss maps of
child nodes. Fig. 14 illustrates the merging of two Gauss maps.
Let , and , denote the axes and the radii of two child
cones before merging, respectively. For the derivation of and

, we refer to [23].
Consequently, the angle between the representative normal

vector of the partition and the viewing vector can be calculated as

If , the partition is visible. Otherwise, it
is invisible.

3) Occlusion Effect: In some cases, a viewer cannot observe
a partition even if it is located in the viewing frustum and facing
toward the viewer. This is due to the self-occlusion property of

concave objects. When rendering, the occlusion effect can be
easily detected with the -buffer. However, it is difficult for the
server to adopt a similar approach in the current context. We
develop a new method to check occlusion as described below.

We first determine the set, denoted by , that contains all par-
titions that are located in the viewing frustum and facing toward
the viewer. Then, the partition in that is the closest to the viewer
is taken out, denoted by , as shown in Fig. 15(a). is visible
andwestoreit inanotherset .Wecheckthepartitionsadjacent to

. If they belong to , we store them in as shown in Fig. 15(b).
Repeat the traversing process, until the visible region containing

has been found. If there are partitions remaining in , we re-
peat the same procedure subject to the constraint that only when
the partition is not occluded by known visible regions, will it be
stored in . Eventually, all visible regions can be found. An ex-
ampleisshowninFig.16,where(a) is theimagerenderedfromthe
viewer’s perspective. We can see from (b) that the occluded parts
are kept at the coarse resolution.

B. Resolution Setting

An edge of unit length, which is perpendicular to the normal
vector , is seen as the edge of length by the viewer,
where is the angle between the normal vector and viewing
vector. Thus, the resolution of the surface of an object should
be proportional to . The distance between the viewer and
the object also plays an important role in resolution setting. The
closer a viewer is to the object, the more details he can see, and
vice versa. Let us describe how to determine the resolutions of
partitions in Sections IV-B1 and 2.

YANG et al.: A PROGRESSIVE VIEW-DEPENDENT TECHNIQUE FOR INTERACTIVE 3-D MESH TRANSMISSION 1257

Fig. 17. Amount of data needed at each resolution for: (a) the Spock model and (b) the Bunny model.

1) Viewing Angle: Generally speaking, human eyes are
more sensitive to light beams coming into eyeball at a smaller
angle with respect to the line of sight. Therefore, the overall
normal vector of partition obtained in Section IV-A2 is helpful
in expressing the relationship between the resolution and the
viewing angle.

We determine the resolution of a partition by using the
viewing vector and the Gauss map of the partition via

(1)

where is the highest resolution of the partition. Angle
is the minimum angle between the viewing vector and any pos-
sible vector in the Gauss map. Thus, an edge of unit length in the
partition is perceived by the viewer as the edge whose length is
shorter than . Therefore, the resolution of the partition
is set to be proportional to .

Furthermore, silhouette plays an important role in the per-
ception of details. However, by (1), the center partitions have
higher resolutions than side ones. This will inevitably blur the
silhouette. To overcome this drawback, we add the complemen-
tary condition

if there exists belonging to , which makes , then
we have .

2) Viewing Distance: To find out the relationship between
the distance and the resolution, we first study the amount of
data needed for each resolution, which is shown in Fig. 17. The
data-fitting curve approaches a parabolic function. Furthermore,
the larger the model is, the better the parabolic approximation
is. Thus, the following formula is used to describe the curve

(2)

where is the data size at resolution , the lowest resolu-
tion, the highest resolution, the data size at resolution

, and the data size at resolution . The approxi-
mating results are shown in Fig. 18.

Let the distances from the viewer to the near and far planes of
the viewing frustum be and , respectively, as shown
in Fig. 11. If the distance between the viewer and the model
is equal to , it is rendered at the lowest resolution. If the
distance is equal to , it is rendered at the highest resolution.
Given a constant bandwidth and a user’s moving speed, this
distance should be linearly related to data needed, i.e.,

(3)

By substituting (3) into (2), we have

(4)

To summarize, by incorporating (1), the final resolution setting
formula can be obtained by

(5)

V. RATE CONTROL

The resolution setting in (5) implicitly assumes that there is
no constraint on transmission bandwidth. But, the bandwidth is
usually limited by networks in a time-varying way. We develop a
rate control algorithm to adapt to different network situations. It
is assumed that data are transmitted over a channel with variable
bandwidth , and the server is informed of viewer’s position
every without delay.

Fig. 19 illustrates a scenario where a viewer moves around the
object. At time , the viewer is located at and able to dis-
cern the region denoted by arc . The server determines the
resolution of visible partitions according to (5). Parts of the data

1258 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 11, NOVEMBER 2004

Fig. 18. Parabolic curve fitting for: (a) the Spock model and (b) the Bunny model.

Fig. 19. Viewer moving around the model. (a) t = t �4t. (b) t = t . (c) t = t +4t.

in visible region may have already been transmitted previously.
The incremental data amount is denoted by .
The maximum data amount that can be transmitted during in-
terval can be estimated via

If , the networks cannot
support the requested resolutions. In such a case, the server iter-
atively searches the partition with the highest resolution within
the visible area and decreases its resolution level by 1,
until the incremental data amount satisfies the network con-
straint.

On the other hand, if ,
the server repeatedly increases the partition with the lowest res-
olution within area by 1, until all extra bandwidth is con-
sumed. Moreover, when the bandwidth is not fully consumed
even if all visible partitions are transmitted at the highest reso-
lution, the server predicts the viewer’s new position in the next
interval and finds out which partitions will probably come into

view. There are two parameters associated with viewer’s move-
ment, position and viewing direction.

As shown in Fig. 19, locations of the viewer at time instances
and are denoted by and , respectively. Then,

the location at time can be predicted as

where the weighting parameters and can be determined
by the least square method based on previous observations.
The viewing direction can also be predicted using a similar ap-
proach.

VI. EXPERIMENTAL RESULTS

The proposed system is tested in two scenarios: static viewing
and dynamic viewing. In the static viewing case, the view point
does not change so that the server only need to set the resolution
once. In the dynamic viewing case, since the viewing parame-
ters vary continuously, the server has to update the resolution
adaptively.

YANG et al.: A PROGRESSIVE VIEW-DEPENDENT TECHNIQUE FOR INTERACTIVE 3-D MESH TRANSMISSION 1259

Fig. 20. Compression of the Fan Disk model. From left to right: CPM, front-facing image; CPM, back-facing image; the proposed algorithm, front-facing image;
the proposed algorithm, back-facing image.

Fig. 21. Compression of the Bunny model. From left to right: CPM, front-facing image; CPM, back-facing image; the proposed algorithm, front-facing image;
the proposed algorithm, back-facing image.

Fig. 22. Compression of the Venus Head model. From left to right: CPM, front-facing image; CPM, back-facing image; the proposed algorithm, front-facing
image; the proposed algorithm, back-facing image.

Fig. 23. Compression of the Spock model. From left to right: CPM, front-facing image; CPM, back-facing image; the proposed algorithm, front-facing image;
the proposed algorithm, back-facing image.

A. Static Viewing
We compare the performance of VDPM on Fan Disk, Bunny,

Venus Head, and Spock mesh models with that of CPM.

Figs. 20–23 show reconstructed images. Note that the two al-
gorithms use the same simplification operations and arithmetic
coders. The only difference is the introduction of the partition

1260 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 11, NOVEMBER 2004

TABLE II
COMPRESSED FILE SIZES (IN BYTES). “TRANS. DATA” = SIZE OF THE TRANSMITTED DATA FOR FIGS. 20–23

Fig. 24. Moving around the Bunny model: (a) 0 . (b) 90 . (c) 180 . (d) 270 . (e) Resolution curves of four partitions. (f) Transmitted data size.

concept in our algorithm. As a result, the simplification strategy
is totally changed.

For geometry encoding, 12 bits are used to represent each
coordinate of vertices for the original mesh. The full resolution
is assigned to CPM. For VDPM, each partition is assigned the
resolution adaptively, based on the viewing angle by (5). The
proposed algorithm provides comparable quality for the front-
facing images, while reconstructing invisible back-facing parts
at the lowest resolution.

Table II summarizes coding results. VDPM requires about
3%–10% more bits to refine the models at the finest resolution.
This is because VDPM independently encodes each partition

to enable view-dependent transmission. Thus, the correlation
among partitions cannot be as efficiently exploited as in the
uniform progressive coder that has no restriction on inde-
pendency. However, notice that VDPM requires about 40%
less bits to yield a comparable visual quality for front-facing
images.

An extra benefit of our method is the reduction of memory
usage. Since each partition can be simplified and encoded inde-
pendently, our method demands a much smaller memory size
for encoding than CPM. The same argument applies to the de-
coding process. In the rendering process, by assuming that the
required memory is proportional to the number of vertices to be

YANG et al.: A PROGRESSIVE VIEW-DEPENDENT TECHNIQUE FOR INTERACTIVE 3-D MESH TRANSMISSION 1261

Fig. 25. Moving around the Fan Disk model: (a) 0 . (b) 90 . (c) 180 , (d) 270 . (e) Resolution curves of four partitions. (f) Transmitted data size.

rendered, we see from Table II that our method only uses around
one half memory of CPM.

B. Dynamic Viewing

Viewer’s movement can be categorized into three modes: 1)
moving straight toward the object; 2) moving around the ob-
ject in a circle; and 3) moving randomly. The third case can be
viewed as a superposition of the first two movements. Due to
space limitation, we only present the simulation results for the
second case.

First, we demonstrate that the partitions are transmitted
in order of relevance to the user’s viewing parameters. In
this test, we assume that a viewer moves around the object
at a constant velocity, and the refinement data obtained by
(5) are transmitted during the initial waiting time along with
the base model. Fig. 24(a)–(d) shows rendered images of the
Bunny model at angles 0 , 90 , 180 , and 270 , respectively.
Fig. 24(e) shows the resolutions of four partitions in
terms of angles. The root vertices of are drawn as
black dots in Fig. 24(a)–(d), respectively. At angle 0 , is
located approximately at the center of the front-facing parts.
Thus, it is transmitted at the full resolution. On the contrary, at
angle 0 , is invisible, and its data are not transmitted at all.

It is observed that starts to be visible and its resolution starts
to increase, when the user moves about 90 . Fig. 24(f) shows
the number of bytes to be transmitted in this case. At first, we
require about 10 000 bytes to reconstruct visible parts. Then, as
the user is moving, we need to transmit only the incremental
data that are necessary to reconstruct newly visible parts. If the
incremental data rate is smaller than the channel bandwidth, the
viewer can interactively browse the object in real time after the
initial waiting time. Fig. 25(a)–(f) shows similar results for the
Fan Disk model. These results demonstrate that the proposed
algorithm can effectively reduce the required bandwidth by
transmitting only visible parts.

Next, we compare the performance of VDPM and CPM
under different bandwidth constraint on the Spock model. It
is assumed that a viewer moves around the Spock model
at a constant velocity, namely, 10 /s, and the base model,
together with the visible parts from the viewer’s first view
point, have already been transmitted during the initial waiting
time. The same amount of data are transmitted for CPM to
fairly compare the performance of the two algorithms in the
streaming scenario.

Transmission of refined details is conducted under three con-
ditions: at a constant bit rate (CBR) of 2.0, 4.0, and 6.0 kb/s.
Fig. 26 show rendered images when the model is transmitted at

1262 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 11, NOVEMBER 2004

Fig. 26. Moving around the Spock model with VDPM, where the first row is
transmitted at a rate of 2.0 kb/s, the second row at 4.0 kb/s and the third row at
6.0 kb/s.

these three rates. The three images on each row correspond to
the model rotated at angles 0 , 120 , and 240 , respectively.
Fig. 27 show images of CPM for comparison. VDPM always
provides better visual quality than CPM in the beginning, since
it utilizes the network resource on visible parts only. However,
when the bandwidth is not enough or the user moves too fast, it
is observed that there is significant visual quality degradation in
newly visible parts, as shown in the 2.0 kb/s case. The degrada-
tion in CPM is not as severe since it refines models uniformly.
This drawback can be overcome by buffering a larger area at a
lower resolution. The network-dependent strategy deserves fur-
ther study.

To control and measure the overall effect on the visual quality
after cutting out invisible parts, errors need be calculated and
compared with uniform mesh compression algorithms. We use
the following two measures.

• The global error. This error is used to compare the global
difference of models, no matter whether the vertex is vis-
ible or not.

• The visible error. This error is used to compare the differ-
ence only in visible areas.

Both of them are obtained by computing the mean distance
between the simplified mesh and the original one [2]. The error
curves are shown in Fig. 28, where the -axis represents the data
transmitted and the -axis is the error measure.

Although the global error of our algorithm is always the
largest, our algorithm can provide superior visual quality in

Fig. 27. Moving around the Spock model with CPM, where the first row is
transmitted at a rate of 2.0 kb/s, the second row at 4.0 kb/s and the third row at
6.0 kb/s.

visible areas at the beginning with respect to CPM. After the
viewer moves around 150 , CPM has better quality since the
back-facing parts come into view gradually and it can take
advantage of previously transmitted data, as analyzed above.
This demonstrates that our algorithm is more efficient than non
view-dependent method when the user does not need to view
the whole model within a short period of time.

VII. CONCLUSION AND FUTURE WORK

A view-dependent progressive mesh coding and streaming al-
gorithm was proposed in this research. To enable view-depen-
dent progressive transmission, the proposed algorithm divided a
mesh model into several partitions, and encoded each partition
independently. It was shown by simulation results that the pro-
posed algorithm can reduce the required bandwidth by transmit-
ting only visible parts while cutting out invisible parts and have
better performance than non-view-dependent methods when the
user does not need to view the whole model within a short pe-
riod of time.

There are several interesting topics worthy of further investi-
gation. First, it is important to develop an interactive protocol,
which enables real time graphics streaming and enhances in-
teraction between server and client. Second, we would like to
consider error-resilient issues, so we can find ways to combat
channel noise arising in wireless channels.

YANG et al.: A PROGRESSIVE VIEW-DEPENDENT TECHNIQUE FOR INTERACTIVE 3-D MESH TRANSMISSION 1263

Fig. 28. Distortion curves at a transmission rate of: (a) 2.0 kb/s, (b) 4.0 kb/s, and (c) 6.0 kb/s.

Third, the network-dependent strategy needs further study. For
example, how to adjust the resolution setting method according
to different network bandwidth constraint.

REFERENCES

[1] P. Alliez and M. Desbrun, “Progressive compression for lossless
transmission of triangle meshes,” in Proc. 28th Annu. Conf. Computer
Graphics Interactive Techniques, 2001, pp. 195–202.

[2] P. Cignoni, C. Rocchini, and R. Scopigno, Metro: Measuring Error
on Simplified Surfaces. Malden, MA: Blackwell, 1998, vol. 17, pp.
167–174.

[3] J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber, P. Agarwat,
F. Brooks, and W. Wright, “Simplification envelope,” in Proc. Com-
puter Graphics, Annu. Conf. Series, ACM SIGGRAPH, Aug. 1995, pp.
119–128.

[4] D. Cohen-Or, D. Levin, and O. Remez, “Progressive compression of
arbitrary triangular meshes,” in Proc. Visualization, 1999, pp. 67–72.

[5] M. Deering, “Geometry compression,” in Proc. Comp. Graphics, Annu.
Conf. Series, ACM SIGGRAPH, Aug. 1995, pp. 13–20.

[6] M. Garland and P. S. Heckbert, “Surface simplification using quadric
error metrics,” in Proc. 24th Annu. Conf. Computer Graphics and Inter-
active Techniques, 1997, pp. 209–216.

[7] S. Gumhold and W. Straßer, “Real time compression of triangle mesh
connectivity,” in Proc. Computer Graphics, Annu. Conf. Series, ACM
SIGGRAPH, Aug. 1998, pp. 133–140.

[8] H. Hoppe, “Progressive meshes,” in Proc. SIGGRAPH-96, Aug. 1996,
pp. 99–108.

[9] , “View-dependent refinement of progressive meshes,” in Proc.
24th Annu. Conf. Computer Graphics and Interactive Techniques, 1997,
pp. 189–198.

[10] A. Khodakovsky, P. Schröder, and W. Sweldens, “Progressive geometry
compression,” in Proc. SIGGRAPH-2000, July 2000, pp. 271–278.

[11] J. Li and C.-C. J. Kuo, “Progressive coding of 3-D graphics models,” in
Proc. Multimedia Computing and Systems, 1997, pp. 135–142.

[12] , “A dual graph approach to 3-D triangular mesh compression,”
in Proc. IEEE Int. Conf. Image Processing, Chicago, IL, 1998, pp.
891–894.

[13] D. Luebke and C. Erikson, “View-dependent simplification of arbitrary
polygonal environments,” in Proc. 24th Annu. Conf. Computer Graphics
and Interactive Techniques, 1997, pp. 199–208.

[14] R. Pajarola and J. Rossignac, “Compressed progressive meshes,” IEEE
Trans. Visual. Comput. Graphics, vol. 6, pp. 79–93, Feb. 2000.

[15] C. Prince, “Progressive meshes for large models of arbitrary topology,”
M. S. thesis, Computer Sci. and Eng. Dept., Univ. Washington, Seattle,
2000.

[16] R. Southern, S. Perkins, B. Steyn, A. Muller, and P. M. Blake, “A
stateless client for progressive view-dependent transmission,” in Proc.
Web3-D Symp., ACM, 2001, pp. 43–50.

[17] K. Sayood, Introduction to Data Compression. San Mateo, CA:
Morgan Kaufmann, 1996.

[18] G. Taubin and J. Rossignac, “Geometric compression through topo-
logical surgery,” IBM Watson Research Center, Tech. Rep. RC-20 340,
1996.

[19] C. Touma and C. Gotsman, “Triangle mesh compression,” Proc.
Graphics Interface, pp. 26–34, 1998.

[20] A. Gersho and R. M. Gray, Vector Quantization and Signal Compres-
sion. Norwell, MA: Kluwer, 1992.

[21] J. C. Xia and A. Varshney, “Dynamic view-dependent simplification for
polygonal models,” in Proc. Visualization, 1996, pp. 327–334.

[22] Z. Yan, S. Kumar, and C.-C. J. Kuo, “Error-resilient coding of 3-D
graphics models via adaptive mesh segmentation,” IEEE Trans. Circuits
Syst. Video Technol., vol. 11, pp. 860–873, July 2001.

[23] S. Yang, C.-S. Kim, and C.-C. J. Kuo, “View-dependent progressive
mesh coding for graphics streaming,” in Proc. SPIE ITCOM, 2001, pp.
154–165.

Sheng Yang (S’04) received the B.S. and M.S. de-
grees in electrical engineering from Tsinghua Univer-
sity, Beijing, China, in 1996 and 1999, respectively,
and the Ph.D. degree in electrical engineering from
the University of Southern California (USC), Los An-
geles, in 2004.

Since June 2004, he has worked as a Visiting
Scholar with the Signal and Image Processing
Institute, USC. His research interests include 3-D
graphic compression and transmission.

Chang-Su Kim (S’95–M’01) was born in Seoul,
Korea, in 1971. He received the B.S. and M.S.
degrees in control and instrumentation engineering
in 1994 and 1996, respectively, and the Ph.D. degree
in electrical engineering in 2000, all from Seoul
National University (SNU).

From 2000 to 2001, he was a Visiting Scholar with
the Signal and Image Processing Institute, Univer-
sity of Southern California, Los Angeles, and a Con-
sultant for InterVideo Inc., Los Angeles. From 2001
to 2003, he was a Postdoctoral Researcher with the

School of Electrical Engineering, SNU. In August 2003, he joined the Depart-
ment of Information Engineering, the Chinese University of Hong Kong, Hong
Kong, as an Assistant Professor. His research topics include video and 3-D
graphics processing and multimedia communications.

1264 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 11, NOVEMBER 2004

C.-C. Jay Kuo (S’83–M’86–SM’92–F’99) received
the B.S. degree from the National Taiwan Univer-
sity, Taipei, Taiwan, R.O.C., in 1980 and the M.S.
and Ph.D. degrees from the Massachusetts Institute
of Technology, Cambridge, in 1985 and 1987, respec-
tively, all in electrical engineering.

He was Computational and Applied Mathematics
(CAM) Research Assistant Professor in the Depart-
ment of Mathematics at the University of California,
Los Angeles, from October 1987 to December 1988.
Since January 1989, he has been with the Department

of Electrical Engineering-Systems and the Signal and Image Processing Insti-
tute at the University of Southern California, where he currently has a joint ap-
pointment as Professor of Electrical Engineering and Mathematics. His research
interests are in the areas of digital signal and image processing, audio and video
coding, multimedia communication technologies and delivery protocols, and
embedded system design. He has guided about 50 students to their Ph.D. de-
grees and supervised ten postdoctoral research fellows. He is a coauthor of six
books and more than 600 technical publications in international conferences and
journals.

Dr. Kuo is a Fellow of SPIE and a member of ACM. He is Editor-in-Chief
for the Journal of Visual Communication and Image Representation, Associate
Editor for IEEE TRANSACTIONS on SPEECH AND AUDIO PROCESSING and Ed-
itor for the Journal of Information Science and Engineering and the EURASIP
Journal of Applied Signal Processing. He is also on the Editorial Board of the
IEEE Signal Processing Magazine. He served as Associate Editor for IEEE
TRANSACTIONS ON IMAGE PROCESSING in 1995–1998 and IEEE TRANSACTIONS

ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY in 1995–1997. He re-
ceived the National Science Foundation Young Investigator Award (NYI) and
Presidential Faculty Fellow (PFF) Award in 1992 and 1993, respectively.

	toc
	A Progressive View-Dependent Technique for Interactive 3-D Mesh
	Sheng Yang, Student Member, IEEE, Chang-Su Kim, Member, IEEE, an
	I. I NTRODUCTION
	II. S YSTEM O VERVIEW

	Fig. 1. (a) Data organization of the compressed model. (b) Examp
	III. M ESH R EPRESENTATION
	A. Background Review
	B. Partitioning

	Fig. 2. Overview of the proposed graphics streaming system. (1)
	Fig. 3. Mesh partitioning and simplification. (a) Original mesh.
	Fig. 4. (a) Imperfect base model. (b) Eliminating the irregular
	Fig. 5. Relationship between partition number and (a) base mesh
	Fig. 6. Bidirectional traversal.
	TABLE I S TATISTICS OF F OUR T EST B ASE M ODELS . T HE N UMBER
	Fig. 7. Illustration of the half edge collapse operation.
	C. Simplification

	Fig. 8. Four base models.
	Fig. 9. Data structure of a graphics model.
	D. Progressive Coding
	1) Coding of the Base Model: The previous section described how
	2) Coding of Partitions: Before encoding each partition, the irr

	IV. V ISIBILITY D ETERMINATION AND R ESOLUTION S ETTING
	A. Visibility Determination

	Fig. 10. Use of a sphere to represent a partition. (a) Partition
	Fig. 11. Viewing frustum test.
	1) Viewing Frustum: The viewing frustum defines a volume, and th

	Fig. 12. Visibility determination based on the viewing frustum c
	Fig. 13. Determining the visibility of a vertex.
	Fig. 14. Merging of two Gauss maps. (a) Two Gauss maps. (b) Thei
	2) Partition Orientation: The purpose of the partition orientati

	Fig. 15. Occlusion check.
	Fig. 16. Example of the occlusion effect.
	3) Occlusion Effect: In some cases, a viewer cannot observe a pa
	B. Resolution Setting

	Fig. 17. Amount of data needed at each resolution for: (a) the S
	1) Viewing Angle: Generally speaking, human eyes are more sensit
	2) Viewing Distance: To find out the relationship between the di
	V. R ATE C ONTROL

	Fig. 18. Parabolic curve fitting for: (a) the Spock model and (b
	Fig. 19. Viewer moving around the model. (a) $t=t_{1}-\triangle
	VI. E XPERIMENTAL R ESULTS
	Fig. 20. Compression of the Fan Disk model. From left to right:
	Fig. 21. Compression of the Bunny model. From left to right: CPM
	Fig. 22. Compression of the Venus Head model. From left to right
	Fig. 23. Compression of the Spock model. From left to right: CPM
	A. Static Viewing
	TABLE II C OMPRESSED F ILE S IZES (IN B YTES). T RANS . D ATA
	Fig. 24. Moving around the Bunny model: (a) 0 $^{\circ}$. (b) 9
	Fig. 25. Moving around the Fan Disk model: (a) 0 $^{\circ}$. (b

	B. Dynamic Viewing
	Fig. 26. Moving around the Spock model with VDPM, where the firs

	Fig. 27. Moving around the Spock model with CPM, where the first
	VII. C ONCLUSION AND F UTURE W ORK
	Fig. 28. Distortion curves at a transmission rate of: (a) 2.0 kb

	P. Alliez and M. Desbrun, Progressive compression for lossless t
	P. Cignoni, C. Rocchini, and R. Scopigno, Metro: Measuring Error
	J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber, P. Agarwat
	D. Cohen-Or, D. Levin, and O. Remez, Progressive compression of
	M. Deering, Geometry compression, in Proc. Comp. Graphics, Annu.
	M. Garland and P. S. Heckbert, Surface simplification using quad
	S. Gumhold and W. Straßer, Real time compression of triangle mes
	H. Hoppe, Progressive meshes, in Proc. SIGGRAPH-96, Aug. 1996, p
	A. Khodakovsky, P. Schröder, and W. Sweldens, Progressive geomet
	J. Li and C.-C. J. Kuo, Progressive coding of 3-D graphics model
	D. Luebke and C. Erikson, View-dependent simplification of arbit
	R. Pajarola and J. Rossignac, Compressed progressive meshes, IEE
	C. Prince, Progressive meshes for large models of arbitrary topo
	R. Southern, S. Perkins, B. Steyn, A. Muller, and P. M. Blake, A
	K. Sayood, Introduction to Data Compression . San Mateo, CA: Mor
	G. Taubin and J. Rossignac, Geometric compression through topolo
	C. Touma and C. Gotsman, Triangle mesh compression, Proc. Graphi
	A. Gersho and R. M. Gray, Vector Quantization and Signal Compres
	J. C. Xia and A. Varshney, Dynamic view-dependent simplification
	Z. Yan, S. Kumar, and C.-C. J. Kuo, Error-resilient coding of 3-
	S. Yang, C.-S. Kim, and C.-C. J. Kuo, View-dependent progressive

